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Abstract
Robustness to genetic or environmental disturbances is often considered as a key property
of living systems. Yet, in spite of being discussed since the 1950s, how robustness emerges
from the complexity of genetic architectures and how it evolves still remains unclear. In
particular, whether or not robustness is independent to various sources of perturbations
conditions the range of adaptive scenarios that can be considered. For instance, selec-
tion for robustness to heritable mutations is likely to be modest and indirect, and its
evolution might result from indirect selection on a pleiotropically-related character (e.g.,
homeostasis). Here, I propose to treat various robustness measurements as quantitative
characters, and study theoretically, by individual-based simulations, their propensity to
evolve independently. Based on a simple evolutionary model of a gene regulatory network,
I showed that five measurements of the robustness of gene expression to genetic or
non-genetic disturbances were substantially correlated. Yet, robustness was mutationally
variable in several dimensions, and robustness components could evolve differentially
under direct selection pressure. Therefore, the fact that the sensitivity of gene expression
to mutations and environmental factors rely on the same gene networks does not preclude
distinct evolutionary histories of robustness components.

Keywords: Gene regulatory network; Transcription regulation; Wagnermodel; Individual-based simulations; Canal-
ization
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Introduction

Robustness is the capacity of living organisms to buffer internal or environmental distur-
bances. Robustness encompasses, for instance, the ability to maintain physiological equilib-
ria (homeostasis), to ensure developmental stability, or to repair and mitigate DNA damage
in both soma and germline. Although robustness is virtually intermingled with the definition
of life itself, its underlying mechanisms and its evolutionary origins remain far from being
clearly understood (Hallgrimsson et al., 2019; Masel and Siegal, 2009; Stearns, 2002; A Wag-
ner, 2013).

Robustness evolves as a consequence of non-linearities in the developmental or physio-
logical mechanisms, i.e. changes in the magnitude of the effect of some genetic or environ-
mental factor on the phenotype of interest (Nijhout, 2002). The study of the evolutionary pro-
cesses leading to robustness roots into the conceptual and empirical work by C.H. Wadding-
ton and the concept of canalization (Loison, 2019; Schmalhausen, 1949; Waddington, 1942,
1959). Canalization is a property of complex developmental systems that buffers environmen-
tal and genetic variation, and maintains actively the organism in an optimal developmental
path. Although the scope and the definition of canalization varies substantially among au-
thors, canalization is generally expected to evolve as an adaptation to "canalizing" selection
for an optimal phenotype (Debat and David, 2001; Eshel and Matessi, 1998; Flatt, 2005; Klin-
genberg, 2019). However, formal population genetic models have questioned the unicity of
the canalization process. In particular, robustness to environmental factors appears more
likely to evolve as an adaptation than robustness to genetic (mutational) disturbances, on
which selection seems to be rather weak and indirect even in optimal theoretical conditions
(Hermisson et al., 2003; Le Rouzic et al., 2013; GP Wagner et al., 1997).

In this context, the evolution of robustness as a general property of organisms heavily de-
pends on the genetic and physiological integration of the different robustness dimensions
(Fares, 2015; Félix and Barkoulas, 2015). If the robustness to environmental factors and to
genetic mutations share the same physiological bases, the adaptive evolution of environmen-
tal canalization can generate a correlated response of genetic canalization; this hypothesis
has been referred to as "congruent evolution" (de Visser et al., 2003), and have recieved some
empirical support (Lehner, 2010; Tonsor et al., 2013). In contrast, if genetic and environmen-
tal robustness had independent biological bases, they would be featured by independent
evolutionary mechanisms, and possibly independent evolutionary histories.

Although this issue would benefit from a better theoretical framework, modeling the evo-
lution of robustness is not straightforward. The simplest approach relies on modifiers, i.e.
genes that can influence the robustness of the organism without affecting the phenotype.
However, in the case of genetic robustness, modifier-basedmodels either rely on tricky rescal-
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ing or cannot dissociate the phenotype and the robustness to the phenotype (Kawecki, 2000;
Rajon and Masel, 2013; GP Wagner et al., 1997). In addition, in models where the genotype-
phenotype association is arbitrary (such as the NK model, Kauffman and Levin (1987), or the
multilinear model, Hansen and GP Wagner (2001)), any correlation between environmental
and genetic robustness would be a modeling choice, and not an output of the model. More
promising to address the congruent evolution issue are models in which the phenotype is a
result of an integrated process mimicking some developmental or physiological mechanism
(referred to as causally cohesive genotype phenotypemodels in Rajasingh et al., 2008). In such
dynamic models, robustness to various disturbances appear as an emergent property of the
model complexity, caused by regulatory feedbacks, that cannot be easily deduced from the
model parameters. Although the potential palette of relevant dynamic models is large and
could include morphological development models (Milocco and Salazar-Ciudad, 2020), RNA
foldingmodels (AWagner and Stadler, 1999), ormetabolicmodels (Nijhout et al., 2019), evolu-
tionary biologists have often considered gene regulatory network models as a good compro-
mise between complexity and numerical tractability for studying the evolution of canalization
and robustness (Kauffman, 1969; Le Cunff and Pakdaman, 2012; Smolen et al., 2000; A Wag-
ner, 1994).

