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A few upstream bifurcations drive the spatial distribution
of red blood cells in model microfluidic networks

Adlan Merlo,‡ Maxime Berg,‡ Paul Duru, Frédéric Risso, Yohan Davit, and Sylvie Lorthoisa

The physics of blood flow in small vessel networks is dominated by the interactions between Red

Blood Cells (RBCs), plasma and blood vessel walls. The resulting couplings between the microvessel

network architecture and the heterogeneous distribution of RBCs at network-scale are still poorly

understood. The main goal of this paper is to elucidate how a local effect, such as RBC partitioning

at individual bifurcations, interacts with the global structure of the flow field to induce specific

preferential locations of RBCs in model microfluidic network. First, using experimental results,

we demonstrate that persistent perturbations to the established hematocrit profile after diverging

bifurcations may bias RBC partitioning at the next bifurcations. By performing a sensitivity analysis

based upon network models of RBC flow, we show that these perturbations may propagate from

bifurcation to bifurcation, leading to an outsized impact of a few crucial upstream bifurcations

on the distribution of RBCs at network-scale. Based on measured hematocrit profiles, we further

construct a modified RBC partitioning model that accounts for the incomplete relaxation of RBCs

at these bifurcations. This model allows us to explain how the flow field results in a single pattern of

RBC preferential location in some networks, while it leads to the emergence of two different patterns

of RBC preferential location in others. Our findings have important implications in understanding

and modeling blood flow in physiological and pathological conditions.

1 Introduction
Microvascular networks are able to ensure adequate blood supply,
feeding every cell in peripheral tissues with oxygen and nutrients
under a wide range of physiological conditions and for varying
metabolic needs. In the bloodstream, oxygen is mostly bound to
hemoglobin inside Red Blood Cells (RBCs) and is progressively
released to feed the tissues. Transport of oxygen throughout the
microvascular network and tissue oxygenation therefore strongly
depend on the transport of RBCs. The distribution of RBCs in mi-
crovascular networks, however, is highly heterogeneous, with ves-
sels only containing suspending fluid (plasma) and others that are
almost completely crowded with RBCs1–4. Understanding how
the heterogeneous distribution of RBCs is driven by the microvas-
cular architecture is thus an important step towards developing
new generations of oxygen transport models at the tissue-scale,
which may be key in elucidating a large range of pathologies,
from cancers5 to Alzheimer’s disease6,7.

Schematically, the problem is that of confined deformable RBCs
being transported by plasma through complex microvessel net-
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works, with vessel diameters of the same order as RBCs. In such
networks, the physics of blood flow is dominated by the interac-
tions between RBCs, plasma and blood vessel walls8. In each ves-
sel, wall-induced migration drives RBCs away from the walls and
shear-induced diffusion due to collisions between RBCs partly
counteracts this effect. This competition simultaneously results
in RBC enrichment in a relatively large region in the center of the
vessel and in the formation of a depletion layer near the walls,
also known as the cell-free layer9,10. The resulting RBC radial dis-
tribution at vessel-scale plays a fundamental role in determining
how RBCs distribute at bifurcations. The cell-free layer often pref-
erentially feeds one daughter branch and the enriched region the
other daughter branch10,11, leading to an inhomogeneous dis-
tribution of RBCs downstream diverging bifurcations. This phe-
nomenon, known as the phase separation effect, is the main local
mechanism leading to RBC heterogeneities at network-scale. Be-
cause of its local nature, phase separation strongly depends on
the local geometry of the bifurcation, in particular the diameter
of each branch relatively to the size of RBCs and to the diameter
of the other branches12. Phase separation at a given bifurcation
is also affected by the global architecture of the network. Flow,
for instance, is a strong driver that is not determined locally. For
a given flow rate in the feeding branch, the distribution of flow in
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each daughter branch depends on both their relative conductivity
and the conductivity of the network downstream. Similarly, the
volume fraction of RBCs (tube hematocrit) in each vessel is the
result of a transport problem over the entire network12–16.

Any mechanism that disturbs the cell free layer, modifying the
RBC distribution in the feeding branch, or that distorts the flow-
field, modifying the shape of the separation surface between the
two daughter branches, may impact phase separation. An ex-
ample of a mechanism that distorts the cell free layer is the re-
laxation of RBCs after a bifurcation. If two successive bifurca-
tions are sufficiently close, RBCs will not have enough time to
reach their established radial position in the connecting vessel,
and phase separation will be altered in the downstream bifurca-
tion, as already noted in12,17 and recently confirmed by16,18–20.
In the case of a bifurcation with daughter branches of equal di-
ameter, this may result in the RBC enrichment of the low flow
branch12,16–20 and lead to a situation that is qualitatively similar
to the case with daughter branches of unequal diameters, where
the low-flow branch preferentially receives blood from the en-
riched central region12,21.

Predicting the distribution of RBCs in interconnected networks,
even the simplest ones, has thus proven highly challenging. Fig. 1
shows an example of a microfluidic experiment of RBC transport
through a square network with a single inlet and a single outlet lo-
cated in opposite corners. Using this model system, we observed
unexpected differences of the RBC distributions, depending on
the width of the channels. For the largest channels, with square
cross-sections of 10⇥10µm

2, RBCs preferentially flow through the
central region of the network (Fig. 1, left panel). This yields a
positive correlation between the tube hematocrit and the flow ve-
locity in individual channels, consistent with the so-called tissue
Fåhraeus effect† 22,23. For thinner channels with square cross-
sections of 5⇥5µm

2, the RBC pattern is radically different. RBCs
accumulate in the top left (red box in Fig. 1b) and bottom right
corners, with relatively less RBCs in the central region (blue box
in this same figure), resulting in a negative correlation between
RBC concentration and velocity. This latter distribution had been
theoretically predicted based on a simple Lagrangian network
model of RBC flow within networks24, but had never been con-
firmed experimentally before.

One possible explanation for these differences could be that
they result from flow perturbations caused by the presence of
RBCs. In fact, in the absence of RBCs, the velocity fields in both
networks are identical when normalized by the inlet velocity. For
the small inlet tube hematocrit considered here (H

i
t = 0.05), the

perturbation of the flow field induced by the presence of RBCs is
a second-order effect. Such an effect cannot drive a reversal of
the flow partitioning at any bifurcation. It can even less induce
a reversal of the branch with the highest RBC fraction as an in-

† The tissue Fåhraeus effect denotes a reduction of the volume fraction of RBCs in
the whole network by comparison to its discharge hematocrit (defined as the ratio
between the RBC flow and the total flow) 22,23. It is analogous to the Fåhraeus effect,
i.e., the reduction of the hematocrit within a single segment (tube hematocrit) by
comparison to the discharge hematocrit, which results from the correlation between
hematocrit and velocity within a single vessel cross-section 12.

creased RBC fraction in a given branch would increase viscous
dissipation, re-balancing the flow and thus the RBCs toward the
other branch19,24,25. Therefore, the different patterns observed
experimentally cannot be explained by RBC-associated flow per-
turbations.

What, then, is driving the distribution of RBCs through the
network? To address this question, we combine microfluidic ex-
periments with network modeling, focusing on both square net-
works with a four-neighbor connectivity and hexagonal networks
(Fig. 2) with a three-neighbor connectivity. In both configura-
tions, we show that with narrow channels, or equivalently with
wide channels and high concentrations of RBCs, the radial RBC
profiles relax rapidly between bifurcations and the distribution
of RBCs through the networks is consistent with that predicted
by models based on established distributions. For wider channels
with lower concentrations of RBCs, however, we show that the ra-
dial RBC profiles do not have time to relax between bifurcations,
hence modifying phase separation and altering the overall distri-
bution of RBCs through the network. This effect preferentially
occurs near the inlet and then propagates through the network,
leading to an outsized impact of a few key upstream bifurcations
on the RBC distribution at network-scale. In particular, we show
that, for strikingly different RBC organizations to emerge, as ob-
served in square networks (Fig. 1), incomplete relaxation must
bias RBCs toward the branches which receive the lowest flow frac-
tion at these bifurcations. Overall, we thus demonstrate that the
distribution of RBCs in these different networks results from a
subtle interplay between the global network architecture and the
local physics of phase separation at successive bifurcations.

For that purpose, in Section 2, we first study hexagonal net-
works with a three-neighbor connectivity that mimics the topol-
ogy of real microvascular networks (see e.g.26,27) and has been
studied extensively12,14,18,19. The corresponding model of phase
separation, in the standard case whereby the vessels are suffi-
ciently long to enable RBC relaxation, is well-established and em-
pirical parametric descriptions have been developed specifically
for this case12,15,28. They provide quantitative reference solu-
tions allowing to precisely pinpoint which parameters are modi-
fied by the incomplete relaxation of RBCs. They also make it pos-
sible to explore the link between local and global effects through
a sensitivity analysis and to show that a few upstream bifurcations
drive the RBC distribution at network-scale. In Section 3, we then
use this knowledge to elucidate how these few upstream bifurca-
tions lead to the emergence of strikingly different RBC organiza-
tions in square networks, explaining why a positive correlation
may be generally expected between high velocity and high hema-
tocrit vessels. We then summarize our findings in Section 4 and
discuss their relevance in physiology or pathology in Section 5.

2 Results in hexagonal networks
In this Section, we first present the results of microfluidic ex-
periments, in which we flow dilute human RBCs (H

i
t = 0.035)

through hexagonal polydimethylsiloxane (PDMS)-glass networks
(Fig. 2a,b), as detailed in the Materials and Methods (Sec-
tion 6.1). These networks are made of 50µm long channels of
square cross-sections 10⇥ 10µm

2. We study the heterogeneous
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Figure 1 Instantaneous snapshots of red blood cell distribution in a square network (50 µm-long channels, Ht ⇡ 0.05). The flow is from the lower left

corner to the upper right corner. (a): 10µm-side channels (b): 5µm-side channels. Enlarged views of central and corner areas are displayed in blue

and red, respectively.

