
HAL Id: hal-03797130
https://hal.science/hal-03797130

Submitted on 5 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LS-PON: a Prediction-based Local Search for Neural
Architecture Search

Meyssa Zouambi, Julie Jacques, Clarisse Dhaenens

To cite this version:
Meyssa Zouambi, Julie Jacques, Clarisse Dhaenens. LS-PON: a Prediction-based Local Search for
Neural Architecture Search. The 8th Annual Conference on machine Learning, Optimization and
Data science LOD2022, Sep 2022, Siena, Italy. �hal-03797130�

https://hal.science/hal-03797130
https://hal.archives-ouvertes.fr


LS-PON: a Prediction-based Local Search
for Neural Architecture Search

Meyssa Zouambi1[0000−0003−2484−3179], Julie Jacques1,2[0000−0001−6260−9629],
and Clarisse Dhaenens1[0000−0002−6590−7215]

1 Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
{meyssa.zouambi, clarisse.dhaenens}@univ-lille.fr

2 Faculté de Gestion, Economie et Sciences, Lille Catholic University, Lille, France
julie.jacques@univ-catholille.fr

Abstract. Neural architecture search (NAS) is a subdomain of AutoML
that consists of automating the design of neural networks. NAS has be-
come a hot topic in the last few years. As a result, many methods are
being developed in this area. Local search (LS), on the other hand, is a
famous heuristic that has been around for many years. It is extensively
used for optimization problems due to its simplicity and efficiency. LS has
a lot of advantages in the world of NAS; it can naturally exploit meth-
ods that accelerate the global search time such as weight inheritance and
network morphism. LS is also easy to implement and does not require
a complex encoding or any parameter tuning. In the present work, we
aim at making LS faster by guiding the exploration of the neighborhood.
Our objective is to limit the number of solution evaluations, which are
particularly time-consuming in NAS. We propose the method LS-PON
(Local Search with a Predicted Order of Neighbors) that uses linear re-
gression models to order the exploration of neighbors during the search.
LS-PON, unlike other prediction-based NAS methods, requires neither
pre-sampling nor tuning. Our experiments on popular NAS benchmarks
show that LS-PON keeps the simplicity and advantages of LS while be-
ing as efficient in quality as state-of-the-art methods and can be more
than twice as fast as classical LS.

Keywords: Neural architecture search · Local search · Optimization ·
Machine learning.

1 Introduction

Neural architecture search has attracted a lot of attention in recent years. Re-
searchers aim to develop the most efficient algorithms to automate the time-
consuming task of architecture design. Although many complex methods were
proposed in the past few years, the necessity of having such complex algorithms
is sometimes questioned [28]. Local search is a simple heuristic that proved its
efficiency in the field of NAS. Recent works that studied local search for NAS
proved that it is competitive with state-of-the-art methods [24, 3]. On top of
its easy implementation, LS has a lot of advantages in this area. First, it does



2 M. Zouambi et al.

not require a complex encoding or any parameter tuning. It can also easily ex-
ploit strategies that accelerate global search time like weight inheritance [20] and
network morphism [23].

Our work focuses on using machine learning to speed up local search for NAS.
The objective is to keep all of the benefits that LS offers while being more time-
efficient. We achieve this speed-up by ordering the exploration of neighbors of
a solution using performance predictors. Evaluating architectures in NAS is the
most time-consuming step of the process, so to be efficient, it is worth visiting
the most promising neighbors first. We rely on machine learning to predict the
ranking of a solution based on its accuracy and determine the neighborhood
order. Unlike most prediction-based NAS methods, this one does not require any
pre-sampling or parameter-tuning. The method starts with a random ordering
and progressively gives more accurate rankings. The experimental results show
that LS-PON can be more than two times faster than classical LS while achieving
similar state-of-the-art performances.

The contributions of our work are summarized as follows:

– We create a simple and parameter-free method for NAS based on a local
search and machine learning. This method is easy to implement and requires
neither pre-sampling nor parameter-tuning.

– We use three different NAS benchmarks (with small-scale and large-scale
search spaces) to validate the performance of our method. We confirm the
competitiveness of LS and show that our method gives similar results while
being significantly faster in almost all cases.