Such theoretical gene networks have been shown to display enough non-linearity, lead-
ing to epistasis and pleiotropy, to evolve enhanced or reduced sensitivity to environmental
(Espinosa-Soto et al., 2011; Espinoza-Soto et al., 2011; Masel, 2004) and genetic (Azevedo et al.,
2006; Bergman and Siegal, 2003; Draghi and GP Wagner, 2009; Rünneburger and Le Rouzic,
2016; A Wagner, 1996) perturbations. Interesting observations suggest that environmental
or genetic canalization could be correlated to other robustness properties in such models.
For instance, Ciliberti et al. (2007) and Kaneko (2007) noticed that robustness to mutations
and robustness to noise was correlated in gene networks— a similar result was obtained ear-
lier for RNA-folding structures (Fontana, 2002). Furthermore, it has been shown that network
stability, the propensity of the network to maintain stable (non-cyclic) gene expressions, was
correlated to robustness, as selection on stability alone could drive an indirect response of ge-
netic (Siegal and Bergman, 2002) and environmental (Masel, 2004; Nagata and Kikuchi, 2020)
canalization. In contrast, Odorico et al. (2018) showed that networks selected tomaintain (but
not converge to) an equilibrium became both environmentally sensitive and genetically canal-
ized, suggesting that environmental and genetic robustness could be theoretically decoupled.
However, no systematic quantitative description of the pleiotropic pattern underlying differ-
ent robustness components has ever been attempted.

Here, I aim at extending the study of canalization in theoretical gene networks to address
the multidimensional nature of robustness, by estimating the evolutionary independence of
various robustness components. Four robustness-related measurements were considered,
two of them corresponding to environmental robustness (early vs. late disturbances), two
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corresponding to genetic robustness (early — inherited — or late — acquired — mutations).
Gene expression instability was also included in the set of robustness-related traits, as it is
related to the intrinsic stability of the expression phenotype. The first part of this study fo-
cuses on the multidimensional patterns of robustness in small and random networks, and
the second part on the evolutionary consequences of the pleiotropic nature of robustness,
based on individual-based simulations.

Model and Methods

Gene regulatory network

The network model belongs to the family of gene regulatory network models sometimes re-
ferred to as "Wagner model" (after A Wagner (1994, 1996); see Fierst and Phillips (2015) for a
historical record). Two variants of the model were proposed in A Wagner (1994); the second
one, involving discrete gene expressions scaled between−1 and 1, has often been reused in
the literature (Ciliberti et al., 2007; Siegal and Bergman, 2002; A Wagner, 1996). The model
described below is closer to the first model by A Wagner (1994), featuring a continuous gene
expression P between 0 and 1, and a constitutive expression level 0 < a < 1 that can be
lower than the mid-expression point.

More specifically, the structure of a n-gene network is encoded as a n×nmatrixW, while
the state of the network is stored into a vector of size n, P. In this setting,Wij encodes the
influence of gene j on the expression of gene i, Wij < 0 represents a negative interaction
(inhibition),Wij > 0 a positive interaction (activation), andWij = 0 denotes the absence of
regulatory interaction. Pi is the expression of gene i, ranging between 0 (no expression) and
1 (maximum expression).

The properties of these gene networks are explored in a discrete dynamic system:

Pt+1 = F (WPt), (1)

where the functionF is a vectorized version of a sigmoid scaling function: F (x1, x2, . . . , xn) =

[f(x1), f(x2), . . . , f(xn)];

f(x) =
1

1 + λae−µax
, (2)

with λa = (1 − a)/a and µa = 1/a(1 − a) (Guyeux et al., 2018). The function f is scaled
such that f(0) = a and df/dx|x=0 = 1; the parameter a thus stands for the constitutive gene
expression (the expression of a gene in absence of regulators), and this function defines the
scale of the matrix W: Wij = δ (δ � 1) means that the expression of gene i at the next
time step will tend to Pi,t+1 = a+ δ if i is regulated by a single, fully expressed transcription
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factor j (Pj,t = 1). This setting, extensively described in Rünneburger and Le Rouzic (2016),
differs mathematically from the constitutive expression model in A Wagner (1994) that shifts
the sigmoid asPt+1 = F (WPt + a).

Gene networks dynamics start from an initial expressionP0, and gene expression was up-
dated for T time steps. By default, P0 = (a, a, ..., a), since this step immediately follows a
virtual initial state with no expression. The expression phenotype corresponding to a gene
network was determined by averaging gene expressions during the last τ time steps for each
gene i: P ∗i = (1/τ)

∑T
t=T−τ Pit.

Robustness indicators

Five robustness indicators were calculated, corresponding to five different aspects of genetic
or environmental robustness in a gene network: robustness to early (ρE ) and late (ρe) envi-
ronmental disturbance, and robustness to early (ρM ) and late (ρm) genetic disturbance, and
network stability ρS . All indicators were expressed on a scale homogeneous to log variances
in gene expressions; themode of calculation is summarized in Table 1, robustness ismaximal
when the index ρ is small.

The robustness to early environmental disturbance ρE measures the capacity of a network
to reach a consistent final state starting from different initial gene expressions. In practice,R
replicates of the network dynamics were run, in which the initial gene expressions (P0) were
drawn into Gaussian (µ = a, σ = σE ) distributions (expression values < 0 and > 1 were set
to 0 and 1, respectively). The environmental robustness ρEi for each gene i was measured
as the log variance in the final gene expression across these replicates.

The robustness to late environmental disturbance ρe measures the capacity of a network
to recover its equilibrium state after having being disturbed. Gene expressions after T time
steps were disturbed by adding a random Gaussian noise of standard deviation σe to each
gene of the network, and ρei was computed for each gene i as the log variance in gene ex-
pression at time step T + 1 over R replicates.