*
**

**

Figure 2 Red blood cell distribution in a hexagonal network with 50µm long channels of square cross-sections 10⇥10µm
2
. The flow is from left to right,

with an inlet tube hematocrit of H
i
t
= 0.035. (a): Instantaneous snapshot (intensity I in grey levels). (b): Time-averaged intensity field (averaged over

3s). (c): In silico predictions of stationary tube hematocrit obtained using the equivalent fluid model presented in Section 6.2. The first bifurcation

and the second bifurcations of the network are respectively labelled by ⇤ and ⇤⇤. Arrows in (b) and (c) point towards two channels exhibiting significant

discrepancies between experiment and simulations.

distribution of RBCs at network-scale (Section 2.1), quantifying
differences from channel to channel by optical microscopy, as de-
scribed in Section 6.1. We compare our experimental results to
the predictions of the classical non-linear equivalent fluid net-
work model of blood flow, which is described in Section 6.2. This
model describes the blood as an equivalent single-phase fluid and
uses phenomenological descriptions to account for the complex
rheological properties of blood in the microcirculation, including
the Fåhraeus, Fåhraeus-Lindqvist and phase-separation effects.
By modifying different parameters in these phenomenological de-
scriptions and by performing sensitivity analyses in the model, we
assess the relevance of various hypotheses regarding the interplay
between the network architecture and the local physics of phase
separation and their relative influence on the RBC distribution.

2.1 Red blood cell heterogeneities at network-scale

The RBC spatial distribution observed in our experiments (Fig. 2a
and b) is in qualitative agreement with recent results obtained in
similar networks with a larger number of channels19. It shows a
preferential location of the cells in the center of the network and
surrounding channels almost devoid of RBCs. However, it also
shows strong discrepancies with the predictions of the classical
non-linear network model of blood flow (Fig. 2c) detailed in Sec-
tion 6.2. This model also leads to an enrichment of the network
center compared to the periphery, which is due to the velocity dis-
tribution in the branches downstream the second bifurcations (la-
beled by ⇤⇤ in Fig. 2c). At these bifurcations, the theoretical flow
fraction entering the peripheral branches is 36.7% at baseline, i.e.
without any RBC. Phase separation thus leads to RBC depletion
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in the network periphery. However, this model globally underesti-
mates spatial heterogeneities throughout the network and results
in some peripheral channels having the same hematocrit as some
central channels (see channels labeled by arrows in Fig. 2c).

These differences are confirmed quantitatively by comparing,
for all channels in the network, the predicted tube hematocrit to
the measured one (red circles in Fig. 3a). In a significant number
of channels, not a single RBC has been observed for the whole
duration of the experiment and Ht,exp equals 0. The model, how-
ever, predicts a hematocrit equal to the inlet value in these same
channels. For all other channels, the hematocrit range predicted
by the model (⇠ 0.03 to 0.06) is narrower than the measured
one (⇠ 0.03 to 0.08). These discrepancies lead to a poor cor-
relation between the predicted and measured hematocrit, with a
Pearson’s correlation coefficient r < 0.8 and a slope m far from
unity (m ' 0.4). By contrast, the predicted RBC velocities, nor-
malized by the RBC velocity in the inlet branch, are in very good
agreement with the measured velocities (red circles in Fig. 3b),
with r = 0.99 and m = 0.97.

The above results still hold if the viscous dissipation induced
by the RBCs is neglected (blue crosses in Figs. 3a and 3b). In-
deed, if the viscosity is kept constant, neither the hematocrit nor
the normalized velocity fields are significantly modified. The im-
pact of the viscous dissipation induced by RBCs at channel-scale
is therefore negligible for the small hematocrits considered here.
In other words, the results of the model have little sensitivity to
the description of the Fåraeus-Lindqvist effect so that we can rule
out this effect as being the source of discrepancy between the ex-
perimental and predicted hematocrit fields (Fig. 3a).

Several other phenomena could explain this discrepancy. It
could be due to the non-uniqueness of the solution of the math-
ematical equations describing the flow. The blood flow problem
detailed in Section 6.2.1 forms a nonlinear problem, which could
lead to the emergence of multiple equilibria29,30. If that hap-
pened, the simulation would be very sensitive to all aspects of
the numerical scheme and our approach may capture the wrong
solution. We have tested this hypothesis using the resolution pro-
cedure described in Supplementary Information SIA and, by con-
trast to the ladder network shown in Fig. SI1, we did not obtain
more than one solution. Thus, it is likely that the simulated hema-
tocrit solution corresponds to what is observed in experiments.
The last possibility would be that there is an important physi-
cal process that is not captured by the model. We have shown
in14 that, for the channel size and hematocrit considered here,
the phase separation effect observed at individual microfluidic bi-
furcations is qualitatively and quantitatively well described by the
empirical set of relations deduced from in vivo experiments. How-
ever, these microfluidic experiments were performed for a single
bifurcation with a long straight entry branch. They do not take
into account the presence of the bifurcation located immediately
upstream. Such a bifurcation has been shown to bias the spatial
distribution of RBCs across the inlet channel of the considered
bifurcation, with potentially strong impact on the downstream
phase separation for a large range of channel sizes. We explore
further this hypothesis in the next Sections and study how het-
erogeneities of RBC flow at channel-scale build up within the net-

work through successive bifurcations.

2.2 Red blood cell heterogeneities at channel-scale

The first bifurcation of the network, labeled by ⇤ in Fig. 4a, is
located downstream a long and straight channel. The length is
sufficient to ensure that the flow is established and has reached
a steady state. Moreover, the network geometry is symmetrical
around its inlet/outlet axis (i/o axis), so that the flow rates in
both its daughter channels are equal. While some instantaneous
asymmetries of RBC shape and position can be observed at this
bifurcation (see e.g. first left cell in Fig. 4a), the time-averaged
RBC concentration in grey in Fig. 4b is approximately symmetrical
around the i/o axis. The hematocrit profile across the inlet chan-
nel just upstream the bifurcation is also symmetrical (Fig. 4c).

Consistent with19,20, Fig. 4b, however, clearly indicates that
RBCs are, on average, biased toward the side of the bifurcation
apex in the daughter channels. This results in strong asymmetries
of the hematocrit profiles that persist through the whole length of
the daughter channels (Fig. 4b and d). This further increases
the inequality of the RBC distribution downstream the next bifur-
cations, labeled by ⇤⇤ in Fig. 4a, and significantly modifies the
distribution at network-scale. The same phenomenon repeats bi-
furcation after bifurcation. It seems likely that the impact on the
global RBC distribution will depend on the hierarchical position
of the bifurcation in the network. The relative importance of each
bifurcation is particularly difficult to verify experimentally in in-
terconnected networks because the local/global couplings make
it impossible to manipulate phase separation at a single bifurca-
tion. To explore this, we perform in the next Section a numerical
sensitivity analysis designed to study how the topological posi-
tion of a bifurcation relative to the network inlet affects the RBC
distribution at network-scale.

2.3 Influence of the topological position in the network

The main idea is to rely on numerical modeling to independently
manipulate the magnitude of phase separation at each divergent
bifurcation. We use the same classical nonlinear network model
of blood flow as the one used in Section 2.1 for the compari-
son with our experiments. However, here, we treat the fractional
RBC (or erythrocyte) flow FQE , defined as the ratio of RBC flow
in one of its daughter branches to the RBC flow in the feeding
branch, as an independent random variable that follows a uni-
form distribution between 0 and 1. We then compute the result-
ing tube hematocrits in each segment of the network by solving
the flow problem and deduce the total Sobol indices associated
with these random variables, as described in the Materials and
Methods (Section 6.2.3).

These total Sobol indices measure the influence of phase sepa-
ration at bifurcation j on the tube hematocrit in each vessel i of
the network. The total Sobol index of segment i associated with
bifurcation j is equal to zero if phase separation at j has no influ-
ence on the hematocrit in i and to one if i is only influenced by
j. These indices are shown in Fig. 5a where each row represents
a given segment and each column a bifurcation ranked according
to its order, defined as its topological distance to the first bifurca-
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Figure 3 Comparison between model and experiments for a hexagonal network with 10µm-side channels. (a): segment by segment comparison between

predicted and measured tube hematocrits and (b): normalized red blood cell velocity
VRBC

V
i

RBC

distributions, where V
i

RBC
is the velocity in the network inlet

branch. The effective viscosity used in the effective fluid model has little impact on the results. Blue crosses correspond to a uniform viscosity and

red circles to the effective viscosity previously derived from in vitro experiments (Eqs. 9 to 11). For each scenario, the correlation coefficient r and the

slope of the best linear fit m are given in the legend.

Figure 4 The hematocrit profile exhibits strong asymmetries upon leaving the first bifurcation (⇤), which persist until the second bifurcation (⇤⇤) in

a hexagonal network with 10µm-side channels. (a): Zoomed instantaneous intensity snapshot showing red blood cells flowing through the first (⇤)
and second (⇤⇤) bifurcations of the network. (b): Corresponding time-averaged intensity field. (c): Tube hematocrit profile in the inlet branch, just

upstream of the first bifurcation (⇤). (d): Tube hematocrit profiles in one of the branches downstream of the first bifurcation (⇤), for different axial

positions (the origin corresponds to the bifurcation apex). Note that the strong variations of the average tube hematocrit with axial position result

from the Fåhraeus effect, as RBCs that have been slowed down at the bifurcation apex
16,31

re-accelerate in the channel while migrating towards the

channel center.

tion. As shown in Fig. 5a, the matrix is mostly upper triangular
with alternating zero and non-zero values for each diverging bi-
furcation, the small deviations being due to vessel labelling and
the matrix being non-square. This matrix structure reflects the
intuition that bifurcations closer to the inlet impact a larger num-
ber of segments because information propagates primarily in the
direction of the flow. Because of the weak feedback of RBCs on
the flow, variations in the hematocrit of a vessel downstream a
given bifurcation do not significantly change the hematocrit of
any other vessel located upstream of this bifurcation. This re-
sults in null values of the associated Sobol indices and explains
why the number of non-zero values in the Sobol matrix decreases

with increasing bifurcation order.