The remaining of this paper is organized as follows: related works are pre-
sented in section 2. Section 3 provides a brief description of neural architecture
search and local search. Section 4 details the proposed approach. Section 5 is
dedicated to the experiments. It presents the benchmarks, the experimental pro-
tocol, and the results obtained. Section 6 gives the conclusion of our findings.

2 Related Works

Very few works investigated the efficiency of local search for NAS. In [24], authors
explore the theoretical characterization of the landscape and its effect on the
performance of local search. They proved that LS is a very competitive method
when the noise in the evaluation pipeline is reduced to a minimum. Within
this setting, they demonstrate that hill-climbing -the most known form of LS-
can outperform many popular state-of-the-art algorithms on the popular NAS
benchmark datasets. These results are confirmed in [3], where LS is employed in a
multi-objective context. It shows that local search competes with state-of-the-art
evolutionary algorithms, even up to thousands of evaluated architectures in the
multi-objective setting. LS is therefore a method that is very easy to implement
yet yields competitive performances against more complex algorithms.

Local search was also used in conjunction with network morphism as seen
in [6, 12]. Network morphism is a popular method to rapidly search efficient



LS-PON: a Prediction-based Local Search for Neural Architecture Search 3

convolutional neural networks [23]. This technique allows the expansion of the
network using function preserving operations and prevents training the resulting
architectures from scratch. LS is a natural way of exploiting this method since
its resulting architecture generates “neighbors” of the current solution.

Another way to speed up the search is to avoid the computationally ex-
pensive network training by using performance predictors [7]. Performance pre-
dictors help to identify good architectures using their characteristics only. They
vary from simple decision trees to deep neural networks [18, 15, 1]. Recent works,
however, opt for using complex models to accurately represent the huge num-
ber of possible architectures of the search space [22, 14]. These methods usually
require a pre-sampling step to gather enough architecture-performance pairs for
building the prediction model. To evaluate these NAS approaches, it is necessary
to consider the training time required to sample and train architectures for the
predictor, as well as the design and tuning of its hyperparameters. The latter
task can be considered as counterproductive in this context, especially if the
prediction models used are neural networks.

In [26], an interesting perspective is given on performance predictors. Au-
thors state that using multiple simple prediction models at different stages of
the search can be more efficient than using a single complex predictor. They em-
phasize that the goal of NAS is to sample the best architectures, and most of the
solutions in the search space will not be evaluated at all. So it is not necessary
for a predictor to accurately estimate the performance of all of them. This work
iteratively creates weak predictors to determine which architecture is the best
in the current subset of the search space. This aspect of locality is important for
prediction. As this work demonstrates, solutions close to each other in a search
space are more likely to fit well using a simple predictor.

3 Background

Before proceeding to the proposed method, we provide in this section a brief
overview of neural architecture search and local search.

3.1 Neural Architecture Search

To design an efficient neural network, many parameters need to be taken into
account, such as the number of layers, the type of operations to use, the hyper-
parameters linked to each type of operation, etc. This leaves us with a lot of
potential models that perform differently based on their architecture.

The goal of neural architecture search is to automatically find an architecture
a among a set of architectures A, that achieves the best objective value. Usually,
the purpose is to minimize the error on the validation dataset after training the
network on the training dataset.

Formally, we can express the NAS problem as follows:

argmin
a∈A

= L (a,Dt,Dv)



4 M. Zouambi et al.

A defines the search space, it contains all potential neural architectures. L(·)
is the cost function that measures the error of the architecture a on the validation
dataset Dv after being trained on the training dataset Dt.

Due to the large search space of possible architectures in NAS, many search
strategies were developed to explore it more efficiently. The most popular NAS
strategies are gradient-based approaches [16], evolutionary algorithms [17], and
reinforcement learning strategies [9]. During the search, architectures are sam-
pled and evaluated. The classical way of evaluating an architecture is to train it
using data from a training set and then assess its performance on a validation
set. This task is time-consuming and is considered to be the bottleneck of most
NAS algorithms. For this reason, many techniques were proposed for estimating
the performance of neural networks without having to fully train them. Such
methods are weight sharing [27], network morphism [6, 12], weight inheritance
[20], and neural predictors [25].

