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Abstract: The fungal cell wall occupies a central place in the interaction between fungi and their
environment. This study focuses on the role of the putative polysaccharide synthase Cps1 in the
physiology, development and virulence of the grey mold-causing agent Botrytis cinerea. Deletion
of the Bccps1 gene does not affect the germination of the conidia (asexual spores) or the early
mycelial development, but it perturbs hyphal expansion after 24 h, revealing a two-phase hyphal
development that has not been reported so far. It causes a severe reduction of mycelial growth in a
solid medium and modifies hyphal aggregation into pellets in liquid cultures. It strongly impairs
plant penetration, plant colonization and the formation of sclerotia (survival structures). Loss of
the BcCps1 protein associates with a decrease in glucans and glycoproteins in the fungus cell wall
and the up-accumulation of 132 proteins in the mutant’s exoproteome, among which are fungal cell
wall enzymes. This is accompanied by an increased fragility of the mutant mycelium, an increased
sensitivity to some environmental stresses and a reduced adhesion to plant surface. Taken together,
the results support a significant role of Cps1 in the cell wall biology of B. cinerea.

Keywords: glycosyl-transferase; Botrytis; fungal cell wall; adhesion; secretomics

1. Introduction

Fungi are organisms that exhibit a saprophytic, symbiotic or parasitic lifestyle. In
all cases, they undergo many biotic and abiotic stresses and interactions during their
development. At the interface with their environment lies the fungal cell wall (FCW), a
structure that plays a critical role in cell protection and in interaction with other organisms.
The FCW is mainly (90%) composed of polysaccharides that are synthesized by membrane
proteins of the glycosyltransferases (GTs) family [1,2]. Through cross-linking reactions by
specific glycosylhydrolases, the polysaccharides form a matrix to which both GPI-anchored
and secreted glycosylated proteins (O- or N-linked mannan or galactomannans) can attach
to. These proteins carry important functions, such as signal transduction, adhesion, biofilm
formation or cell wall remodeling [3].

FCWs have been described since the late 1970s, but thorough characterizations have
only been performed in few species, such as Aspergillus fumigatus, Saccharomyces cerevisiae,
Candida albicans or Cryptococcus neoformans [4]. In these model organisms, new GT activities
(i.e., β-1,3-1,4-glucan synthase) and new structural descriptions continue to expand our
knowledge of this important fungal structure [5,6], but the cell wall composition and
function in other fungal species remain largely unknown.

The current model of cell wall polysaccharides biosynthesis in fungi proposes that it
occurs at the plasma membrane, in the apical regions where the mycelium expand and in
the distal regions where septa are built [7,8]. Among the 115 families of GTs inventoried in
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the carbohydrate active enzymes database (CAZy, http://www.cazy.org, August 2022 [9],
4 families group together enzymes able to produce polysaccharides: the GT2, GT5, GT48
and GH16 families. The polysaccharide synthases in these families are iterative enzymes
that catalyze the transfer of sugar residues to a carbohydrate acceptor from an activated
sugar-nucleotide donor [10]. By doing so they produce a nascent polysaccharide chain,
and their supposed localization at the plasma membrane would allow the extrusion and
extension of this chain into the FCW. The GT2 family contains the chitin synthases (CHS)
that produce chitin, a hallmark polymer of the fungi that plays a structural role in the
FCW [11]. The other fungal GT2s have received less attention so far.

In the plant pathogenic and necrotrophic models Botrytis cinerea, the FCW seems
to undergo some modifications at the early step of the infection process, when hyphae
develop into melanized infection cushions in which chitin appears to be modified into
chitosan [12,13]. As in other pathogenic species, the cell wall of B. cinerea is expected to
play an important role in virulence, and this is supported by (1) the discovery of inhibitors
of CHS activity that protect plants against it [14] and (2) genetic studies that revealed a
significant-to-essential role for CHS1, CHS3a, CHS6, and CHS7 in the development of B.
cinerea, or in its interaction with plants [15–20]. Whether the other GT2-encoding genes
would also play an important role in the biogenesis and/or remodeling of the FCW of this
fungus has not been investigated.

Here, the role of one GT2-encoding gene in the biology of B. cinerea was studied.
This gene is orthologous to the cps1/cpsA genes characterized in the basidiomycete C.
neoformans [21,22] and in the ascomycetes Neurospora crassa, A. nidulans, Zymoseptoria tritici,
Fusarium graminearum, Magnaporthe oryzae, A. fumigatus and F. verticilloides [23–30]. In all of
these fungi, the absence of cps1 has a significant impact on mycelial development, cell wall
content and resistance to stresses (Figure 1A). In the ascomycete fungi, the Cps1 protein
is proposed to participate in cell wall biosynthesis, cell growth and host interaction, but
its enzymatic function and its exact role have remained as elusive as its polysaccharide
product. Our results in B. cinerea reveal new roles of Cps1 in FCW composition and integrity,
hyphal growth, sclerotial development and mycelium adhesion to plant surface.
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that of the Cps1 protein family (Figure S1). Membrane (Mb), Oxydative (ox). (B) Predicted secondary
structure of BcCps1 inside a membrane (dotted line), showing the three TM helices, the catalytic and
W domains with the conserved amino-acids (capital letters) and the non-TM hydrophobic helix (M).
(C) Predicted 3D model of the B. cinerea BcCps1 protein within a lipid bilayer (blue and red tilted
circles). The structure was predicted using AlphaFold Monomer v2.0 and the 3D representation was
obtained using the OPM prediction tool (https://opm.phar.umich.edu/ppm_server2, 1 May 2022).
The TM helices and the non-TM hydrophobic helix are colored in pink. The other protein fragments
are colored following the AlphaFold confidence code (blue (high), yellow (medium), orange (low)).

2. Materials and Methods
2.1. Strains and Culture Conditions

Fungal strains: B. cinerea B05.10 [teleomorph Botryotinia fuckeliana (de Bary) [Whetzel]
and derived mutants. Bacterial strains: Escherichia coli One shot TOP10 (Thermofisher
Scientific, C404010) and Agrobacterium tumefaciens LBA1126.