Consistently, Fig. 5a shows that the first bifurcation (order-0)
has the strongest effect on the tube hematocrit of every vessel
in the network, independently from their position relative to the
network i/o axis, with most Sobol indices above 0.25. Order-1
bifurcations still influence all vessels located on the same side of
the i/o axis, with Sobol indices up to 0.5, and on the other side
when progressing downstream (Fig. 5b). As illustrated in Fig. 5c
for an order-4 bifurcation, Sobol indices are not zero only for a
small number of vessels, all located on the same side of the i/o
axis. Moreover, Sobol indices associated with higher order bifur-
cations are typically smaller than those associated with order-1
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Figure 5 The tube hematocrit distribution is mainly sensitive to the description of phase separation in the upstream bifurcations in a hexagonal network

with 10µm-side channels. (a): Total Sobol index matrix. Each row i represents a segment (e.g. i = 0 is the network inlet) and each column j represents

a diverging bifurcation. The color associated with each cell (i, j) displays the sensitivity of the tube hematocrit in segment i associated with variations

of the phase separation effect in bifurcation j. Bifurcations are sorted according to their topological distance (i.e. bifurcation order) to the first

bifurcation. The column labeled (b) corresponds to the order-1 bifurcation indicated by a circle in panel (b), while column labeled (c) corresponds to

the order-4 bifurcation indicated by a circle in panel (c). (b): Projection of column (b) of the total Sobol index matrix, i.e. column associated with

the circled bifurcation, on all network segments. (c): Projection of column (c) of the total Sobol index matrix, i.e. column associated with the circled

bifurcation, on all network segments.

bifurcations and the difference between Sobol indices of consec-
utive bifurcations of increasing orders decreases. This can be in-
tuitively understood as the first bifurcations in the network also
correspond to a larger flux of RBCs. Due to mass conservation,
the flow rate decreases steadily in the diverging part of the net-
work, where flow divides at each successive bifurcation, before
alternating between divisions and recombinations induced by net-
work interconnections. Overall, these results suggest that phase
separation at order-0 and order-1 bifurcations controls most of
the RBC distribution at network-scale.

We have previously shown in single microfluidic bifurcations
that the phase separation model describes well the experimental
results when the upstream flow is fully established, which is the
case for the order-0 bifurcation. We thus hypothesize that the dis-
crepancies between experimental and simulation results originate
primarily in order-1 bifurcations. In these bifurcations, results in
Section 2.2 suggest that upstream asymmetries of the RBC profile
is a major physical ingredient that is not captured by the averaged
parametric model. In the next Section, we test this hypothesis
by using a simple correction of the phase separation model for
order-1 bifurcations and go on to check whether it is sufficient to
recover the RBC distribution at network-scale.

2.4 Correcting phase separation at order-1 bifurcations

The main idea is to improve the description of phase separation
at order-1 bifurcations by taking the experimentally observed up-
stream asymmetries into account. For that purpose, following14,
we assume that, due to the high geometric confinement, the RBC
velocity profile is flat (V (x,y) = V0, see Fig. 6a for axis definition),
with V0 equal to the maximum suspending fluid velocity. We con-
sider that variations of hematocrit and velocity profiles along the
channel depth, i.e. along y, can be neglected. Due to the low

Reynolds number (Re ⇠ 0.1), and following12,32,33, we further
assume that plasma skimming22 is the primary effect controlling
phase separation. RBCs can be treated as point particles, i.e. vol-
umeless, that follow the suspending fluid streamlines, so that cell
screening11,16 can be neglected. Consistently, we disregard the
finite size of RBCs. We thus quantify the RBC transverse distri-
bution through the hematocrit profile and assume that the asso-
ciated, virtual, RBC separation streamline matches the flow sepa-
ration streamline, as illustrated in Fig. 6a. As a result, a RBC fluid
particle located on a given side of this virtual line in the entry
branch feeds the daughter branch located on the same side.

While Pries et al.12 used similar arguments to infer the shape
of the hematocrit profile in the entry branch from experimental
phase separation data, as illustrated in Figs. 8 to 10 of their paper,
the key aspect of our approach is that we use our experimentally
measured hematocrit profile to correct the values of parameters
(A,B,X0) in the phase separation model, where A captures asym-
metries, B controls the intensity of the non-linearity and X0 is a
threshold value for the smallest fractional blood flow value under
which no RBC will enter the vessel.

Under these assumptions, if we label a the downstream branch
collecting all upstream fluid in the range x 2 [�W/2,xss] , with
xss denoting the position of the fluid separation streamline in the
entry channel and W the channel width, we can deduce the frac-
tional erythrocyte flow FQa

E
and fractional blood flow FQa

B
as

FQa
E

=

R
xss

�W/2 H
e
t (x)V0dx

RW/2
�W/2 H

e
t (x)V0dx

, (1)

and

FQa
B

=

R
xss

�W/2(H
e
t (x)V0 +(1�H

e
t (x))VSF (x))dx

RW/2
�W/2(H

e
t (x)V0 +(1�H

e
t (x))VSF (x))dx

, (2)
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Figure 6 Increased phase separation induced by the asymmetry of the hematocrit profile in the upstream 10µm-side channel can be described using a

semi-empirical model (Eqs. 1 and 2). (a): Sketch illustrating the RBC flow distribution downstream a bifurcation for the strongly asymmetric (red)

and a quasi-symmetric (blue) hematocrit profile displayed in Fig. 4. The black dotted line schematizes the virtual RBC separation streamline between

the two downstream segments, a and b , for a given flow ratio, which we assume matches the flow separation streamline. (b) and (c): Fraction of red

blood cell flow rate (FQE) as a function of the fraction of total blood flow rate (FQB), downstream the bifurcation, for the strongly asymmetric (b) and

quasi-symmetric (c) hematocrit profiles, as predicted by the semi-empirical model (continuous line). Best non-linear adjustment of the semi-empirical

prediction using Eq. 14 (stars). (b) A = 2.73, B = 2.78, X0 = 0.15 and (c) A = �0.12, B = 1.54, X0 = 0.08. Reverse phase separation (FQ
a
E

> FQ
a
B
) is

considerably larger in (b) than in (c).

where the subscript e denotes the entry branch and VSF (x) =

V0(1 � 4x
2/W

2) is the suspending fluid velocity profile, as dis-
cussed in34. A full semi-empirical phase separation diagram is
then obtained by displacing the fluid separation streamline posi-
tion from wall to wall, i.e. varying xss from �W/2 to W/2.

The continuous lines in Fig. 6b show the phase separation
diagram corresponding to the hematocrit profile measured up-
stream order-1 bifurcations. Because this hematocrit profile is
skewed toward the side of the previous bifurcation apex (see e.g.
Fig. 4b), RBCs are strongly biased toward the daughter branch
located on this same side (branch a in Fig. 6a). For compari-
son, Fig. 6c shows the phase separation diagram obtained with
the quasi-symmetric hematocrit profile measured upstream the
order-0 bifurcation. While the latter exhibits the typical shape
expected for symmetrical bifurcations, the former has a shape
corresponding to phase separation diagrams in highly asymmet-
ric bifurcations12. Thus, we can still fit (A,B,X0) to this phase
separation diagram. This yields new values for these parameters
(A⇤⇤ = 2.73,B⇤⇤ = 2.78,X⇤⇤

0 = 0.15), only valid for order-1 bifurca-
tions, describing the present experimental results with good ac-
curacy (dotted lines in Fig. 6b). For comparison, in the order-0
bifurcation, the parameters are: A

⇤ = �0.12,B⇤ = 1.54,X⇤
0 = 0.08,

see symbols in Fig. 6c. The most striking difference between
order-1 and order-0 bifurcations comes from the asymmetry pa-
rameter A. For the order-1 bifurcation, |A| rises up to 2.73, while
it is 0.12 for the order-0 bifurcation, i.e. one order of magnitude
smaller, consistent with A ' 0 obtained by Pries et al.12 for sym-
metric bifurcations.

In the next Section, we examine the impact of the above correc-
tion at order-1 bifurcations on the RBC distribution at network-
scale.

2.5 Impact at network-scale

We now check whether correcting the phase separation descrip-
tion at order-1 bifurcations only, i.e. A = A

⇤⇤, B = B
⇤⇤, X0 = X

⇤⇤
0 at

these bifurcations, is sufficient to numerically recover the exper-
imental RBC distribution at network-scale. Fig. 7 shows a com-
parison between the experimental hematocrit and the tube hema-
tocrit predicted by the corrected network model. Because RBCs
are strongly biased toward the daughter branch of the previous
bifurcations located on their apex sides (branches a in Fig. 6a,
which both feed the network center), this single modification
strongly redirects RBCs toward the center of the network (com-
pare Fig. 7b to Fig. 2c), in much closer agreement with the exper-
imental results (Fig. 7a). We quantify this through the correlation
between the predicted and measured hematocrit. The Pearson’s
correlation coefficient increases from r < 0.8 to r = 0.98, with a
slope m much closer to unity (m = 0.75), as shown in Fig. 7c,
despite the strong simplifications underlying the semi-empirical
model (Eqs. 1 and 2) used to correct the description of phase
separation at order-1 bifurcations.

We also see that the correction of the phase separation effect
accentuates the RBC preferential location in the center of the net-
work, already favored by the baseline flow distribution (see Fig.
2b). This results in a better correlation between high velocity and
high hematocrit channels, thus strengthening the tissue Fåhraeus
effect (see Supplementary Information SIB and Fig. SI2).

Further correcting the phase separation description in higher
order bifurcations (order 2 and 3) slightly improves the prediction

accuracy, with an error e =
Âk |Hk

t,sim�H
k

t,exp|
NH

i
t

monotonically decreas-
ing with the number of corrected bifurcations orders (Fig. 8b,
blue line). Without correction, we have e ⇠ 0.65. Accounting
for upstream asymmetries at order-1 bifurcations significantly re-
duces the value of e, which is divided by a factor 2. Adding new
corrections for higher order bifurcation has much less impact on e,
consistent with the results of the sensitivity analysis (Section 2.3).
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Figure 7 Correcting phase separation in the order-1 bifurcations is sufficient to restore the RBC pattern observed experimentally in the hexagonal

network with 10µm-side channels. (a): Time-averaged intensity field (over 3s). (b) In silico predictions of stationary tube hematocrit with phase

separation corrected at order-1 bifurcations (A
⇤⇤ = 2.73,B⇤⇤ = 2.78,X⇤⇤

0 = 0.15). (c) segment by segment comparison between simulated tube hematocrit

after phase separation has been corrected at the order-1 bifurcations only, using the effective viscosity previously derived from in vitro experiments

(Eqs. 9 to 11), and measured tube hematocrit. In the legend, r is the coefficient of correlation and m is the slope of the best linear fit.

