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We address the problem of image color quantization using a Maximum Entropy based approach.
We argue that adding thermal noise to the system yields better visual impressions than that obtained
from a simple energy minimization. To quantify this observation, we introduce the coarse-grained
quantization error, and seek the optimal temperature which minimizes this new observable. By
comparing images with different structural properties, we show that the optimal temperature is a
good proxy for complexity at different scales. Finally, having shown that the convoluted error is a
key observable, we directly minimize it using a Monte Carlo algorithm to generate a new series of
quantized images. Adopting an original approach based on the informativity of finite size samples,
we are able to determine the optimal convolution parameter leading to the best visuals.

INTRODUCTION

In physics, many problems can be formulated in terms
of energy minimization. However, for complex systems
with a large number of degrees of freedom, analytical
minimizers are often difficult to find, and the ground
state is seldom representative of the true physical state of
the system at hand. To overcome such issues, a classical
method in statistical thermodynamics is to slightly relax
the energy minimization constraint and introduce a prob-
abilistic model relying on entropy maximization [1, 2].
Such an approach has allowed for the exploration of sub-
optimal solutions with thermal noise and led to the emer-
gence of historical results on phase transitions, e.g. for
Ising models [3, 4]. This method has since been popular-
ized in various fields, for example in biology for inference
problems [5] or in computer science for classifiers (see e.g.
the softmax function [6]) and annealing procedures [7].

Let us now consider the problem of field quantization
and its application for images, that is color quantization.
It consists in choosing a set of authorized states called
the color palette and then projecting each pixel of the
original image onto this palette. This method is natu-
rally very relevant for compression and other problems
involving digital image processing. The first step con-
sists in finding the most convenient color palette from
the original histogram using thresholding levels [8, 9] or
clustering methods [10, 11]. The second step is usually
done by introducing a suitable dithering procedure [12–
14] in order to reduce threshold artifacts and improve the
overall visual quality of the quantized image.

Here, we shall focus on the second step by constraining
the color palette a priori. We adopt a field theory ap-
proach, based on the exploration of simple observables at
and around optimality using thermal noise. We first pro-
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vide a method to explore new solutions to the quantiza-
tion problem with a Maximum Entropy based approach.
We show that, in the specific case of color quantization
and with the simplest error measure, this method yields
surprisingly good visuals when varying the temperature
of the system. To quantify this observation, we intro-
duce a new observable, the convoluted error, to look for
optimal thermal noise levels regarding the overall image
quality. We then confront the results for images with dif-
ferent structural characteristics, and show that the opti-
mal temperatures are a good proxy for image complexity.
We finally implement a Monte Carlo algorithm to directly
minimize the convoluted error, and, following a novel ap-
proach on the informativity of finite size samples [15–17],
we determine the convolution parameter providing the
best visuals.

I. STATE QUANTIZATION

We consider a field h(r) ⊂ F and want to build its

optimal quantized version ĥ(r) ⊂ F̂ where F̂ is a sub-
set of F . To do so, one usually minimizes a loss func-

tion between ĥ and h. A first natural choice for the
loss function is a site-wise measure of the quantization

error L(h, ĥ) =
∑

r LF (h(r), ĥ(r)) where LF is the loss
for each site, usually Euclidean or logical. With such a

definition, the field ĥ∗ minimizing L(h, ĥ) is simply ob-
tained by replacing each original data with the closest
state in F̂ . Note that this is what commonly happens
during the sampling of a continuous signal with an in-
strument, such as a camera projecting colors in the RGB
space [18]. There are cases where this simple quantiza-

tion process leads to unsatisfying ĥ∗ fields deviating too
much from the original data. For example, quantizing a
continuous white noise on a grid with a threshold level
artificially generates correlated samples of the site perco-
lation problem [19–21].
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To engineer more relevant loss measures, our idea is to

explore suboptimal configurations around ĥ∗ using the
Maximum Entropy approach mentioned above [1]. This
allows one to define the most agnostic – that is the most
entropic – classes of distributions with given constraints,
such as normalization. In the context of state quanti-
zation we look for the distributions (P) over quantized
fields that maximize the following functional:

