
HAL Id: hal-03797198
https://hal.science/hal-03797198

Submitted on 4 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On posterior probability and significance level:
application to the power spectrum of HD 49 933

observed by CoRoT
Thierry Appourchaux, Davoud-Reza Samadi, Marc-Antoine Dupret

To cite this version:
Thierry Appourchaux, Davoud-Reza Samadi, Marc-Antoine Dupret. On posterior probability and
significance level: application to the power spectrum of HD 49 933 observed by CoRoT. Astronomy
and Astrophysics - A&A, 2009, 506, pp.1-5. �10.1051/0004-6361/200810990�. �hal-03797198�

https://hal.science/hal-03797198
https://hal.archives-ouvertes.fr


A&A 506, 1–5 (2009)
DOI: 10.1051/0004-6361/200810990
c© ESO 2009

Astronomy
&

Astrophysics
The CoRoT space mission: early results Special feature

On posterior probability and significance level: application
to the power spectrum of HD 49 933 observed by CoRoT�

T. Appourchaux1, R. Samadi2, and M.-A. Dupret2,3

1 Institut d’Astrophysique Spatiale, UMR8617, Université Paris XI, Bâtiment 121, 91405 Orsay Cedex, France
e-mail: Thierry.Appourchaux@ias.u-psud.fr

2 Observatoire de Paris, LESIA, UMR8109, 92195 Meudon Cedex, France
3 Institut d’Astrophysique et de Géophysique de l’Université de Liège, Allée du 6 Août 17, 4000 Liège, Belgium

Received 19 September 2008 / Accepted 21 May 2009

ABSTRACT

Context. The CoRoT mission provides asteroseismic data of very high quality allowing one to adopt new statistical approaches for
mode detection in power spectra, especially with respect to testing the null hypothesis (H0, which assumes that what is observed is
pure noise).
Aims. We emphasize that the significance level when rejecting the null hypothesis can lead to the incorrect conclusion that the H0

hypothesis is unlikely to occur at that significance level. We demonstrate that the significance level is unrelated to the posterior
probability of H0, given the observed data set, and that this posterior probability is very much higher than implied by the significance
level.
Methods. We use Bayes theorem to derive the posterior probability of that H0 is true assuming an alternative hypothesis H1 that a
mode is present, taking some prior for the mode height, mode amplitude and linewidth.
Results. We compute the posterior probability of H0 for the p modes detected on HD 49 933 by CoRoT.
Conclusions. We conclude that the posterior probability of H0 provide a much more conservative quantification of the mode detection
than the significance level. This framework can be applied to any similar stellar power spectra obtained to complete asteroseismology.

Key words. methods: analytical – methods: statistical – Sun: helioseismology

1. Introduction

In the field of helioseismology, the null hypothesis H0 was used
by Appourchaux et al. (2000) to infer upper limits to the ampli-
tude of g modes. The H0 hypothesis assumes that what is ob-
served is pure noise. This hypothesis was applied to data of clas-
sical variable stars to detect peaks in their power spectra (Scargle
1982). In all of these papers, the authors assumed H0 and defined
an upper limit corresponding to a threshold level of, e.g., 10%.
Here we argue, that this threshold was arbitrarily chosen a priori.
When accepting or rejecting the H0 hypothesis, there is no dis-
cussion whether borderline case should be rejected or accepted.
This abrupt truncation between good and bad leads to a decision
that could have been different if the threshold had been different.

In the following sections, we first lay the foundations for
understanding the meaning of the H0 hypothesis, and then ex-
plain what is commonly misunderstood about the H0 hypothe-
sis. We then derive, for specific cases encountered in helio- and
asteroseismology, the posterior probability of H0. We show how
one can apply the formalism for real data, such as that gath-
ered by the CoRoT mission for HD 49 933 and then present our
conclusions.

� The CoRoT space mission, launched on 2006 December 27, was de-
veloped and is operated by the CNES, with participation of the Science
Programs of ESA, ESA’s RSSD, Austria, Belgium, Brazil, Germany
and Spain.

