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ABSTRACT

Context. The solar-like pulsator HD 49385 was observed with the CoRoT� satellite over a period of 137 days. The analysis of
its oscillation spectrum yielded precise estimates of the mode frequencies over nine radial orders and distinguished some unusual
characteristics, such as some modes outside the identified ridges in the échelle diagram and that the curvature of the � = 1 ridge
differs significantly from that of the � = 0 ridge.
Aims. We search for stellar models that can reproduce the peculiar features of the oscillation spectrum of HD 49385. After showing
that they can be accounted for only by a low-frequency � = 1 avoided crossing, we investigate the information provided by the mixed
modes about the structure of the core of HD 49385.
Methods. We propose a toy-model to study the case of avoided crossings with a strong coupling between the p-mode and g-mode
cavities in order to establish the presence of mixed modes in the spectrum of HD 49385. We then show that traditional optimization
techniques are ill-suited to stars with mixed modes in avoided crossing. We propose a new approach to the computation of grids of
models that we apply to HD 49385.
Results. The detection of mixed modes leads us to establish the post-main-sequence status of HD 49385. The mixed mode frequencies
suggest that there is a strong coupling between the p-mode and g-mode cavities. As a result, we show that the amount of core
overshooting in HD 49385 is either very small (0 < αov < 0.05) or moderate (0.18 < αov < 0.20). The mixing length parameter is
found to be significantly lower than the solar one (αCGM = 0.55 ± 0.04 compared to the solar value α� = 0.64). Finally, we show that
the revised solar abundances of Asplund ensure closer agreement with the observations than the classical ones of Grevesse & Noels.
At each step, we investigate the origin and meaning of these seismic diagnostics in terms of the physical structure of the star.
Conclusions. The subgiant HD 49385 is the first star for which a thorough modeling has been attempted to reproduce all the properties
of an avoided crossing. It has provided the opportunity to show that the study of the coupling between the cavities in these stars can
provide valuable insight into open questions such as core overshooting, the efficiency of convection, and the abundances of heavy
elements in stars.
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1. Introduction

The existence of mixed modes in the spectrum of stars was first
suggested by Scuflaire (1974). By studying non-radial oscilla-
tions of highly condensed polytropes, he found waves behaving
both as gravity waves in the center, and as acoustic waves in the
envelope. These modes were later discovered in the spectrum of
10 M� models by Osaki (1975), who established that they are
associated with avoided crossings between g modes and non-
radial p modes. He showed that whenever the frequencies of two
modes of identical degree became close to each other, the modes
would avoid each other and exchange natures instead of actually
crossing (see Fig. 1). During this exchange, they have a mixed
character, similar to those found by Scuflaire (1974). This phe-
nomenon is caused by the evanescent zone that separates the p-
mode cavity from the g-mode cavity and introduces a coupling
between them. Aizenman et al. (1977) gave evidence of that by

� Based on data obtained from the CoRoT (Convection, Rotation
and planetary Transits) space mission, developed by the French Space
agency CNES in collaboration with the Science Programs of ESA,
Austria, Belgium, Brazil, Germany and Spain.

decoupling the two cavities and showing that the modes do cross
in this case.

Several studies have stressed the great expected potential of
avoided crossings in terms of asteroseismic diagnostics. They
can indeed provide estimates of the frequency of the g mode
that they involve. This is crucial since the g-mode frequencies
are determined by the profile of the Brunt-Väisälä frequency
in the core and for stars massive enough to have a convective
core, this quantity depends to a great extent on the structure
of the chemically inhomogeneous zone generated by the with-
drawal of the core. This led to the natural idea that the fre-
quency of mixed modes could be used as a means of constraining
the amount of overshooting at the boundary of convective cores
(e.g., Dziembowski & Pamyatnykh 1991).

Until now, there have been very few detections of stellar
oscillation modes in avoided crossings. Mixed modes were ob-
served in the subgiant star η Boo (Kjeldsen et al. 1995), which
led to a post-main-sequence classification for the star (Di Mauro
et al. 2004; Carrier et al. 2005) and to set an upper limit to the
overshooting, but the data were too imprecise to further constrain
the internal structure of the star. The recent development of the
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Fig. 1. Evolution of the eigenfrequencies of � = 1 modes as a function
of age for a 1.3 M� model. The frequencies are normalized by the square
root of the mean density

√
GM/R3, where M and R are the stellar mass

and radius.

space missions CoRoT (Baglin et al. 2006) and Kepler (Koch
et al. 2010), by providing long almost uninterrupted time series
of high precision photometric data, has opened new opportuni-
ties for the detection of mixed modes.

In this paper, we investigate the case of the G0-type star
HD 49385, which was observed with the satellite CoRoT over
a period of 137 days between October 2007 and March 2008.
The analysis of the time series has shown that the star exhibits
solar-like oscillations (Deheuvels et al. 2010, further referred to
as D10) and the authors could unambiguously identify modes
of degree � = 0−2 over nine radial orders. Precise estimates of
the mode properties (frequencies, linewidths, amplitudes) were
obtained by fitting Lorentzian profiles to the observed spec-
trum. The authors also pointed out several striking features of
the oscillation spectrum of HD 49385. They detected significant
peaks that do not follow the expected pattern of high-radial-order
p modes. Since HD 49385 is probably an evolved object (judging
by its low surface gravity log g = 4.00 ± 0.06, D10) they sug-
gested that some of these peaks might be the signature of mixed
modes. The analysis of the oscillation spectrum also showed that
the curvature of the � = 1 ridge in the échelle diagram unexpect-
edly differs from that of the � = 0 ridge at low frequency.

We perform a modeling of HD 49385 based on the spectro-
scopic and seismic constraints derived for the star by D10. We
present in Sect. 2 a preliminary modeling of the star that demon-
strates that main-sequence models fail to reproduce the peculiar
curvature of the observed � = 1 ridge. We then investigate the
possibility that this feature might be caused by mixed modes
in the oscillation spectrum of HD 49385. Until now, theoreti-
cal studies of avoided crossings have all made the assumption
that only two modes are involved and have neglected the con-
tributions of the other modes (e.g., Christensen-Dalsgaard 1981;
Gabriel 1980). We study in Sect. 3 the case of avoided crossings
when the coupling between the p-mode cavity and the g-mode
cavity is too strong to consider this phenomenon as a two-mode
only interaction and we show that they can generate a distortion
of the ridge that is comparable to the observed one. This leads
us to show that the seismic properties of HD 49385 can only
be accounted for by the existence of an � = 1 avoided cross-
ing. We then point out in Sect. 4 the limitations of traditional
modeling techniques when studying stars with avoided cross-
ings and propose a method to remedy this. This method is ap-
plied to search for optimal models of HD 49385 in Sect. 5, with

Table 1. Fundamental parameters of HD 49385 measured from spectro-
scopic and photometric observations by D10 (top) and estimated using
the observed value of Δν and νmax (bottom).

Measured parameters
Teff (K) 6095 ± 65
(log g)spectro 4.00 ± 0.06
[Z/X] (dex)� +0.09 ± 0.05
log(L/L�) 0.67 ± 0.05
Parameters estimated from Δν and νmax

M/M� 1.31 ± 0.12
R/R� 1.96 ± 0.07
(log g)seismo 3.97 ± 0.02

Notes. (�) The metallicity is defined as [Z/X] ≡ log [(Z/X)/(Z/X)�].

the aim of determining the information that the frequencies of
the mixed modes convey about the structure of the inner regions
of HD 49385. In Sect. 6, we discuss these results and investi-
gate their meaning in terms of internal structure and physical
processes.

2. Characteristics of HD 49385 and first step
modeling

2.1. Observational constraints

We first give a brief overview of the observational constraints
that were derived for this star in previous studies.

2.1.1. Surface constraints

The surface observables of HD 49385 were derived by D10
based on a detailed analysis of two high-quality spectra obtained
with the NARVAL spectrograph and on the Hipparcos measure-
ment of the star’s parallax. We here use their results, which are
reproduced in Table 1.

2.1.2. Seismic constraints

The star HD 49385 is a solar-like pulsator, which was observed
with the CoRoT satellite over a period of 137 days. The ridges
of degrees 0 � � � 2 were unambiguously identified in the
échelle diagram of the power spectrum (D10). The frequencies
of these modes were determined over nine radial orders by fit-
ting Lorentzian profiles to the detected modes, using a maximum
likelihood estimation.

The star has a mean large separation of 〈Δν〉obs = 56.3 ±
0.5 μHz and the frequency at the maximum of the signal is
νmax = 1010 ± 10 μHz (the error bars in these measurements
were determined based on the method prescribed by Mosser &
Appourchaux 2009). These values can be used to derive a first
estimate of the stellar mass and radius using scaling relations.
Gai et al. (2011) noted that since the errors in these estimates
of the mass and radius are positively correlated, the error we
obtain in the quantity M/R2 and thus in log g is small. We re-
port in Table 1 the estimated values of M, R, and log g, which
are later confronted with those of our best-fit models. We note
that the value we obtain for log g is consistent with the spectro-
scopic measure of this quantity and has a much smaller error,
as expected.
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Fig. 2. Profile of the � = 0 (squares and blue line) and � = 1 (triangles
and red line) observed large separation represented with 1-σ error bars.
The blue dotted line shows the result of the least squares fit to a sinusoid
of the � = 0 large separation (see text).

A clear oscillation appears in the profile of the � = 0 large
separation, as can be seen in Fig. 2. Following the procedure
proposed by Roxburgh (2009), we estimate a period of 230 ±
30 μHz for this oscillation. This indicates that the glitch re-
sponsible for the oscillation has an acoustic depth of either
τglitch/τ� = 0.76 ± 0.04 or τglitch/τ� = 0.24 ± 0.04, where τ�
is the total acoustic radius of the star (we recall that two glitches
at acoustic depths of τ and τ� − τ result in an oscillation of the
eigenfrequencies of the same period).