E. coli was grown at 37 ◦C in an LB medium (1% bactopeptone, 0.5% yeast extract,
0.5% NaCl) supplemented with kanamycin (50 µg/mL) or chloramphenicol (25 µg/mL)).
A. tumefaciens was grown at 28 ◦C in an LB medium without NaCl and supplemented
with spectinomycin (100 mg/mL). B. cinerea was grown using 3 different media: (1) MS
(malt sporulation medium; 0.5% glucose, 2% malt extract, 0.1% bacto-peptone, 0.1% ca-
sein hydrolysate, 0.1% yeast extract, pH 5), (2) MSS (MS supplemented with saccharose
200 g/L (0.6 osmol/L)) and (3) MM2 (minimal medium, as described previously) [31].
Strains were always grown twice on MSS before use. The media used to transform B. cinerea
are described in Rolland [32] and were supplemented with hygromycin B (75 µg/mL) or
neomycin (75 µg/mL) to select the transformants. When needed, the MS medium was
supplemented with 0.6 M saccharose (0.6 osmol/L), 0.6 M sorbitol (0.6 osmol/L), 0.6 M KCl
(1.2 osmol/L), 0.02% SDS, 300 µg/mL Congo red and 56 mg/mL menadione. Fungal liquid
cultures (200 mL MS medium) were inoculated with 10 agar explants (4 mm diameter) and
agitated (130 rpm) for 48–72 h at 21 ◦C. Solid cultures were inoculated with 2 or 4 mm
agar explants.

2.2. Sclerotial Development, Conidiation and Germination Assays

Sclerotia were observed on MS plates inoculated with agar explants and incubated
for 15 days at 21 ◦C in darkness. Conidia were collected in PBS-tween 0.02% from MS
plates inoculated with 104 conidia, incubated in the dark at 21 ◦C for 3 days and then
under near-UV light (365 nm) for 7 days. They were filtered (100 µm) and numerated using
a Thoma cell. To assay germination, 104 conidia in 150 µL liquid MS were incubated at
21 ◦C in a 96-wells plate. During 20 h post-inoculation, images were collected every 30 min
under the microscope (×40), and conidia with germ tubes longer than 10 µm were scored
as germinated conidia.

2.3. Bioinformatic Analyses

To construct the fungal Cps1-like protein family, the Cps1 protein of C. neoformans
(CNAG_04320) was used as query in the Blastp program [33]. One hundred and fifty-seven
different proteomes available on EnsemblFungi (https://fungi.ensembl.org, 1 May 2022)
or on the NCBI website (https://blast.ncbi.nlm.nih.gov, 1 May 2022) were searched. Every
protein sequence with a significant blast hit and a sufficient coverage (>200 amino-acid)
was considered as a Cps1-like protein. Data from the similarity search were used to select
the species for the phylogenetic analyses: every Leotiomyceta species and 2–4 species for the
other taxonomic subphyla or classes were chosen. For the chosen species, every Cps1-like
protein was included. Amino-acid sequences were aligned using MAFFT with the L-INS-i
algorithm [34]. Regions suitable for phylogenetic inference were selected using BMGE [35].
Default settings were used for MAFFT and BMGE. Maximum likelihood (ML) trees were
constructed using PhyML (Guindon et al., 2010) using the following parameters: the LG
model with empirical amino-acid frequencies, an estimated proportion of invariable sites,
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subtree pruning and regrafting (SPR) and five random starting trees added to the standard
BioNJ starting tree. A dozen protein sequences likely to disturb the tree topology due to the
long branch attraction were excluded (undefined category in Table S2 and Figure S2). The
support for each node was estimated using non-parametric bootstraps, with 100 replicates.

The topology of the CPS1 protein was predicted using TOPCONS [36].

2.4. Plasmid Constructions and Quantitative Real Time PCR

A ∆Bccps1 deletion cassette was built following the Fungalbraid (GB) instructions [33].
Briefly, the Bccps1 5′ and 3′ flanking regions (FR, 1 kb each) were produced by PCR
using genomic DNA as template and primers containing the barcodes GGAG/AATG and
GCTT/CGCT, respectively. The amplicons were individually integrated in the pUPD2
plasmid, and the BsaI restriction site located in the 3′ FR was then modified by targeted
mutagenesis using IVA cloning [37]. Assemblage to the FB012 bio-brick containing a
hygromycin-resistance gene by GB reactions yielded the deletion cassette that was inserted
in the pDGB3α1 vector [38]. For compatibility issues with the A. tumefaciens LBA1126 strain,
the deletion cassette was then transferred to the P7 vector by IVA cloning. The Bccps1-C
complementation cassette was produced by the amplification of the Bccps1 CDS flanked by
its promoter (1.5 Kb) and terminator (1363 bp) regions. The amplicon was cloned using IVA
cloning and the PmeI restriction site downstream of the PoliC promoter into a P7 plasmid
containing the neomycin resistance gene nptII. All expected plasmids were verified by
restriction mapping and sequencing before introduction into the A. tumefaciens LBA1126
strain by transformation.

For quantitative reverse transcription PCR (RT-qPCR), DNA-free total RNA was ex-
tracted from lyophilized mycelium using the RNEasy Midi kit (Qiagen, Hilden, Germany)
and treated with DNAse using the TURBO DNA-free Kit (Thermofisher, Vilnus, Lituania).
1µg was then used to synthesize the first-strand cDNA with the SuperScript IV First-Strand
Synthesis System (Thermofisher, Vilnus, Lituania). RT-qPCR reactions were performed
in 96-well plates using ABI-7900 Applied Biosystems (Applied Biosystems, Waltham,
MA, USA), using PowerUp SYBR Green Master Mix (Applied Biosystems, Waltham, MA,
USA). Relative quantification was based on the 2(−∆∆C(T)) method using the actin (BcactA,
Bcin16g02020) [39], one elongation factor (Bcef1α, Bcin09g05760) and the pyruvate dehydro-
genase (Bcpda1, Bcin07g01890)-encoding genes as normalization internal controls. Three
independent biological replicates were analyzed. All primers used are listed in Table S1.

2.5. Fungal Transformation and Mutant Purification

B. cinerea was transformed through ATMT [32], except that frozen conidia (−80 ◦C,
20% glycerol in water) were used instead of fresh conidia. The transformants were tested
by PCR. Genetic purification of the deletion strain relied on single-spores isolation and
subcultures on solid MS medium plus hygromycin (75 µg/mL), followed by protoplasts
isolation and culture in liquid MSS plus hygromycin (70 µg/mL).