2. Significance level and the H0 hypothesis

Fisher (1925) devised the well known Fisher test for testing the
null hypothesis (H0). In this test, a threshold of 5% is commonly
used and the p-value quoted is the value of the test if it is less
than this threshold. For instance, a result of 4.9% would result
in rejecting the H0 hypothesis, while 5.1% would result in ac-
cepting the H0 hypothesis. When the H0 hypothesis is rejected,
the reported p-value is used as a significance level for the vali-
dating or not accepting the H0 hypothesis. In the medical field,
the so-called borderline cases led to findings related to effec-
tiveness of medicine that were, sometimes, not proven by sub-
sequent studies. The controversy about the use of p-values that
occurred in the medical world is directly related to the abrupt
and arbitrary cut-off of the threshold applied (be 5% or 10%).
Although the relevance of what has been found in the medical
field could seem remote to most astrophysicists, it is extremely
relevant to understand that the improper use of p-values is the
same as the improper use of the so-called significance level.

Reporting a small number for the significance level should
not be used to claim the proper rejection of the H0 hypothe-
sis. The mistake is to ascribe a significance level to a measure-
ment carried out only once, not repeated and spanning just a
very small volume of the space of the parameters. When making
an observation of a random variable x, one wants to check the
probability that what is observed could be due to noise. For that
purpose, a test statistic is derived called T (x). If one observes a
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value of x = X that would not reject the H0, then one can com-
pute, p, the significance level or p-value, defined to be:

p = P0(T (x) ≥ T (X)), (1)

where P0 is the probability that T (x) ≥ T (X) when H0 is true.
The test set by Eq. (1) is to confirm that the statistical test T (x)
has been compared with the value given by T (X). When com-
puting the statistical test T (x), one does not span the space of X:
one has x = X which is the so-called point null hypothesis.
In other terms, what is the probability that one has exactly that
value of x? This is a completely different question from knowing
how true H0 is, i.e., obtaining p(H0|x). Berger & Sellke (1987)
provided a way of deriving p(H0|x) with respect to p(x|H0) and
p(x|H1), where H1 is the alternative hypothesis (i.e., there is a
signal). Using Bayes theorem, they obtained the so-called poste-
rior probability of H0 given the observed data x:

p(H0|x) =
p(H0)p(x|H0)

p(H0)p(x|H0) + p(H1)p(x|H1)
(2)

where p(H0) and p(H1) are the probabilities related to the H0
and H1 hypothesis, respectively. We note that we would like to
determine p(H0|x), the probability of H0 being true given the
data we have, not the probability of the data x given H0, i.e.,
p(x|H0). To minimize the impact of the probabilities assigned
to both hypotheses, we assume that these are equally probable
(p0 = 0.5):

p(H0|x) =

(
1 +

p(x|H1)
p(x|H0)

)−1

· (3)

Based under these assumptions, Sellke et al. (2001) found that
the probability p(H0|x) that H0 is true given some observed
data x of a random variable X has a lower bound

p(H0|x) ≥
(
1 − 1

ep ln p

)−1

· (4)

An immediate consequence is that for a significance level of 1%,
the odds against H0 are at least 10 to 1, and for 10%, the odds
against H0 are at least 2.6 to 1. In both cases, the likelihood
of incorrectly rejecting H0 is much higher than inferred by the
p-value, by at most a factor of 10 and 4, respectively.

Sellke et al. (2001) were able to set a lower value to p(H0|x)
for almost an arbitrary alternative H1 hypothesis. We show that
there is indeed a lower bound when one wants to detect peaks in
power spectra. Hereafter, we give several examples of how one
can derive in practice the posterior probability of H0.

3. Posterior probability for peak detection

Here we provide analytical examples of how one can obtain the
posterior probability of H0 for some cases encountered in astero-
and helio-seismology.