The analysis of the oscillation spectrum of HD 49385 led
D10 to identify several unaccounted for features. First, in con-
trast to expectations for main-sequence solar-like pulsators, the
profile of the � = 1 large separation significantly differs from
that of the � = 0 large separation, especially in the low-frequency
part of the observations (see Fig. 2). In an échelle diagram, this
translates into a growing difference between the curvatures of
the � = 0 and � = 1 ridges at low frequency. Secondly, sev-
eral peaks were found to be significant even though they lie out-
side the identified ridges. One of them, the peak labeled as π1
by the authors, has a posterior probability that it is caused by
noise of as low as 10−5. It lies close to the � = 0 ridge but not
in its direct continuity and it would cause an abrupt step in the
� = 0 large separation profile if it were identified as a radial
mode. One of the challenges of the modeling of HD 49385 is
to understand these peculiarities. We address this question in the
following section.

2.2. Preliminary modeling of HD 49385

2.2.1. Properties of the models

All the models are computed with the stellar evolution code
cesam2k (Morel 1997) and the mode frequencies are derived
from them using the Liège Oscillation Code (LOSC, Scuflaire
et al. 2008). We used the OPAL equation of state and opacity
tables described in Lebreton et al. (2008). The nuclear reaction
rates are computed using the NACRE compilation (Angulo et al.
1999). The atmosphere is described by Eddington’s grey law and
is connected to the envelope at an optical depth of τ = 10 to
ensure the validity of the diffusion approximation (Morel et al.
1994). We computed models using alternately the mixture of

heavy elements of Grevesse & Noels (1993), which we further
refer to as GN93, and the revised mixture of Asplund et al.
(2005), referred to as AGS05.

The convective regions are treated using the Canuto-
Goldman-Mazzitelli (CGM) formalism (Canuto et al. 1996),
which involves a free parameter, the mixing length, described
as a fraction αCGM of the pressure scale height. A calibration for
the Sun gives αCGM = 0.64 (Samadi et al. 2006). In this work,
the mixing length is considered as a free parameter.

The radius Rcc of the convective core is determined by the
Schwarzschild criterion. Overshooting can be included in the
models as an extension of the motion of convective eddies over
a distance dov outside the core, which is defined as

dov ≡ αov min (Rcc,HP) , (1)

where HP is the pressure scale height. In this study, we consider
instantaneous mixing in the overshooting region, meaning that
we assume that the timescale of the mixing is much smaller than
the timescale of the evolution of the star. In this case, the over-
shooting zone is fully mixed. The temperature gradient is taken
to be equal to the adiabatic gradient.

Our models are computed neglecting microscopic diffusion,
in order to limit the computational time of our grids of models.
However, the effect of microscopic diffusion on our conclusions
is studied in Sect. 6.

2.2.2. Comparison criterion between models
and observations

As is usually done, we compare the stellar models and the ob-
servations by computing the merit function χ2 defined as

χ2 ≡
N∑

i=1

⎡⎢⎢⎢⎢⎣O
mod
i − Oobs

i

σobs
i

⎤⎥⎥⎥⎥⎦
2

, (2)

where Oobs
i , i = 1,N represent the N observables selected to

constrain the models, σobs
i their error bars, and Omod

i the values
of these parameters for the computed models.

To constrain the models, we used the classical observ-
ables Teff and L/L�. We note that the measured value of log g
could also be used. However, its value is not well enough con-
strained by spectroscopic measurements to allow it to discrim-
inate among the different models and we therefore no longer
mention it in the following. The set of observables is completed
by the estimates of the p-mode frequencies of degrees 0 � � � 2
obtained by D10. We note that the authors also mentioned the
possible detection of two � = 3 modes (modes π2 and π3) and
proposed estimates of their frequencies. However, given the low
signal-to-noise ratio of their profiles, we chose not to include
these modes in our set of observables. In addition, one of the
� = 2 modes was found to overlap with the closest radial mode
(ν0,14 = 855.3 μHz). Since none of all the models we com-
puted in this study display this particularity, we assume that this
phenomenon is caused by the lower signal-to-noise ratio of the
� = 2 modes around the edges of the frequency domain of the
oscillations. This � = 2 mode was therefore not included among
the observables Oobs

i .
To compare the eigenfrequencies between models and obser-

vations, we know that it is necessary to correct them for the ef-
fects of our improper modeling of the structure in the surface lay-
ers (e.g., Christensen-Dalsgaard & Thompson 1997). Kjeldsen
et al. (2008) found that in the case of the Sun, the differences
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Fig. 3. Evolutionary tracks of two models fitting the position of
HD 49385 in the HR diagram. The observed values of the effective
temperature and luminosity of HD 49385 are indicated within 1-σ error
bars by the box. The blue dashed line corresponds to a MS model, and
the red solid line to a PoMS model.

between the observed frequencies and those of the best-fit solar
model were approximated well by a power law of the form

νobs
n,� − νbest

n,� = a

⎛⎜⎜⎜⎜⎜⎝ν
obs
n,�

ν0

⎞⎟⎟⎟⎟⎟⎠
b

, (3)

where ν0 is the frequency of the maximum of the signal. The au-
thors tested this law on a few other solar-like pulsators and found
reasonable agreement. For this purpose, they assumed that the
exponent found in the solar case (b = 4.90) could also be used
for other targets. We applied a correction of this type to the fre-
quencies of our models. Only our case somewhat differs from
that of Kjeldsen et al. (2008): our models are computed using
the cesam2k code and we treat convection with the formalism of
Canuto et al. (1996), whereas Kjeldsen et al. (2008) use ASTEC
and describe convection using the traditional mixing length the-
ory. It would therefore be irrelevant to use the same exponent as
the one found by the authors in the solar case. We computed a
solar model matching the set of solar eigenfrequencies found by
Gelly et al. (2002). We then fitted the power law given by Eq. (3)
to the differences between the observed frequencies and those
of our solar model. We obtained a somewhat smaller exponent
(b = 4.25) which is used to correct the frequencies in the fol-
lowing. We also note that the modes that have a mixed behavior
are expected to be less sensitive to the surface effects. To take
this into account, for non-radial modes, the surface correction
given by Eq. (3) was multiplied by a factor Q−1

n,�, where Qn,� cor-
responds to the ratio of the mode inertia to the inertia of the
closest radial mode, as prescribed by Aerts et al. (2010).

2.2.3. Evolutionary status of HD 49385

The low value of the spectroscopic log g obtained for HD 49385
suggests that the star is evolved. We can find models both in the
main sequence (hereafter MS) and post main sequence (PoMS)
stage, which fit the position of HD 49385 in the Hertzsprung-
Russell (HR) diagram (see Fig. 3). We have a problem that is
quite commonplace for evolved objects: a degeneracy between
MS models and PoMS models, which results in an uncertainty in
the evolutionary stage of the studied object (see e.g., Procyon A
in Barban et al. 1999; Provost et al. 2006; η Boo in Di Mauro
et al. 2003).

Fig. 4. Échelle diagram of the power spectrum of HD 49385 derived
from 137 days of CoRoT data, folded with a mean large separation
Δν = 56.3 μHz. The frequencies of a MS model and a PoMS model are
overplotted in blue and red, respectively. The models have been com-
puted to reproduce the observed � = 0 large separation as well as the
position of the star in the HR diagram and the PoMS has an � = 1
avoided crossing at low frequency. Squares represent � = 0 modes, tri-
angles � = 1 modes and diamonds � = 2 modes.

The internal structure of these two families of models is very
different. The main sequence models are close to the exhaustion
of their hydrogen reserves in the center (Xc ∼ 0.1) and they have
a small convective core spreading over about 5% of the stellar
radius. The post-main-sequence models are burning hydrogen in
a thin layer located above the limit of the convective core that
existed during the main sequence stage. There are no longer any
convective regions at the center of these models.

2.2.4. Main-sequence models

We computed a grid of main sequence models with varying
masses, ages, helium abundances, mixing length parameters, and
metallicities. We found models that closely fit the observed vari-
ations in the � = 0 large separation and the position of the star
in the HR diagram. The échelle diagram of one of them is repre-
sented in Fig. 4. However, none of the computed MS models are
able to reproduce the peculiar curvature of the � = 1 ridge that
we mentioned before. The values of the χ2 function that we ob-
tain for MS models are all above 2000. This yields a reduced χ2

above 100, which indicates a very poor match with the obser-
vations. The high value of χ2 for MS models is almost entirely
due to the contribution of the � = 1 modes at low frequency
(the four � = 1 modes with the lowest frequencies account for
more than 90% of the χ2 value for the best-fit MS models).

In addition, no MS model can explain the presence of the
peak π1. It cannot correspond to the signature of a mixed mode,
because MS models that reproduce the surface observables of
HD 49385 are not evolved enough to have mixed modes in the
frequency domain of the observations. This peak also cannot be
identified as an � = 0 mode since the closest radial mode in the
models lies about 5 μHz away from it (i.e. at more than 20σ).

2.2.5. Post-main-sequence models

In contrast to MS models, some PoMS models that fit the sur-
face parameters of HD 49385 have � = 1 mixed modes in
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the frequency domain of the observations. We considered the
possibility that the difference we observe between the curva-
tures of the � = 1 ridge and the � = 0 ridge might be caused
by an � = 1 avoided crossing. To date, all studies of avoided
crossings have assumed that only two modes were involved
and they neglected the contributions of the other modes (e.g.,
Christensen-Dalsgaard 1981; Gabriel 1980). In the next section,
we investigate the case in which the coupling between the cavi-
ties is such that this hypothesis is no longer valid and we try to
determine the effect it has on the curvature of the ridge.

3. Avoided crossings with strong coupling

3.1. Analogy with harmonic oscillators

We now develop an analogy introduced by Deheuvels & Michel
(2010) to gain insight into the characteristics of avoided cross-
ings involving n coupled modes. We recall its main points, for
the sake of clarity, and add some details about the choice of the
coupling term.