The robustness to early mutations ρM measures the system robustness to inherited ge-
netic mutations (modifications of the W matrix). A random non-zero element of the W

matrix was shifted by a random Gaussian number of standard deviation σM , and its con-
sequences on the mean expression of all network genes was recorded. The procedure was
replicated R times, and the robustness score ρMi for each gene i was calculated as the log
variance of gene expression across R replicates.
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Indicator Robustness component Computation Disturbance std. dev.
ρE Early noise in gene

expression
ρEi = log[ 1

R−1
∑R
r=1(P ∗i,r − P ∗i )2] σE = 0.1

ρe Late noise in gene
expression

ρei = log[ 1
R−1

∑R
r=1(Pi,T+1,r − Pi,T+1)2] σe = 0.1

ρM Early (inherited)
mutations

ρMi = log[ 1
R−1

∑R
r=1(P ∗i,r − P ∗i )2] σM = 0.1

ρm Late (aquired)
mutations

ρmi = log[ 1
R−1

∑R
r=1(Pi,T+1,r − Pi,T+1)2] σm = 0.1

ρS Expression stability ρSi = log[(P ∗i − PT+1)2]

Table 1. Summarized calculation of all five robustness indicators. Index i stands for the gene (1 ≤ i ≤ n),
and r for the replicate (1 ≤ r ≤ R), since all indicators except ρS were estimated by a resampling procedure.
P ∗i stands for the equilibrium gene expression of gene i (mean expression from the last τ time steps), and
P ∗i = (1/R)

∑R
r=1 P

∗
i,r represents the mean over replicates. Noise in gene expression was simulated by

adding a random Gaussian deviation to the initial stateP0 of the network (for ρE ) or to the last statePT of
the network (for ρe). Mutations were simulated by adding a random deviation to a random interaction in the
networkW, either before starting the network dynamics (ρM ) or after the last time step (ρm). All robustness
indicators are homogeneous to a log variance in gene expression; robustness increases when the indicator
gets smaller, and sensitivity increases when the indicator increases. The last column indicates the standard

deviation of the corresponding Gaussian disturbance.

The robustness to latemutations ρmmeasured the effect ofmutations in the gene network
W after having reached the final state. In practice, the W matrix was mutated in the same
way as for ρM with a standard deviation σm, but its consequences on gene expression were
calculated for only one time step, starting from the last state of the network. The robustness
score was calculated as for other indicators (log variance over R replicates).

Finally, dynamic systems based on the Wagner model often tend to generate limit cycles
and never converge to a stable equilibrium. Network stability ρS quantifies the capacity for
a specific network to lead to stable gene expressions. For consistency with other indicators,
this instability was measured as the log squared difference between the average expression
during the last τ time steps, and an extra time step.

All these scores were calculated for every gene i of a given network, and then averaged
over all genes in order to get a series of summary network descriptors. The magnitude of
the score itself is arbitrary, as it depends on the size of the disturbance. However, indicators
happen to increase approximately linearly with the size of the disturbance (Appendix 1), the
results were thus largely unaffected by a change in the variance of mutational effects and
environmental noise.
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Random networks

Random networks were generated as n × nW matrices filled with independent identically-
distributed random numbers drawn into a Gaussian (by default: µ0 = 0, σ0 = 1) distribution.
A density parameter 1/n ≤ d ≤ 1 could be specified, corresponding to the frequency of non-
zero slots in the W matrix. Zeros were placed randomly, with the constraint that all genes
should be regulated by at least another one.

Exhaustive exploration of two-gene networks

The main interest of gene-network models is the complexity and the richness of the under-
lying genotype-phenotype relationship. As a side effect, such models are in general difficult
to handle mathematically (Carneiro et al., 2011; Le Cunff and Pakdaman, 2012). Excluding
the one-gene self-regulating case (which already has non-trivial mathematical properties,
Guyeux et al. (2018)), the simplest network (2-by-2matrix) has four genetic parameters, which
makes the exploration of the parameter set tedious. Here, the number of dimensions was
restricted by considering the set of networks that lead to a predefined arbitrary equilibrium,
Pθ∞ = (P θ1 , P

θ
2 ). As F (WPθ∞) = Pθ∞, the W matrix can be reduced to two independent

parameters,W11 andW21:

W = F

[(
W11 A

W21 B

) (
P θ1
P θ2

)]
=

(
P θ1
P θ2

)
, (3)

with

A =
1

P θ2
[f−1(P θ1 )−W11P

θ
1 ],

B =
1

P θ2
[f−1(P θ2 )−W21P

θ
1 ],

(4)

f−1(y) = − 1
µa

log
(

1−y
λay

)
being the inverse of f(x) (equation 2). This equation can be ex-

tended to any network size, provided that a single elementWij is unknown for each line i of
the matrix:

Wij =
1

P θj
[f−1(P θi )−

∑
j′ 6=j

Wij′P
θ
j′ ]. (5)

Among the n2 elements of a n-gene network, there are thus n(n− 1) neutral dimensions
that can be explored without modifying equilibrium gene expressions. Large gene networks
are thus characterized by a proportionally larger neutral space.
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TheWmatrix achieving the desiredPθ∗∞ equilibrium from a specific pairW11,W21 always
exists (and is unique), but the stability of the equilibrium is not guaranteed. Networks which
final gene expressionP∗ = (P ∗1 , P

∗
2 ) differed substantially from the target (in practice, when

|P ∗1 − P θ1 | + |P ∗2 − P θ2 | > 0.15) were excluded from the analysis. Such discrepancies corre-
spond to either unstable equilibria (in which case gene expressions were driven away from
the equilibrium) or extreme oscillatory behaviors (large oscillations may hit expression limits
0 or 1, which drives the average expression away from the target equilibrium).