3.1. Long-lived modes

3.1.1. Mode height known a priori

We search a peak restricted to a single frequency bin in a power
spectrum which has a χ2 with 2 d.o.f. statistics, for which a bin
has reached a value x. We wish to verify whether this is caused
by either a true sine wave or due to noise. We have for the H0
hypothesis,

p(x|H0) = e−x. (5)

The noise is assumed to be 1. For the alternative hypothesis H1,
we assume that there is a signal of a long-lived mode, i.e., re-
stricted to one bin, for which the mode height H is known and
the mode is stochastically excited (like a stellar p mode). We
then have:

p(x|H1) =
1

1 + H
e−x/(1+H). (6)

Equation (3) is then rewritten for our problem as

p(H0|x) =

(
1 +

1
1 + H

exH/(1+H)

)−1

. (7)

Since the significance p = p(x|H0), we finally have that

p(H0|x) =

(
1 +

1
1 + H

p−H/(1+H)

)−1

. (8)

It can be shown that the minimum of p(H0|x) is reached for H =
− ln p − 1 for the value:

pH
min(H0|x) =

(
1 − 1

ep ln p

)−1

· (9)

In this case, the lower bound defined by Eq. (4) is reached.

3.1.2. Mode height unknown

Most of the time one does not know of course the height of the
mode to be detected. We can assume a prior for the mode height
which can be e.g., a uniform distribution or a gaussian function.
For example, if we assume that the mode height is uniformly
distributed over some range [0, Hu], p(x|H1) is rewritten as

puni(x|H1) =
1

Hu

∫ Hu

0

1
1 + H′

e−x/(1+H′)dH′. (10)

Then Eq. (3) can be rewritten as

puni(H0|x) =

(
1 +

1
Hu

∫ Hu

0

1
1 + H′

p−H′/(1+H′)dH′
)−1

. (11)

It can be shown that a minimum is reached at a value of Hmin by
solving

1
Hmin

∫ Hmin

0

1
1 + H′

p−H′/(1+H′)dH′=
1

1 + Hmin
p−Hmin/(1+Hmin). (12)

The minimum is then given by

puni
min(H0|x) =

(
1 +

1
1 + Hmin

p−Hmin/(1+Hmin)

)−1

. (13)

From Eqs. (8) and (9), we can deduce that

puni
min(H0|x) >

(
1 − 1

ep ln p

)−1

· (14)

This means that when there is more uncertainty about the pos-
sible height of the mode, one is less likely to reject the H0
hypothesis.
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3.2. Short-lived modes

Appourchaux (2004) described how one can detect a mode hav-
ing a lifetime shorter than the observation time. He suggested
smoothing the power spectrum to increase the signal-to-noise
ratio and provided an analytical expression for H0 related to the
summation over n bins of a χ2 statistic with constant mean, and
for H1 related to the summation over n bins of a χ2 statistic
with different means due to the presence of the mode profile.
Therefore, when the spectrum is summed over n bins, we can
derive for the H0 hypothesis

p(x|H0) =
xn−1e−x

γ(n)
, (15)

where the mean of the power spectrum is 1, while n is the mean
of the smoothed power spectrum (for simplicity, we assumed
that S = 1), and γ(n) is the Gamma function. The significance
level x is then given by solving

p =
1
γ(n)

∫ +∞

x
un−1e−udu. (16)

Assuming that the mode has a known amplitude A and a known
linewidth Γ, we can write using Eq. (8) of Appourchaux (2004)
the approximation

p(x|H1) =
λν

γ(ν)
xν−1e−λx, (17)

where λ and ν, defined in Appourchaux (2004) are obtained
by integrating symmetrically about the central frequency of the
mode, thereby ensuring that the signal is maximum; λ and ν are
functions of the mode height H(=A2/πΓ) and Γ. If we do not
know the mode amplitude and its linewidth, we can specify a
prior for the amplitude and the linewidth, which, for instance,
can be done using a model of mode excitation. Here we assume
that the mode amplitude A and the linewidth Γ are independent
(this would not be the case of H and Γ). If we use uniform priors,
we then have

p(x|H1) =
1

AuΓu

∫ Au

0

∫ Γu

0

λν

γ(ν)
xν−1e−λxdA′dΓ′. (18)

This equation would be similar if we were to have a uniform
prior on the mode height, where A would then be replaced by H.
Substituting Eqs. (16) and (17) into Eq. (3), we can then obtain
the posterior probability p(H0|x) when the mode amplitude and
linewidth are known. If we replace Eqs. (17) by (18), we can
then obtain the probability p(H0|x) when the mode amplitude
and linewidth are not known.