3.1.1. Avoided crossing with two modes

Christensen-Dalsgaard (2003), based on the work of
von Neuman & Wigner (1929), proposed a simple analogy
that captures the main aspects of avoided crossings between two
modes. He considered the two cavities of the star as two coupled
harmonic oscillators y1(t) and y2(t), responding to the system of
equations

d2y1(t)
dt2

= −ω1(λ)2y1 + αy2, (4)

d2y2(t)
dt2

= −ω2(λ)2y2 + αy1,

where α is the coupling term between the two oscillators
and ω1(λ), ω2(λ) are the eigenfrequencies of the uncoupled os-
cillators (in the particular case where α = 0). They were chosen
to depend on a parameter λ, which was used to model the change
in the dimensions of the cavities as the star evolves. We assume
that for a certain λ = λ0, the frequencies of the uncoupled oscil-
lators cross, i.e. ω1(λ0) = ω2(λ0) ≡ ω0.

Solving Eq. (4), we obtain the two solutions

ω2
± =
ω2

1 + ω
2
2

2
± 1

2

√
(ω2

1 − ω2
2)2 + 4α2. (5)

If the coupling term α is very small relative to the difference
between the eigenfrequencies (α � |ω2

1 − ω2
2|), then the eigen-

frequencies of the system are close to ω1 and ω2. If, on the other
hand, |ω2

1−ω2
2| � α1,2, then the eigenfrequencies can be approx-

imated by

ω2
± = ω

2
0 ± α. (6)

To analyze these solutions, we choose the eigenfrequencies of
the uncoupled oscillators ω1(λ) and ω2(λ), such that they sim-
ulate a p mode and a g mode. With reference to Fig. 1, we de-
fine ω1(λ) = 1 and ω2(λ) = λ. In this case, an avoided cross-
ing occurs in the system around λ0 = 1. The variations in the
two eigenfrequenciesω±(λ) are shown in Fig. 5. The two modes
clearly exchange natures during the avoided crossing and the in-
tensity of the phenomenon depends on the strength of the cou-
pling between the oscillators.

Fig. 5. Variations in the eigenfrequencies ω± of the system with param-
eter λ, for different values of the coupling term α.

3.1.2. Avoided crossing with n modes

The analogy described in Sect. 3.1.1 holds if two modes only
are affected during an avoided crossing: this corresponds to ne-
glecting the coupling between the two considered modes and the
other modes in the spectrum. We now push the analogy a step
further by assuming that these other coupling terms play a sig-
nificant role. We consider n oscillators, instead of only two. We
choose n − 1 of them to simulate high-radial-order p modes,
by giving them equidistant eigenfrequencies that are constant
with λ. The last oscillator simulates a g mode. We define

ωi(λ) = ωi−1(λ) + Δω, for i = 2, . . . , n − 1 (7)

ωn(λ) = λ. (8)

The numerical values of ω1(λ) and Δω (1 and 0.1 respectively)
are chosen to roughly match Fig. 1.

We then introduce a coupling αi between the g mode and
the ith p mode. Normally, the p modes should also be cou-
pled to each other. However, since their eigenfrequencies remain
equidistant at all times, we can neglect these coupling terms in
our analogy. As λ increases, the g mode will experience suc-
cessive avoided crossings with all the p modes. According to
Eq. (6), the deviation of the eigenfrequency very close to the
ith avoided crossing is δω ∼ αi/(2ωi). To ensure that all the
avoided crossings have a comparable intensity (as seems to be
roughly the case in the models, see Fig. 1), we choose the differ-
ent coupling terms αi such that

αi = γωi, (9)

where γ describes the strength of the coupling between the p-
mode cavity and the g-mode cavity. We obtain the system of
equations

d2y1(t)
dt2

= −ω2
1y1 + γω1yn

...

d2yn−1(t)
dt2

= −ω2
n−1yn−1 + γωn−1yn

d2yn(t)
dt2

= −ω2
nyn + γω1y1 + . . . + γωn−1yn−1. (10)
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Fig. 6. Variations in the eigenfrequencies of (n − 1) p modes coupled to
a g mode, which undergoes avoided crossings with the p modes (here,
n = 10). The dashed lines correspond to a “weak coupling” (γ = 0.01),
and the full lines to a “strong coupling” (γ = 0.06).

Fig. 7. Échelle diagrams of the eigenfrequencies of ten coupled har-
monic oscillators, at a given “time” λ in the vicinity of an avoided cross-
ing. The left panel presents the case of a weak coupling (γ = 0.01) and
the right panel the case of a strong coupling (γ = 0.06). The frequen-
cies that are circled correspond those used to estimate the strength of
the coupling in Sect. 6.

By writing the different oscillators yi(t) = ci exp(−iωt), the
eigenfrequencies of the system are found by solving the eigen-
value problem AC = ω2C with

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω2
1 0 · · · 0 −γω1

0 ω2
2

... −γω2
...

. . .
...

0 · · · ω2
n−1 −γωn−1

−γω1 · · · −γωn−1 ω2
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

and C = [c1, . . . , cn].
The solution is plotted in Fig. 6 for two different values of γ.

For each value of the parameter λ, we plot an échelle diagram
with the eigenfrequencies of the coupled system (Fig. 7). For
weak coupling, the ridge remains straight and the approxima-
tion that only two modes are affected by the avoided crossing

is legitimate. However, for strong coupling, more p modes in the
neighborhood of the avoided crossing have a mixed behavior and
the ridge is distorted as shown in Fig. 7.

3.2. Comparison with stellar models

In a star, the aforementioned coupling is due to the existence
of an evanescent zone between the two cavities: the wider this
zone, the weaker the coupling. Since the Lamb frequency in-
creases with the dergee �, the coupling is stronger for modes of
small degrees. We present in Fig. 8a the propagation diagram
of a 1.3 M� model, which is sufficiently evolved to have low-
degree avoided crossings (post main sequence). For this model,
the ridges of the modes of degrees 1 � � � 3 are shown in an
échelle diagram in Fig. 8b. Clearly, for modes of degree � � 2,
the currently adopted hypothesis that only two modes are af-
fected by the avoided crossing is valid, the rest of the ridge be-
ing almost unaltered. However, for the � = 1 avoided crossing,
the coupling is strong enough to distort the ridge in a way that is
very comparable to the one we obtained in our simple analogy
(bottom panel of Fig. 7).

3.3. Application to the case of HD 49385

By fine-tuning the mass and age of PoMS models, we man-
aged to find a model with an � = 1 avoided crossing in the
low-frequency part of the frequency range of the observations
(around 750 μHz) and that also reproduces the observed mean
value of the large separation (we present in Sect. 4 a method
to find these models in a systematic way). The échelle diagram
of this model is represented in Fig. 4. We observe that the cur-
vature of the � = 1 ridge is far more accurately reproduced by
this model than by MS models. Interestingly, we note that by
adjusting the age of the model, the frequency of the mode that
behaves mainly as a g mode in the avoided crossing matches the
frequency of the aforementioned peak π1.

We conclude that the observed oscillation spectrum of
HD 49385 can be satisfactorily reproduced only if an � = 1
avoided crossing causes a distortion in the � = 1 ridge of the
échelle diagram. We thus obtain a firm detection of mixed modes
in the spectrum of the star. We note that the avoided crossing oc-
curs at the far bottom of the frequency range of the observations,
which explains why we only detect the upper half of the ridge
distortion described in Sect. 3. We are also able to identify the
mode that has a mainly g-mode behavior in the avoided cross-
ing (corresponding to the peak π1). This is very valuable when
conducting a more thorough modeling of the star (see Sect. 5),
since this mode is the most sensitive to the center of the star.
Finally, the detection of an � = 1 avoided crossing in the spec-
trum of HD 49385 enables us to establish that the star is in a
PoMS stage.

4. Stellar modeling using the avoided crossing:
potential and strategy

4.1. Potential of avoided crossings with strong coupling

Mixed modes have a high seismic diagnostic value because they
are sensitive to the structure of the most central regions of the
stars, which remains poorly understood.

The frequencies of mixed modes depend on the profile of
the Brunt-Väisälä frequency in the stellar core. To understand
the information which we can expect to derive from them, it is
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Fig. 8. Left: propagation diagram of a 1.3 M� post-main-sequence model. The Brunt-Väisälä frequency is represented by the full black line and the
Lamb frequencies by the dashed lines (� = 1 red, � = 2 green, � = 3 purple). The propagation regions of three mixed modes of degrees � = 1, 2,
and 3 are represented by the full colored lines and their evanescent regions by the dotted colored lines. Right: échelle diagram of the same model
(� = 0 blue squares, � = 1 red triangles, � = 2 green diamonds, � = 3 purple crosses). The mixed modes represented in the left panel are circled.

convenient to write the Brunt-Väisälä frequency as a function of
the gradients

∇ad =
∂ ln T
∂ ln P

∣∣∣∣∣
S
, ∇ = ∂ ln T

∂ ln P
, ∇μ = ∂ ln μ

∂ ln P
, (12)

where P, T and μ correspond to the stellar pressure, tem-
perature and mean molecular weight, respectively. The sub-
script S indicates that the definition is valid for constant entropy.
The Brunt-Väisälä frequency can be divided in two different
contributions

N2 =
g

HP
(∇ad − ∇) +

g

HP
∇μ, (13)

where g is the gravity inside the star and HP is the local pressure
scale-height. The first term in the right hand side of Eq. (13)
depends on the temperature stratification. The right term char-
acterizes the dependence on the gradient of mean molecular
weight ∇μ. These two components are shown in Fig. 9 for the
model presented in Sect. 3.2.