Evolutionary simulations

The evolution of genenetworks under various evolutionary constraintswas studiedby individual-
based simulations. Each individual was featured by its genotype (a n×nWmatrix, by default
n = 6 to limit the computational burden), its expression phenotype P∗, and the five robust-
ness scores ρS , ρE , ρe, ρM , and ρm. Individuals were haploid and reproduced clonally. Muta-
tions consisted in adding a randomGaussian deviate of varianceσ2

ν to a random regulatory in-
teraction of theWmatrix, with a rate ν per individual and per generation. Mutational param-
eters ν and σν were kept reasonably low to limit the strength of indirect selection for genetic
robustness (Rünneburger and Le Rouzic, 2016; GP Wagner et al., 1997). Generations were
non-overlapping, and population size N was constant. A generation consists in sampling N
new individuals among theN parents, with a probability proportional to the individual fitness.
Fitness was computed assuming stabilizing selection around a target (optimal) expression
level for n′ ≤ n genes of the network (by default n′ = 3), as w = exp(−

∑n′

i=1 si(P
∗
i − θi)2),

where si was the strength of stabilizing selection on gene i (si = 0 standing for no selection),
and θi was the optimal expression phenotype. The θi were drawn in a uniform (0,1) distribu-
tion at the beginning of each replicated simulation, and the initial gene network was empty
(Wij = 0) except for one random element per line, which was initialized tomatch the optimal
expression using equation (5).

The evolution of robustness components was tracked by estimating ρS , ρE , ρe, ρM , and
ρm at regular time points. Components were estimated for each individual, and averaged
out over the population. The response to direct or indirect selection was computed as the
average change from generation 0; the multivariate response was stored as a 5-dimension
vectorR. Simulation runs were replicated 100 times and the results were averaged out, de-
fault parameter values are provided in Table 2.

Directional selection on robustness indicators was also performed in some simulations,
consisting in multiplying individual fitness by exp(

∑
x∈(S,E,e,M,m) βxρx), where βx was the

strength of directional (positive or negative) selection on robustness index x (in practice,
βx = ±0.01). The vector β is thus proportional to the multivariate selection gradient on
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Parameter Symbol Value
Population size N 1000

Gene network size n 6

Constitutive expression a 0.2

Network time steps T 16

Network measurement steps τ 4

Network density d 1.0

Simulation replicates 100

Mutation rate per individual ν 0.01

Size of mutational effects σν 0.1

Number of selected genes n′ 3

Stabilizing selection coefficient s 10

Directional selection coefficient β 0

Number of robustness tests R 100

Size of early environmental noise σE 0.1

Size of late environmental noise σe 0.1

Size of early genetic mutations σM 0.1

Size of late genetic mutations σm 0.1

Table 2. Default parameter values in the evolutionary simulations.

robustness components. There was no correlated selection (the fitness function is the prod-
uct of independent marginal functions applied on gene expressions and robustness compo-
nents).

Estimating genetic covariance matricesG was computationally intractable in simulations
(it would require a heavy resampling procedure in each individual), mutational covariances
M from the average genotype in the population (W) were used instead to derivemultivariate
evolutionary predictions. Mutational covariance matrices M = νC/5 were estimated from
covariancesC in gene expressions and robustness coefficients among 100 gene networks dif-
fering fromW by 5mutations (drawn from the same algorithm as during the simulations). In
order to control for the influence of stabilizing selection on gene expression on the evolution
of robustness, conditional mutational matrices (equivalent to conditional evolvabilities ofG
matrices in Hansen and Houle, 2008) were computed as Mc(y|x) = My −MyxM

−1
x Mxy ,

where y indicate the ny unconstrained traits and x the nx constrained traits (i.e. the n′ = 3

genes under stabilizing selection). Mc(y|x) was thus a ny × ny matrix measuring how the
unconstrained traits can mutate while traits x remain constant. Predicted mutational evolv-
abilities in the direction of selection β were calculated as epred = β>Mcβ/|β|2 (Hansen and
Houle, 2008), and realized (observed) evolvabilities were obtained by projecting themultivari-
ate response to selection R on the direction of β: eobs = Rβ/|β|. Contrary to the genetic
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covariances G, mutational covariances M cannot be used directly to compute quantitative
evolutionary predictions, as the relationship between M and G depends on the mutation-
selection-drift equilibrium, which is notoriously difficult to handle mathematically (Bürger
and Lande, 1994). The following analyses thus focus on whether mutational evolvabilities
are proportional to the selection responses, assuming thatG are proportional toM.

Simulations and data analysis were coded in R (R Core Team, 2020), except for the core
gene network dynamics that was coded in C++ and embedded in the R code with the Rcpp
package (Eddelbuettel and Balamuta, 2017). Scripts to reproduce simulations and figures are
available online (https://doi.org/10.5281/zenodo.6393075), Le Rouzic (2022).

Results

Random networks

Random interaction matrices are regularly used in the literature to study the general proper-
ties of gene networks (e.g. Carneiro et al., 2011; Pinho et al., 2012). As such, randomnetworks
are not expected to reflect the properties of biologically-realistic genetic architectures, as bio-
logical networks are far from random. However, such an approach helps developing a general
intuition about the properties of the underlying model.

Correlations were calculated between all five robustness components over 10,000 random
networks (Appendix 2). All robustness components were positively correlated, correlations
ranged from about 0.62 (late genetic vs. early environmental) to above 0.97 (late environ-
mental vs. late genetic). A Principal Component Analysis (Figure 1A and B) confirms that
robustness components were partially correlated. The first PC (82% of the total variance)
corresponds to the general robustness of the network, and involves all robustness indexes.
The remaining variance is explained by orthogonal vectors separating all other robustness
components. At least 4 out of 5 PCs, explaining 10% to 2% of the total variance, did not van-
ish when increasing the sample size (Appendix 3). The part of the variance in robustness
explained by the first PC is robust to the network properties, as it remains around 80% when
the mean and the variance in the regulation strengths, the network density, and the network
size vary (Figure 1C, D, E, and F).

