Supporting Information

Self-densified ultrathin solid electrolyte membrane fabricated from monodispersed sulfide electrolyte nanoparticles

Lilin Wu^{a,‡}, Bai Xue^{b,‡}, Hongjiao Wang^{b,c}, Zhenghua Su^b, Zhongkuan Luo^a, Fang Wang^a, Xianghua Zhang^c, Laurent Calvez^{c,*}, Bo Fan^{b,*}

a College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China

b Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

c Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, Rennes 35042, France

‡ These authors contributed equally to this work as co-first authors.

^{*}Authors to be corresponded: fanb07@hotmail.com; laurent.calvez@univ-rennes1.fr.

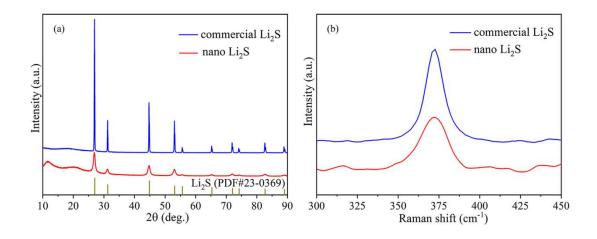


Figure S1 (a) XRD patterns (b) Raman spectra of the as-synthesized nano-Li₂S and commercial Li₂S. Peak broadening is evidently observed for nano-Li₂S, reflecting its significantly reduced dimension.

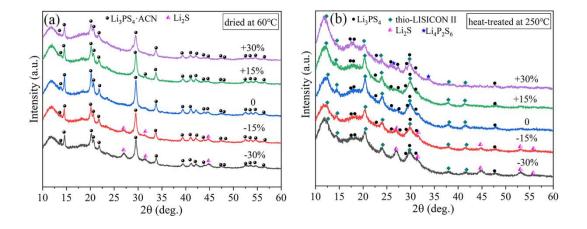


Figure S2 XRD patterns of the LPS samples synthesized by different proportions of Li₂S·P₂S₅ and Li₂S after (a) drying at 60°C and (b) heat treatment at 250°C. The symbol "0" denotes that Li₂S·P₂S₅ and Li₂S sol are mixed at 3:1 molar ratio of Li₂S and P₂S₅. "–"and "+" respectively represent the deficient and excess of Li₂S·P₂S₅ on the base of "0", and the numbers behind "–" or "+" denote the

percentage of shortage or excess.

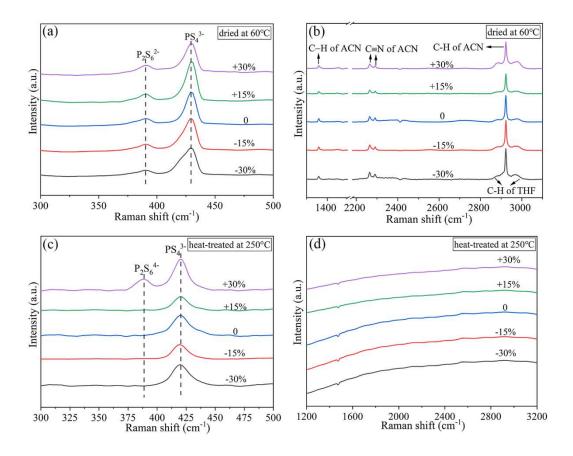


Figure S3 Raman spectra of the LPS samples synthesized by different proportions of Li₂S·P₂S₅ and Li₂S after (a) drying at 60°C and (b) heat treatment at 250°C. Signals attributed to the solvents disappear

after 250°C heat treatment, indicating the solvents are removed.

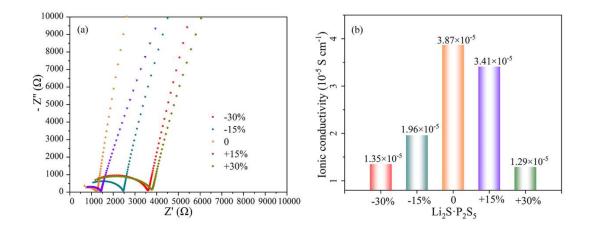


Figure S4 (a) Impedance spectra of the pelletized LPS solid electrolytes synthesized with different proportions of Li₂S·P₂S₅ and Li₂S. (b) Room temperature ionic conductivity of the LPS solid

electrolytes calculated from the impedance spectra.