Two different features of avoided crossings with strong cou-
pling provide information about the structure at the center of
the star:

1. The frequency at which the avoided crossing occurs. The
knowledge of the frequency of an avoided crossing provides
an estimate of the frequency of the g mode that it involves.
This opportunity is extremely important, because the ob-
servation of pure g modes in main sequence stars is cur-
rently impossible. In the framework of the asymptotic theory
(Tassoul 1980), the frequency of a g mode of radial order n
and degree � can be approximated by

ωn,� ∼
√
�(� + 1)

(n − 1/2)π

∫ r2

r1

N
r

dr, (14)

where r1 and r2 are the mode turning points in the g-mode
cavity. In the following, we will consider avoided crossings
involving low-radial-order g modes, for which the asymp-
totic approximation is no longer valid. However, their fre-
quencies mainly depend on

∫ r2

r1
Ndr/r. A measurement of

the frequency of a g mode provides information about the
structure of the g-mode cavity (r1 � r � r2 in Fig. 9).
In particular, the g-mode frequency is sensitive to the peak

Fig. 9. Propagation diagram for a 1.3 M� post-main-sequence model
with an � = 1 avoided crossing. The Brunt-Väisälä frequency (black
solid line) can be separated in two contributions: the part linked to the
temperature stratification (long-dashed blue line) and the one linked to
the gradient of mean molecular weight (red solid line). The Lamb fre-
quency for � = 1 modes is represented by the black dashed line. The
shaded area indicates the evanescent zone. The radii r1 and r2 corre-
spond to the turning points of the g-mode cavity and r3 the turning point
of the p-mode cavity.

left in the profile of ∇μ by the withdrawal of the convective
core, for stars massive enough to have had such a core dur-
ing the main sequence. This is the reason why the detection
of mixed modes is expected as a means of constraining the
amount of overshooting at the boundary of convective cores
(e.g., Dziembowski & Pamyatnykh 1991).

2. The intensity of ridge distortion. We showed in Sect. 3 that
more than two modes are affected by � = 1 avoided cross-
ings. The modification to their frequencies (characterized by
a distortion in the � = 1 ridge in the échelle diagram) de-
pends on the strength of the coupling between the p-mode
cavity and the g-mode cavity. This coupling mainly depends
on the profile of the Brunt-Väisälä frequency in the evanes-
cent zone: the higher N(r) in this region, the stronger the
coupling. The intensity of the ridge distortion should there-
fore provide information about the structure of the star in the
evanescent zone (i.e. in the region r2 � r � r3 in Fig. 9),
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which complements those given by the frequency of the
avoided crossing. We illustrate this complementarity with the
modeling of the star HD 49385 in Sects. 5 and 6.

4.2. Limitations of traditional optimization techniques
to model stars with avoided crossings

As mentioned in our introduction, there have been numerous the-
oretical studies of avoided crossings. However, very few studies
have tried to fit stellar models to the properties of an avoided
crossing. The first reason is that until very recently, the spec-
tra for which the detection of mixed modes was claimed were
of too low quality to perform such an investigation. The second
reason is that avoided crossings occur on a very short timescale
(typically of the order of 1 Myr or less) compared to the stel-
lar evolution timescale, which causes some inherent difficulties.
The usual approach to modeling a star consists of computing a
grid of models with a wide range of stellar parameters (mass,
age, etc.) to find the optimal model that minimizes the χ2 func-
tion defined in Eq. (2). Applying this procedure with a time step
of the order of the avoided crossing timescale is infeasible, be-
cause it would require the computation of a tremendously large
number of models. On the other hand, with a larger time step, we
have a very low probability of finding models that correctly re-
produce the frequency of the avoided crossing and we therefore
miss the best-fit models. We note that it would also be impracti-
cal to bluntly apply an automatic minimization using for instance
the algorithm of Levenberg-Marquardt, as prescribed by Miglio
& Montalbán (2005). This technique is based on the computa-
tion of the Hessian matrix at each iteration and thus requires us
to define a step for the time derivatives. The gap between the stel-
lar evolution timescale and that of the avoided crossing makes it
impossible to find a satisfactory time step for the procedure.

4.3. Narrowing down the dimensions of the model space

We now try to adapt the traditional grid-of-model approach to
the special case of targets for which mixed modes are detected.
For this purpose, we show that we can overcome the obstacles
we have just mentioned by no longer considering the stellar age
and mass as free parameters of our fit.

4.3.1. Relation between νcross and the stellar age

The frequency at which an avoided crossing occurs (de-
noted νcross) corresponds to the frequency of the uncoupled
g mode that it involves and is therefore linked to the profile of
the Brunt-Väisälä frequency in the core (see Sect. 4.1). Figure 10
shows the variations in the frequencies of the first two uncoupled
g modes during the evolution of a 1.3 M� model (the sharp vari-
ations in the mode eigenfrequencies around the age of 4050 Gyr
in this plot correspond to the transition between the MS stage
and the PoMS stage).

During the main sequence, the first term in the right hand
side of Eq. (13) nearly vanishes at the center because the tem-
perature gradient is almost adiabatic in the convective core. The
g-mode cavity essentially corresponds to the chemically inho-
mogeneous zone left by the withdrawal of the core. At this
point, the Brunt-Väisälä frequency is still low, so that low-degree
g modes do not reach the frequency range of high-order p modes
and no avoided crossing can be observed.

At the end of the main sequence, when the hydrogen re-
serves are exhausted in the core, the star is left with an almost

Fig. 10. Top: evolution of the frequencies of � = 0 modes (dashed black
lines) and � = 1 modes (full black lines) with age for a 1.3 M� model.
The frequencies of the first two � = 1 uncoupled g modes are also
represented (g1 mode in red and g2 mode in green). Bottom: evolution
of the central density ρc with age for the same model.

isothermal helium core. The inner regions contract until nuclear
reactions are triggered in the layers where hydrogen remains.
The evolution of the Brunt-Väisälä frequency is then mainly de-
termined by the value of the central density ρc. To explain this,
we note from Eq. (13) that N depends on the factor g/HP, which
can also be written ρg2/P. In the most central regions, the gravity
term can be approximated as g(r) ∼ Gρcr. In that case, we have

g

HP
∼ ρ

3
c

Pc
r2 ∼ ρ

2
cμc

Tc
r2, (15)

where Pc and Tc are the central pressure and temperature. The
models show that the central temperature hardly changes in
the isothermal core during evolution in the post-main-sequence
phase. The mean molecular weight remains constant because the
chemical composition in the core does not vary. In contrast, the
contraction of the star causes the central density to increase by
more than one order of magnitude relative to its value at the end
of the MS, as can be seen in the lowest panel of Fig. 10. As a
result, the factor g/HP and thus the Brunt-Väisälä frequency
mainly depend on the evolution of the central density ρc. This
is confirmed by Fig. 10, which shows the tight relation between
the evolution of νcross and ρc for a 1.3 M� model.

We conclude that the avoided crossing frequencies monoton-
ically increase during the evolution of the star. We can therefore
find for every model (with fixed mass and physics) one stellar
age such that the avoided crossing occurs at the same frequency
as in the observations. For the model represented in Fig. 10, an
age of 4374± 0.8 Myr satisfies this condition (the error bar is de-
termined by requiring a fit of νobs

cross within a 1-σ error bar). The
precision we obtain is such that we can consider the age to be
entirely determined by the value of νcross (for models of a given
mass and physics) and we can cease to consider the age as a free

A91, page 8 of 19

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201117232&pdf_id=10


S. Deheuvels and E. Michel: Constraints on the structure of the core of HD 49385 via mixed modes

Fig. 11. Left: evolutionary tracks in the HR diagram for models of masses ranging from 1.23 M� (lightest symbols) to 1.31 M� (darkest symbols),
with given physics. The filled circles indicate the points where the models reach 〈Δν〉 = 〈Δν〉obs for HD 49385 (this location is materialized by the
dotted line). Right: evolution of the central density for the same models. The value of the mean large separation has been used as an indicator of
the age, for more convenience.

parameter of the fit. This is very interesting because it solves the
problem of the choice of a time step for the grid of models.

We note that by using this method, we overlook the mod-
els that do not fit the frequency of the avoided crossing within
1-σ error bars. However, since avoided crossings occur on a
short timescale relative to the stellar evolution timescale, modi-
fying νcross in a model will result in almost no change to the other
stellar parameters. It will only induce an increase in the contribu-
tion of the term including νcross in the χ2 defined in Eq. (2) with
no significant change in the other contributions. Overlooking
these models should therefore change neither the optimal model
we obtain nor the error bars we derive from it.

4.3.2. Correspondence between (Δν, νcross) and (M, age)

We have just demonstrated that for a model of a given mass and
physics, we can find an age such that νcross = ν

obs
cross. However,

we note that the mean large separation of the star monotonically
decreases with age because the stellar radius keeps increasing
(even during the sharp transition between the main-sequence and
the post-main-sequence stage). For every model, there exists an
age at which the observed value of the mean large separation is
reproduced. This age a priori differs from the one for which the
frequency of the avoided crossing is reproduced. Hence, which
models fit both conditions simultaneously? We refer to this joint
condition as condition C, i.e.

C:

{〈Δν〉mod = 〈Δν〉obs

νmod
cross = ν

obs
cross.

(16)

To answer this question, we search for models that fit the ob-
served frequency of the avoided crossing among those that re-
produce the value of the mean large separation. As explained in
Appendix A, the iso-Δν region in the HR diagram roughly corre-
sponds to a line of slope 5 (L ∝ T 5

eff). Figure 11 shows the evolu-
tionary tracks of several models with the same given physics and
different masses. We observe that as the stellar mass increases,
the line of the terminal age main sequence (TAMS) gets closer
to the line of iso-Δν. Consequently, the more massive stars are
closer to the TAMS when they reach the observed value of the
large separation. This means that they have a lower central den-
sity, as can be seen in Fig. 11 (where we found it convenient to

Fig. 12. Frequency of the avoided crossing for the models that repro-
duce the observed mean large separation of HD 49385 in Fig. 11.
The dashed line indicates the frequency of the observed avoided cross-
ing νobs

cross for HD 49385.

use the mean large separation instead of the age as an indicator
of the evolution). Since we mentioned that the evolution of νcross
is determined by that of ρc, we conclude that νcross should de-
crease with increasing mass. This is confirmed by Fig. 12. We
refer to this result frequently in the following.