Two-gene networks

In the following, I considered an arbitrary case of a two-gene network which genes are ex-
pressed to P∞ = (0.3, 0.6). Equivalent results could be achieved with a different, arbitrary
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Figure 1. A: Summary of the principal component analysis on the five robustness indicators over 10,000 random
6-gene networks (µ0 = 0, σ0 = 1), indicating the position of the five robustness components on all five (normalized)
Principal Components (PC); ρS : Stability, ρE : Early environmental, ρe: Late environmental, ρM : Early genetic, ρm: Late
genetic. B: relative contribution of the five PCs to the total variance. C: Influence of the average regulation strength
(µ0) on the % of the total variance explained by the first PC (negative values feature inhibitory networks, positive

values activating networks). D: Influence of the standard deviation of the regulation strength (σ0). E: Influence of the
network density. F: Influence of the network size.

target. Figure 2 illustrates how the robustness components varied in this constrained 2-gene
network model (red stands for maximum robustness, i.e. minimum scores for ρS , ρE , ρe, ρM ,
and ρm). All the networks considered here converge to the same gene expression, and can
thus be considered as phenotypically equivalent ; the colored space in Figure 2 thus repre-
sents a connected neutral network in which populations can evolve, and thus change the
topology and the robustness of the gene network, while keeping the expression phenotype
constant. In the white regions, the equilibrium was not achieved in numerical simulations
for at least three different reasons (Appendix 4): (i) fluctuations around the equilibrium were
large enough to hit the edges of the (0,1) interval, shifting the mean expression; (ii) the ex-
pression dynamics was slow and the network was unable to get close to the equilibrium after
16 time steps; (iii) the equilibrium was not reachable from the default starting point.

The different robustness components were correlated, but did not overlap perfectly. In
order to assess the variation of the robustness properties, five networks of contrasted ro-
bustness, labeled from A to E, were tracked more specifically (Figure 2; the corresponding
Wmatrices are provided in Appendix 5). Appendix 6 illustrates the effect of various sources
of disturbance on each network dynamics. The network denoted as B was robust to most
sources of disturbance, while network E was sensitive to all components except stability. Net-
work C was unstable, but remained relatively buffered. Networks A and D illustrate interme-
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Figure 2. Robustness indicators (ρE , ρe, ρM , ρm, and ρS ) estimated for an exhaustive continuum of two-gene
networks with an arbitrary expression equilibrium atP∞ = (0.3, 0.6). Although two-gene networks have four

independent genetic parameters, only two were represented here, the two others being computed to ensure the
desired equilibrium. Red stands for the maximum robustness (lowest robustness scores); yellow for minimum
robustness (highest scores). For readability, color scales are different across panels. Letters A to E stand for five

example networks illustrated in Appendix 6.

diate loss-of-robustness behaviors, through different mechanisms (instability for network D,
and weak buffering for network A).

This 2-gene network analysis thus confirms the results obtained for large random net-
works: robustness components are only partially correlated. Robustness is not a feature
of large and intricate genetic architectures, as it is already present (and multidimensional) in
the simplest gene networks.

Evolution and evolvability of robustness

The evolution of robustness was studied by individual-based simulations, in which all individ-
uals were characterized by their genotype (a 6-gene network) and a set of phenotypes (gene
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expressions and network robustness). Gene expressions for 3 out of 6 genes were under sta-
bilizing selection. In addition to stabilizing selection on gene expression (forcing the network
to maintain a functional role), robustness indicators were directly selected towards more or
less sensitivity. Such direct, artificial selection pressures on robustness are not designed to
reflect realistic selection on gene networks, but they might reveal evolutionary limits to the
evolution of robustness due to internal constraints. Stabilizing selection on gene expression
is expected to generate a slight selection pressure on the robustness, but this effect was ap-
parent only for larger or more frequent mutations (Appendix 7).

Direct selection on all robustness components lead to a response, showing that robustness
is evolvable (diagonal panels in Figure 3). Yet, the evolutionary potential differed substantially
among robustness indicators, as indicated by the differences in the Y-scales. Robustness in-
dicators being all homogeneous to a sum of squared difference in gene expression (i.e., the
variance in gene expression induced by various disturbances), they could be compared di-
rectly. The most evolvable robustness components were early environmental disturbances
(ρE ) and stability (ρS ), which can differ by up to 25 log units (11 orders of magnitude) after
10,000 generations of bidirectional selection. In contrast, robustness to late environmental
noise ρe and genetic changes (ρM and ρm) only differed by 3 to 4 log units (i.e. a factor 10
to 100). For these three robustness components (ρe, ρM , and ρm), the response was clearly
asymmetric (the response towards more robustness was slower). Although the average re-
sponse supports a clear evolutionary trend, response to selection was variable across simu-
lation replicates, as distributions of up and down responses generally overlap. The selection
response was still ongoing after 10,000 generations.

Selection on robustness components also lead to an indirect response of all other com-
ponents, which confirms a general genetic correlation. The magnitude of the correlated re-
sponse (from 10% to 100% of the direct response) depended on the correlation across ro-
bustness components. Simulations were run to test the long-term effect of synergistic and
antagonistic selection on all pairs of robustness indicators (Figure 4), and selection responses
were compared to themutational evolvabilities computed at the beginning of the simulations.
There was a convincing proportional relationship between predicted and observed evolvabil-
ities on all directions of selection. Selection response was fast in directions that were muta-
tionally evolvable, and slow in directions that were not evolvable. Yet, in spite of the variation
of evolvability across directions in the multivariate robustness space, evolution was always
possible, even if reduced proportionally to the mutational variance, confirming the absence
of absolute constraints.