3.2 Local Search

Local search is a popular heuristic used to approximately solve NP-hard opti-
mization problems. It starts from an initial solution s0, chosen at random or by
using another heuristic. It then generates neighbors of this solution by applying
a neighborhood function N . This function applies small changes to the current
solution to create neighboring ones that are close to it. Different ways of ex-
ploring the neighborhood lead to different variants of local search. The heuristic
evaluates these neighbors using a cost function f that assesses their quality. It
substitutes the current solution s with a better one from N(s). After this update,
it reiterates the process until convergence. The search stops when no neighbor
is better than the current solution, so we can no longer improve it (the heuristic
reaches a local optimum).

The most popular form of LS is called hill-climbing. In this form, the search
updates the current solution with a better one from the neighborhood. Several
exploration strategies can be chosen: the first-improve updates the current solu-
tion with the first improving neighbor found. The best-improve strategy updates
the solution after evaluating all neighbors and picking the one that improves it
the most. The worst-improve strategy evaluates all neighbors and chooses the
one that improves the current solution the least.

In our work, we will be using hill-climbing, with the first-improve strategy,
which allows exploring only a subset of the neighbors of each solution, as our
purpose is to evaluate the least number of architectures for a faster search.

4 Proposed Approach

In the following, we define the important components of the proposed method
and its process. It is important to note that the solution encoding, neighborhood
function, and solution evaluation highly depend on the NAS task. In this paper,
we focus on image classification (using NAS benchmarks) but the global idea of
the proposed approach can be adapted to other types of tasks as well.



LS-PON: a Prediction-based Local Search for Neural Architecture Search 5

4.1 Solution Encoding

In the context of NAS, a solution s defines an architecture of a neural network.
A representation that can be translated to a neural network can be used to
encode it. In this work, the used encoding is a list of categorical, discrete, and/or
continuous values for representing an architecture. This list can specify the type
of operations of each node in the network, the connections between these nodes,
the hyperparameters used for each operation, etc. This representation in the
form of a list of values is similar to an entry of tabular data. It allows to directly
use it as a dataset for building machine learning predictors later in this work.

Figure 1, shows a simplified example of a CNN encoding. On the top, the en-
coding is represented, which is the list of operations applied to the data and their
hyperparameters (note that other hyperparameters not mentioned in the encod-
ing are fixed and not optimized during the search). On the bottom, there is the
corresponding CNN with its operations. In our work, we use three different NAS
benchmarks, NAS-Bench-201 [4], MacroNasBenchmark [3], and NAS-Bench-301
[21]. Each benchmark defines its own set of operations and their corresponding
parameters. This gives a different number of possible solutions for each of them,
which defines the size of the search space.

Fig. 1: Encoding of an architecture.

4.2 Neighborhood Function

The neighborhood function N generates a neighborhood N(s) that contains the
architectures close to s. These architectures can defer by a single element such
as an operation or an edge from the initial solution. In our work, we use the one
exchange neighborhood as defined in [8].

In the studied NAS benchmarks, variables are all categorical. Hence, a neigh-
bor is obtained by modifying a single variable. The neighborhood of a solution
is the set of solutions obtained by selecting one by one each variable and enu-
merating all the possible values. The number of neighbors for each solution in
NAS-Bench-201, MacroNasBenchmark, and NAS-Bench-301 are respectively 24,



6 M. Zouambi et al.

28, and 136 neighbors. The size of the neighborhood is relatively small, but let
us recall that the evaluation of a solution is very costly.

Figure 2 shows an example of a neighbor generation. On top, there is the
current solution. Generating one neighbor consists in choosing one operation and
changing it by another, for example here the max pooling operation is replaced
with a convolution of 3x3 kernel.

Fig. 2: Neighbor generation with One exchange neighborhood function.

4.3 Solution Evaluation

Evaluating an architecture is the most time-consuming step in NAS. It requires
training the architecture using a training set and assessing its performance using
a validation set.