J(P) = S(P)− µ[
∑
ĥ

P(ĥ)− 1]

− λ
∑
ĥ

P(ĥ)
[
L(h, ĥ)− L(h, ĥ∗)

]
, (1)

where the first term S(P) = −∑ĥ P(ĥ) logP(ĥ) is the
distribution entropy, the second term is the normaliza-
tion constraint, the last one a constraint on quantization
error, and µ and λ their respective Lagrange multipli-

ers. Differentiating Eq. (1) with respect to P(ĥ) and µ
allows to enforce normalization while leaving λ as a free
parameter. This leads to:

Ph,λ(ĥ) =
1

Zh,λ
e−λL(h,ĥ), (2)

where Zh,λ is the partition function. By setting T :=
1/λ, we recover a Boltzmann-like distribution where the
loss function plays the role of the energy. In extreme
cases such as T → 0 and T → +∞, we respectively

recover the Dirac delta distribution centred on ĥ∗ and the
uniform distribution. As in the study of any Hamiltonian
system, increasing the temperature softens the energy
minimization constraint and is therefore the opportunity
to test other basic observables.

II. COLOR QUANTIZATION

We now apply the above formalism in the classical im-
age processing problem of grayscale quantization. The
goal is to reduce the amount of shades taken by the pix-
els in an image, usually described with 256 levels. In this

context, h and ĥ respectively correspond to the original
and reduced images, while F and F̂ respectively corre-
spond to the initial and quantized sets of grayscale levels.
To define the loss function we use the naive Squared Er-
ror, obtained from squaring the Euclidean distance:

L(h, ĥ) = ‖h− ĥ‖22 =
∑
r

[
h(r)− ĥ(r)

]2
. (3)

This loss function being pixel-wise separable, so is the
corresponding distribution (Eq. (2)):

Ph,T (ĥ) =
∏
r

ph(r),T (ĥ(r)) =
∏
r

1

zh(r),T
e−[h(r)−ĥ(r)]2/T ,

(4)
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FIG. 1. Influence of thermal noise on color quantization. (a)
Original benchmark image. (b-d) Quantized versions of the
original image generated at low (T ' 0), intermediate (T =
0.3) & high (T = 1) temperatures using Eq. (4). (e) Evolution
of the rescaled Mean Convoluted Squared Error between the
original and quantized images (Eq. (5)) with temperature for
different values of the convolution parameter α (Eq. (6)).

where zh(r),T is the partition function of the marginal
distribution ph(r),T .

To test our method, we use a classical benchmark im-
age shown in Fig. 1(a), and we sample quantized versions
by using the marginal distributions defined in Eq. (4).
The authorized colors are chosen as black and white,
meaning that F̂ = {0, 255}. Figure 1(b) was gener-

ated at T → 0, equivalent to the naive minimization ĥ∗

presented in Sec. I, where any texture in the [0, 127] or
[128, 255] intervals is simply replaced by black or white
pixels respectively. The image, although still recogniz-
able, displays thresholding artifacts such as contouring
effects for shaded textures and suppresses a vast amount
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of details. In Fig. 1(c), we introduce thermal noise with
intermediate temperature T = 0.3, leading to a more in-
teresting visual. Parts of the lighter and darker shades
are reconstructed and other details like contours now ac-
curately correspond to the real physical features of the
objects, and no longer to fluctuations around the thresh-
old value. In Fig. 1(d), one can see that a higher thermal
noise level no longer represents a positive contribution,
as one excessively randomizes the pixel attribution rule.