Thus, for the small hematocrits considered here, phase separation
is strongly affected by upstream bifurcation, as previously iden-
tified in12,16,18. Moreover, the distribution of RBCs at network-
scale is mainly controlled by topological positions of bifurcations
within the network. For this hexagonal geometry, this leads to an
accentuation of the preferential location of RBCs in the network
center, precluding the emergence of a different large scale RBC
organization.

Consistently, we expect that reducing the channel cross-
sections to 5⇥ 5µm

2, where local asymmetries of the RBC pro-
file are hardly possible (see Fig.1b) will only reduce the overall
heterogeneity, while still favoring the network center. This is con-
firmed by the equivalent fluid model (see Supplementary Infor-
mation SIC and Fig. SI3). Besides, our experiments show that
increasing the inlet hematocrit in the wider channels also damp-
ens these local asymmetries, as illustrated in Fig. 8a. This brings
the experimental network-scale RBC distributions closer to the
initial model predictions, i.e even without correcting phase sepa-
ration for upstream asymmetries at any bifurcation (see Fig. 8b,
where the error monotonically decreases when increasing the in-
let hematocrit, whatever the bifurcation order up to which phase
separation has been corrected). Overall, we show that, for hexag-
onal networks, RBCs always favor the network center.

In the next Section, we turn to square networks. We will not re-
produce the full analysis as above, but rather show that the same
physical ingredients are sufficient to explain the emergence of the
two strikingly different patterns described in the Introduction.

3 Application to square networks
For square networks, all vertices except the side vertices are con-
nected to four channels. There exists no quantitative equivalent
fluid description of the phase separation at four-connected chan-
nel intersections, so that a precise sensitivity analysis as done pre-
viously is not possible. Our approach here consists in introducing
an approximation of such a separation, but, as a result, the nu-

Figure 8 Order-one bifurcations drive the distribution of red blood cells at

network-scale in hexagonal networks with channels of 10⇥10µm
2

cross-

section. (a) Instantaneous snapshots of RBC organization in the order-0

bifurcation of the hexagonal network with 10µm-side channels, showing

that increasing the hematocrit reduces the RBC asymmetry in the down-

stream branches. (b) Average error defined as e =
Âk |Hk

t,sim�H
k
t,exp |

NH
i
t

as a

function of the bifurcation order up to which the phase separation is cor-

rected, for different network inlet tube hematocrits H
i
t
.

merical predictions obtained in square networks are only quali-
tative. However such a qualitative approach is sufficient, as RBC
relaxation in square networks has a major impact on the network-
scale RBC distribution, by contrast to hexagonal network where
we have seen it only leads to small quantitative changes.

In square networks, we indeed observe a sudden transition be-
tween two different patterns of RBC distribution when increasing
the confinement, as illustrated in Fig. 1. For conditions similar
to the hexagonal case, with channels (w = 10µm) and dilute RBC
suspensions, the RBCs flow preferentially in the central region
of the network (Fig. 1a), consistent with the results obtained
in hexagonal networks. Upon increasing the confinement, with
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channels (w = 5µm), RBCs accumulate in the network corners
opposite to the inlet and outlet (Fig. 1b), in agreement with pre-
vious theoretical results24.

To understand this transition, let us first consider the baseline
flow, the structure of which does not depend on the confinement.
A first property of this flow field is that it favors the central region
of the network. The flow divides approximately by a factor two at
each successive bifurcation along the network periphery, so that
it is of order 1/2n in peripheral channels of order n (i.e. with
topological distance n to the inlet segment). By contrast, flows in
channels intersecting the i/o axis result from successive divisions
and recombinations, and thus the flow decreases much less when
progressing towards the network center. As a result, the flow rate
in channels intersecting the isopressure line P = 1/2 (i.e. chan-
nels of order N�1) monotonically increases from Q

N�1
min

in the net-
work corners to Q

N�1
max in the network center. In a 4⇥ 4 network,

Q
N�1
min

=1/7 and Q
N�1
max = 3/14, as illustrated in Fig. 9a, and the

ratio Q
N�1
max /Q

N�1
min

increases with network size (inset of Fig. 9b).
A second, more subtle, property of the flow field results from

the shape of isopressure lines (P > 1/2), whose concavity is ori-
ented toward the network inlet (see Supplementary Informa-
tion SID). In all bifurcations located along the network periphery
except at bifurcations of order 0 and N � 2 where the flow must
be balanced, this results in an increase of the flow in the periph-
eral daughter branch, compared to the flow in the perpendicular
daughter branch. The latter lying on the same side than the previ-
ous bifurcation apex, we have this time: Qb > Qa using the same
conventions as previously (see Fig. 9a).At bifurcations of order-1,
the peripheral channel may receive up to 50% more flow than the
other one depending on the network size (Fig. 9b).

Since local flux partitioning favors the peripheral branch at the
second bifurcation in the absence of local RBC profile asymme-
tries, RBCs accumulate in the network corners despite the flow
being globally favored in the network center. This distribution is
predicted by the previous equivalent fluid network model (Sec-
tion 6.2) for any confinement level, as well as by a discrete RBC
network model (Section 6.3) previously used to study the same
configuration24, as displayed in Fig. 10a†. Our observations in
networks with the smaller channels (Fig. 1b), where the strong
confinement forces RBCs to flow along the channel centerlines, is
the first experimental confirmation of this behavior.

When the confinement decreases, however, the RBCs favor the
central region (Fig. 1b). To check whether this result can be
mainly attributed to the local RBC profile asymmetry upstream
order-1 bifurcations, we corrected the description of phase sep-
aration at these bifurcations in the same way as in Section 2.4.
Fig. 10b shows that this is sufficient to considerably hinder the
influence of the baseline flow. Upstream RBC asymmetry is suffi-

† These models provide qualitative results only. For square networks, all vertices ex-
cept the side vertices are indeed connected to four channels, so that, on one hand, no
quantitative equivalent fluid description of the RBC distribution at channel intersec-
tions is available. On the other hand, as underlined previously in 17,24, the discrete
model is only valid for the highly confined situation (w = 5µm), where it is reason-
able to assume that all RBCs contribute the same singular pressure drop and that
they enter the channel with the highest local pressure drop at channel intersections.

ciently strong to deviate most of the RBCs to the central region of
the network, against the baseline flow partitioning. This further
highlights the critical role played by upstream bifurcations on the
RBC distribution at large scale in model networks.

4 Summary of main results
The effect of the upstream bifurcation on the partition-
ing behavior of a given bifurcation has been largely docu-
mented5,12,16–20,35–37. Here, we demonstrated for the first time
the critical role played by a few key upstream bifurcations on the
RBC distribution at the scale of a whole network. We further
showed that this non-local, or history, effect is strong enough to
induce strikingly different RBC organizations depending on the
network architecture.

For sufficiently small hematocrits and confinements, the first
bifurcation of the network induces asymmetries of the RBC dis-
tribution over the cross-section of its daughter branches. If the
length of these daughter branches is shorter than the persistence
length of these asymmetries, we observed a strong asymmetry of
the RBC partitioning at the next bifurcations, as evidenced by the
large value of the asymmetry parameter A obtained in 10µm-side
channels. For symmetric networks, this may either lead to accen-
tuating the RBC pattern that would be obtained without any local
RBC asymmetry, to attenuating that same pattern, or to switching
to another RBC pattern depending on the network architecture.
In fact, the architecture controls the baseline flow ratio at these
order-1 bifurcations. A rough prediction of the outcome of asym-
metric partitioning at their level can be obtained by considering,
for this baseline flow ratio, the relative positions of the identity
line and of two phase separation diagrams: the symmetric dia-
gram obtained for established RBC flow (blue line in Fig. 11) and
the asymmetric diagram accounting for the upstream RBC asym-
metries (red line in Fig. 11).

If the branch located on the same side as the previous bifurca-
tion apex receives the highest flow fraction (i.e. (FQ

a
B

> 0.5) as
in hexagonal networks or domain III in Fig. 11), the asymmet-
ric diagram corresponding to this branch (red line) lies above the
symmetric diagram (blue line), which lies above the identity line.
Thus, the RBC fraction in this branch is even larger than expected
in case of symmetric partitioning, which increases the RBC in-
homogeneous distribution at network-scale. This scenario would
thus also be obtained for a square network if the inlet and outlet
were located at the center of opposite sides, as in the hexagonal
network (see Supplementary Information SID).

If this branch receives the lowest flow fraction, two domains
can be identified in Fig. 11. Either the two phase separation dia-
grams lie on opposite sides of the identity line (domain II) or not
(domain I). In domain II, when the flow fraction is higher than a
critical flow ratio (FQ

C
< FQ

a
B

< 0.5), upstream asymmetries lead
to reverse partitioning, so that the branch with the lowest flow
fraction now collects the highest proportion of RBCs. This directs
the RBCs toward flow pathways that would not have been ex-
plored without upstream asymmetries, consistent with the results
obtained in the the square network with 10⇥ 10µm

2 channels.
By contrast, in domain I (0 < FQ

a
B

< FQ
C
), the branch collecting

the lowest fraction of RBCs is less depleted than expected, which
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Figure 9 Baseline non-dimensional pressure and flow distribution in a NxN square network (N = 4). (a) Black dots: pressures at intersections; red

arrows: flow rates in vertical channels; orange arrows: flow rates in horizontal channels. The values in the upper-right hand side of the network can be

deduced by symmetry arguments. Dashed lines: from left to right, isopressures P = 16/26, P = 1/2 and P = 10/26. a denotes the branch on the same

side than the previous bifurcation apex, so that b is on the network periphery. (b) Flow ratio
Q

1
b

Q
1
a

at order-1 bifurcations as a function of network size

N; Inset: Flow ratio
Q

N�1
max

Q
N�1
min

in channels of order N �1 as a function of network size N.