Depending on the task, architecture, and hardware used, this step can take
several hours for a single evaluation. Therefore, in this work, we use NAS bench-
marks that provide surrogate performance metrics on both the training set and
validation set for all possible architectures. Since these benchmarks deal with
image classification, their evaluation is based on the classification accuracy and
is calculated as the sum of well-classified images divided by the total number of
images of the set.

4.4 Performance Prediction

In a normal setting, the local search engine evaluates neighbors in a random
order. The proposed method, however, orders these neighbors to evaluate the
most promising ones first. This order relies on performance predictions made
with linear regression models. We choose to work with linear regressions, as
they are simple, easy to implement, and do not require parameter tuning. This
choice is also based on the work presented in [26], which states that using simple
predictors is sufficient to estimate the performances of architectures that are
close to each other.

As a reminder, linear regression is a method that assumes a linear relationship
between a set of variables X = (x1, . . . , xp) and an output variable y as follows:

y = β0 + β1x1 + β2x2 + . . .+ βpxp



LS-PON: a Prediction-based Local Search for Neural Architecture Search 7

Coefficients β = (β0, . . . , βp) are learned by minimizing the residual sum of
squares between the observed targets in the dataset, and the targets predicted
by the linear approximation.

In this work, the linear models are trained on architecture-performance pairs.
The y variable is the performance we want to predict using the xi variables
which are the list of values describing an architecture. Note that in this work,
the predicted performance is a score corresponding to the ranking of a solution
(the normalized value of its rank). Since the encoding contains categorical data,
we use one-hot-encoding to create a binary column for each category and use it
as a numerical value for the linear regression.

Our method does not require any pre-sampling to build the dataset for
architecture-performance pairs. The first models created can be random, which
is equivalent to using a random order for the neighbors. Each architecture eval-
uated during the search, is added to a history database. They will be used in
future iterations for creating more accurate prediction models.

4.5 LS-PON Process

Our LS-PON algorithm is an improved version of hill-climbing specifically de-
signed for NAS. As we mentioned earlier, hill-climbing updates the current so-
lution as soon as it finds a better one in the neighborhood. For this reason,
the speed of this method relies on the order in which the neighbors are evalu-
ated. The algorithm progresses more quickly if we assess the performance of the
most promising neighbors first. Then, the method is more likely to immediately
improve the current solution and move on with the search.

To determine the best order in which to evaluate neighborhoods, we use
linear regression models. The models do not need to be sophisticated or accurate
to yield good performances, but just good enough to provide an approximate
ranking of the best neighbors quickly.

The process of LS-PON is illustrated in Figure 3 and works as follows: after
choosing an initial solution, the method generates the neighborhood of this ar-
chitecture in step one (1). In step two (2), the method creates a linear regression
model to predict the performance of architectures based on their parameters.
It predicts the ranking of the neighbors and evaluates them in that order in
the third step (3). Each evaluated architecture gets added to the database of
architecture-performance pairs (step 4). This database will later be used to cre-
ate a new (more accurate) linear model in the next iteration. If the solution is
not better than the current one, it moves to the next one in the neighborhood
(step 5a), else, it updates the current solution and reiterates the process (step
5b). If the search can no longer improve the current solution and the max budget
of evaluations is not reached, it samples a new random solution and restarts the
search. Algorithm 1 gives a detailed description of the proposed method.



8 M. Zouambi et al.

Fig. 3: Main steps of LS-PON.

Algorithm 1 Local search with a predicted order of neighbors - LS-PON

Input: A: search space
N : neighborhood function
maxBudget: maximum number of evaluations
Initialization
Randomly pick an architecture a ∈ A
acc a, best acc← Evaluate(a)
D ← ∪{(a, acc a)}
nbEval← 1
while nbEval ≤ maxBudget do