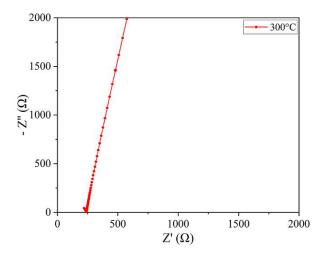


Figure S5 Impedance spectrum of the pelletized LPS solid electrolyte after heat treatment at 300°C. The dimension of the pellet is Φ 15 mm × 0.68 mm, resulting in a conductivity of 1.69×10^{-4} S cm⁻¹.

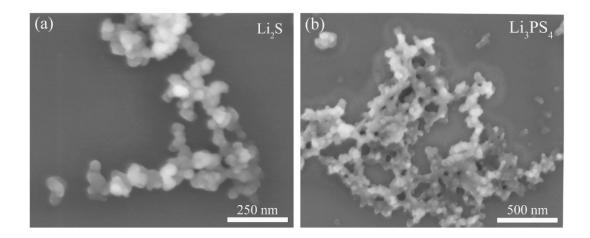


Figure S6 SEM images of (a) the nano-Li₂S prepared by mixing sulfur powder and Li-Naph solution,

and (b) the resultant LPS precursor particles.

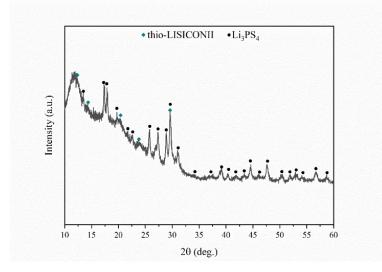


Figure S7 XRD patterns of LPS prepared by dual precursor route using the nano-Li₂S prepared by

mixing sulfur powder and Li-Naph solution.

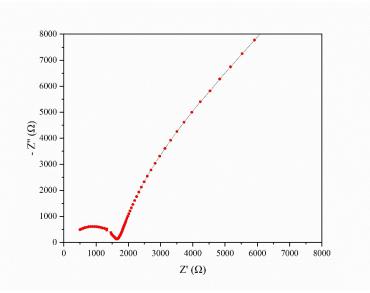


Figure S8 Impedance spectrum of the pelletized LPS solid electrolyte after heat treatment at 250°C. The LPS is synthesized with the nano-Li₂S prepared by mixing sulfur powder and Li-Naph solution. The dimension of the pellet is Φ 15 mm × 0.84 mm, resulting in a conductivity of 2.8 × 10⁻⁵ S cm⁻¹.

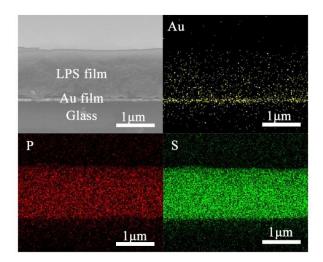


Figure S9 SEM image and EDS elemental mapping of the cross section of a LPS membrane on an Au-

coated glass substrate before Li deposition.

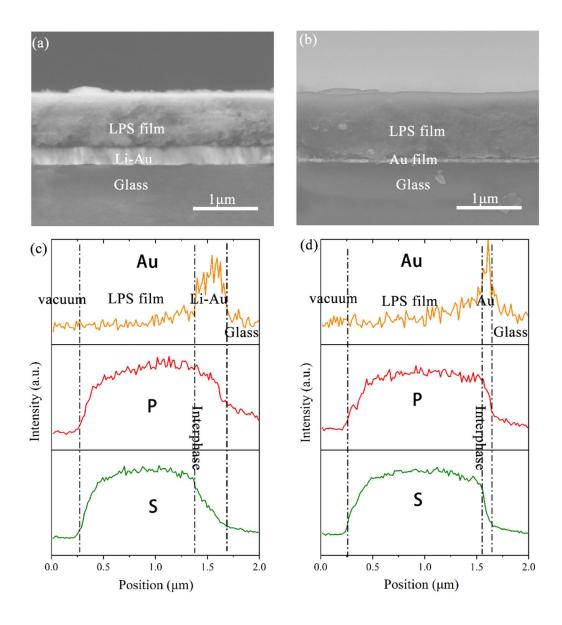


Figure S10 SEM images of a LPS membrane on an Au-coated glass substrate (a) after lithium deposition with a capacity of 46.3 μ Ah cm⁻² at a current of 65 μ A cm⁻² and (b) before Li deposition. The corresponding EDS line scanning results of the LPS membrane after and before lithium deposition

are shown in (c) and (d), respectively.