Figure 10 Correcting phase separation in the order-1 bifurcations is sufficient to restore the RBC pattern observed experimentally in the square network

with 10µm-side channels. The flow is from the bottom left corner to the top right corner and H
i
t
= 0.05. (a) In silico predictions of stationary tube

hematocrit with the discrete red blood cell model presented in Section 6.3 (left anti-diagonal, b = 20) and the equivalent fluid model presented in

Section 6.2 (right anti-diagonal). (b) Experimental (top half) and in silico (bottom half) red blood cell distributions. The simulation is performed

using the equivalent fluid model with phase separation corrected at the order-1 (⇤⇤) bifurcations (A = 15, B = 0, X0 = 0).

reduces the RBC heterogeneity throughout the network. This
corresponds to our qualitative observations in square networks
with 5⇥ 5µm

2 channels, where the central part of the network
(blue area in Fig. 1b) is less depleted compared to the corners
(red area) than expected from simulations (Fig. 10a). As already
noted, this is counterintuitive as the baseline flow ratio does not
depend on the confinement. However, increasing the confine-

ment reduces the asymmetry of the RBC profiles, thus displacing
the asymmetric phase separation diagram (red) to the right. This
increases the critical flow ratio FQ

C
controlling the transition be-

tween domains I and II, and reduces the extent of domain II.

These principles reconciliate the contradictory results previ-
ously found in the literature about the large scale distribution of
RBCs in simple model networks19,24 by providing a simple phys-
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Figure 11 Large scale RBC organization in symmetric networks can be

predicted based on the phase separation diagrams at order-1 bifurcations,

without (blue) or with (red) upstream asymmetries of the RBC profile.

FQ
C

is the flow fraction leading to an equal partitioning of RBCs and

suspending fluid in the asymmetric case. Domain I : 0 < FQ
a
B

< FQ
C
;

Domain II: FQ
C

< FQ
a
B

< 0.5; Domain III: 0.5 < FQ
a
B

< 1. See text for

more detail.

ical interpretation.

5 Discussion and outlook
The equivalent fluid model needs to be improved in order to de-
scribe RBC transport in complex network including asymmetric
topologies, distributions of channels width and length and/or
multiple inlets/outlets. From our point of view, such a model
should consider the transport of an asymmetry parameter de-
scribing the relaxation process of the RBC profile within a chan-
nel toward its symmetrical established shape. This parameter
could then be used to simply correct the phase separation di-
agram for all bifurcations, whatever their hierarchical position
within the network, using the simple semi-empirical model intro-
duced in Section 2.4. For that purpose, a detailed experimental
study of RBC lateral migration, in the same spirit as38, but deal-
ing with higher hematocrits to enable interactions between RBCs,
is needed. The main parameters to consider would be the hemat-
ocrit, the confinement ratio, and the mean velocity (or alternately
the wall shear). According to our experimental results, we antici-
pate that, for a given mean velocity, increasing the hematocrit or
the confinement will decrease the RBC profile relaxation length,
so that the scalings in38 likely provide upper bounds. Alternately,
a hybrid approach combining the present equivalent fluid model
and highly resolved Direct Numerical Simulations16,31,39 or re-
duced order models of RBC collective dynamics40–42, could be
performed at a small number of relevant bifurcations, as identi-
fied by the sensitivity analysis approach described in Section 2.3.

These results may help in designing novel microfluidic sepa-
ration devices and in understanding microvascular physiology or
pathology. One central question in vivo is whether the main phys-
ical ingredient underlined here, that is, the relaxation length of

RBCs being longer than the vessel length, is still relevant in mi-
crovascular networks. Deep in the capillary bed, the confinement
ratio (RBC size over vessel diameter) is typically larger than the
highest confinement ratio studied here, so that asymmetries of
RBC flow are hardly possible. In the larger arterioles and venules,
the hematocrit is much higher than in the present study and closer
to the systemic hematocrit ('0.4). In these vessels, long-lasting
asymmetries of the RBC profile are also unlikely. However, the
situation is different for vessels lying in between, i.e. small ar-
terioles, precapillary arterioles, and, possibly, large capillaries.
These lie in a range of diameters and hematocrits, which, in prin-
ciple, make such asymmetries possible. Their diameter range in
the mouse brain is typically between 6 and 17 micrometers (see,
e.g.43), which, considering a mice to human RBC volume ratio of
0.8644, corresponds to the confinement encountered in channels
of widths between 7 and 20µm. Furthermore, their hematocrit is
typically between 0.02 and 0.245.

Corrugations of the vessel walls by protruding endothelial cells
or the presence of the glycocalyx, a polysaccharid brush that con-
tributes to reducing the effective diameter of vessels46–48, may
further shorten the relaxation length in vivo. Even if this is the
case, their median length to diameter ratio is typically smaller
than ten49, i.e. the in vivo threshold value above which the pre-
vious bifurcation has no influence on the next one12.

Interestingly, these vessels are also covered by a variety of
contractile cell types, including smooth muscle cells, ensheath-
ing pericytes and mesh pericytes43, which participate to blood
flow regulation within the brain as a function of neuronal activ-
ity (neurovascular coupling)50. Therefore, it is theoretically pos-
sible that the above phenomena participate to redirect the RBC
flux from inactive brain regions to active brain regions, or from
arterio-venular anastomoses to active brain regions, by locally
modulating vessel diameters so that the fractional flow reaches
a critical value.

Moreover, several pathologies may involve abnormal, highly
heterogeneous, vascular architectures with a larger occurrence
of short vessel segments and/or may contribute to increase the
RBC relaxation length. In tumors, for example, the vessel length
to diameter ratio is notably decreased, which has been suggested
to affect hematocrit distribution in tumor vascular networks and
drive heterogeneous oxygenation of tumor tissue5. Damage to
the glycocalyx, e.g. resulting from diabetes, inflammation or hy-
poxia, has been shown to reduce the thickness of the cell free
layer51, and is thus likely to increase the RBC relaxation length.
Consistent with our results, pharmacological degradation of the
glycocalyx in the hamster led to increased microvascular hema-
tocrit heterogenity, with both a drastic decrease (⇠ 35%) of the
number of capillaries perfused by RBCs and a drastic increase
(⇠ 70%) of the mean hematocrit in these capillaries, while vessel
diameters and blood velocity remained statistically unchanged48.
This has been interpreted as resulting from increased platelet or
leucocyte adhesion to the vessel walls induced by the glycocalyx
degradation52, but our results suggest that increased RBC relax-
ation length may also play a role. Thus, the above results may
help understand the development of microvascular dysfunction
in a large range of diseases.
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6 Materials and Methods
6.1 Experiments

6.1.1 Network fabrication

Networks with either hexagonal (Fig. 2) or square (Fig. 1) pat-
terns, made of microchannels of square cross-sections, are fabri-
cated by soft photolithography as described in Roman et al.14,53

with the following modifications: the PDMS cast is sealed with a
100µm thick microscope glass coverslip by applying manual pres-
sure to remove trapped air and then pouring liquid PDMS on its
edges. All channels in the network, including the inlet and outlet
channels, have identical dimensions, i.e. 5x5µm

2 or 10x10µm
2

for the cross-section and 50µm for the length, except 15mm long
rectangular distribution and drainage channels placed upstream
and downstream. Before use, networks are incubated overnight
with a solution of Phosphate Buffered Saline (PBS) containing
2.5mg/ml Bovine Serum Albumine (BSA, Eurobio) in order to
prevent RBC adhesion to microchannel walls.

6.1.2 Red blood cell suspensions

Fresh whole blood samples from healthy volunteers are provided
by the Etablissement Français du Sang (EFS) in EDTA tubes for
anticoagulation. These samples are then centrifugated and the
RBC pellet is collected and washed three times using PBS. To pre-
vent sedimentation during the experiments, red blood cells are re-
suspended in an appropriate isodense solution following14,34, en-
abling to control the feed hematocrit. All suspensions are stored
at +4�C and used within 48 hours after collection.

6.1.3 Red blood cell flow and imaging

The flow is generated by imposing a pressure drop between
the microfluidic network inlet and outlet in the range of 30 to
90 mbar using a pressure controller (MicroFluidics Control Sys-
tem 8C, Fluigent), ensuring very short response times when the
set pressure drop is changed and good stability over long peri-
ods. The network is then placed on the stage of a Leica DM-
RXA2 microscope, glass cover slip facing a ⇥20 (NA = 0.4) long-
working distance objective. We record image sequences of the
flow using an external collimated light source (Leica EL6000) and
a fast camera (pco.dimax S). Typical image sequences are com-
posed of ~6000 snapshots, such as the one shown in Figs. 1 and
2a, corresponding to a physical time of ~3 s. These image se-
quences are used to deduce hematocrit profiles, tube hematocrits
and RBC velocities, as summarized in Sections 6.1.4 and 6.1.5.
Noteworthy, the total duration of the sequences is longer than
the 0.7 s used by16 for averaging temporal data and ensures that
all time-averaged quantities considered in the present paper are
converged.

6.1.4 Hematocrit profiles and tube hematocrit

For a given position (z) along the microchannel axis, the hemat-
ocrit profile H(x) is defined as the time-averaged volume fraction
occupied by RBCs in the whole channel depth, i.e. integrated
over y. To determine the hematocrit profile, we first sub-sample
the image sequences, keeping one of ten snapshots, to avoid con-
sidering the same RBC multiple times at the same location. We

then compute the optical density profile OD(x) from the time-
averaged greyscale intensity profile I(x) as follows13,14,19,54,55:

OD(x) = �log10

 
I(x)

I0(x)

!
, (3)

where I0(x) is a reference intensity profile. Following Sherwood
et al.13, we assumed here that I0(x) is constant and equal to
the greyscale value in the PDMS far from any channel. This is
a reasonable approximation except in the close vicinity of chan-
nel walls (Fig. SI5A), where we infer the optical density profile
by linear extrapolation13, as summarized in Supplementary In-
formation SIE and Fig. SI5B-E.