Create prediction model M and train it using D
Predict rank of each u ∈ N(a) using M
Order N(a) based on the predicted ranks
for u ∈ Ordered N(a) do

acc← Evaluate(u)
D ← D ∪ {(u, acc)}
nbEval← nbEval + 1
if acc ≥ best acc then

Update current solution: a← u
Update best score: best acc← acc
Exit for loop

end if
if nbEval > maxBudget then

return best architecture
end if

end for
if best solution not updated, randomly sample a new one and continue searching

end while
Output: Best architecture found



LS-PON: a Prediction-based Local Search for Neural Architecture Search 9

5 Experiments

To test the performance of the proposed algorithm, three different benchmarks
are used: NAS-Bench-201 [4], NAS-Bench-301 [21], and MacroNASBenchmark
[3]. The choice of the first two benchmarks is to test the algorithm in a cell-based
search space, with a small-scale and a large-scale setting. The last benchmark is
for assessing the performance in a macro search space. The difference between
the two types of search spaces can be found in [5]. In the following, a detailed
description of each benchmark is given. This section also presents the experi-
mentation protocol as well as the results and their discussion.

5.1 Benchmark Details

NAS-Bench-201 [4] The NAS-Bench-201 benchmark consists of 15,625 unique
architectures, representing the search space. An architecture of the NAS-Bench-
201 search space consists of one repeated cell. This cell is a complete directed
acyclic graph (DAG) of 4 nodes and six edges. Each edge can take one of the five
available operations (1×1 convolution, 3×3 convolution, 3×3 avg-pooling, skip,
no connection), which leads to 15,625 possible architectures. For each of these
architectures, precomputed training, validation, and test accuracies are provided
for CIFAR-10, CIFAR-100 [10], and ImageNet-16-120 [2]. CIFAR and ImageNet
[11] are the most popular datasets for image classification. Two solutions from
this benchmark are neighbors if they differ by exactly one operation in one of
their edges. Thus the number of neighbors is 24.

MacroNASBenchmark [3] The MacroNASBenchmark is a relatively large-
scale benchmark with more than 200k unique architectures. It is based on a
macro-level search consisting of 14 unrepeated modules. Each module can take
one of three options (Identity, MBConv with expansion rate 6 and kernel size
3x3, MBConv with expansion rate 6 and kernel size of 5x5). For each architec-
ture, precomputed validation and test accuracies are provided for CIFAR-10 and
CIFAR-100. A neighboring solution in this benchmark is a solution that differs
by one module from the current solution.

NAS-Bench-301 [21] The NAS-Bench-301 is a surrogate benchmark based
on the DARTS [16] search space for the CIFAR-10 dataset. This popular search
space for large-scale NAS experiments contains 1018 architectures. An architec-
ture of the DARTS search space consists of two repeated cells, a convolutional
cell and a reduction cell, each with six nodes. The first two nodes are input
from previous layers, and the last four nodes can take any DAG structure such
that each node has degree two. Each edge can take one of the eight possible
operations. In this benchmark, the classification accuracies of the architectures
on the CIFAR-10 datasets are estimated through a surrogate model, removing
the constraint to evaluate the entire search space. A neighboring solution is a
solution that differs by an edge connection or an operation from the current
solution.



10 M. Zouambi et al.

5.2 Experimentation Protocol

The experimentation protocol used to evaluate our algorithm goes as follows:

For NAS-Bench-201 and MacroNasBenchmark, we use the validation accu-
racy as the search metric. Hence, the reference will be the best validation ac-
curacy (Optimal) provided by the benchmark. We compare the algorithm to
a standard local search, and a random search. For NAS-Bench-201, we further
compare the results to Regularized Evolution Algorithm (REA) [19], which is the
best-achieving algorithm reported on the NAS-Bench-201 paper [4]; results on
REA are taken as-is from this paper. We set the maximum number of evaluations
for these two benchmarks to 1500 evaluated architectures.

For NAS-Bench-301 [21], we report the validation accuracy given by the
surrogate model provided in the benchmark. In the literature, experiments con-
ducted on this search space suggest that the best architectures perform around
95% of validation accuracy [21]. As previously, we compare our algorithm against
a local search and a random search. Since it has a larger search space than the
previous two benchmarks, we set the maximum number of evaluations to 3000
architectures.

For the prediction models, we use the linear regression model from the Scikit-
learn library v0.23 (sklearn.linear model.LinearRegression with default pa-
rameters).