Electrolyte	Thickness	Resistance	Particle form	Densification	Ref.
	(µm)	$(\Omega \text{ cm}^2)$		processing	
Li ₃ PS ₄	0.5–1	0.8	nanoparticles in sol	spin coating + low	This
			precursor	temperature sintering	work
Li ₃ PS ₄	50	42	nanosheets in	cold pressing at 200	S1
			suspension	MPa	
			precursor		
Li ₃ PS ₄	0.4–35	17	nanosheets in	hot pressing at 200	S2
			suspension	MPa	
			precursor		
Li ₆ PS ₅ Cl	35	18	micro-sized	cold pressing at 150	S3
			particles + binder	MPa	
Li _{5.4} PS _{4.4} Cl _{1.6}	30	0.35	micro-sized	cold pressing at 500	S4
			particles+ binder	MPa	
Li ₆ PS ₅ Cl	60	0.95	micro-sized	cold pressing at 500	S5
			particles + scaffold	MPa	
Li ₃ PS ₄	70	35	micro-sized	cold pressing at 370	S6
			particles + scaffold	MPa	
$Li_{10}GeP_2S_{12}$	90	26	micro-sized	cold pressing at 370	S6
			particles + scaffold	MPa	

Table S1 Parameters of reported sulfide electrolyte membranes.

Table S2 Assumed parameters for the energy-density estimation of a Li-S battery using LPS solid

electrolyte membrane.

Average cell voltage	2.1 V Li/Li ⁺
Active material loading (cathode)	$0.5-5.5 \text{ mg cm}^{-2}$
Percentage of active material in composite cathode	30%
Anode/cathode capacity ratio	3
Al current collector thickness	10 μm
LPS membrane thickness	1μm or 30 μm
Density of LPS	1.868 g cm ⁻³

Battery structure and calculation method follow the works in Ref. S7.

References

- H. Wang, Z. D. Hood, Y. Xia, and C. Liang Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries. J Mater Chem A. 2016; 4:8091-96.
- Z. D. Hood, H. Wang, A. S. Pandian, R. Peng, K. D. Gilroy, M. Chi, et al. Fabrication of Sub-Micrometer-Thick Solid Electrolyte Membranes of β-Li3PS4 via Tiled Assembly of Nanoscale, Plate-Like Building Blocks. Adv Energy Mater. 2018; 8:1800014.
- G. Liu, J. Shi, M. Zhu, W. Weng, L. Shen, J. Yang, et al. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. Energy Stor Mater.2021; 38:249-54.
- 4. Z. Zhang, L. Wu, D. Zhou, W. Weng, and X. Yao Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All-Solid-State Lithium Batteries. Nano Lett. 2021; 21:5233-39.
- G.-L. Zhu, C.-Z. Zhao, H.-J. Peng, H. Yuan, J.-K. Hu, H.-X. Nan, et al. A Self-Limited Free-Standing Sulfide Electrolyte Thin Film for All-Solid-State Lithium Metal Batteries. Adv Funct Mater. 2021; 31:2101985.
- 6. Y. J. Nam, S.-J. Cho, D. Y. Oh, J.-M. Lim, S. Y. Kim, J. H. Song, et al. Bendable and Thin Sulfide Solid Electrolyte Film: A New Electrolyte Opportunity for Free-Standing and Stackable High-Energy All-Solid-State Lithium-Ion Batteries. Nano Lett. 2015; 15:3317-23.
- C. Li, H. Zhang, L. Otaegui, G. Singh, M. Armand, and L. M. Rodriguez-Martinez Estimation of energy density of Li-S batteries with liquid and solid electrolytes. J Power Sources. 2016; 326:1-5.