To relate the local tube hematocrit value H(x) to the optical
density, we used Leja slides (Leja Products B.V.). These are man-
ufactured Hele-Shaw cells with finely controlled depths (10 or
20µm) and much larger length and width (⇠ 2cm). We filled each
slide extremely slowly with a small volume of RBC suspension
of known feed hematocrit, so as to reduce as much as possible
local hematocrit heterogeneities within the slide, while ensuring
it contained the whole injected volume. In that way, the local
hematocrit is everywhere equal to the feed hematocrit, which en-
ables precise calibration of the optical density, even for suspen-
sions where RBCs are not individually discernible (for more de-
tails see Supplementary Information SIE and Fig. SI6.

Finally, we derive the tube hematocrit Ht associated with each
microchannel by averaging H(x) over the channel width W at the
output of the channel (zoutput = 45µm):

Ht =


1

W

Z
W/2

�W/2
H(x)dx

�

z=45µm
. (4)

6.1.5 Red blood cell velocities

For the channel size and hematocrit range considered in this
study, we expect flat velocity profiles to be obtained in regions
where the flow is established, i.e. sufficiently far from each chan-
nel input and output. Thus, we define the RBC velocity asso-
ciated with a given microchannel as the time-averaged velocity
measured at mid-channel length (z = 25µm). The latter is de-
duced from the image sequences using either particle tracking
velocimetry (i.e. measuring the time required by RBCs to travel
a prescribed distance of 10µm from mid-channel) or particle im-
age velocimetry (PIV), using the method of sum of correlation56

implemented in DaVis (LaVision) with RBCs as tracers57. PIV
further enables to estimate the (depth-averaged) velocity profile
across a given channel, in areas where the flow structure is more
complex, i.e. at the level of bifurcations.

6.2 Modeling and simulations: equivalent fluid model

While it is possible to simulate RBC suspension flows in net-
works by describing each RBC individually16,31,39, it remains
computationally challenging, especially if a large range of flow
conditions and geometries is to be considered. Thus, follow-
ing2,44,58–60, we describe RBCs suspensions as single-phase, non-
Newtonian fluids, with 1/ tube hematocrits (volume fractions)
Ht = VRBC

V representing the RBCs, 2/ effective viscosities repre-
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senting the time-averaged viscous dissipation associated with in-
teractions among RBCs and with the suspending fluid and the
vessel walls (Fåhraeus-Lindqvist effect), and 3/ bifurcation laws
representing, on average, the unequal distribution of RBCs at
diverging bifurcations (phase separation effect)61. Altogether,
these assumptions make it possible to simplify the description of
hexagonal and square networks by considering them as graphs,
i.e., as the union between a set of vertices {i}, corresponding to
the network inlet and outlet and all its bifurcations, and a set of
edges, defined as pair of vertices {(i, j)}, corresponding to the mi-
crochannels. In this representation, determining the pressure Pi

at every vertex, the total flow rate Qi j and discharge hematocrit
(flow rate fraction) Hd,i j =

QRBC,i j

Qi j

in every edge is sufficient to fully
describe the flow withing the network.

The tube hematocrit is then deduced from the discharge hema-
tocrit taking the Fåhraeus effect62 into account, as follows

Ht,i j

Hd,i j

= Hd,i j +(1�Hd,i j)(1+1.7e
�0.36zi j �0.6e

�0.01zi j ), (5)

where z is the hydraulic diameter of the microchannel in microm-
eters. Our previous experiments have indeed shown that this ex-
pression, adapted from the empirical description derived from in
vitro experiments performed with rat RBCs in cylindrical glass
tubes2,44, is well suited to evaluate the Fåhraeus effect in the
flow regimes considered here14.

6.2.1 Hexagonal networks

In order to solve the blood flow problem in the hexagonal net-
works presented in Fig. 2, we start by writing the balances of
blood flow rates

Â
j

Qi j = 0, (6)

and RBC flow rates

Â
j

Hd,i jQi j = 0, (7)

at each vertex i of the network, excluding the boundary vertices.
We then write the momentum balance between the inlet and out-
let of each channel

Qi j =
pd

4
h,i j

128µeff,i jLi j

�
Pi �Pj

�
, (8)

where Li j represents the channel length, dh,i j its hydraulic diame-
ter (in SI units). The above equation is similar to Poiseuille’s equa-
tion, except that the fluid viscosity has been replaced by µeff,i j, i.e.
the effective viscosity of the fluid within the channel. Due to the
RBC presence, its velocity profile is blunted at the center of the
channel11,18,63 with a slip velocity at wall18,34,64. The associated
viscous dissipation has been measured by65, who performed in
vitro experiments using human RBCs in plasma. This yielded the
following empirical description for the Fåhraeus-Lindqvist effect

µeff,i j = µp

 
1+
�
µ0.45,i j �1

�
�
1�Hd,i j

�
Ci j �1

(1�0.45)Ci j �1

!
, (9)

where µp ⇡ 10�3Pa.s represents the viscosity of plasma and where

µ0.45,i j = 220e
�1.3zi j +3.2�2.44e

�0.06z 0.645
i j , (10)

Ci j =
0.1�

�
0.1zi j

�12
⇣

0.8+ e
�0.075zi j

⌘

0.1+
�
0.1zi j

�12 , (11)

are two functions of the vessel diameter expressed in micrometers
(zi j = 106

dh,i j).
Altogether, Eqs. 6 to 11 form a linear system, which is straight-

forward to solve if the distribution of discharge hematocrits
is known. However, RBC and plasma are distributed non-
proportionally between the daughter channels of diverging bifur-
cations (i.e. vertices with one entry channel and two daughter
channels, such as ⇤ and ⇤⇤ in Fig.4a)12,66. This phase separation
effect must be accounted for to determine the discharge hemat-
ocrits within the network. For that purpose, we write the follow-
ing phase separation model

Hd,a =
FQa

E

FQa
B

Hd,e, (12)

Hd,b =
1�FQa

E

1�FQa
B

Hd,e, (13)

where e = {i, j} denotes the entry channel, a = {i,k} and b = {i, l}
denote the daughter channels and where FQa

E
=

QRBC,a
QRBC,e

and FQa
B

=���Qa
Qe

��� represent the fraction of RBC flow rate and total flow rate
going from the entry channel to the daughter channel a. This
fractional blood flow is described using the following empirical
description, based on in vivo experiments performed in rats12,28

and later adapted to human blood44

FQa
E

=

8
>>>>>>>>>>><

>>>>>>>>>>>:

0 when FQa
B

< X0

exp
✓

A+Blogit
✓

FQa
B
�X0

1�2X0

◆◆

1+exp
✓

A+Blogit
✓

FQa
B
�X0

1�2X0

◆◆ when X0 < FQa
B

< 1�X0

1 when FQa
B

> 1�X0

(14)

Here, logit(x) = ln
�

x

1�x

�
and

A = �15.47

 
za �zb
za +zb

!✓
1�Hd,e

ze

◆
(15)

encompasses the effects induced by the asymmetries in the bifur-
cation geometry,

B = 1+8.13
✓

1�Hd,e

ze

◆
(16)

controls the intensity of the non-linearity and

X0 = 1.12
✓

1�Hd,e

ze

◆
(17)

corresponds to the threshold below which no RBC enters the bi-
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furcation outlet with the smallest blood flow rate. Noteworthy,
our previous experiments have shown that these expressions are
well suited to describe phase separation in the flow regimes con-
sidered here14. Altogether, Eqs. 6 to 17 form a non-linear prob-
lem that we solve iteratively (see more detail in Supplementary
Information SIF. ), after having prescribed compatible initial and
boundary conditions.

To that end, we impose a constant discharge hematocrit at the
network inlet, typically ranging from 0.035 to 0.155, which cor-
responds to the experimental values, and consider the network to
be initially filled with suspending fluid (Hd,i j = 0). We also pre-
scribe a constant pressure drop DP between the network inlet and
outlet. We point out that, for shear rates (estimated by VRBC/W)
typically above 50s

�1, the apparent viscosities do neither depend
on the shear rate61,67 nor, as a result, on the pressure drop, so
that blood flow rates in individual channels linearly depend on
the channel pressure drop (Eq. 8 ). In addition, discharge hema-
tocrits only depends on the ratio of blood flow rates (Eqs. 12 to
14). Thus, the solution of the blood flow problem depends lin-
early on DP and the flow rates (or velocities) normalized by the
flow rate (or velocity) in the inlet channel, as displayed in Fig. 3b,
do not depend on DP.

6.2.2 Square networks

The square networks presented in Fig. 10 are similar in all aspects
to hexagonal networks except that most of their vertices are con-
nected to four neighbours instead of three and that their single
inlet and outlet are located in lower-left and upper-right corners,
respectively.

This makes it necessary to modify the description of the phase
separation effect at diverging bifurcations. For the case of a
four-connected diverging bifurcation in a generic square network,
there are two possible configurations: 1/two feeding vessels and
two daughter vessels, or 2/, one feeding vessel and three daugh-
ter vessels. Here, since the network inlet and outlet are located at
opposite corners, only the first configuration can occur, due to the
topology of the baseline flow problem at hand (similar to Fig. 9a)
and because we focus on low discharge hematocrits regimes for
which RBC have a small effect on the effective viscosity. In this
case, we consider the two entry vessels {i, j} and {i,k} as a single
equivalent entry vessel, with the following diameter, blood flow
rate and discharge hematocrit

de =
q

d
2
h,i j

+d
2
h,ik, (18)

Qe = |Qi j|+ |Qik|, (19)

Hd,e =
�
Hd,i j|Qi j|+Hd,ik|Qik|

�
/Qe. (20)

We then solve equations 12 to 17 using these effective quantities,
and deduce the discharge hematocrit in daughter vessels a and
b .