2.6. Southern Blot

Genomic DNA was extracted from B. cinerea using the DNeasy Plant Mini kit (Qiagen,
Hilden, Germany), and was digested by EcoRI-HF and PmeI (NEB, Rowley, MA, USA).
The 5′ flanking DNA region (720 bp) of the BcCps1 gene was used as a probe. This
DNA fragment was generated by PCR using the For-Cps1-RFG and 3′-southern-Cps1-RFG
primers (Table S1) and the DIG Probe Synthesis Kit (Roche, Mannheim, Germany). The
DNA profile produced by hybridization of the labelled probe was revealed by using the
DIG Luminescent Detection Kit (Roche, Mannheim, Germany).

2.7. Cell Wall Extracts Preparation

The protocol was adapted from [40,41]. Mycelia were collected from 72 h cultures
(10 explants in 200 mL of MS liquid, 21 ◦C, 110 rpm), lyophilized and blended 3 times for
30 s at 30 Hz (TissueLyser II, Qiagen, Hilden, Germany). The resulting cell powder was
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collected by centrifugation (4000 g for 10 min), washed 3 times in 30 mL PBS, suspended
in 30 mL PBS-1% SDS, boiled for 15 min, allowed to cool, and collected by centrifugation.
The cell wall extracts were washed twice in ice-cold PBS, once in cold water and finally
lyophilized and frozen (−80 ◦C).

2.8. Cell Wall Composition Analysis

Cell wall extracts (8 mg) in microtubes were vigorously and horizontally shaken in
1 mL NaOH 0.25 M (30 min). Following a 4-fold dilution in NaOH, 0.2 mg in 100 µL were
mixed in TPP plates with 250 µL aniline blue (0.5% in Tris-HCl 0.1 M, pH 9) or Congo
red (0.05% in H2O). After rotative agitation (1 h, 500 rpm) in the dark, the plates were
centrifuged (5 min, 3000 g) to pellet the cell walls and 250 µL of the supernatants were
discarded. Water (100 µL) was added, and the cell walls were suspended before fluorescence
recording (TECAN Infinite M1000, Ex/Em: 395/500 nm and 530/620 nm, plate cover
removed). Labelling with concavalin A-FITC (10 µg/mL, Sigma, Tokyo, Japan) required
incubation in Hepes buffer (10 mM pH 7) and 3 washes in water before fluorescence
recording (Exc/Em: 490/525 nm).

For enzymatic digestion of cell wall extacts, 5 mg of Lysing enzymes from Trichoderma
harzianum (Sigma, Tokyo, Japan) or 25 U of lichenase from Bacillus subtilis (Megazyme)
were dissolved in 300 µL of sodium acetate buffer (50 mM, pH 5) and, respectively, used to
digest 1 or 2 mg of cell wall extracts during 3 days at 37 ◦C. Colorimetric assays were used
to quantify the released N-acetyl-glucosamine residues or the reducing sugars [42,43].

2.9. Plant Infection and Adhesion Assays

French bean leaves (Phaseolus vulgaris var Saxa) were inoculated with 4 mm mycelial
explants or 7.5 µL of conidial suspensions (2 × 105 conidia, collected from MS cultures/mL
Gamborg B5 medium (Duchefa, The Netherlands) supplemented with 2% glucose). The
leaves were incubated at 21 ◦C under 80% relative humidity and dark-light
(16 h/8 h) conditions.

For adhesion assay, detached bean leaves were inoculated with 4 mm mycelial explants
following previous incubation conditions. At 24 hpi, leaves were agitated horizontally
in water (8 min, 110 rpm/min), and the detached explants were counted. Adhesion
in vitro was assayed in 96 well plates according to Feng et al. 2017 [29]. Conidia (2 × 103 in
250 µL MS) were incubated at 21 ◦C for 24 h. The medium was discarded and the mycelium
was washed 3 times with distilled water and stained for 20 min at room temperature with
130 µL of Crystal violet (0.01% in water). Following 3 washes with water, the mycelium was
dried at room temperature and destained with 130 µL acetic acid 30%. OD measurement at
560 nm quantified the cells attached to the wells.

2.10. Label-Free Quantitative Proteomics

Exoproteomes were prepared from 72 h cultures (10 explants in 200 mL of MS liq-
uid, 21 ◦C, 110 rpm). To discard possible fungal matrix polymers, the culture filtrates
(11 µM nylon membranes) were frozen in liquid nitrogen, left to thaw at 4 ◦C overnight
and centrifuged at 16,000× g for 15 min. The supernatants were mixed with 100% TCA
(15% vol/vol) and kept at 4 ◦C overnight. The protein precipitates were collected by cen-
trifugation (16,000× g, 15 min), washed twice in acetone and solubilized in 0.1 M Tris-HCl
pH 7, 0.1 M DTT, EDTA 5 mM, glycerol 10%, SDS 4% bromophenol blue 0.008%. Four
independent biological replicates were prepared.

Proteins (5 µg) were loaded onto a 10% acrylamide SDS-PAGE gel and visualized
by Colloidal Blue staining. Migration was stopped when samples had just entered the
resolving gel and the unresolved region of the gel was cut into only one segment. The
steps of sample preparation and protein digestion by trypsin were performed as previously
described [44]. NanoLC-MS/MS analysis were performed using an Ultimate 3000 RSLC
Nano-UPHLC system (Thermo Scientific, Waltham, MA, USA) coupled to a nanospray Or-
bitrap Fusion™ Lumos™ Tribrid™ Mass Spectrometer (Thermo Fisher Scientific, Waltham,
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MA, USA). Each peptide extract was loaded onto a 300 µm ID × 5 mm PepMap C18 pre-
column (Thermo Scientific, Waltham, MA, USA) at a flow rate of 10 µL/min. After a 3 min
desalting step, peptides were separated on a 50 cm EasySpray column (75 µm ID, 2 µm C18
beads, 100 Å pore size, ES903, Thermo Fisher Scientific, Waltham, MA, USA) with a 4–40%
linear gradient of solvent B (0.1% formic acid in 80% ACN) for 91 min. The separation
flow rate was set at 300 nL/min. The mass spectrometer operated in positive ion mode at a
1.9 kV needle voltage. Data were acquired using Xcalibur 4.4 software in a data-dependent
mode. MS scans (m/z 375–1500) were recorded at a resolution of R = 120,000 (m/z 200), a
standard AGC target and an injection time in automatic mode, followed by a top speed duty
cycle of up to 3 s for MS/MS acquisition. Precursor ions (2 to 7 charge states) were isolated
in the quadrupole with a mass window of 1.6 Th and fragmented with HCD@28% normal-
ized collision energy. MS/MS data was acquired in the Orbitrap cell with a resolution of
R = 30,000 (m/z 200), a standard AGC target and a maximum injection time in automatic
mode. Selected precursors were excluded for 60 s. Protein identification and label-free
quantification (LFQ) were performed in Proteome Discoverer 2.5. The MS Amanda 2.0,
Sequest HT and Mascot 2.5 algorithms were used for protein identification in batch mode
by searching against the ENSEMBL B. cinerea ASL83294v1 database (13,749 entries, release
53). Two missed enzyme cleavages were allowed for trypsin. Mass tolerances in MS and
MS/MS were set to 10 ppm and 0.02 DA. Oxidation (M) and acetylation (K) were searched
as dynamic modifications and carbamidomethylation (C) as static modification. Peptide
validation was performed using the Percolator algorithm and only “high confidence” pep-
tides were retained, corresponding to a 1% false discovery rate at peptide level [45]. Minora
feature detector node (LFQ) was used along with the feature mapper and precursor ions
quantifier. The quantification parameters were selected as follows: (1) unique peptides,
(2) precursor abundance based on intensity, (3) normalization mode: total peptide amount,
(4) protein abundance calculation: summed abundances, (5) protein ratio calculation: pair-
wise ratio based, (6) imputation mode: low-abundance resampling and (7) hypothesis
test: t-test (background based). Quantitative data were considered for master proteins,
quantified by a minimum of 2 unique peptides, a fold changes above 2 and an occurrence
in at least 3 of the 4 biological replicates. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the
dataset identifier PXD033590 [46].