The proportionality between realized and predicted evolvabilities tends to fade out for
long-term selection responses (Appendix 8), which can be due to the evolution of mutational
constraints (the M matrix evolves compared to the initial network). This was confirmed by
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tracking the evolution of mutational correlations across robustness traits through time (Fig-
ure 5). Average correlations did not evolve substantially in control simulations, but direct
selection on robustness components did trigger systematic change in some (but not all) mu-
tational correlations. For instance, the correlation between ρM and ρm does not seem to be
evolvable, while the correlation between ρM and ρE changed from' 0.3 to about 0.6 or 0.15

depending on the selection regime. All correlations remained positive. The evolution of cor-
relations was partially driven by the direction of selection (more or less robustness). Within
each specific pair of robustness components, the evolution of correlation was rather con-
sistent: for instance, selecting to decrease ρE or ρM (i.e. making the network more robust)
always decreased the correlation between ρE and ρM . Yet, there was no general pattern
associating the evolution of robustness and the evolution of correlation; depending on the
robustness component, selecting for more or less robust networks may increase or decrease
the correlations (colored inset in Figure 5). There was no effect of joint selection; selecting to-
gether two robustness components did notmake themmore (or less) correlated (Appendix 9).

Discussion

Whether or not various robustness components of genetic architectures are independent
is central to understand why organisms are robust or sensitive to genetic or environmental
disturbances. Independent genetic bases of robustness components would call for indepen-
dent evolutionary histories, while a pleiotropic genetic architecture could explain the evolu-
tion of nonadaptive robustness components as a result of indirect selection. The analysis
of the genetic correlations between five robustness components, based on a simple gene
network model, results in a balanced answer: robustness components are largely correlated,
but pleiotropy is not an absolute constraint, and pairs of robustness components evolved in
divergent directions under direct, artificial bivariate selection. Such a quantitative answer to
the so-called ’congruence’ hypothesis (de Visser et al., 2003) would explain both how unse-
lected robustness components could be partly driven by indirect selection and why various
robustness-related features seem to have their own evolutionary history.

Model limits

Gene regulation networks are popular candidates when attempting to model complex bio-
logical processes: they are at least partly built on solid and realistic principles (transcription
factors can enhance or repress the expression of other genes), gene regulation plays a crucial
role in most biological, physiological, and developmental mechanisms, and evenmodest size
regulation networks display a wide diversity of behavior, including homeostasis (stable equi-
librium of gene expressions) (Stern, 1999), cyclic dynamics (Akman et al., 2010; Leloup and
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Figure 4. Trajectories of the bivariate response to selection over 5000 generations (average over 100
simulation replicates) for all combinations of robustness indicators. Each panel displays the selection
response in eight directions, as illustrated in the legend (four univariate — colored arrows — and four

bivariate — gray arrows — gradients of selection, same color code as in Figure 3). Mutational and conditional
mutational matrices, estimated from the initial genotypes, are illustrated as ellipses in each panel (95%
ellipses assuming a multivariate Gaussian mutational distribution). For conditionalMc matrices, the

constraining traits were the three gene which expression was under stabilizing selection. X and Y axes were
adjusted so that their scale matches for each trait comparison (correlational ellipses were not distorted). The
colored inset illustrates the proportionality between the predicted mutational evolvability (calculated from
Mc) and the observed evolvability in the direction of selection after 1000 generations (same color/symbol

code as in the rest of the figure, hyphenated line: linear regression with no intercept).
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Goldbeter, 2003), or amplification of a weak signal (Hornung and Barkai, 2008). Conveniently,
the phenotypic level considered as the output of a gene network (the expression level of all
network genes) can be assimilated to a partial transcriptome, which opens the possibility for
confrontation with empirical data.

The gene network model proposed by A Wagner (1994) is particularly popular in evolu-
tionary biology to model gene network evolution due to its computational simplicity and effi-
ciency, combined with a direct biological interpretation (each line of the regulation matrix is
the set of transcription factor fixation sites in the promoter of a gene) (see Fierst and Phillips
(2015) and Spirov and Holloway (2013) for review and alternative models). In practice, multi-
ple variants based on this original model have been derived, either to address specific ques-
tions, or to correct for unrealistic features. Here, I used a quantitative version of themodel, in
which gene expressions were scaled between 0 (no expression) and 1 (maximum expression),
which was first proposed in AWagner (1994), although later work have often preferred binary
networks (in which genes can be on/off, e.g. Ciliberti et al. (2007) and A Wagner (1996)), and
a gene expression scaling between -1 and 1. Unlike in Siegal and Bergman (2002) and A Wag-
ner (1996), mutations had cumulative effects (the value of the mutant allele was drawn in a
Gaussian centered around the value of the parental allele), which allows for gradual evolution.
Finally, the sigmoid response function was made asymmetrical by introducing a constitutive
expression parameter (as in e.g. Rünneburger and Le Rouzic (2016)) in order to avoid the un-
realistically high expression of unregulated genes (half the maximum expression) from the
default setting. This constitutive expression was not evolvable in the model, but simulations
(Appendix 7) show that two robustness components (ρE and ρS ) were very sensitive to this
parameter (larger constitutive expression was associated with more robust networks). It is
thus not unlikely that real systems may evolve towards more robustness by increasing the
constitutive expression of key genes, as already suggested (for different reasons) by Draghi
and Whitlock (2015).