Figure 1(c) thus interestingly appears to be a better
quantized version than Fig. 1(b)&(d), especially when
looking at it from a distance. Precisely, taking a step
back has the effect of coarse-graining/convoluting the im-
age and erasing the small-scale fluctuations created by
thermal noise. To quantify such an observation, we define
the Convoluted Squared Error Lθ comparing the original
and quantized fields after a convolution through a given
kernel θ:

Lθ(h, ĥ) = ‖(h− ĥ) ~ θ‖22. (5)

Among the many classes of kernels commonly used in im-
age processing, we choose a power-law kernel of the form
θγ(r) ∝ ‖r‖−γ , for the sake of physical interpretability
and mathematical tractability. Its Fourier transform is
also a power-law:

θ̃α(k) ∝ ‖k‖−α, (6)

with α = d/2− γ, where d = 2 is the space dimension.
When α = 0, the kernel in the direct space is narrow

and leaves the image invariant. As α increases, the con-
volution operation replaces each pixel value with its local
average of the field. Figure 1(e) displays the Mean Con-
voluted Squared Error EPh,T

[Lθ] as a function of temper-
ature (see Appendix A for the details of the computation
of EPh,T

[Lθ]). As expected, the unconvoluted Squared
Error (α = 0, solid line) increases monotonously with
T . For higher values of α, however, a local minimum
appears at a finite temperature T ?α. Note that Fig. 1(c)
was generated with a noise level T close to the minima
displayed in Fig. 1(e), thereby confirming the intuition
that the Mean Convoluted Squared Error is a relevant
observable for the color quantization problem.

III. VISUAL COMPLEXITY

The optimal temperature T ?α naturally depends on the
color histogram of the original image, but also on the
spatial arrangement of its pixels. To quantify this last
statement, we compare our benchmark image with its
transformation through a histogram-invariant operation.
We use a procedure which shuffles a fraction of the to-
tal pixels at random positions. In Figs. 2(a1) and (a2),
we respectively display the original image and its shuf-
fled version, and we plot the temperatures T ?α as func-
tion of α in Fig. 2(a3). For low values of α, the ker-
nel is too narrow and the convolution has almost no ef-
fect, unsurprisingly leading to T ?α = 0 for both images.
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FIG. 2. Evolution of the optimal temperature T ?α with the
convolution parameter α for different images. (a) Comparison
between the original image and a shuffled version generated
with a randomizing procedure. (b) Comparison between two
benchmark images (Peppers & Mandrill) displaying structural
features at different scales.

Then, both temperatures monotonously increase with α
until they meet at a plateau where the evolution is in-
dependent of the spatial distribution of pixels. Interest-
ingly, we observe that T ?α is systematically higher for the
original image, meaning that the shuffling procedure has
strongly affected its structural properties. Indeed, nat-
ural images such as the peppers present intelligible pat-
terns and strong spatial regularities, far from the random
and uncorrelated rearrangement that the shuffling proce-
dure creates. This behaviour is somehow reminiscent of
several classical physical systems such as the Random
Field Ising Model (RFIM) for which irregularities lower
the critical temperature [22, 23] (see Appendix B for more
details on the link between the Convoluted Squared Error
and the RFIM Hamiltonian).
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(a) (b)

(c) (d)

FIG. 3. Monte Carlo image generation. (a) Original bench-
mark image. (b-d) Monte Carlo simulations for α = 0.02,
α = 0.05, α = 0.5 respectively. Images were initialized with
ĥ∗ and the simulation ran until the loss function reached sta-
bility.

In Fig. 2(b), we test another approach by comparing
the evolution of T ?α with α for two different benchmark
images, each presenting interesting visual features at dif-
ferent scales. Figure 2(b1) presents less small scale fea-
tures than Fig. 2(b2), resulting in a higher optimal tem-
perature for low values of α, see Fig. 2(b3) (the inset
shows the difference of temperatures ∆T ?α between the
two images). This tendency reverses at higher scales.
Using this procedure we compared a number of other
types of natural images (forests, fields, buildings, land-
scapes), as well as classes of simple abstract textures like
those presented in [24], with the same conclusions. This
supports the intuition that the temperatures T ?α may be
used as measures of multi-scale visual complexities and
as such, consistent input features for aesthetic assessment
algorithms [25–29].