We reach the conclusion that there exists one and only one
value of the stellar mass and age for which both the mean value
of the large separation and the frequency of the avoided crossing
are correctly fitted (for instance with the physics used in Figs. 11
and 12, it corresponds to a mass of about 1.28 M�). We denote
as M̃ and τ̃ the stellar mass and age that satisfy condition C. It is
striking that for a given physics, the two seismic parameters 〈Δν〉
and νcross alone provide an estimate of the stellar mass and age,
without having to resort to the use of any classical constraints
or other seismic parameters. This estimate is also extremely pre-
cise. For example, if we fix all stellar parameters other than the
mass and age in the case shown in Fig. 12, the uncertainty in
he mass that we obtain is as small as 4 × 10−4 M�. We there-
fore propose to reduce the dimensions of the model space by
eliminating the mass and age from the set of free parameters,
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these two quantities being determined by (〈Δν〉, νcross). The val-
ues of M̃ and τ̃ of course depend on the physics that we use to
model the star. Their dependence on the different stellar param-
eters is studied in Sect. 4.5, after we describe the method we
adopted in this study to find the models that satisfy condition C.

4.4. Searching for models satisfying condition C
We now briefly describe the procedure we followed to obtain the
values of M̃ and τ̃ for each set of free parameters.

As mentioned in Sect. 4.3.1, we consider the stellar age
to be fixed by imposing that νcross = ν

obs
cross. Until now, we

have assumed that the frequency of the avoided crossing corre-
sponds to the frequency of the uncoupled g mode that it involves.
Of course, when computing the eigenfrequencies of a model, we
do not have access to this quantity. We thus chose to assimilate
the frequency of the avoided crossing to the frequency of the
mode that behaves mainly like a g mode. In the oscillation spec-
trum of HD 49385, this mode corresponds to the peak labeled
as π1, whose frequency has been found to be νπ1 = 748.6 ±
0.23 μHz by D10, and in the models, it is the mode ν1,11. For
each computed model, the age is determined by ensuring that
ν1,11 = νπ1 . Special care has to be taken in this procedure since
the evolution of the � = 1 mode frequencies with age is not
monotonic owing to the avoided crossings, as can clearly be seen
in Fig. 10. As a result, there are several ages (three) for which
(ν1,11 = νπ1 ) and only one among them corresponds to the one
we search for.

We need to determine the stellar mass for which the models
fitting the frequency of the avoided crossing also reproduce the
observed large separation. This mass is the one that minimizes
the merit function

χ2
〈Δν〉 ≡

(〈Δν〉mod − 〈Δν〉obs)2

σ2
〈Δν〉

, (17)

where 〈Δν〉obs is the mean large separation of the observed radial
modes, σ〈Δν〉 the 1-σ error-bar, and 〈Δν〉mod the corresponding
quantity for the models (after correcting for the surface effects
as described in Sect. 2.2.2). Only the radial modes are consid-
ered here since the large separations of non-radial modes are
affected by avoided crossings. We note that for models repro-
ducing νobs

cross, the mean large separation of radial modes varies
almost linearly with stellar mass. The function χ2

〈Δν〉 is therefore
almost quadratic and the method of Newton is particularly ef-
ficient in determining the optimal mass M̃ (obtained in only a
couple of iterations).

4.5. Dependence of M̃ on the stellar parameters

By applying the procedure we have just described, the mass M̃
and age τ̃ can be determined for any given set of free parame-
ters. This gives us the opportunity to study the dependence of M̃
on the different stellar parameters that are varied in this study
(the mixing length parameter αconv, the initial helium abun-
dance Y0, the metallicity [Z/X], and the amount of core over-
shooting αov). This provides us with helpful insights when dis-
cussing the results of our optimization in Sect. 6. This should
also give some insight into how the mass should be varied when
studying other stars with avoided crossings.

We start from a model S 0 with a given set of stellar parame-
ters (see Table 2). From what we have just said, there exists only
one stellar mass M̃0 and and one age τ̃0 for which condition C is
verified, for these parameters. By varying the stellar parameters

one by one, we try to understand the variations in the optimal
mass M̃ with each of them.

4.5.1. Dependence of M̃ on the mixing length parameter

We modified the mixing length parameter of model S 0 with-
out changing the other parameters and we determined the new
mass M̃ by applying the procedure described in Sect. 4.4.
Figure 13a shows that M̃ linearly increases with αconv.

The increase in M̃ with αconv can be understood as follows.
We first modify the mixing length parameter from the value α0
of model S 0 to a value α1 > α0. If we keep the same mass M̃0
(model S 1a in Table 2), an increase in the mixing length will lead
to an increase in the convective flux in the envelope and therefore
cause the star to contract slightly. Since the stellar luminosity
remains unchanged, the decrease in the radius is compensated
for by an increase in the effective temperature. The evolutionary
track is thus horizontally translated to the left in the HR dia-
gram when the mixing length goes from α0 to α1 at constant
mass (see Fig. 13b). As a result, for αconv = α1, the star is fur-
ther away from the TAMS when it reaches the observed value of
the large separation and the frequency of the avoided crossing is
too high relative to the observations. On the basis of our discus-
sion in Sect. 4.3.2, we need to increase the stellar mass to restore
the agreement with the avoided crossing frequency, while main-
taining the agreement with the large separation (model S 1b). We
therefore have M̃1 > M̃0.

4.5.2. Dependence of M̃ on the helium abundance

By modifying the value of the initial helium abundance in
model S 0, we show that M̃ linearly decreases with Y0 (see
Fig. 13c).

As in the previous section, we try to explain this decrease.
We search for the new mass M̃2 that verifies condition C when
we increase the helium abundance to Y2 > Y0. If we keep the
same mass M̃0 (model S 2a), the mean molecular weight μ in-
creases owing to the increase in the helium content. It can be
shown from homology relations that if we keep the mass con-
stant and modify μ, the stellar luminosity scales as L ∝ μ4

and the radius scales as R ∝ μz2 , where the exponent z2 de-
pends on the mode of energy generation inside the star (see e.g.,
Kippenhahn & Weigert 1990). Subgiants are generally burning
hydrogen through the CNO cycle and we then have z2 � 0.6.
In this case, combining these two relations with the knowledge
that L ∝ R2T 4

eff, we find that Teff ∝ L5.7. Increasing the helium
abundance in a model while keeping the mass constant induces
a translation of its evolutionary track in the HR diagram to the
left along a line of slope about 5.7. Since the slope is steeper than
that of the iso-Δν line, the models with higher helium abundance
are closer to the TAMS when they reach Δνobs (green dashed line
in Fig. 13d). This effect is enhanced by the finding that when in-
creasing Y0, the iso-Δν line is translated to the left. To reproduce
the observed value of νcross, it is therefore necessary to decrease
the mass, which means that M̃2 < M̃0 (model S 2b).

4.5.3. Dependence of M̃ on the metallicity

Figure 13e shows that the mass M̃ linearly increases with the
abundance of heavy elements [Z/X].

To explain this increase, we consider a metallicity [Z/X]3 >
[Z/X]0 and search for the optimal mass M̃3. If we keep the
mass M̃0 of model S 0 (model S 3a), the main effect of an increase
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Fig. 13. Variations in the mass M̃ when changing the mixing length parameter (left), the initial helium abundance (middle), and the metallicity
(right) from model S 0 (whose properties are given in Table 2).

Table 2. Parameters of the models used to determine the variations in
the mass M̃ (which verifies condition C) with the stellar parameters.

Model αconv Y0 Mixture Mass

S 0 0.56 0.24 AGS05 M̃0 (1.263 M�)
S 1a 0.60 – – M̃0

S 1b 0.60 – – M̃1 (1.295 M�)
S 2a – 0.28 – M̃0

S 2b – 0.28 – M̃2 (1.202 M�)
S 3a – – GN93 M̃0

S 3b – – GN93 M̃3 (1.308 M�)

in the metallicity is that the amount of bound-free absorption,
which comes from metals, is higher. This leads to an increase in
the opacity. To study its effect, we computed homology relations,
following exactly the same steps as in Chap. 20 of Kippenhahn
& Weigert (1990), but considering the opacity κ as a basic pa-
rameter instead of the mean molecular weight μ. We found that
if we keep the mass constant while increasing the opacity, the
evolutionary track in the HR diagram is translated to the right on
a line of slope about 3.6 (we note that the models indeed show
a translation to the right, but with a somewhat larger slope a lit-
tle below 5, see purple dashed line in Fig. 13f). Normally, this
should bring the models closer to the TAMS when they reach the
observed value of the large separation. However, we observe in
Fig. 13 that the iso-Δν line is shifted to the right when increas-
ing the opacity and the models with higher metallicity are further
away from the TAMS (purple full line in Fig. 13f). We therefore
need to increase the mass so that the frequency of the avoided
crossing is correctly reproduced, i.e. M̃3 > M̃0 (model S 3b).

4.5.4. Dependence of M̃ on the amount of overshooting

We now focus on the influence of the overshooting on the
mass M̃, which is more complex than the influence of the stellar
parameters previously studied. Starting from model S 0, we in-
creased the amount of overshooting and determined the mass M̃.
Figure 16 shows that M̃ increases with αov for low overshooting
coefficients (αov < 0.06). Above this limit, the mass M̃ starts to
decrease as a function of αov. This decrease eventually becomes
linear for αov > 0.1. We note that the shape of M̃(αov) does not
qualitatively change if we consider initial models other than S 0
(even though the value of the transitional αov does vary).

Core overshooting is not supposed to play a direct role be-
cause the models we consider are in the PoMS stage and their
convective core has vanished. However, it does have an impact
on the g-mode frequencies because of its influence on the past

Fig. 14. Evolutionary tracks in the HR diagram of models S 0, S 1a, S 1b,
S 2a, S 2b, S 3a, and S 3b (see text and Table 2).

evolution of the star and the chemical composition at the center.
Adding overshooting has two opposing effects on the frequency
of the avoided crossing:

(i) First, by extending the mixed region associated with the con-
vective core, overshooting increases the size of the hydro-
gen reservoir available for the nuclear reactions in the center.
As a result, the star remains longer in the MS stage, as clearly
appears in Fig. 15. Consequently, for a given fixed mass, an
increase in the amount of overshooting brings the star closer
to the TAMS when it reaches the observed value of the large
separation. On the basis of our discussion in Sect. 4.3.2,
we expect the frequency of the avoided crossing to decrease
when the amount of overshooting increases.