6.2.3 Sensitivity analysis

The equivalent fluid model described above makes fast computa-
tions of the RBC distribution at network-scale possible. Thus, it
makes it possible to evaluate the influence of the phase separation

effect occurring at each diverging bifurcation on the discharge
hematocrit of each vessel by computing the total Sobol indices68.
For that purpose, we first arbitrarily label a one of the daughter
branches of each bifurcation. We then rewrite equation 12 and 13
considering, for each divergent bifurcation, FQa

E
as an indepen-

dent random variable following a uniform distribution between 0
and 1. We then use the JansenSensitivityAlgorithm embedded in
the Python library OpenTurns69 to sample the combined random
distributions ⇠ 106 times and to solve for the associated blood
flow problems (Eqs. 6 to 13) in the network.

6.3 Modeling and simulations: discrete red blood cell model

In this section, we present the model used in Fig. 10a. This
model can be seen as an alternative to the continuous blood flow
model presented in section 6.2.1, that still relies on a network
approach while treating the RBCs as discrete particles. Initially
developped by Schmid-Schönbein et al.17 and later improved
by Obrist et al.24 and Schmid at al.25, this model tracks indi-
vidual RBCs throughout networks of very narrow microchannels
(z ' 5microns) assuming single file flow. The velocity of each
RBC in a given channel {i, j} is supposed to be constant so that

VRBC,i j = qi jVi j, (21)

where VRBC,i j represents the RBC velocities, Vi j is the blood aver-
age velocity and 1  qi j  2 is a parameter which is taken equal
to one by Obrist et al.24 but is defined here as

qi j =
Ht,i j

Hd,i j

, (22)

in order to explicitly take the Fåhraeus effect into account, as
parametrized by equation 5. The blood velocity in each vessel is
deduced using Eq. 8, with an additional resistance to flow pro-
portional to the number of RBCs in each channel, yielding

µeff,i j = µp

�
1+bi jHt,i j

�
, (23)

where bi j represents an apparent intrinsic viscosity of individual
RBCs, and is left as a free parameter to explore the effect of flow-
RBC interactions on the distribution of RBCs. For the phase sep-
aration at bifurcations, following Obrist et al.24, we assume that
RBCs always favor the daughter vessel with the highest flow rate,
i.e. corresponding to the asymptotic behavior of phase separation
(Eqs. 14 to 17) in very narrow channels61.
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Supplementary Information for: A few upstream bifur-
cations drive the spatial distribution of red blood cells in
model microfluidic networks

Adlan Merlo,‡ Maxime Berg,‡ Paul Duru, Frédéric Risso, Yohan Davit, and Sylvie Lorthois

SIA. Supplementary results: Multiple equilib-
ria in microvascular networks
The problem formed by Eqs. 6-17 is non-linear and may therefore
have several equilibrium solutions. Karst et al. showed, using
continuation methods, that for blood flow in 2D Voronoi-like net-
works, the number of equilibria was an increasing function of the
inlet tube hematocrit, although they noted that such equilibria
were lying close to each other1. However, they used a customized
phase separation relationship along with the expression for the ef-
fective viscosity of the blood deduced from in vivo experiments.
In particular, the latter induces a much stronger feedback of the
RBC on the flow compared to the in vitro expression used in this
work, and this feedback is a key in the emergence of multiple
equilibria.

Given the low inlet tube hematocrit considered (H
i
t = 0.035)

and the weak feedback of the RBC on the flow (see Fig. 3b),
we suspect that the discrepancies between experiments and sim-
ulations highlighted in Fig. 3a cannot come from our numerical
method converging towards to a wrong solution. Still, we tried,
using the numerical method presented in Section SID (Eqs. SI.4
to SI.8) to trigger different equilibrium solutions in the hexagonal
network. To do so, we introduced a relaxation factor 0 < g  1 so
that

H
n+1
d,i j

= gH
s

d,i j
+(1� g)Hn

d,i j
, (SI.1)

where H
s

d
represents the solution of the system formed by equa-

tions SI.4 and SI.8. This relaxation factor is a free parameter and
allows us to control the convergence of the numerical method. We
then solved the blood flow problem for an increasing inlet tube
hematocrit (from Ht,inlet = 0 to Ht,inlet = 0.9). For each value of the
inlet tube hematocrit and for an increasing relaxation parameter
value (from g = 0.01 to g = 1), we solved the blood flow problem
starting from the same 20 initial tube hematocrit distributions.
We constructed each one of these initial tube hematocrit distri-
butions by sampling the hematocrit of each segment (excluding
inlets) from a uniform distribution so that Ht,initial ⇠U (0,1). Such

Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS,
Toulouse, France
‡ These authors contributed equally to this work

a screening procedure can be seen as a very crude numerical con-
tinuation method2.

To make sure that this screening procedure was capable of cap-
turing different equilibria, we applied it first in ladder-like net-
works (Figure SI1), similar in topology to the hexagonal network
depicted in Figure 2, but with an increased number of inlets and
outlets. These networks were prescribed with uniform tube hema-
tocrit at the inlets (red segments in Fig. SI1a) and uniform pres-
sure drops between inlets and outlets (blue lines in Figure SI1a).
Given their geometries and the boundary conditions prescribed,
such networks always exhibit at least one trivial equilibrium re-
gardless of the inlet tube hematocrit, which is no flow in hor-
izontal segments and uniform flow and tube hematocrit in the
vertical segments. Figure SI1b, which displays the tube hema-
tocrit in the horizontal segment highlighted by a black arrow
in Fig. SI1a, shows that in ladder networks, beyond a certain
inlet tube hematocrit, this trivial equilibrium becomes unstable
and more equilibria start to emerge. We note that this thresh-
old is a decreasing function of the network size so that the trivial
equilibrium, in large network, starts to destabilize for lower ini-
tial tube hematocrits. For ladder networks with the same size as
the hexagonal network, we found that this threshold lies around
Ht,inlet ⇡ 0.8± 0.05, which is considerably larger than the range
of inlet tube hematocrit explored experimentally in this work. Fi-
nally, we note that similar destabilizations were already obtained
using a Wheatstone bridge-like network, with even the emer-
gence of oscillations3. This shows that our screening procedure
was able to capture, to some extent, different equilibria.

We repeated this procedure on the hexagonal network and the
method did not converge towards more than one equilibrium, re-
gardless of the inlet tube hematocrit considered. This does not
definitely rule out the existence of several equilibria associated
with the hexagonal network at low inlet tube hematocrit, how-
ever it strongly suggests that if they exist, such solutions are likely
to be very close to each other and therefore cannot explain the dif-
ference observed between experiments and simulations in Fig. 3a.

SIB. Supplementary results: Tissue Fåhraeus
effect
The tissue Fåhraeus effect (T FE) denotes a reduction of the vol-
ume fraction of RBCs in the whole network by comparison to its
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Figure SI1 Multiple equilibria in a ladder network (W = 10µm). (a) Ladder network with inlets highlighted in red and outlets in blue. (b) Tube
hematocrit in the purple horizontal segment highlighted by the black arrow in (a) as a function of inlet hematocrit.

discharge hematocrit (defined as the ratio between the RBC flow
and the total flow)4,5:

T FE =
VRBC

V

1
H

i

d

=
VRBC

V

Q
i

RBC

Qi
,

where VRBC is the total volume of RBCs within the network
(VRBC = Âk Ht,kpLkr

2
k
), V is the total volume of the network

(V =Âk pLkr
2
k
) and H

i

d
, Q

i

RBC
and Q

i are the discharge hematocrit,
the flow rate of RBCs and the total flow rate at the network in-
let, respectively. It is analogous to the Fåhraeus effect, {i.e.}, the
reduction of the hematocrit within a single segment (tube hemat-
ocrit) by comparison to the discharge hematocrit (FEk = Ht,k/Hd,k).
The latter results from the correlation between hematocrit and
velocity within a single vessel cross-section4,6, which can be ev-
idenced by rewriting the Fåhraeus effect as the ratio between
the RBC average transit time and the total average transit time
throughout this vessel. Similarly, the tissue Fåhraeus effect can
be expressed as the ratio between the RBC average travel time
and the total average travel time throughout the network, and
thus results from the correlation between high velocity and high
hematocrit vessels.

Fig. SI2 displays the tube hematocrit as a function of RBC veloc-
ity in each channel of the hexagonal network, as predicted by the
equivalent fluid network model, without correcting phase sepa-
ration at order-1 bifurcations (red circles) and after correcting
phase separation at order-1 bifurcations, as described in Sections
2.4 and 2.5. Except for the channels with the highest velocities
(i.e. inlet channel and daughter channels of the order-0 bifurca-
tion), where it does not change the tube hematocrit, this correc-
tion increases the tube hematocrit in all channels with a normal-
ized velocity larger than ⇠ 0.2 and decreases the tube hematocrit
in all channels with a normalized velocity larger than ⇠ 0.05, thus
increasing the correlation between high velocity and high hema-
tocrit channels. This results in a ⇠ 10% reduction of the value of
T FE, corresponding to an increase of the tissue Fåhraeus effect.

SIC. Supplementary Results: RBC distribution
in the hexagonal network with narrow chan-
nels
Experiments in such networks are extremely difficult to perform
because RBCs quickly clog some channels despite the treatment
of our microfluidic devices with BSA to reduce RBC adhesion at
walls. This prevented from getting stable flow fields and RBC
distributions over sufficient periods of time to extract quantita-
tive measures of both the flow rate and hematocrit throughout
the network. However, because the strong confinement induces
a fast relaxation of RBCs toward the channel center at each bi-
furcation, the RBC distribution can be deduced using the equiv-
alent fluid model described in Section 6.2. Figure SI3 shows the
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Figure SI2 Tube hematocrit as a function of red blood cell velocity in
each segment of the hexagonal network, as predicted by the equivalent
fluid network model, with (red dots) and without (red circles) correcting
phase separation at order-1 bifurcations as described in Sections 2.4 and
2.5 (W = 10µm and H

i
t
=). For each scenario, the value of the tissue

Fåhraeus effect is given in the legend.
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corresponding simulated RBC distribution. Once again, the cen-
tral region of the network is favored even if the heterogeneity at
large scale is reduced compared to the simulation for large chan-
nels (see Fig. 7b for comparison). This same phenomenon arises
when increasing the inlet tube hematocrit in the network with
larger channels (simulations not shown).