IV. MONTE CARLO IMAGE GENERATION

As argued above, the Convoluted Squared Error Lθ in
Eq. (5) is a highly relevant observable for the color quan-
tization problem. As such, it seems reasonable to use it
as our effective energy function. An idea, see e.g. [14],
is to directly generate images minimizing this error func-
tion using a Monte Carlo algorithm. This algorithmic
approach is necessary as there is no explicit minimum
of Lθ(h, ·).

Here we implement a simplified Monte Carlo algorithm

where we use the power-law kernel defined in Eq. (6)
(rather than the Gaussian window with simulated an-
nealing procedures used in [14]). Images were initial-

ized with the solution ĥ∗, and the algorithm ran un-
til convergence of the loss functions. For algorithmic
efficiency, we use the Parsival equality on Eq. (5) to

obtain Lθ(h, ĥ) = ‖F [h − ĥ](k) · k−2α‖22, with F the
Fourier transform calculated using the FFT algorithm
(thereby assuming periodic boundary conditions). Fig-
ure 3(a) displays again the original image for reference,
and Figs. 3(b-d) the images corresponding respectively
to α = 0.02, α = 0.05, α = 0.5. For Fig. 3(b), the kernel
function is narrow: small-scale details like the shadows on
the peppers are faithfully reproduced, while leaving large
areas of uniform color. Increasing α helps removing the
latter artefact and improves the overall visual impression
when looked at from a distance, see Fig. 3(c). However,
too large convolution windows yield images lacking small-
scale accuracy, see Fig. 3(d). A compromise shall thus
be found in order to generate the most faithful quantized
image, that is the optimal α providing the best trade-off
throughout different scales.

V. OPTIMAL COLOR QUANTIZATION

To find the most suitable parameter α, we use a re-
cent information theory based approach [15–17] where
the spatial resolution becomes a tunable parameter of the

system. First, one defines the image as a sample (r, ĥ(r))r
of pixels. Each tuple being unique, this description is far
from being the most efficient in the context of information
theory. Indeed, information could for example be saved
by accounting for neighboring pixels with the same color
value. One thus modifies the spatial resolution by con-

sidering a new sample (G`(r), ĥ(r))r where G`(r) is the
new position on a coarser grid of step ` ∈ {1, ..., L}, with
L the size of the original image. Several tuples can now
be in the same state s and one can look at their occur-
rence – or degeneracy level – k inside each block. Finally,
one constructs two measures of entropy Ĥ`[s] and Ĥ`[k],
respectively assessing the heterogeneity in the data and
the heterogeneity in the data redundancy.

In Fig. 4(a), we vary ` and plot Ĥ`[k] as function of

Ĥ`[s] for images generated with different α. Of most in-
terest to us here is the right part of the graphs, which cor-
responds to small values of `, and for which the concavity
of the curves is very α-dependent. Indeed, one can show
– see Appendix C – that the local slope µ = dĤ[k]/dĤ[s]
actually corresponds to the trade-off rate between rele-
vance and resolution as data is compressed. The idea
is then to choose the convolution parameter such that
this trade-off is as stable as possible across all scales of
observations, meaning that µ should be close to -1 and
as constant as possible when varying `. In other terms,
the right part of the graph should be as linear as pos-
sible with slope −1. In Fig. 4(b) we plotted the regres-
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FIG. 4. Influence of the convolution parameter α on the
compressing regime of color quantized images. (a) Plot of
(H`[s], H`[k])` for low, optimal and high convolution param-
eters α. (b) Regression coefficient R2 of the linear fit as func-
tion of α. (c) Optimally quantized image, α = 0.054.

sion coefficientR2 obtained from the corresponding linear
fit and found that it was maximized for an intermediate
value α = 0.054. The corresponding image is shown in
Fig. 4(c) and is indeed a very good visual compromise.