(ii) However, adding overshooting also increases the size of
the mixed core during the MS stage and therefore, when
it reaches the TAMS, its helium core is bigger. The layers
where hydrogen remains in the star are less deep and the
temperature in these regions is thus lower. The contraction of
the star during the PoMS stage needs to be stronger to trigger
nuclear burning in these shells. As a result, the central den-
sity increases faster with overshooting than it does without
overshooting, as can be seen in Fig. 15. Since the frequency
of the avoided crossing is strongly related to the central den-
sity (see Sect. 4.3.1), we expect νcross to grow whenever αov
increases.

These two effects play different roles, depending on the amount
of overshooting. For mild overshooting, the stars have evolved
sufficiently after the TAMS when they reach 〈Δν〉obs to ensure
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Fig. 15. Evolutionary tracks in the HR diagram (left) and evolution of the central density ρc (right) for models with the same mass but different
values of αov (αov = 0, 0.08 and 0.15 from light gray to dark gray). The observed mean value of the large separation is represented by the
dotted line.

Fig. 16. Variations in the optimal mass M̃ with the overshooting coeffi-
cient αov. Two regimes can be distinguished: for a strong overshooting,
the models are close to the TAMS and effect (i) dominates (αov > 0.1)
whereas for a milder amount of overshooting, effect (ii) takes over
(αov < 0.1).

that the second effect prevails (see Fig. 15). When increasing the
amount of overshooting of model S 0 from αov = 0 to αov = 0.08,
νcross increases, which means that the stellar mass needs to be
increased to ensure that condition C is satisfied. This accounts
for the increase in M̃ at low αov.

On the other hand, for larger amounts of overshooting, the
stars are very close to the TAMS when they reach 〈Δν〉obs. The
central density has not had time to increase sufficiently and
the first effect is dominant. Figure 15 indeed shows that if we
increase the overshooting to αov = 0.15, the central density de-
creases, which means that the frequency of the avoided crossing
also decreases. Therefore, the mass needs to be decreased to ver-
ify condition C.

We note that owing to the competition between these two
effects, for certain masses two different models can both fulfill
conditionC: one with a mild overshooting away from the TAMS,
and the other with a larger αov, close to the TAMS. For instance
for the physics chosen in Fig. 16, a mass of M = 1.263 M�

Table 3. Ranges and steps adopted for the free parameters of the com-
puted grids of models.

Parameters Range Step
Y0 0.24 to 0.28 0.01
αconv 0.48 to 0.72 0.04
[Z/X] (dex) 0.04 to 0.14 0.05
αov 0.00 to 0.20 0.025

can satisfy condition C both without overshooting (αov = 0) and
with an overshooting of αov = 0.15. This observation shows that
for subgiants in the early PoMS stage, knowing the frequency
of an avoided crossing is not enough to efficiently constrain the
amount of core overshooting in a star.

5. Application to HD 49385: model optimization

5.1. Computation of two grids of models

We computed two grids of models, one assuming the mixture
of Grevesse & Noels (1993, furhter noted GN93) and the other
the more recent mixture of Asplund et al. (2005, further noted
AGS05). We varied the values of the mixing length parame-
ter αconv, the helium abundance Y0, the metallicity [Z/X] and
the amount of overshooting αov. The ranges of studied values
for each of these parameters as well as the chosen steps are re-
ported in Table 3. For each point in the grids, an optimization
such as the one described in Sect. 4.4 was performed to deter-
mine the stellar mass M̃ and age τ̃ that satisfy condition C. We
then computed the χ2 function defined by Eq. (2).

5.2. Results of the fit

The first comment that can be made about the fit is that the rep-
resentation of the total χ2 as a function of the amount of over-
shooting shown in Fig. 17 has two distinct minima, one for lower
values of αov (αov < 0.05) and the other for moderate values of
αov (∼0.19). This leads us to identify four different families of
solutions corresponding to the two different mixtures we consid-
ered and either low or high values of αov.

We then attempted to derive a quantitative interpretation of
the χ2 values we obtain for the models in each of these four

A91, page 12 of 19

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201117232&pdf_id=15
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201117232&pdf_id=16


S. Deheuvels and E. Michel: Constraints on the structure of the core of HD 49385 via mixed modes

Table 4. Values of the stellar parameters obtained from the computation of our two grids of models.

GN93 AGS05

low αov high αov low αov high αov

αov 0.05+0.01
−0.05 0.19 ± 0.01 0.00+0.01 0.19 ± 0.01

M/M� 1.285 ± 0.017 1.231 ± 0.012 1.264 ± 0.013 1.210 ± 0.021
Age (Gyr) 4.90 ± 0.13 5.04 ± 0.18 4.88 ± 0.11 5.10 ± 0.18
R/R� 1.959 ± 0.012 1.932 ± 0.011 1.947 ± 0.007 1.917 ± 0.011
Teff (K) 5870 ± 40 5790 ± 30 5940 ± 40 6080 ± 60
log g 3.961 ± 0.002 3.946 ± 0.001 3.960 ± 0.002 3.954 ± 0.002
αconv 0.52 ± 0.01 0.52 ± 0.02 0.52 ± 0.01 0.56 ± 0.03

Minimum χ2
red 2.48 2.25 2.11 1.81

Fig. 17. Values of the reduced χ2 for the models computed with the mix-
ture of GN93 (blue empty circles) and with the mixture of AGS05 (red
filled circles) as a function of the amount of overshooting. For clarity
reasons, the symbols of models computed with GN93 have been slightly
shifted to the right. The best-fit models for each considered value of αov

have been linked by a dotted line (GN93) and by a dashed line (AGS05).

families. This was possible because (i) the measured data can
be assumed to have a Gaussian distribution (Appourchaux et al.
1998, showed that for simulated spectra with a resolution equiv-
alent to four months of data, the distribution of the error bars for
the central frequencies of the modes is close to a normal distri-
bution) and (ii) for the four families of solutions, the models are
roughly linear in their parameters in the regions defined by the
uncertainties that we derive for the fitted parameters. This latter
condition has been checked a posteriori.

Under these conditions, the goodness of the fit can be esti-
mated by computing the reduced χ2 defined as

χ2
red ≡

χ2

N − P
, (18)

where N is the number of measured data and P the number of
free parameters of the fit. More importantly, we can use the val-
ues of the χ2 function to determine a confidence interval for the
fitted parameters. For instance, let us assume that we wish to de-
termine the uncertainty in the amount of overshooting αov. For
each value of αov in the grid, we determine the set of the other
free parameters that minimizes the χ2 function (the obtained

χ2 values are linked by dotted lines in Fig. 17). Press et al. (2002)
showed that the difference between these χ2 values and the min-
imum χ2 of the whole family of solutions χ2

min defined as

Δχ2 ≡ χ2 − χ2
min (19)

is distributed as a χ2 with two degrees of freedom. This means
that the “real” value of the parameter αov has a probability of
68.3% (resp. 95.4%, 99.7%) of belonging to the region where
Δχ2 < 1 (resp. Δχ2 < 4, Δχ2 < 9). The values of αov for which
Δχ2 = 1 thus give an estimate of the 1-σ error in this parameter.
This method is applied to all the parameters to determine the
uncertainties that are reported in Table 4 for the four different
families of solutions.

We thus obtain a precise estimate of the fundamental prop-
erties of HD 49385. The stellar mass is constrained with a
precision of about 1% for each of the four identified fam-
ilies. If we combine them all together, we find a mass of
M = 1.25 ± 0.05 M� for HD 49385 (corresponding to a pre-
cision of about 4%). In a similar way, we obtain a radius of
R = 1.94 ± 0.03 R� for the star (precision of about 1.5%). The
stellar age is also tightly constrained: from Table 4, we derive
τ = 5.02 ± 0.26 Myr (precision of about 5%). We obtain a log g
of 3.954 ± 0.009 for HD 49385. We note that the results of the
fit are consistent with the first estimates given in Table 1. The
level of precision that we achieve here is to a great extent due to
the detection of the � = 1 avoided crossing in the spectrum of
HD 49385 (see Sect. 6).

As expected, we find that we are also able to obtain infor-
mation about the interior of HD 49385. As we mentioned at the
beginning of this section, we obtain strong constraints on the
amount of overshooting in the star that can be either very low
or moderate (αov = 0.19 ± 0.01). In the latter case, the models
are very close to the TAMS. We know that stars are expected
to spend very little time in this evolutionary stage, which makes
it quite improbable that we can observe them during this pe-
riod. Although this point in itself does not justify our ignoring
these solutions, it means that we should treat them with caution.
The best-fit models of the two families we obtained share very
similar values of all the observables available for HD 49385,
as shown in Fig. 18, so that we cannot discriminate between
them. We note however that the oscillation spectra of the mod-
els contain an � = 2 mixed mode in the frequency range of
the observations, which has different frequencies for the best-
fit low-overshooting models (between 973 and 984 μHz) and
for the high-overshooting ones (between 998 and 1002 μHz).
If such a mode could be detected in the observed spectrum, we
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Fig. 18. Left: échelle diagrams of the best-fit models with low overshooting (green) and with high overshooting (red). The squares represent
� = 0 modes, triangles � = 1 modes, and diamonds � = 2 modes. The observations are represented by the black filled circles. Right: evolutionary
tracks in the HR diagram of the two models (green dashed line: low overshooting; red solid line: high overshooting).

would have a way of discriminating between the two scenarios.
For completeness sake, we checked how the frequencies of the
peaks π2 and π3 of D10 compare with the � = 3 frequencies
in our models. In both cases (low and moderate αov), π2 and π3
appear between 2 and 3 μHz higher than the theoretical values
(i.e. between 3 and 5σ).