For each benchmark, all experiments are averaged over 150 runs. LS and
LS-PON start with the same initial solution in every run. Note that the al-
gorithms will restart after converging as long as they have not exhausted the
maximum number of evaluations budget. We compare the algorithms from dif-
ferent standpoints: the mean accuracy, the convergence speed, and the dynamic
of each method.

5.3 Results

Table 1 reports the validation accuracy for random search (RS), local search
(LS), and LS-PON on the three benchmarks. It also reports the REA [19] method
for NAS-Bench-201 for comparison. We notice that LS and LS-PON give state-
of-the-art results in all benchmarks. Finding either optimal or close to optimal
accuracy in all cases. With LS-PON slightly surpassing LS in some cases. Both
methods significantly surpass random search. For REA, despite being the best-
reported algorithm on the NAS-Bench-201 paper, random search still outper-
forms it in all available datasets. This could suggest that the hyperparameters
of REA are too specific to the NAS problem it was designed for and did not
generalize well. This also confirms that random search is a strong baseline in
NAS [13].

Since both algorithms, LS and LS-PON, give similar performances on data
quality, to further compare them, we need to analyze their speed. Indeed, in a
non-benchmark setting, each sampled architecture needs to be trained. Training
an architecture takes significantly more time than running a local search. For



LS-PON: a Prediction-based Local Search for Neural Architecture Search 11

Table 1: Performance evaluation on the three benchmarks. Each algorithm uses
the validation accuracy as a search signal. Optimal indicates the highest

validation accuracy provided by the benchmark. We report the mean and std
deviation of 150 runs for Random search, LS, LS-PON. † taken from [4].

NAS-Bench-201 MacroNasBench NAS-Bench-301

Method Cifar10 Cifar100 ImageNet Cifar10 Cifar100 Cifar10

REA† 91.19±0.31 71.81±1.12 45.15±0.89 – – –

RS 91.48±0.09 72.93±0.38 46.39±0.23 92.22±0.06 70.22±0.08 94.52±0.08

LS 91.61±0.00 73.49±0.00 46.72±0.03 92.46±0.04 70.45±0.02 95.11±0.05

LS-PON 91.61±0.00 73.49±0.00 46.73±0.00 92.48±0.02 70.47±0.02 95.11±0.06

Optimal 91.61 73.49 46.73 92.49 70.48 ≈95

Table 2: Speed evaluation on the three benchmarks. The table indicates the
mean and std deviation of the number of evaluated architectures before
convergence. Values in bold mean statistically better (Wilcoxon’s test).

NAS-Bench-201 MacroNasBench NAS-Bench-301

Method Cifar10 Cifar100 ImageNet Cifar10 Cifar100 Cifar10

LS 76±54 70±48 617±389 566±414 628±393 1499±859

LS-PON 64±54 44±23 276±159 426±346 483±417 1588±857

Speedup 18% 59% 123% 32% 30% -6%

this reason, the number of sampled architectures is a strong indicator of the
speed of each method.

Table 2 reports the mean and standard deviation of the number of evaluated
architectures during the search. Both LS and LS-PON restart after convergence
as long as the evaluation budget is not reached. Since both algorithms end with
almost similar accuracies, we use a leveled convergence for a fair speed compar-
ison. We calculate how many evaluations were required for each algorithm to
reach the same final accuracy. Since random search never surpasses these two
methods after exhausting all of its evaluation budget (1500 for the first two
benchmarks and 3000 for the last one) it is omitted from this table. The ac-
celeration obtained using LS-PON is reported in the last line of the table. It
shows that in both NAS-Bench-201 and MacroNasBenchmark, there is a signif-
icant speedup ranging from 18% to up to 123%. In NAS-Bench-301, however,



12 M. Zouambi et al.

(a) NAS201-IMNT (b) MNBench-C100

(c) NAS301-C10

Fig. 4: Example of the evolution of the validation accuracy across the number of
evaluated architectures for a dataset of each benchmark. NAS201-IMNT,
MNBench-C100, and NAS301-C10 correspond to NAS-Bench-201 for

ImageNet16-120, MacroNasBenchmark for Cifar100, and NAS-Bench-301 for Cifar10.
Results are averaged for 150 runs for all algorithms. The shaded region indicates the

standard deviation of each search method.