2.11. Activities of Secreted Enzymes

Proteases, xylanases and laccases activities were measured in De Vallée et al. [47].
Supernatants from the 72 h cultures (10 explants in 200 mL of MS liquid, 21 ◦C, 110 rpm)
were used as enzyme samples. Acid protease activity was measured by incubating (24 h,
30 ◦C) the samples (150 µL) with 450 µL of 1% hemoglobin (Sigma, Tokyo, Japan), pH
3.5. Reactions were stopped with 25% trichloroacetic acid (400 µL). After centrifugation,
supernatants were mixed with 0.5 M NaOH (vol/vol) in UV microplates and optical
density was read at 280 nm. Xylanase and cellulase activities were recorded on a plate
reader TECAN infinite M1000 using the EnzChek-Ultra-xylanase assay kit (Thermofisher,
Vilnus, Lituania) and the cellulase assay kit (Abcam, Cambridge, UK), respectively. Laccase
activity was measured by incubating 10 µL of samples and 30 µL of ABTS as substrate
(Sigma, Tokyo, Japan) in 230 µL of 50 mM Na-acetate buffer, pH 4.0. Oxidation of ABTS
was recorded at 405 nm (Molecular Devices Spectramax-485) during 30 min at 30 ◦C. One
unit was defined as the amount of enzyme producing an increase of 0.01 OD unit per min.
Pectin methyl esterase (PME) and amylase activities were measured using plate assays
based on Lionetti [48]. 1.5% agarose in 100 mM NaCl was supplemented with 0.1% pectin
or 0.1% starch. Wells (5 mm) were punched, filled with samples (40 µL) and the plates
were incubated at 37 ◦C for 24 h. The PME activity was revealed by a dark red circle after
flooding of the pectoplates with 5 mL ruthenium red 0.05% (30 min at room temperature)
and several washes with water. Similarly, Lugol (20%) was used to reveal the amylase
activity as clear circular halos in the starch plates.
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3. Results
3.1. The Botrytis Cps-Encoding Genes

Cps proteins constitute a fungal family of type two glycosyltransferases (GT2, Figure 1A).
In the species from the Leotiomyceta order, this family is split into two paralog subfamilies,
Cps1 and Cps2, due to a gene duplication in their ancestor genome (Figure S1) [28]. A member
of the Cps1 subfamily was clearly identified in the 39 ascomycetous Leotiomyceta species
analyzed (Figure S2, Table S2). In contrast, 14 of these 39 species no longer carry a gene of the
Cps2 subfamily, including Sclerotinia sclerotorium and Blumeria graminis, the proximate species
of B. cinerea (Table S2), while the latter does carry a cps2 gene. Moreover, the amino-acid
sequences of the Cps2 proteins are less conserved than that of the Cps1 proteins, as shown by
their longer branches in the phylogenetic tree (Figure S1). In B. cinerea, the expression of Bccps1
(Bcin05g06910) has been detected during the germination of conidia [49] and during vegetative
growth in liquid cultures, as well as in solid cultures enriched in infection cushions, where it is
moderately (×2.7) increased [13]. On the other hand, the expression of Bccps2 (Bcin03g03750)
has never been observed in the transcriptomic analyses conducted so far. Together, the
difference in gene conservation and in gene expression suggests a likely functional role for
Bccps1 and a secondary or dispensable role for Bccps2. However, our attempt to isolate a
homocaryotic ∆Bccps1 mutant line was successful, whereas the isolation of a homocaryotic
∆Bccps2 mutant line resisted 10 rounds of single-conidia or protoplasts purification steps.
In the absence of a Bccps2 mutant line, this study focuses on the characterization of the
Bccps1 gene.

Cps1 proteins share a common topology of integral membrane protein with the con-
served catalytic GT2 domain located in the central region of the protein (Figure 1B). When
submitting the sequence of BcCps1 to the algorithm AlphaFold Monomer v2.0, a 3D
model of the protein was obtained (Figure 1C) that was very similar to the only two
other models available for Cps1, from the plant pathogen Z. tritici (https://alphafold.
com/entry/F9WWD1, 1 May 2022) and the human pathogen Cladophialophora carrionii
(https://alphafold.com/entry/A0A1C1CM71, 1 May 2022). These models highlight a
membrane anchoring of Cps1 through one N- and two C-terminal transmembrane (TM)
helices. The catalytic GT2 domain is positioned on the cytoplasmic face of the membrane,
as well as the C-terminal tail of the protein that contains the conserved W motif and ends
with a disordered region. Similarly to the situation in chitin synthases [11], one hydropho-
bic helix is predicted not to cross the membrane. The model proposes its longitudinal
orientation in the membrane (Figure 1C).