An interesting feature of the fit is that the mixing length pa-
rameter αconv is well-constrained for HD 49385 and corresponds
to a value that is significantly smaller than the solar one, regard-
less of the family of solution. Combining the families together,
we obtain αconv = 0.55 ± 0.04 (we recall that the solar calibrated
value is αconv = 0.64). To strengthen this result, we checked
that we reached similar conclusions when using the traditional
mixing length theory instead of the formalism of Canuto et al.
(1996). In this case, the closest agreement is reached for a mix-
ing length of αMLT ∼ 1.4, which is significantly smaller than the
solar calibrated value αMLT ∼ 1.85.

We also find that the models computed with the abundances
of heavy elements of AGS05 offer a closer agreement with the
observations than the ones computed with the abundances of
GN93. This can be clearly seen in Fig. 19. This result is strength-
ened by the fact that even with the mixture of GN93, the best-fit
models are found when considering the lowest end of the range
of the tested metallicities, i.e. [Z/X] = 0.04 dex.

These results confirm that the seismic constraints available
for HD 49385 provide valuable information about the interior
of the star. However, they raise a certain number of questions
which the grid-of-model approach in itself cannot answer. Why
do we find two distinct families of solutions depending on the
value of αov? How do we manage to constrain the mixing length
parameter αconv so well in this star? Why do lower metallici-
ties provide tighter fits than higher ones? Of what use are the
information conveyed by the � = 1 ridge distortion about the
coupling between the cavities? We try to address these questions
in the following section.

6. An in-depth analysis of the results of the fit

6.1. Sources of contribution to the χ2 function

For the models computed in Sect. 5, we identified three main
sources of contribution to the value of the χ2 function.

Fig. 19. Values of the reduced χ2 as a function of metallicity [Z/X].
Symbols are the same as in Fig. 17.

The position in the HR diagram. For each point of the grid, the
mass and age are fixed to M̃ and τ̃, which determines a certain
position in the HR diagram. With the abundances of AGS05, the
values of Teff and L contribute only weakly to the χ2 of the best-
fit models (it represents only 0.3% of the total χ2 for our best-fit
model). The overall fit is thus fully consistent with the spectro-
scopic constraints. With the abundances of GN93, the fits point
toward an effective temperature that is about 3-σ lower than the
measured one (see Table 4), which results in a significant con-
tribution to the χ2 value (more than 20% of the total χ2 for the
best-fit models).

The oscillation of the frequencies due to the Γ1 bump. We
have seen in Sect. 2.1.2 that a clear oscillation is observed in the
large separation profiles. The models also show an oscillation
with a comparable period, which is caused by the bump of Γ1 in
the helium second ionization zone (HIZ) at an acoustic depth of
the order of τHIZ ∼ 0.8. We note that another oscillation related
to the base of the convection zone (BCZ) should also be present
with a period of around 120 μHz (τBCZ ∼ 0.5). However, its
amplitude is too low to be detected. The closest agreement with
the observed oscillation is obtained for τHIZ ∼ 0.798, which is
consistent with the estimate of the acoustic depth of the glitch
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Fig. 20. Top: profiles of the � = 0 large separations for the observations
(black filled circles and dotted lines) and for two models that closely
reproduce the oscillation due to the Γ1 bump. The red solid curve cor-
responds to the best-fit model obtained in Sect. 5 and the blue dashed
curve to a model computed with αconv = 0.68, Y0 = 0.24, αov = 0.10,
and [Z/X] = 0.14 dex, using the GN93 mixture. Bottom: same as the
top panel for the � = 1 large separations.

we obtained in Sect. 2.1.2 (τglitch = 0.76 ± 0.04). Figure 20a
shows the comparison between the � = 0 large separation profile
of our best-fit model and that of the observations (red curve).
We can see that the agreement is good, except at high frequency
where the period of the oscillation appears to be shorter in the
observations than in the models. However, the observations of
p modes over a wider range of radial orders would be required to
determine whether or not this decrease in the oscillation period
is significant.

Even among the models that satisfactorily fit both the posi-
tion of the star in the HR diagram and the oscillation of the mode
frequencies produced by the HIZ, some models yield large val-
ues of the χ2 function. For instance, the model represented in
blue in Fig. 20 (computed with αconv = 0.68, Y0 = 0.24, αov =
0.10, [Z/X] = 0.14 dex, and the mixture of GN93) reproduces
the � = 0 large separations quite well but the � = 1 large sepa-
ration profile shows some striking differences from the observa-
tions at low frequency, inducing a large value of the χ2 function
(χ2

red = 7.44). This shows that the � = 1 ridge for this model
is less distorted than it is in the observations. On the basis of
the conclusions drawn in Sect. 3, this means that the coupling
between the p-mode cavity and the g-mode cavity is too weak.

The intensity of the � = 1 ridge distortion. Since the inten-
sity of the � = 1 ridge distortion is a major contribution to the
χ2 function (for instance, for the model plotted in blue in Fig. 20,
the three lowest frequency � = 1 modes account for 80% of the
χ2 value), we tried to evaluate its dependence on the free param-
eters of our fit, in order to understand the results we obtained in
Sect. 5. For this, we first needed to quantify the intensity of the
ridge distortion caused by the avoided crossing in our models.
We chose to use the frequency difference δ of the two modes

that most closely surround the avoided crossing. To illustrate
why these modes provide a good indicator of the ridge distor-
tion, their frequencies were circled in Fig. 7 for both of the stud-
ied cases (weaker coupling and stronger coupling). A low value
of δ indicates a weak coupling between the two cavities and a
high value of δ, a stronger one. For HD 49385, we have

δ = ν1,12 − ν1,11. (20)

We insist that the value of δ, and more generally the curvature
of the � = 1 ridge, can be used to estimate the strength of
the coupling between the cavities only if the frequency of the
avoided crossing in the models matches that of the observations
(i.e. ν1,11 = νπ1 for HD 49385). This stresses the great interest in
gaining access to the frequency of the mode that behaves mainly
as a g mode in the avoided crossing (ν1,11 in our case). It is also
one of the reasons why we focused on finding all possible mod-
els satisfying this condition in Sect. 4.

We started from the best-fit model obtained without over-
shooting in Sect. 5 and varied the stellar parameters one by one.
The results are shown in Fig. 21. Two striking remarks can be
made about the obtained plots.

First, we observe that the intensity of the � = 1 ridge distor-
tion can account for most of the results of our fit. The quantity δ
decreases when the mixing length parameter increases, as can be
seen in Fig. 21a. Only small values of αconv enable us to repro-
duce the observed value of δ (δobs = 29.31 ± 0.33 μHz, based
on D10). This agrees with our fit being more consistent with
a shorter mixing length. Similarly, δ decreases with increasing
metallicity. We thus understand why the lower abundances of
AGS05 (and more marginally the lowest metallicity with the
abundances of GN93) provide a closer fit to the observations.
The ridge distortion appears to be relatively independent of Y0,
and we found in Sect. 5 that Y0 can hardly be constrained for
HD 49385. Finally, the function δ depends in a more complex
way on the amount of overshooting. Two families of αov val-
ues satisfactorily reproduce δobs: very small amounts of over-
shooting (αov < 0.05) and moderate amounts of overshooting
(αov ∼ 0.2). This corresponds exactly to what we obtained in
Sect. 5. All this establishes that the curvature of the � = 1 ridge
caused by the avoided crossing plays a crucial role in constrain-
ing the structure of the interior of HD 49385.

The second remark that can be made is that the curves of
δ(αconv), δ(Z/X), and δ(αov) in Fig. 21 show a remarkable anti-
correlation with the curves of M̃(αconv), M̃(Z/X), and M̃(αov)
shown in Figs. 13 and 16. This is most striking in the case of
the variations in δ and M̃ with the amount of overshooting. This
clearly suggests that the coupling between the cavities is in-
versely proportional to the stellar mass. This would explain why
the mass of HD 49385 is so tightly constrained in this study. The
next section is dedicated to trying to justify this phenomenon
based on the interior of the computed models.

6.2. Why are the coupling between the cavities
and the stellar mass anti-correlated?

To understand the relation between the coupling and the stellar
mass, we considered two of our models for which the � = 1 ridge
distortion is different: model A (computed with αconv = 0.48,
Y0 = 0.24, and [Z/X] = 0.09 dex using the abundances of
AGS05) and model B (similar to model A but with αconv = 0.72).
Model A clearly reproduces the ridge distortion (δA = 29.51,
0.6-σ agreement with the observations) in contrast to model B
(δB = 27.60, 5.2-σ agreement). In agreement with the results
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Fig. 21. Values of the quantity δ (see text) for models obtained by varying one by one the stellar parameters of the best-fit model without overshoot-
ing in Sect. 5: the mixing length parameter (top left), the initial abundance of helium (top right), the metallicity (bottom left), and the amount of
overshooting (bottom right). The filled circles indicate models computed with the abundances of AGS05 and the open squares with those of GN93.

obtained in Sect. 4.5.1, model B is more massive than model A
(MB = 1.37 M� and MA = 1.20 M�). We note that the results
that we present in what follows remain qualitatively unchanged
when considering two other models with conflicting values of δ.

Figure 22a shows the propagation diagrams for models A
and B. The � = 1 Lamb frequencies of the two models al-
most overlap in the evanescent zone, but the Brunt-Väisälä fre-
quency of model A in this region is higher than that of model B.
This confirms that the coupling between the g-mode cavity and
the p-mode cavity is stronger for model A. From Eq. (13), we
know that the Brunt-Väisälä frequency depends on both the
temperature gradient ∇ and the gradient of the mean molecu-
lar weight ∇μ. From the end of the main sequence phase to the
present age, the profiles of these two quantities have been re-
shaped by the nuclear reactions in a shell.