Figure SI3 Distribution of simulated tube hematocrit in a hexagonal
network made of 5µm-wide channels with H

i
t
= 0.035.

SID. Supplementary results: Structure of the
baseline flow field in hexagonal and square
networks
For flow in networks with channels of equal sizes, the structure of
the baseline flow field can generally be inferred from the length of
the flow pathways that connect the network inlet and outlet. For
imposed inlet and outlet pressures, it is obvious that the pressure
drop per unit length along a given pathway is inversely propor-
tional to the length of this pathway, so that higher flow rates are
expected on shorter pathways.

In the hexagonal network, the length of flow pathways that
connect the network inlet and outlet is much shorter for path-
ways visiting the network center (see e.g. blue line in Fig. SI4,
left panel), while they are longer for pathways visiting the net-
work periphery (see e.g. orange trajectory in Fig. SI4, left panel).
Thus, the pressure drop by unit length is smaller in the periph-
eral pathways compared to the central one, resulting in a smaller
flow rate in branch b compared to branch a. Consistently, solving
for the baseline flow field in this network yields Q

b

Qa = 0.5803 so
that lcenter

lperiphery

= 11/19 = 0.5789 provides a good approximation for
this flow ratio. A similar result would of course be obtained in a
square network with a single inlet and outlet located in the center
of opposite sides.

In the square network, however, the length of the peripheral
pathways is equal to the length of the central ones (see e.g. or-
ange vs. blue trajectory in Fig. SI4, right panel). As a result, the
above rough approximation yields Q

b

Qa = 1/2, making it impossi-
ble to predict the branch with the highest flow. To go further, let

consider the formal analogy between :
- the baseline pressure field in the square network, i.e. the solu-

tion of Eqs. 6 and 8 with uniform effective viscosity and imposed
pressures (Pi = 1 and Po = 0) at the inlet and outlet , respectively

- and the solution of the Laplace equation discretized with a
finite-difference scheme over a square region with the follow-
ing boundary conditions: imposed pressures at the lower-left and
upper-right corner, and Neumann boundary-conditions (~—P.~n= 0)
everywhere else on the boundary.

Because isopressures and streamlines of the later are orthog-
onal to each other, we can deduce that isopressures are locally
orthogonal to the domain boundaries, which are evident stream-
lines. Thus, the concavity of isopressures (P � 0.5) must be ori-
ented toward the lower left corner, as schematized by the red
dotted line in the right panel of Fig. SI4, and the concavity of
isopressures (P  0.5) must be oriented toward the upper right
corner*. This yields a higher pressure drop, resulting in a larger
flow rate, in branch b than in branch a.

SIE. Supplementary methods: Experiments
We compute the optical density profile OD(x) from the time-
averaged grey-scale intensity profile I(x) as follows7–11:

OD(x) =�log10

 
I(x)

I0(x)

!
, (SI.2)

where I0(x) is a reference intensity profile. Following Sherwood
et al.9, we assume that I0(x) is constant and equal to the grey-
scale value in the PDMS far from any channel, as illustrated in Fig.
SI3a. This is a reasonable approximation except in the close vicin-
ity of the channel walls (see line transverse to the channel axis,
where the channel is devoid of RBCs, highlighted in Fig. SI3a).
Channel walls result in strong fluctuations of the intensity, with
two bright stripes located outside the channel walls, resulting in
peaks of high intensity as shown in Fig. SI3b. We assume these
peaks are at equal distance to the channel center, and then de-
termine the channel wall locations by translation (±W/2). More-
over, we discard the optical signatures of these channels walls,
which appear in the time-averaged grey-scale intensity image
(Fig. SI3c) and in the optical density profile, as shown by dot-
ted lines in Fig. SI3d. More precisely, starting from the channel
center, we only keep the positive optical density values, as in the
left hand side of the channel, or the values encountered before
the first local minimum, as in the right hand side of the channels.
The hematocrit profile is then estimated as follows (Fig. SI3e):
in the central region, it is deduced by calibration from the Opti-
cal Density value (see below); on the side where negative values
of the Optical Density have been discarded, it is assumed to be
null, on the side where a local minimum has been reached, it is
inferred from the optical density profile by linear extrapolation.

We calibrated the relationship between the local optical den-
sity and the local depth-averaged hematocrit by using Leja slides
(Leja Products B.V.). These are manufactured Hele-Shaw cells

* resulting in the isopressure line (P = 0.5) being the upper-left to lower-right diago-
nal.
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Figure SI4 Examples of central (blue) and peripheral (orange) trajectories in the hexagonal (left) and square (right) configuration. Consistent with
the notations used in the manuscript, a denotes the daughter branch of order-1 bifurcations located on the same side than the previous, order-0,
bifurcation apex. The red dotted line schematizes the isopressure line corresponding to a downstream vertex.
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Figure SI5 Experimental determination of hematocrit profiles in channels with square cross-sections of 10⇥10µm
2. a: Instantaneous snapshot showing

a typical area used for estimating the average background intensity I0 and a line transverse to the channel axis, where the channel is devoid of RBCs.
Labels 1, 3 and 5 highlight the bright stripes induced by channel walls and labels 2 and 4 highlight the dark stripes; b: Instantaneous intensity profile
(Arbitrary Units) associated to the transverse line highlighted in Panel a. The two outermost peaks (grey continuous lines) correspond to stripes 1
and 5 in Panel a, and are assumed to be at equal distance to the channel center (dashed line). Locations of the channel walls (black continuous lines)
are deduced from the channel center by translation (±W/2); c: Intensity I averaged over 3 seconds, keeping one of ten snapshots to avoid considering
the same RBC multiple times at the same location. d. Optical Density (blue) profile on the same line as in Panel b, estimated as Log(I/I0). Dashed
lines highlight the locations where the Optical Density is perturbed by the vessel walls, while the continuous line highlights the locations where we
consider it is proportional to the hematocrit, according to the calibration displayed in Fig. SI4; e. Hematocrit, directly obtained from the measured
Optical Density and the calibration curve shown in Fig. SI6 (continuous line) or inferred by linear interpolation and replacement of negative values by
zero (dashed line).
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with finely controlled depths (10 or 20µm) and much larger length
and width (⇠ 2cm). We filled each slide extremely slowly with a
small volume of RBC suspension of known feed hematocrit, so
as to reduce as much as possible local hematocrit heterogeneities
within the slide, while ensuring it contained the whole injected
volume. In that way, the local hematocrit is everywhere equal
to the feed hematocrit, which enables precise calibration of the
optical density, even for suspensions where RBCs are not individ-
ually discernible. As expected from Beer-Lambert law, the slope
of the linear regressions obtained for moderate hematocrit val-
ues in 20µm Leja slides is twice the slope obtained in 10µm Leja
slides. Also, the results obtained in the present work match those
obtained previously in 20µm-side channels with the same imag-
ing system, in the limit of small hematocrits, which validates the
calibration method.

Finally, we derive the tube hematocrit Ht associated to each mi-
crochannel by averaging H(x) over the channel width W at a lon-
gitudinal position in the channel where the RBC velocity profile
is neither influenced by the previous nor by the next bifurcation
(z = 45µm):

Ht =


1

W

Z
W/2

�W/2
H(x)dx

�

z=45µm
. (SI.3)

Figure SI6 Calibration of optical density from local depth-averaged
hematocrit. Filled symbols: mean and standard deviation for 3 exper-
iments in Leja Slides. Red circles: 10µm depth; Blue squares: 20µm

depth. Empty triangles: data obtained by Roman et al. 10 in 20µm side
channels for small hematocrits, which can be measured by individually
counting the RBCs. Lines: linear regressions for H from 0 to 0.3 (10µm

depth) or 0 to 0.15 (20µm depth).

SIF. Supplementary methods: Numerical solv-
ing of the blood flow problem
The blood flow model is defined by Eqs. 6-17 and represents a
coupled non-linear problem that we solve iteratively. Each iter-
ation is divided into two steps. First, we solve the linear system
formed by Eqs. 6 and 8-11, which yields the pressure and total
flow rate, using the discharge hematocrit obtained at the previ-

ous iteration, so that

Â
j

Q
n+1
i j

= 0, (SI.4)

Q
n+1
i j

=
pd

4
h,i j

128µeff,i j(H
n

d,i j
)Li j

⇣
P

n+1
i

�P
n+1
j

⌘
, (SI.5)

where n + 1 represents the current iteration, n the previous it-
eration and where µeff,i j(H

n

d,i j
) highlights the dependency of the

effective viscosity upon the unknowns of the problem. We then
use the flow rate solution of the above two equations, to solve
Eqs. 7, 12 and 13, which yields the discharge hematocrit so that

Â
j

H
n+1
d,i j

Q
n+1
i j

= 0, (SI.6)

at all bifurcations and

H
n+1
d,a =

FQ
a
E
(Hn

d,e,FQ
a,n+1
B

)

FQ
a,n+1
B

H
n+1
d,e , (SI.7)

H
n+1
d,b =

1�FQ
a
E
(Hn

d,e,FQ
a,n+1
B

)

1�FQ
a,n+1
B

H
n+1
d,e , (SI.8)

at each diverging bifurcations. We recall that FQ
a,n+1
B

=
���Q

n+1
a

Qn+1
e

���

and that FQ
a
E
(Hn

d,e,FQ
a,n+1
B

) is described by Eq. 14. We note that
FQ

a
E

uses the discharge hematocrit values at the previous iter-
ation (H

n

d,e), so that Eqs. SI.6 to SI.8 also form a linear system
straightforward to solve. This two-step method is justified since
RBCs have a relatively weak feedback on the flow (i.e. ∂ µeff,i j

∂Hd,i j

is small), especially in the regime of small discharge hematocrit,
which is the focus of this work, so that equation SI.5 can be lin-
earized and truncated around H

n

d,i j
.
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