3.2. Deletion of the Bccps1 Gene and Localization of the BcCps1 Protein

A hygromycin B resistance cassette (Figure S3A) was introduced in B. cinerea via A.
tumefaciens-mediated transformation (ATMT) to replace the Bccps1 gene. The selected
transformants were heterocaryons. Based on the work of King et al. [28], homocaryons
were sought by isolating protoplasts prepared from these transformants in a rich liquid
medium supplemented with saccharose (an osmo-protective agent). After two successive
rounds of this purification process, PCR diagnostics and Southern blot analysis confirmed
the isolation of the expected ∆Bccps1 deletion strain by showing the absence of the parental
Bccps1 locus and the presence of the unique, expected DNA fragment corresponding to
the mutated locus (Figure S3). Subsequently, a complemented strain was obtained by an
ATMT-mediated random insertion of a DNA cassette carrying the Bccps1 gene (Figure S3D)
inside the genome of the deletion mutant.

To get a clue about the localization of the BcCps1 protein, transformed lines of B.
cinerea were constructed that carried a DNA cassette coding for a BcCps1 protein fused
to a green fluorescent protein (GFP, optimized for B. cinerea [50]). The GFP sequence was
inserted in 3 different positions of the BcCps1 sequence: (1) at the N-terminus, (2) after
the predicted N-ter TM helix and (3) at the C-terminus (Figure S4A). Unfortunately, a
fluorescent signal could only be detected in transformants producing BcCps1 fused to GFP
at the C-terminus, and this signal was intra-vacuolar (Figure S4B). Such labelling, identical

https://alphafold.com/entry/F9WWD1
https://alphafold.com/entry/F9WWD1
https://alphafold.com/entry/A0A1C1CM71
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to that reported for Cps1 in M. oryzae and in A. nidulans [24,29], suggests the cleavage of the
fusion protein while the absence of GFP signal in the other transformants suggests folding
issues not compatible with the production of the recombinant proteins.

3.3. Role of BcCps1 in Mycelial Growth

When the ∆Bccps1 mutant strain was inoculated on a rich solid medium, it grew
90% slower than the parental strain (Figure 2A), and a similar result (83% reduction) was
obtained on a minimal medium (data not shown). In a rich liquid medium, the ∆Bccps1
mutant produced 65% less biomass than the parental strain (Figure 2B), indicating a strong
growth impairment under these conditions as well, but less than on a solid medium.
Moreover, the liquid cultures revealed a small pellet phenotype in the mutant strain. In
comparison with the uniform spongy pellets produced by the explants of the parental strain
used to inoculate the medium, more numerous and smaller pellets were collected from the
development of the ∆Bccps1 explants that appeared smoother, denser and drier (Figure 2C).
These results indicate that BcCps1 plays an important role in vegetative growth. In the
complemented strain, the parental growth rate and biomass production were restored
(Figure 2), and this argued for the ∆Bccps1 mutation being solely responsible for the
observed growth phenotypes.
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Figure 2. BcCps1 is involved in mycelial growth. (A) Radial growth of the parental (B05.10), mutant
(∆Bccps1) and complemented (∆Bccps1-C) strains on a solid rich medium over time. (B) Growth of
the parental, mutant and complemented strains in a liquid rich medium. The biomass was weighed
at day 3. (C) Images of the mycelial pellets collected by filtration of the liquid cultures at day 3. Black
dots among the pellets are the funnel holes visible through the wet filter paper. Magnifications are
shown in black circles. Scale bar: 1 cm. Stars indicate significant differences (T-test bilateral; p < 0.01).

The difference in pellet size and number suggested an increased fragility of the mutant
hyphae that would result in mycelium-breaking events during growth under agitation
and the subsequent rise of satellite pellets. Interestingly, when the mutant hyphae grew
out of a droplet of liquid medium onto a plastic surface, frequent hyphal rupture events
were revealed by the leakage of the cell content at the breaking sites (Figure 3A). As to
the aspect of the ∆Bccps1 mycelial pellets, it was suggestive of a modified cell wall or
extra-cellular matrix and/or a modified mycelium development. In relation with this,
microscopy analysis of the mutant hyphae expanding from conidia on agar plates revealed
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no difference when compared with the parental strain during the first 24 h of growth, but a
hyperbranched mycelium latter on (Figure 3B). On a plastic surface, again no difference
could be observed in the first 24 h between the mutant and parental strains, but tufts of
ramifications (multibranching) at the margin of the nascent colony were then observed
in the mutant, and not in the parental, strain (Figure 3B). To better evaluate how these
changes in mycelium development over time could relate to the Bccps1 gene, the expression
of that gene was monitored in the parental strain at 24, 48 and 72 h of growth. As shown in
Figure 3C, a 10-fold increase in Bccps1 expression was recorded between 24 h and 48 h, and
this increased almost 5-fold more between 48 h and 72 h. Altogether, these results suggest
that the conidia of B. cinerea give rise to a mycelial colony through two phases, and that
Bccps1 plays a role in mycelium development and integrity during the second phase. In
the complemented strain, hyphal rupture events were not seen and the parental branching
pattern of the mycelium was restored.
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magnification. (B) Parental (B05.10) and mutant (∆Bccps1) hyphal development following conidia
germination (after 24 h) on a rich solid medium (Agar) and inside a droplet of rich medium on a
plastic surface (Plastic). Scale bar: 50 nm. (C) Expression kinetic of the Bccps1 gene (relative to the
expression of three reference genes (BcactA, Bcef1α and Bcpda1) in the parental strain grown for 72 h
in a rich liquid medium. Means and standard deviations were calculated based on three independent
experiments (n = 9).

3.4. Role of BcCps1 in Sclerotia Formation, in Conidiation and in Germination

Depending on the environmental conditions, the mycelia of B. cinerea can produce
resistant structures called sclerotia or conidiophores that generate asexual spores (conidia).
To explore the role that BcCps1 might play in these developmental processes, explants of
the parental and mutant strains were used to inoculate plates of rich medium that were
incubated in the dark for 2 weeks in order to favor the formation of sclerotia (Figure 4A). As
expected, the parental strain produced numerous white sclerotial initials that matured into
melanized (dark) and dry sclerotia at 12 to 15 days of culture. In comparison, the mutant
strain produced white and dense cotton-like masses that resembled the sclerotial precursors
produced by the parental strain at day 9, but these structures never turned into sclerotia,
even when the incubation time was prolonged (up to 4 weeks, data not shown). This
demonstrates that BcCps1 is involved in the process underlying sclerotial development,
and rather during maturation than during the first stages of their development.
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Figure 4. BcCps1 is involved in sclerotia and conidia formation. (A) Sclerotial development in the
parental (B05.10), mutant (∆Bccps1) and complemented (∆Bccps1-C) strains grown in darkness for
15 days. Dark sclerotia are visible at the surface of the parent mycelium covering the culture plate, while
the mutant colony produces white cotton-like masses. Magnifications of both structures are shown in
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rectangles. Scale bar: 0.5 cm. (B) Images of sporulating plates of the parental, mutant and com-
plemented strains grown under near-UV light. (C) Images (left) and counting (right) of the usual
apiculate (top left) and deformed (black frame) conidia produced by the parental, mutant and com-
plemented strains (Size bar = 10 µm). Means and standard deviations were calculated from three
independent experiments (n = 150). Stars indicate significant differences (T-test bilateral; p < 0.01).