Discrete time and simple matrix algebra made it possible to run evolutionary individual-
based computer simulations, in which the network output needs to be calculated for thou-
sands of individuals and thousands of generations. Using more realistic models based on
continuous time and differential equations, non-linear regulation effects, and independent
degradation and transcription rates wouldmake the simulations less practical, with little ben-
efit in terms of explanatory power. Computational constraints also limit the network size to
a few dozen genes, which was not enough to generate realistic levels of sparsity — simulated
gene networks were too dense to be realistic. Decreasing network density and smaller net-
work sizesmade robustness components slightly less correlated (Figure 1E and F), suggesting
that the integration of robustness components increases with network complexity (size and
number of connections). The simulated phenotypic target (maintaining a constant set of gene
expressions) were also extremely simple compared to what gene networks are theoretically
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able to do (e.g. converging to different equilibria in different cell types, or controlling a com-
plex dynamic of gene expression during the development). However, the results are robust
to most simulation parameters (Appendix 7), suggesting that they reflect general properties
of the underlying genetic architecture. In particular, the network size n and the number of
selected genes n′ do not alter drastically robustness components, showing that small regula-
tory motifs are not qualitatively different from large gene networks in terms of robustness.

In spite of the simplicity of the network model, it appeared that connecting network fea-
tures (for instance, the strength of a specific regulation) and robustnesswas not trivial, even in
very small networks. For instance, in the n = 2 gene-network analysis, most robustness com-
ponents were complex functions of all four regulation strengths. Throughout this work, ro-
bustness was thus treated as an emergent property of the underlying network, which cannot
be easily deduced from a reductionist approach. Yet, it is possible to interpret the correlation
patterns in terms of network dynamics. Two of the most correlated components are the ro-
bustness to early environmental variation ρE and network stability ρS , which both measure
the ability of the network to converge to a given gene expression equilibrium. Conversely,
the correlation between late mutational ρm and environmental ρe robustnesses can be at-
tributed to the consequences of such disturbances over a single time step: for a single target
gene, decreasing the concentration of a transcription factor and decreasing the sensitivity of
the promoter to the same transcription factor have very similar immediate consequences on
gene expression. Yet, even if these measurements happen to be correlated by construction,
their partial evolutionary independence highlights their potential for independent evolvabil-
ity in real gene network architectures, which are substantially more complex and subtle than
our gene network model.

In the simulations, selection on robustness componentswas direct and constant both in up
and down directions (i.e. towards more or less robust genetic architectures). This setting was
not expected to reflect realistic evolutionary pressures on robustness, which might be more
complex, overlapping, and asymmetric. Stabilizing selection, for instance, selects both di-
rectly for robustness to environment, and indirectly for robustness to mutations (GP Wagner
et al., 1997); selection for stability also promotes indirectly robustness to mutations (Siegal
and Bergman, 2002). Conversely, selecting for lower robustness through the phenotype may
be difficult or even impossible: fluctuating selection does not promote decanalized genetic
architectures (Le Rouzic et al., 2013), and selection for environmental sensitivity is limited by
the inaccuracy of the perception of the envrionmental signal (Reed et al., 2010). Simulation
results thus illustrate how robustness components may evolve independently when individ-
ually selected; whether or not there exists realistic conditions for such selection pressures is
a different — and more complicated — issue.
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Measuring robustness

There are potentially many ways to measure the robustness of a phenotypic trait. Here, five
indicators were proposed to capture various (and potentially independent) aspects of what is
generally defined as robustness. The sensitivity to inherited mutations (ρM ) is probably the
most popular one, as it is central to the discussion around the evolution of canalization (Fares,
2015; Waddington, 1959; A Wagner, 1996). The sensitivity to environmental perturbations is
also unavoidable, although its implementation in a gene network model is less straightfor-
ward. Here, it was calculated as both the sensitivity of the network to disturbance in the
initial expression state (ρE ), which measures the size of the basin of attraction of the optimal
expression pattern, and as the strength of the stability of the equilibriumwhen disturbed (ρe).
These twomeasurements can be interpreted as developmental robustness and physiological
homeostasis, respectively, as they quantify the response of the network to disturbances in
the expression levels at different time scales. The robustness tomutations occurring after the
network convergence (ρm) was considered because it sets up an alternative to the genetic vs.
environmental congruence hypothesis: in long-lived organisms, non-heritable (somatic) mu-
tations participate to the ageing process (Kennedy et al., 2012), ageing being to some extent
under direct selection. Thus, the robustness to somatic mutations could also drive indirectly
the evolution of genetic canalization. Although not strictly a robustness component, the gene
network stability (ρS , amplitude of the fluctuations of gene expressions) was also considered
because it has been proven to drive an indirect response of genetic canalization, based on
very similar model (Siegal and Bergman, 2002). Its correlation with other robustness indica-
tors confirms the tight link between robustness and stability in gene networks.

These indicators were chosen based on the possibility to measure them in numerical sim-
ulations. Although the empirical assessment of the correlation between robustness compo-
nents would bewaymore convincing than a theoretical study, defining similarmeasurements
from experimental datasets can be challenging. For instance, ρM and ρE could, at least in the-
ory, be estimated as the variance in gene expression across genetic backgrounds or across
environmental conditions, respectively. Measuring ρm environmentally is more complicated,
as it would likely be confounded with other ageing mechanisms. In contrast, the empirical
distinction between e.g. ρe and ρS relies on discriminating internal vs. external sources of
noise, and might be in practice impossible. In all cases, gene expression data are generally
quite noisy and their analysis necessitates heavy corrections to prevent multiple testing is-
sues. Studying empirically the robustness and evolvability of molecular and morphological
traits has long been considered as a challenging task, but methodological and technological
progress has recently brought new concrete perspectives (Payne and A Wagner, 2019).