Since model B is more massive than model A, the tempera-
ture in its interior is higher, which causes the nuclear reactions
of the CNO cycle to be more efficient in the hydrogen burning
shell. Figure 22b shows that the peak in the nuclear reaction
rate εtot is indeed about twice as strong for model B. As a re-
sult, the hydrogen content in the layer where the reactions occur
is more severely depleted and the corresponding peak in the gra-
dient of chemical composition is larger. It is therefore logical
that in a small region above the hydrogen burning shell (coin-
ciding with the evanescent zone), the gradient ∇μ is smaller for
model B (see Fig. 22c). Based on Eq. (13), this suggests that the

coupling between the cavities decreases when the stellar mass
increases. Similarly, since nuclear reactions are more efficient
in higher-mass stars, the ratio l/m (where l(r) is the luminosity
going through the shell of radius r) is larger for model B and
therefore the temperature gradient ∇ is larger in the evanescent
zone. This is confirmed by Fig. 22d. This also implies that the
coupling is weaker for higher-mass stars, according to Eq. (13).

6.3. Note about the effect of microscopic diffusion

Microscopic diffusion was not included in the grids of models
presented in Sect. 5. The main reason is that the time required to
compute models including diffusion is several tens times longer
than when it is neglected, which would have severely limited the
mesh of our grids.

However, we also computed a less dense grid of models in-
cluding microscopic diffusion to determine how this process in-
fluences our results. For this, we adopted the simplified formula-
tion of Michaud & Proffitt (1993). Models were computed with
either a small amount of overshooting (αov = 0) or a moderate
one (αov = 0.2), correspondingly to the two families found in
Sect. 5. We imposed an initial abundance of heavy elements such
that the current surface metallicity matches the observed one.
The mixing length parameter was varied from 0.48 to 0.72 (step
of 0.04) and the initial helium abundance from 0.24 to 0.28 (step
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Fig. 22. Panel a) propagation diagrams of models A (red solid lines) and B (blue dashed lines). The thick lines represent the Brunt-Väisälä
frequency, the thin lines the � = 1 Lamb frequency. The dotted line indicates the frequency of the avoided crossing (identical for both models). We
then represent the central profiles of the nuclear reaction rate εtot(r) (panel b)), of the gradient of mean molecular weight ∇μ (panel c)), and of the
temperature gradient ∇ (panel d)) for both models. The colored dotted lines indicate the boundaries of the evanescent zone for each model.

of 0.02). As before, for every set of parameters, we searched for
a model satisfying condition C.

We again obtained a best-fit model offering a very satisfac-
tory match to the observations (χ2

red = 2.1). All of its character-
istics fall into the 1-σ error bars obtained without diffusion, ex-
cept for the age, which is smaller (4.1 Gyr for the best-fit model).
The main reason why diffusion hardly changes the results is that
it appears to have little influence on the coupling between the
cavities (which we have shown to play a dominant role in con-
straining the model parameters). This can be seen in Fig. 23,
which shows the propagation diagrams of two models computed
with and without diffusion, both satisfying condition C and shar-
ing the same values of the free parameters. We observe that the
profiles of their Brunt-Väisälä frequency almost overlap. This
can be understood as follows. The largest effect of diffusion on
the models is that the peak in the profile of ∇μ caused by the
withdrawal of the convective core is smoothed. This should have
an impact on the coupling because N ∝ ∇μ. However, this peak
is rapidly reshaped by the nuclear reactions in shell. Since the
center of the star is radiative, the nuclear reactions are quickly
in equilibrium. The abundances of the chemical elements in the
core therefore correspond to their equilibrium quantities which
do not significantly vary when including diffusion. The nuclear
reaction rates thus remain quite similar to the case without diffu-
sion and so does the coupling between the cavities (see Sect. 6).

We note that interestingly, the solutions with high overshoot-
ing are found less satisfactory when including microscopic dif-
fusion. This is probably because the models with αov = 0.2 that

Fig. 23. Propagation diagrams of two models without microscopic dif-
fusion (black dashed lines) and with diffusion (purple solid lines). The
models both satisfy condition C and share the same values of the free
parameters. The symbols are the same as in Fig. 22.

satisfy condition C are very close to the TAMS. Consequently,
the gradient of the mean molecular weight has not yet been
reshaped by the nuclear reactions in shell. A deeper analysis,
which is beyond the scope of the present paper, would be re-
quired to investigate whether or not the inclusion of microscopic
diffusion can rule out the solutions with a moderate amount of
overshooting.
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7. Conclusion

We have performed a detailed seismic modeling of the solar-like
pulsating subgiant HD 49385. We first investigated the possibil-
ity that the peculiarities observed in the oscillation spectrum of
the star by D10 could be due to the existence of mixed modes.
By extending a toy-model proposed by Christensen-Dalsgaard
(2003), we have shown that � = 1 avoided crossings involve
more than two modes and induce a characteristic and easily rec-
ognizable distortion of the � = 1 ridge in the échelle diagram. We
found PoMS (post main sequence) models with an � = 1 avoided
crossing that can account for both the observed curvature of the
ridge and the presence of one of the peaks detected outside the
identified ridges. On the other hand, MS (main sequence) mod-
els fail to reproduce these features. We have thus established a
firm detection of mixed modes in the spectrum of HD 49385 as
well as the PoMS status of the star. We have also shown that the
curvature of the � = 1 ridge depends on the coupling between the
p-mode and g-mode cavities and should therefore provide infor-
mation about the structure of the star in the evanescent zone that
separates the cavities.

We then noted that the methods usually applied to model
stars needed to be adapted to the special case of stars with
avoided crossings. We therefore proposed a new approach to the
grid-search modeling. We first showed that, for a given physics,
the combined knowledge of the frequency of an avoided crossing
and of the mean large separation is enough to obtain very precise
estimates of the stellar mass and age (which we have denoted M̃
and τ̃ in this paper). We then described a method to determine M̃
and τ̃ in a systematic way in a grid of models.

This method was applied to gain insights into how the stellar
mass M̃ varies with the different stellar parameters and efforts
were made to physically understand these variations. To model
HD 49385, we used the proposed method to compute two grids
of models, one assuming the heavy element abundances of
GN93 (Grevesse & Noels 1993) and the other assuming those
of AGS05 (Asplund et al. 2005). In this framework, we were
able to strongly constrain the mass of HD 49385 (M = 1.25 ±
0.05 M�) and its age (τ = 5.02 ± 0.26 Gyr). The stellar radius
was found with a precision as good as 1% (R = 1.94 ± 0.03 R�).

We also obtained constraints on the physics of the interior of
the star. Two different families of solutions were found, depend-
ing on the amount of overshooting that existed above the convec-
tive core during the main sequence phase: one with a very small
amount of overshooting (αov < 0.05), and the other with a mod-
erate amount of overshooting (αov = 0.19 ± 0.01). The models
of the latter family provide the closest agreement with the obser-
vations, but they are very close to the TAMS and hence unlikely
to be observed. The mixing length parameter was found to be
significantly smaller than the solar one (αconv = 0.55 ± 0.04
compared to α� = 0.64 using the formalism of Canuto et al.
1996). Finally, we have shown that the models computed with
the revised heavy-element abundances of AGS05 (Asplund et al.
2005) provide a closer match to the observations than the abun-
dances of GN93 (Grevesse & Noels 1993).

A more advanced study of the models of our grids enabled
us to explain the results we obtained about the overshooting,
the mixing length and the metallicity for HD 49385, in terms
of stellar structure. We established that the intensity of the � =
1 ridge distortion associated with the observed avoided cross-
ing plays a crucial role in constraining the parameters of the
models computed for HD 49385. We showed that it can account
for most of the obtained results. We also found that the inten-
sity of the coupling between the p-mode and g-mode cavities

is strongly anti-correlated to the stellar mass in our models. We
therefore suggested that these two quantities might be related
to each other. By comparing the models of our grids, we man-
aged to establish the link between them, mainly because the
temperature and chemical composition profiles (upon which the
Brunt-Väisälä frequency depends) strongly depend on the nu-
clear reaction rate in the hydrogen burning shell, and thus on the
stellar mass. We therefore a posteriori understand why the mass
is so tightly constrained in HD 49385.

The subgiant HD 49385 is the first target for which a detailed
modeling was led trying to reproduce all the properties of an
avoided crossing. It confirmed to a large degree that the detection
of mixed modes provides unprecedented opportunities to probe
the deep interior of stars. It has also given us the opportunity to
show that � = 1 avoided crossings have a second interest: they
probe the evanescent zone by yielding an estimate of the inten-
sity of the coupling between the p-mode and g-mode cavities.
We have found that this coupling strongly depends on the stellar
mass and that we can thus obtain indirect constraints on the in-
ternal structure of the star. This demonstrates that seismic obser-
vations of subgiants have the potential to contribute to ongoing
debates, such as the question of the amount of core overshoot-
ing, the efficiency of convection, and the abundances of heavy
elements in stars. This is all the more exciting because the space
mission Kepler has claimed the detection of � = 1 avoided cross-
ings in several targets (Chaplin et al. 2010; Metcalfe et al. 2010).
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Appendix A: Location of iso-Δν regions
in the HR diagram

We investigate the location in the HR diagram of models that
have the same large separation Δν but different masses. We con-
sider two of these models with masses M and M′. Since the large
separation is proportional to the square root of the mean density
in the star, we have

(
Δν

Δν′

)
∼

( M
M′

)1/2 ( R
R′

)−3/2

∼ 1. (A.1)

It has been observationally established that there exists a very
tight relation between the large separation and the frequency of
maximum power of the oscillations νmax. Stello et al. (2009)
found that Δν ∝ ν0.77

max. From this result, we gather that mod-
els with the same large separation also share equivalent values
of νmax. Following Brown et al. (1991), we expect νmax to be
proportional to the acoustic cut-off frequency and thus

(
νmax

ν′max

)
∼

( M
M′

) ( R
R′

)−2 (
Teff

T ′eff

)−1/2

∼ 1. (A.2)

By combining Eqs. (A.1) and (A.2), we obtain R ∼ T 1/2
eff . Since

the luminosity is such that L ∼ R2T 4
eff, we conclude that the

models with the same large separation satisfy

L ∝ T 5
eff . (A.3)

They are therefore located in the HR diagram on a line of slope
equal to 5. This property is very well-satisfied by the stellar mod-
els computed in this work.
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