A second set of plates was incubated under near-UV illumination to favor asexual
reproduction. In comparison with the parental colonies, the mutant mycelium produced
colonies with powdery patches (Figure 4B). Counting of the conidia recovered from these
plates showed no significant reduction in sporulation in the mutant strain, but microscopy
observations revealed that 43% of the mutant’s conidia were deformed, a proportion
13 times superior to that found in the parental sample (Figure 4C). This suggests that BcCps1
is involved in the process associated with asexual spore formation. By contrast, it does not
participate in the conidial germination process, as the counting of conidia producing a germ
tube showed no significant difference between the parental and mutant strains, including
the deformed conidia that also germinated (Figure S5). Lastly, in the mutant strain, only
microconidia were noticed alongside the collected conidia. In the complemented strain,
the aspect of the reproductive mycelium was fully restored (Figure 4B) and the default
in conidia formation was corrected by 60% (Figure 4C). On the other hand, the default in
sclerotia formation was not corrected (Figure 4A).

3.5. Role of BcCps1 in Cell Wall Integrity and Composition

The integrity of the ∆Bccps1 mutant cell wall was analyzed by growing the mutant
mycelium on solid media containing osmotic, oxidative or cell wall-stressing agents. When
compared to the parental strain, this revealed an 28% increased sensitivity of the mutant
strain to Congo red (Figure 5A), while a similar tolerance to hyperosmotic conditions (KCl),
to SDS and to menadione was recorded (Figure S6A). In parallel, the effect of osmoprotective
molecules such as sorbitol and saccharose on the growth of the mutant strain was explored.
Whereas these molecules had no effect on the growth of the parental or complemented
strains, they, respectively, showed a 151% and 188% positive effect on the growth of the
mutant mycelium (Figure 5B).

To gain information about the cell wall composition of the ∆Bccps1 mutant, miniatur-
ized fluorescent assays were developed to analyze cell wall extracts (Figure 5C). The first
marker to be selected was aniline blue for its known interaction with β-1,3 glucans [51].
Upon mixing with the mutant cell wall extracts, it generated a fluorescent signal that was
half (-48%) of the signal detected with the cell extracts of the parental strain. Concanavalin-
A was then selected for its established interaction with glycoproteins [52]. The interaction
of a fluorescent derivative (FITC) of this molecule with the mutant cell wall extracts pro-
duced a signal 37% less intense than the one produced with the parent counterpart. Finally,
Congo red was selected for its reported broader spectrum of interactants, namely chitin,
some glucans and amyloid proteins [53]. To this molecule the mutant cell wall extracts
interacted one-third less (−32%) than the control extracts. Since Congo red can interact
with chitin, this last result questioned a possible chitin content reduction in the mutant cell
wall. The fluorescent chitin marker calcofluor was therefore introduced in the miniaturized
assay [54], but its strong intrinsic fluorescence forced washing steps that caused too much
variation across the replicates to achieve consistent readings. As an alternative, the parent
and mutant cell wall extracts were treated with cell wall lysing enzymes and the release
of N-acetyl-glucosamine residues was quantified, showing no difference between the two
strains (Figure S6B). Lastly, the cell wall extracts were digested by a lichenase to detect the
putative presence of β-1,3-1,4 glucan in B. cinerea and to test the role suggested in N. crassa
for Cps1 in the biosynthesis of this polysaccharide [30]. Products of the enzyme reaction
were detected, arguing for the presence of this polymer in the cell wall of B. cinerea, but
no difference could be observed between the mutant and parental strains (Figure S6B).
Altogether, these results suggest a modified integrity and composition of the cell wall in the
mutant strain, with a decrease in β-1,3 glucans and glycoproteins contents and probably
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no change in chitin or β-1,3-1,4 glucan contents. Re-introduction of the Bccps1 gene in the
mutant strain partially restored its cell wall composition and integrity (Figure 5).

J. Fungi 2022, 8, x FOR PEER REVIEW 13 of 22 

Figure 5. BcCps1 is involved in cell wall integrity and influences cell wall composition. (A) Sensi-
tivity of mycelial growth to Congo red in the parental (B05.10), mutant (ΔBccps1) and complemented 
(ΔBccps1-C) strains. 100% corresponds to a radial growth of 2.2 cm per day. (B) Impact of 0.6 M 
saccharose (grey) and 0.6 M sorbitol (black) on the mycelial expansion of the B05.10, ΔBccps1 and 
ΔBccps1-C strains inoculated onto a rich medium (white). (C) Cell walls reactivity to anilin blue (β-
1,3-glucan marker), ConcavalinA-FITC (glycoproteins marker) and Congo red (marker of chitin, 
some glucans and amyloid proteins) in the parental, mutant and complemented strains. Means and 
standard deviations were calculated from three (A,B) or six (C) independent experiments (n = 9 
(A,B) or n = 17 (C)). Stars indicate significant differences (T-test bilateral; p < 0.01). 