Some popular measurements of developmental robustness were not considered here for
technical reasons. For instance, fluctuating asymmetry (the variance between the same phe-
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notypic trait measured in the right and the left body parts of symmetric organisms) is a con-
venient measurement of microenvironmental effects on the development (Debat and David,
2001; Leamy and Klingenberg, 2005), but it has no equivalent at the level of gene expression
in a regulation network. The deterministic sensitivity to a directional environmental gradi-
ent could also be used to measure phenotypic plasticity, which is central to the question of
phenotypic robustness. Yet, there are several ways to model phenotypic plasticity in a gene
network (Burban et al., 2021; Masel, 2004), and it requires a specific selection setup (different
expression optima as a function of the environment). Because of this additional complex-
ity, adaptive phenotypic plasticity was excluded from the focus of this work, although the
evolution of plasticity of gene expression remains an intriguing and fundamental question.
In particular, phenotypic plasticity (i.e. an adaptive lack of robustness to some environmen-
tal signal) may itself be canalized to genetic or other environmental disturbances (Stearns
and Kawecki, 1994); considering reaction norms (a measurement of plasticity) as quantita-
tive traits thus opens challenging questions about the adaptive evolution of the canalization
of robustness traits.
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Appendix

Appendix 1

Sensitivity of the robustnessmeasurements to themagnitude of the dis-
turbance
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Four out of five robustness indicators (ρE , ρe, ρM , ρm) depend on the magnitude of the
disturbance (σE , σe, σM , and σm, respectively). The figure displays the influence of the size of
the disturbance on the robustnessmeasurement (left: 10 randomnetworks, right: 10 evolved
networks). Vertical dotted lines stand for the values used in the simulations. Robustness
scores are not completely consistent for random networks, as some of them can be differ-
entially robust to large or small disturbances. The consistency is better in evolved networks
(the rank of different genotypes in terms of robustness rarely depends on the size of the
disturbance).
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Appendix 2

Correlations among robustness indexes among random networks
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Correlations between all five robustness components among 10,000 random 6-gene net-
works (µ0 = 0, σ0 = 1).
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Appendix 3

Sampling effects on Principal Components
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Influence of the sampling effect (number of networks and number of replicates R to esti-
mate robustness) on the relative weight of the principal components. All PCs except the last
one are robust to sampling.

Peer Community In Evolutionary Biology 30 of 38



Appendix 4

Reasons for not reaching the desired equilibrium
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W
21

On target Still changing Alternative eq. Large osc.

Although equation 4 guarantees that an equilibrium exists at the target phenotypic expres-
sion, the equilibrium might not be reachable in practice when simulating the gene network
dynamics. The colored area in the figure corresponds to networks that failed to produced
the target phenotype, each color representing a distinct reason; Yellow: network dynamics
was slow and the final gene expression has not been reached yet after 16 time steps; Gray:
an alternative equilibrium was reached (most of the time implying that one or both genes
are either completely silenced to fully expressed). Red: The network steady state featured
oscillations that were so large that they hit the maximum or minimum expression, shifting
the average expression away from the target expression.
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Appendix 5

Two-gene example networks

W11 W21 W12 W22

A 0.70 0.20 -0.21 0.38
B -0.30 0.30 0.29 0.33
C -0.40 0.80 0.34 0.08
D -1.00 -0.80 0.64 0.88
E 1.50 3.50 -0.61 -1.27

The five two-gene networks detailed in Figure 2 and Appendix 6.
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Appendix 6

Illustration of the robustness scores
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The figure displays a subset of the replicated tests for four robustness indexes. Rows A
to E correspond to the five networks described in Appendix 5. Four (out of five) robustness
measurements rely on a resampling procedure (corresponding to the four columns of the
figure). In each panel, the default (undisturbed) network kinetics is displayed as plain lines
(black for gene 1, red for gene 2), while 10 disturbed networks are indicated as pale lines.
By construction, all networks have an equilibrium at (0.3, 0.6). The network stability can be
assessed from the amplitude of the cycles in the undisturbed kinetics (thick lines), and does
not rely on a stochastic algorithm. The network robustness to genetic disturbance was esti-
mated by mutating the gene network before the first time step (early genetic mutation, first
column) or before the last time step (late genetic mutation, second column). Environmental
robustness was estimated by disturbing the gene expression, without changing the genotype,
before the first time step (early environmental, third column) and before the last time step
(late environmental, fourth column).
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Appendix 7

Exploration of the parameter set
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Influence of simulation parameters (mutation rate ν, mutation size σν , population sizeN ,
constitutive expression a, total number of genesn, number of selected genesn′, network den-
sity d, and strenght of selection s) on fitness and robustness indexes after 5000 generations
(default settings except for the target parameter). The figure reports themean± standard de-
viation across 20 replicated simulations. Vertical dotted lines stand for the default parameter
values.
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Appendix 8

Accuracy of the prediction vs. simulation time
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Effect of the number of generations on the proportionality relationship between predicted
and observed evolvabilities of robustness components. The figure displays the r2 of a linear
regression (without intercept) between the predicted evolvability from the conditional Mc

matrix measured at the first generation and the observed evolvability in the direction of se-
lection for all replicated simulations. The regression at generation 1,000 is illustrated in the
colored inset in Figure 4.
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Appendix 9

Evolution of correlations
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Evolution of the mutational correlation among robustness components after 10,000 gen-
erations of evolution (∆r = r10,0000 − r0), averaged over 100 simulation replicates. For each
pair of robustness components, nine selection gradients were simulated (including control
simulations without selection on robustness, central slot).
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