3.3. Discussion

Figure 1 shows the posterior probability for long-lived modes
of a known mode height (Eq. (8)) and an unknown mode height
(Eq. (11)) for two different significance levels. Figure 2 shows
the posterior probability for short-lived modes of a known mode
height and linewidth (Eqs. (15) and (17)) and for an unknown
mode height and linewidth (Eqs. (15) and (18), with H replac-
ing A) for a single significance level; even a significance level
of 1% does not provide a more robust rejection of the H0 hy-
pothesis. These posterior probabilities have a lower bound which
means that even a very low significance level is no guarantee for
positive detection!

It is also counterintuitive that the posterior probability in-
creases when the mode height (known or unknown) increases.

Fig. 1. Posterior probability as a function of the known mode height
(dashed line), or as a function of the mode height range (Hu) of the
uniform prior (continuous line) for a significance level of 10%. For the
known mode height, the minimum is reached for an height of 1.3 with
a value of 38%. For the unknown mode height, the minimum is reached
at a value of 40%. Posterior probability as a function of the known
height (dashed line), or as a function of the maximum mode height of
the uniform prior (continuous line) for a significance level of 1%. For
the known mode height, the minimum is reached for an height of 3.6
with a value of 11%. For the unknown mode height, the minimum is
reached at a value of 12.7%.

We recall that the significance level p corresponds to the level x
at which the peak has been observed (i.e., it is p = e−x for long-
lived modes). If we assume a priori that the mode has a high
mode height, then the observation at a low significance level in-
dicates that our assumption about the high mode height is incor-
rect, and that the data dismisses the a priori assumptions made
about the mode height. In other words, it is more probable that
the H0 hypothesis is true.

In the absence of an alternative hypothesis, it is advisable
to define a low significance value that will probably reject the
H0 hypothesis. Figure 3 shows the lower bound1 set by Eq. (4)
compared to the minimum found using Eq. (11) for the uniform
prior on the mode height.

4. Application to the CoRoT data: HD 49 933

The computation of the posterior probability was applied to
CoRoT data for illustrative purposes. The data used are those
of the first initial run performed on HD 49 933 (Appourchaux
et al. 2008). The objective was to provide an objective way of

1 The same lower bound as Eq. (9) for a known mode height.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810990&pdf_id=1
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Fig. 2. Posterior probability for a short-lived mode after smoothing the
power spectra over 10 bins corresponding to a window twice as large
as the mode linewidth. The posterior probability is given as a function
of the known mode height (dashed line), or as a function of the mode
height range (Hu) of the uniform prior (continuous line) and a uniform
prior for the linewidth, for a significance level of 10%.

Fig. 3. Lower bound to the posterior probability as function of the sig-
nificance level for the known mode height (dashed line) and for the
uniform prior (solid line).

detecting oscillation modes in HD 49 933 that could be applied
to any other star.

The methodology used for deriving the posterior probability
was as follows:

– we computed the power spectrum from the detrended time
series, as in Appourchaux et al. (2008);

– we smoothed the spectrum over n bins using a boxcar;
– we selected 30 50-μHz wide windows starting at 1200 μHz

(the 50-μHz window corresponds roughly to half the large
frequency separation);

– for each window, we computed the median in the window
of the smoothed spectrum which provides an estimate of the
mean noise level if the modes are not present;

– the smoothed spectrum was normalized in each window by
dividing by the median and multiplying by the number of
smoothing bins n which provides values commensurate with
these of Eq. (15);

– we applied the H0 hypothesis for a detection probability that
a signal caused by to noise of 10% over all the 30 windows,
taking into account the fact that in each window the number

Fig. 4. (Left) Theoretical mode linewidth of HD 49 933 as a function
of frequency. (Right) Theoretical mode amplitude of HD 49 933 as a
function of frequency.

of independent bins is 50 δν−1n−1 (δν is the frequency reso-
lution of the original power spectrum). The detection proba-
bility is then 0.1 (Nw)−1(50δν−1n−1)−1 per independent bin;

– we then solved Eq. (16) for xdet given the detection level
given above;

– in each window, we then selected the bins that are greater
than xdet, i.e., we accepted or rejected the H0 hypothesis;

– after the selection, we retained the greatest value xmax found
in the window corresponding to the central frequency of the
mode (See Eq. (17));

– we then computed the posterior probability of H0 given by
Eq. (3) using Eqs. (15) and (18) assuming some prior on the
mode height and linewidth as described below;

– for comparison, we also computed the significance level as
given by Eq. (16) from the value of xmax.