CONCLUSION

Let us summarize what we have achieved. In the con-
text of color quantization, we confirmed that the naive
approach consisting in a simple error minimization does
not generally bring satisfactory visuals. To overcome this
issue, we introduced thermal noise through a Maximal
Entropy based approach and generated quantized images

with more interesting visuals. To quantify this visual im-
pression, we introduced a new observable, called the Con-
voluted Squared Error, which compares the original and
quantized fields after a coarse-graining procedure. Intro-
ducing convolution allowed us to find the optimal tem-
peratures minimizing the new observable. Interestingly,
we found that such temperatures are a good indicator for
complexity at different scales. Moreover, having shown
that the Convoluted Squared Error is a highly relevant
observable with respect to color quantization, we directly
minimized it to generate new images using a Monte Carlo
algorithm. In order to find the optimal convolution pa-
rameter leading to the best visuals, we used an original
approach based on the informativity of finite size sam-
ples.

Note that, as mentioned in the introduction, in the
present analysis we have chosen the target color palette
ex ante, focusing on the simplest B&W case. It would
be interesting to consider extended color palettes where
both the dimension and color values are optimized for a
given image. The latter most likely depends on the fea-
tures of the color histogram of the original image, but also
their spatial arrangement. Future research should also be
devoted to considering alternatives to the Euclidean dis-
tance, such as the Wasserstein distance [30] which should
be able to account a priori for the local arrangement of
the pixels. Finally, another area for improvement is that
of the convolution procedure; one might want to test al-
ternative kernel functions which would allow to avoid us-
ing periodic boundary conditions.
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Appendix A: Mean (Convoluted) Squared Error

Here we derive the expression of the Mean Convoluted
Squared Error (Fig. 1(e)). Without convolution, the ex-
pectation of the loss function reads:

EP
[
L(h, ĥ)

]
= EP

[
‖ĥ− h‖22

]
=
∑
r

EP
[(
ĥ(r)− h(r)

)2
]
,

(A1)

where we have used the linearity of EP . Each term in-
side the expectation depends on the marginal variable

ĥ(r) and can be easily computed site-by-site, such that
Eq. (A1) can be rewritten as:

EP
[
L(h, ĥ)

]
=
∑
r

Eph(r)

[(
ĥ(r)− h(r)

)2
]
. (A2)

Applying the same ideas to the Mean Convoluted
Squared Error yields:

EP
[
Lθ(ĥ, h)

]
= EP

[
‖(ĥ− h) ~ θ‖22

]
=
∑
r

EP
[(

(ĥ− h) ~ θ(r)
)2]

. (A3)

Developing the square leads to: EP [Lθ(ĥ, h)] =∑
r,r1,r2

θ(r− r1)θ(r− r2)×

EP
[(
ĥ(r1)− h(r1)

)(
ĥ(r2)− h(r2)

)]
. (A4)

The marginal distributions being independent, non-
diagonal second order terms (with r1 6= r2) inside the
expectation can be written as products of order 1 ex-
pectations. Rewriting the diagonal in terms of squared
expectations leads to the following expression:

EP
[
Lθ(ĥ, h)

]
= ‖EP [ĥ− h] ~ θ‖22

+
(
EP
[
L(h, ĥ)

]
− ‖EP [ĥ− h]‖22

)
‖θ‖22, (A5)

where EP [L(h, ĥ)] is the previously defined Mean

Squared Error in Eq. (A2), and EP [ĥ − h] is the field
computed using the marginal distributions on each site.