3.6. Exoproteome Analysis of the ΔBccps1 Mutant Strain 
The exoproteome of the mutant strain was explored through a shotgun proteomic 

analysis and compared to that of the parental strain. Both strains were grown in liquid 
cultures under the same conditions used to prepare cell wall extracts. Four biological rep-
licates were prepared, and the proteins present in the supernatants were precipitated and 
subjected to mass spectrometry analysis. The proteins identified with a minimum of two 
unique peptides, an occurrence of at least three biological replicates out of four and a fold 

Figure 5. BcCps1 is involved in cell wall integrity and influences cell wall composition. (A) Sensitivity
of mycelial growth to Congo red in the parental (B05.10), mutant (∆Bccps1) and complemented
(∆Bccps1-C) strains. 100% corresponds to a radial growth of 2.2 cm per day. (B) Impact of 0.6 M
saccharose (grey) and 0.6 M sorbitol (black) on the mycelial expansion of the B05.10, ∆Bccps1 and
∆Bccps1-C strains inoculated onto a rich medium (white). (C) Cell walls reactivity to anilin blue
(β-1,3-glucan marker), ConcavalinA-FITC (glycoproteins marker) and Congo red (marker of chitin,
some glucans and amyloid proteins) in the parental, mutant and complemented strains. Means and
standard deviations were calculated from three (A,B) or six (C) independent experiments (n = 9 (A,B)
or n = 17 (C)). Stars indicate significant differences (T-test bilateral; p < 0.01).

3.6. Exoproteome Analysis of the ∆Bccps1 Mutant Strain

The exoproteome of the mutant strain was explored through a shotgun proteomic
analysis and compared to that of the parental strain. Both strains were grown in liquid
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cultures under the same conditions used to prepare cell wall extracts. Four biological
replicates were prepared, and the proteins present in the supernatants were precipitated and
subjected to mass spectrometry analysis. The proteins identified with a minimum of two
unique peptides, an occurrence of at least three biological replicates out of four and a fold
change above two between the two strains were retained for the comparative evaluation of
the effect of the mutation on the exoproteome. This resulted in the listing of 132 proteins
up-accumulated and 51 proteins down-accumulated in the mutant exoproteome when
compared with the parental counterpart (Table S3). Based on the predicted presence of
signal peptides (SP) [55] and TM, 157 of these proteins (85.8%) would be secreted through
the conventional secretory pathway. Further in silico analysis, including manually curated
B. cinerea protein lists [13], led to a functional classification for 140 of the 183 proteins
(Table S3). As shown in Figure 6A, the mutant exoproteome is characterized by the up-
accumulation of FCW proteins, of enzymes involved in metabolism and in oxidoreduction
and of proteases, cellulases and proteins related to nucleic acids metabolism. More detailed
analysis distinguished sub-categories of metabolic enzymes (related to lipids/sterols and
to phosphate) and sub-categories of FCW proteins (Figure 6B). The first FCW sub-category
relates to chitin and contains two chitinases and three chitin deacetylases. The second
sub-category relates to α glucan and contains three glycosyl hydrolases (family 71). The
third sub-category relates to β glucan and contains nine proteins, among which are BcGas5,
BcBgl2 and BcScw11. The last sub-category contains two glycoproteins and three proteins
involved in the cross linking of chitin and glucans, including the cell death-inducing protein
BcCrh1 [56]. The last proteins whose accumulation in the exoproteome were modified by
the ∆Bccps1 mutation were plant cuticle- and plant cell wall-degrading enzymes (PCWDE),
among which were pectinases, hemicellulases and amylases (Table S3). However, the
accumulation profile was mixed for these proteins, with some being up-accumulated and
others being down-accumulated (Figure 6A).

To complete these data, biochemical assays were performed to measure enzymatic
activities. The parental and mutant supernatants used to prepare the exoproteome sam-
ples were confronted to substrates specific of proteases, xylanases, laccases, amylases,
pectinase/pectin-methyl-esterases (PME) and cellulases. In consistence with the up-
accumulation of proteases in the mutant exoproteome, more proteolytic activity (200%) was
measured in the mutant secretome (Figure 6C). A reduced amylolytic activity (−95%) also
corroborated the down-accumulation of two amylases in this secretome (classified in Other
CAZy in Figure 6A). On the other hand, the mixed up- and down-accumulations of laccases
(three up, two down, classified in Oxidoreduction in Figure 6A), xylanases (three each) and
PMEs (one each) in the mutant exoproteome were associated with a 90%, 68% and 98%
reduction in laccase, xylanase and PME activity, respectively. Under our conditions, no
cellulase or pectinase activity was detected in either strain. Apart from the proteases, these
results revealed a weak enzymatic arsenal in the ∆Bccps1 secretome that was restored to
the parental level in the complemented strain (Figure S7).

3.7. Role of BcCps1 in the Interaction of B. cinerea with a Host Plant

To evaluate the impact of the Bccps1 deletion on the virulence of B. cinerea, both
mycelial explants and conidial suspensions were used to inoculate bean leaves. When
the experiment was performed with explants, the parental hyphae rapidly colonized the
plant tissues to produce clearly visible necrosis areas at 2 dpi (Figure 7A). At 4 dpi, the
leaves were half colonized. In the case of the mutant strain, small areas of necrosis could
be observed, but this was delayed by at least 2 days when compared with the parental
strain and showed no evolution with time (Figure 7A). In addition, 40% of the mutant’s
explants triggered no necrosis (Figure 7B) and 40% of the mutant’s explants were defective
in adhering to the leaf surface (Figure 7C). These results indicate that BcCps1 plays a role
in hyphal adhesion to a plant surface and in tissue invasion.
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tissues to produce clearly visible necrosis areas at 2 dpi (Figure 7A). At 4 dpi, the leaves 
were half colonized. In the case of the mutant strain, small areas of necrosis could be ob-
served, but this was delayed by at least 2 days when compared with the parental strain 
and showed no evolution with time (Figure 7A). In addition, 40% of the mutant’s explants 

Figure 6. BcCps1 influences the fungal exoproteome. (A) Comparative shotgun analysis of the pro-
teins present in the supernatants of 3-days liquid cultures of the parental and ∆Bccps1 mutant strains.
The proteins down- or up-accumulated in the mutant exoproteome are classified according to their
functional category (fold change ≥ two, occurrence ≥ three of four biological replicates, see Table S3).
CAZy, carbohydrate active enzymes; FCW, fungal cell wall; HP, hemicellulose pectin; HC, hemicel-
lulose cellulose. (B) Sub-categorization of the categories « FCW proteins » and « Metabolism » (see
Table S3). The down-accumulated proteins (green) are plotted as negative numbers. (C) Enzymatic
activities measured on the same supernatants used for the proteomic analysis (four replicates). The
results are shown as percentages of the parental strain values. PMEs; pectin methyl esterases. Means
and standard deviations were calculated from three independent experiments (n = 12). 100% activity
in the parental strain correspond to 0.41 OD280/mg dry mycelium (Proteases), 36 RFU/min.mg dry
mycelium (Xylanases), 7.9× 10−3 RFU/min.mg dry mycelium (Laccases), 2.35 cm/40 µL supernatant
(PMEs) and 2 cm/40 µL supernatant (Amylases).