The theoretical amplitudes for HD 49 933 are derived from
Samadi et al. (2009a) using an adiabatic treatment of radiative
transfer, and the excitation rate as calculated in Samadi et al.
(2009b). The theoretical linewidths were computed with the
non-adiabatic pulsation code MAD. This code includes a time-
dependent convection treatment described in Grigahcène et al.
(2005): it takes into account the role played by the variations
in the convective flux, the turbulent pressure, and the dissipa-
tion rate of turbulent kinetic energy. This treatment is non-local,
with three free parameters a, b, and c corresponding to the non-
locality of the convective flux, the turbulent pressure, and the en-
tropy gradient. We assume the values a = 10, b = 3, and c = 3.5
obtained by fitting the convective flux and turbulent pressure of
3D hydrodynamic simulations in the upper overshooting region
of the Sun (Dupret et al. 2006). According to Grigahcène et al.
(2005), we introduced a free complex parameter β in the pertur-
bation of the energy closure equation. We used here the value
β = −3i, which provides a good agreement between the theo-
retical and observed linewidths and phase lags in the range of
solar pressure modes. A 1D stellar model obtained with the code
CESAM was used for our non-adiabatic computations. It has a
solar metallicity and reproduces the effective temperature and
gravity of HD 49 933 (Samadi et al. 2009a). The amplitudes and
linewidths are shown on Fig. 4. We linearly interpolated both
curves to provide a continuous prior with frequency.

The uniform priors for amplitude and linewidth are derived
from the theory by taking into account an uncertainty factor in

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810990&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810990&pdf_id=3
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Fig. 5. (Top) Comparison of the posterior probability (solid line) with
the significance level (dashed line) as a function of frequency for a
spectrum smoothed over 5 bins (≈1μHz). (Bottom) Posterior probability
as a function of frequency for a spectrum smoothed over 5 bins (solid
line) and over 50 bins (dashed line), of sizes ≈1 μHz and ≈10 μHz,
respectively.

the theoretical model. For amplitude, we assumed that the max-
imum is

√
2 larger than given in Fig. 4 (twice in energy); for

linewidth, we assumed that the maximum is twice as great as
that given in Fig. 4. We note that a larger prior increases the pos-
terior probability, as shown on Figs. 1 and 2. We assumed that
the noise floor in HD 49 933 is given by the photon noise, which
is about 0.15 ppm2/μHz (Appourchaux et al. 2008).

Figure 5 shows the results of the procedure described
above. It is clear that the posterior probability is higher than the
significance level, i.e., the posterior probability provides a more

conservative number (H0 more likely). The smoothing proce-
dure also shows two effects that were predicted by Appourchaux
(2004): first, short lived modes are easier to detect when the
spectrum is smoothed, second, long lived modes are more dif-
ficult to detect when the spectrum is smoothed. The first effect
manifests itself in the larger number of detected modes at higher
frequency and by the decrease of the prior probability (i.e., the
signal is more likely). The second effect is seen at low frequency
where a couple of modes have their prior probability increased
to non-negligible value after smoothing (i.e., the signal is less
likely). When we compare with modes reported by Appourchaux
et al. (2008), we find that more than 85% of the l = 0−2 mode
pairs and l = 1 modes are recovered. An additional mode at
2579 μHz is detected that could be an l = 1 mode according to
the identification of Appourchaux et al. (2008).

5. Conclusion

The significance level refers to the significance of the data given
the hypothesis, while we are interested in the posterior probabil-
ity of the null hypothesis given the data. Here we have shown
that for a significance level of 10%, the posterior probability of
the null hypothesis is at least 38% when there is no alternative
hypothesis. We have illustrated how one can in practice calcu-
late and compute the posterior probability for the null hypoth-
esis. This has been applied to several theoretical examples and
to the CoRoT data. For the first time, we have shown how one
can assess the detectability of short-lived p modes in a power
spectrum. The methodology can be applied to any stellar power
spectrum for which theoretical expectations are available.
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