Appendix B: Analogy with the RFIM

Here we show that the Convoluted Squared Error can
be rewritten as the Hamiltonian of a Random Field Ising
Model (RFIM). Developping the norm in Eq. (5), one
obtains:

Lθ(ĥ, h) = ‖(ĥ− h) ~ θ‖22 =
∑
r

[(ĥ− h) ~ θ(r)]2. (B1)

Rewriting explicitly the convolution product and defining
the interaction matrix J as J(r) =

∑
r′ θ(r

′)θ(r′−r), one
obtains:

Lθ(ĥ, h) =
∑
r,r′

[
ĥ(r)−h(r)]J(r′−r)[ĥ(r′)−h(r′)

]
. (B2)

Since the loss is essentially defined up to a constant, one

can discard ĥ-independent terms in Eq. (B2), such that

Lθ(ĥ, h) ≡ Hh[ĥ] where:

Hh[ĥ] :=
∑
r,r′

ĥ(r)J(r′−r)ĥ(r′)−2
∑
r′

(h~J)(r′)ĥ(r′).

(B3)
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Interestingly, when replacing ĥ by a spin field φ, one pre-
cisely recovers the Antiferromagnetic RFIM Hamiltonian
H[φ] which, within the bra-ket formalism writes:

Hh[φ] = 〈φ|J |φ〉 − 2〈h|J |φ〉, (B4)

where |heff〉 = 2J |h〉 is the effective external field. There-
fore, spins and external field in the Ising model respec-
tively play the same role as the transformed and original
images in the color quantization problem. A well-known
property of the Antiferromagnetic RFIM, that is inter-
actions encouraging alternations between neighbouring
spins, is for example recovered in our observations, see
Fig. 2(a).

Appendix C: Resolution/relevance formalism

Here we introduce the formalism used to set the opti-
mal convolution parameter in Sec. V. The idea, detailed
in [15–17], consists in studying a data sample for different
resolution/compression levels and calculating entropy-
based observables.

Let S = (s1, ..., sN ) be a sample of data, and ` a
compression parameter. One can transform the origi-
nal sample into a compressed one S` = (s`1, ..., s

`
N ) such

that ` = 1 corresponds to no compression (S1 = S) and
` = L to the totally compressed sample (quasi-degenerate
data). At each compression level `, one can easily calcu-
late the number k`s of times the state s appears in the
sample S`, and the number m`

k of states appearing k
times. One can then define the resolution as the entropy
of the empirical distribution of states:

Ĥ`[s] = −
∑
s

k`s
N

log
k`s
N

= −
∑
k

km`
k

N
log

k

N
. (C1)

Another useful observable is the relevance defined as the

entropy computed from the states sharing the same oc-
currence frequency:

Ĥ`[k] =
∑
k

km`
k

N
log

km`
k

N
. (C2)

This measure of relevance is indeed the most direct way
to encode the underlying distribution of the original data.
As the latter entropy takes less bits to encode, one has
Ĥ`[k] < Ĥ`[s], explaining why the data in Fig. 4(a) is
under the y = x line. In order to quantify the way infor-
mation spreads across compression levels, we define the
compression rate µ`→`+1 between two successive com-
pression levels as the ratio between loss in relevance and
loss in resolution:

µ`→`+1 :=
Ĥ`+1[k]− Ĥ`[k]

Ĥ`+1[s]− Ĥ`[s]
. (C3)

In the right part of Fig. 4(a) and for the first compression

steps (low values of `), Ĥ[k] is a decreasing function of
Ĥ[s], resulting in negative µ. Interestingly, this means
that compressing the sample increases the amount of rel-
evant information it contains about the underlying dis-
tribution. However, when ` increases further, we reach
an oversampling regime (left part of Fig. 4(a)) for which
further compression reduces both relevance and resolu-
tion.

In the case of color quantization, we wish to gain infor-
mation relevance as we range from low to higher compres-
sion in the most scale-invariant way possible. This way,
we avoid the scale-specific tradeoff described in Fig. 3.
Optimality in that regard is therefore reached by taking
µ close to -1 and as constant as possible in the under-
sampling regime, by that justifying the linear regression
introduced in Sec. V.
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