LS-PON shows less efficiency with a slower convergence time. Figure 4 gives ex-
amples that illustrate the evolution of the validation accuracy across the number
of evaluated architectures for a different dataset in each benchmark. It shows
how LS-PON is faster than LS in NAS-Bench-201 and MacroNasBenchmark for
ImageNet16-120 (IMNT) and Cifar100 respectively, and how it is slightly less
efficient in NAS-Bench-301 for its Cifar10 dataset.

Table 3 further shows the dynamic of these methods. It reports the number
of evaluated neighbors before improving on the current solution. In NAS-Bench-
201 and MacroNasBenchmark, it requires from 2 times to 3 times the number
of evaluations for LS to find a better neighbor compared to LS-PON. For this
reason, LS-PON progresses more quickly during the search. In NAS-Bench-301,
however, it takes around 11% more neighbors evaluation for LS-PON to find a
better neighbor compared to LS, which makes LS-PON slightly slower in this
case.



LS-PON: a Prediction-based Local Search for Neural Architecture Search 13

Table 3: Results on all benchmarks. The table indicates the mean and std
deviation of the number of required evaluations before improving on the

current solution during the search. Values in bold mean statistically better
(Wilcoxon’s test)

.

NAS-Bench-201 MacroNasBench NAS-Bench-301

Method Cifar10 Cifar100 ImageNet Cifar10 Cifar100 Cifar10

LS 4.28±4.14 4.29±4.10 4.20±4.10 5.07±5.54 5.20±5.68 17.33±25.31

LS-PON 1.87±2.32 1.69±1.99 1.61±1.71 2.35±3.02 2.28±2.77 19.33±29.60

Fig. 5: Box plots represent the distribution of distances between the validation
accuracy of a solution and its neighbors, and diamonds represent outliers. NAS201,

MNBench, NAS301 stand for NAS-Bench-201, MacroNasBenchmark and
NAS-Bench-301. C10, C100 and IMNT are respectively Cifar10, Cifar100 and

ImageNet16-120.

To investigate the reason behind this, and understand the effectiveness of
this method in the different benchmarks/datasets, an analysis on the distance
between the current solution’s accuracy and its neighbors accuracy is conducted.
This analysis seeks to determine if the difference between the neighbors accu-
racies affects the method’s effectiveness. To do this, the mean absolute error
between the current solution accuracy, and its neighbors accuracy is calculated
for a sample of solutions. Results of this are represented in Figure 5. We see that
for the three datasets in NAS-Bench-201, there is a notable difference between
the neighbors performances. Hence, the predictor can more easily classify them
and identify the best ones. This difference is less visible on MacroNasBench-
mark but the benchmark still has a certain number of outliers (represented by
diamonds in the Figure) that can be easily recognized by the predictor.

On the other hand, in NAS-Bench-301’s dataset, the difference between the
neighbors is negligible (there is a mean of 0.14% difference in their accuracy)



14 M. Zouambi et al.

and there are also not many noticeable outliers to recognize during the search.
The search space of this benchmark is mostly composed of good architectures
with very close performances as presented in their paper [21].

This shows that the method is more efficient if the improvement to make
is relatively observable. Which is expected in problems where the search space
contains a diverse set of solutions.

6 Conclusion

In this paper, we introduced LS-PON, an improved local search based on per-
formance predictors for neighborhood ordering. This method is fast, does not
require any hyper-parameter tuning, is easy to implement, and yields state-of-
the-art results on three popular NAS benchmarks.

LS-PON proved that it can be more than twice as fast as the LS without
the ordering mechanism. Its effectiveness relies on the diversity of solutions in
the search space and works better if there is an observable difference between
neighbors.

In the future, we will test other types of predictors and analyze their impact
on the results. We also aim at making this method more robust to search spaces
that mostly contain solutions with very close performances.

Another interesting addition would be to apply this method in a multi-
objective context, and see if it scales well with the growing objectives of ar-
chitecture design, such as the size of the network, the energy consumption, the
inference times, etc.

References

1. B. Baker, O. Gupta, R. Raskar, and N. Naik. Accelerating neural architecture
search using performance prediction. arXiv:1705.10823, 2017.

2. P. Chrabaszcz, I. Loshchilov, and F. Hutter. A downsampled variant of imagenet
as an alternative to the cifar datasets. arXiv:1707.08819, 2017.

3. T. Den Ottelander, A. Dushatskiy, M. Virgolin, and P. A. Bosman. Local search is
a remarkably strong baseline for neural architecture search. In International Con-
ference on Evolutionary Multi-Criterion Optimization, pages 465–479. Springer,
2021.

4. X. Dong and Y. Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. arXiv:2001.00326, 2020.

5. T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search. pages 69–86.

6. T. Elsken, J.-H. Metzen, and F. Hutter. Simple and efficient architecture search
for convolutional neural networks. arXiv:1711.04528, 2017.

7. T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, pages 1997–2017, 2019.

8. F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International conference on learning and
intelligent optimization, pages 507–523. Springer, 2011.



LS-PON: a Prediction-based Local Search for Neural Architecture Search 15

9. Y. Jaafra, J. L. Laurent, A. Deruyver, and M. S. Naceur. Reinforcement learning
for neural architecture search: A review. Image and Vision Computing, pages
57–66, 2019.

10. A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

11. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
pages 1097–1105, 2012.

12. A. Kwasigroch, M. Grochowski, and M. Mikolajczyk. Deep neural network archi-
tecture search using network morphism. In International Conference on Methods
and Models in Automation and Robotics, pages 30–35. IEEE, 2019.

13. L. Li and A. Talwalkar. Random search and reproducibility for neural architecture
search. In Uncertainty in artificial intelligence, pages 367–377. PMLR, 2020.

14. Y. Li, M. Dong, Y. Wang, and C. Xu. Neural architecture search in a proxy
validation loss landscape. In International Conference on Machine Learning, pages
5853–5862. PMLR, 2020.

15. C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,
J. Huang, and K. Murphy. Progressive neural architecture search. In Proceedings
of the European conference on computer vision, pages 19–34, 2018.

16. H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search.
arXiv:1806.09055, 2018.

17. Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan. A survey on
evolutionary neural architecture search. IEEE Transactions on Neural Networks
and Learning Systems, 2021.

18. R. Luo, X. Tan, R. Wang, T. Qin, E. Chen, and T.-Y. Liu. Accuracy prediction
with non-neural model for neural architecture search. arXiv:2007.04785, 2020.

19. E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial
intelligence, pages 4780–4789, 2019.

20. E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and
A. Kurakin. Large-scale evolution of image classifiers. In International Conference
on Machine Learning, pages 2902–2911. PMLR, 2017.

21. J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, and F. Hutter. Nas-
bench-301 and the case for surrogate benchmarks for neural architecture search.
arXiv:2008.09777, 2020.

22. C. Wei, C. Niu, Y. Tang, Y. Wang, H. Hu, and J. Liang. Npenas: Neural predictor
guided evolution for neural architecture search. arXiv:2003.12857, 2020.

23. T. Wei, C. Wang, Y. Rui, and C. W. Chen. Network morphism. In International
Conference on Machine Learning, pages 564–572. PMLR, 2016.

24. C. White, S. Nolen, and Y. Savani. Exploring the loss landscape in neural archi-
tecture search. arXiv:2005.02960, 2020.

25. C. White, A. Zela, B. Ru, Y. Liu, and F. Hutter. How powerful are performance
predictors in neural architecture search? arXiv:2104.01177, 2021.

26. J. Wu, X. Dai, D. Chen, Y. Chen, M. Liu, Y. Yu, Z. Wang, Z. Liu, M. Chen, and
L. Yuan. Weak nas predictors are all you need. arXiv:2102.10490, 2021.

27. L. Xie, X. Chen, K. Bi, L. Wei, Y. Xu, L. Wang, Z. Chen, A. Xiao, J. Chang,
X. Zhang, et al. Weight-sharing neural architecture search: A battle to shrink the
optimization gap. ACM Computing Surveys (CSUR), pages 1–37, 2021.

28. K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann. Evaluating the search
phase of neural architecture search. arXiv:1902.08142, 2019.