When conidial suspensions were used in the infection assays, the mutant strain trig-
gered a visible plant reaction similar to that observed with the parental strain at 2 dpi.
However, the parental mycelium then colonized the leaves, while the mutant mycelium
did not (Figure 7D). This questioned the capacity of the mutant conidia at germinating on
the plant surface, the capacity of the mutant mycelium at adhering to this surface and/or
the capacity of the mutant mycelium at producing infection cushions. Microscopy analysis
at 2 dpi revealed that the mutant conidia had germinated and had produced mycelium at
the plant surface, even more so than the parental strain (Figure 7E). In parallel, adhesion
assays in vitro showed that the mycelium produced in 24 h by the conidia of the mutant
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strain was not affected in adherence. On the other hand, in 48 h of hyphal development on
either glass or plastic surfaces, this mycelium produced numerous hooks (precursors of in-
fection cushions (IC)), but rare ICs when compared with the parental mycelium (Figure 7F).
This suggests that BcCps1 plays a role in the development of ICs, and therefore in the
penetration step of plant infection. Re-introduction of the Bccps1 gene in the mutant strain
restored the capacity of the mycelium at adhering to bean leaves and at forming IC in vitro
(Figure 7C,F). It also restored the capacity of the fungus at colonizing leaves, albeit partially
(Figure 7A,D).
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Figure 7. BcCps1 is involved in virulence. (A) Infection of bean leaves by mycelial explants of the
parental (B05.10), mutant (∆Bccps1) and complemented (∆Bccps1-C) strains. Photos representative of
the symptoms development at 2-, 4- and 7-days post inoculation (dpi) are shown. (B) Counting of the
explants that succeeded at initiating infection. (C) Counting of the explants able to attach to the plant
surface. Means and standard deviations were calculated from three independent experiments (n = 9).
Stars indicate significant differences (T-test bilateral; p < 0.01). (D) With conidia. (E) Microscopy
images of leaves collected from (D) at 2 dpi and colored with cotton blue to visualize fungal hyphae.
(F) Development of infection cushions (large arrows) at 48 h of hyphal growth on plastic or glass
surfaces in the parental and complemented strains. Development of hooks (thin arrows) in the mutant
strain. Scale bars: 50 nm.
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4. Discussion

Cps1-encoding genes are present in a large number of fungal species of the phyla
Basidiomycota, Ascomycota, Mucoromycota, Zoopagomycota and ChitridiomycotA. However, no
ortholog has been detected in Cryptomycota or Blastocladiomycota and, even in the fungal
phyla where the gene is present, some species have presumably lost it. In ascomycetes,
this is for example the case for the Taphrinomycotina, the Saccharomycotina, the Pezizomycetes
and for some Orbiliomycetes species (Figure S2; Table S2) [28]. On the contrary, all studied
species of the Leotiomyceta order have at least one ortholog and sometimes more, due to
duplications. One such duplication occurred in the common ancestor of Leotiomyceta [28]
and gave rise to the Cps1 and the Cps2 paralog subfamilies (Figures S1 and S2). The
Cps1 subfamily is the most conserved, and its member in B. cinerea was functionally
characterized in this study. As in the other Cps1 proteins already studied in filamentous
ascomycetous fungi [22–30], the BcCps1 protein belongs to the glycosyl transferase type 2
polysaccharide synthase family (GT2) and is supposed to contribute to the biology of the
cell wall in B. cinerea.

4.1. BcCps1 Is Required for Normal Composition and Integrity of the Fungal Cell Wall

Fungal cell walls are all described as containing the well-known polysaccharides
chitin and β-1,3 glucan. In some species, the presence of other glucans has also been
demonstrated (β-1,6; α-1,3; mixed β-1,3/β-1,4) [57] while, in addition, yet unidentified
polysaccharides are expected. An important role attributed to some of these polymers
relates to the integrity of the cell wall and in the resistance of fungal cells to environmental
stress. Here, we showed that the deletion of the Bccps1 gene associates with cell rupture
events and the emptying of the cellular content when hyphae grow out of a medium droplet
onto a solid surface. We also showed that the ∆Bccps1 mutant strain produces numerous
satellite pellets in agitated liquid cultures, strongly suggesting hyphal fragmentation under
these conditions. Further analysis revealed an increased sensitivity of the ∆Bccps1 strain to
Congo red (cell wall stress) and a positive effect of saccharose, or sorbitol (osmoprotective
agents), on its growth in a rich solid medium. At the biochemical level, the mutant’s cell
wall is characterized by a reduction in β-1,3 glucan. Altogether, this indicates that the
BcCps1 protein is required for normal polysaccharidic composition and normal integrity
of the cell wall in B. cinerea. Of note, the absence of BcCps1 seems to affect neither the cell
sensitivity to hyperosmotic stress, nor the cell wall content in chitin or β-1,3-1,4 glucan
(lichenan). In consistence with various profiles of cell wall polysaccharides contents in cps1
mutants of N. crassa, A. nidulans and A. fumigatus (Figure 1), all polysaccharides of the B.
cinerea cell wall are therefore not disturbed in the absence of BcCps1. Concerning lichenan,
its presence has not yet been reported in the cell wall of B. cinerea to our knowledge, and
our results suggest that it is not produced by BcCps1. This contradicts the proposition
of Fu et al. [30] but it would be consistent with the fact that the ortholog of the lichenan
synthase identified in A. fumigatus is not Bccps1, but rather another gene (Bcin04g06040) in
B. cinerea [5].

Fungal cell walls also contain proteins. Many of them are glycoproteins, and some
are known to associate to β-1,3 glucan (Pir proteins) or to to β-1,6 glucan (GPI-anchored
proteins) [57,58]. In the cell walls of ∆cps1 mutants in A. nidulans and N. crassa, the amount
of glycoproteins is reduced (Figure 1). Furthermore, more proteins are detected in the
surrounding medium of the N. crassa ∆cps1 mutant [30]. Here, we showed that 132 proteins
up-accumulate in the exoproteome of the ∆Bccps1 mutant, while less glycoproteins (−37%)
are found in its cell wall. These data suggest that proteins may not incorporate properly
into the wall matrix in the absence of Cps1. Combined with the above-described changes
in the polysaccharidic composition of the FCW, this makes Cps1 a protein necessary for the
full construction of this structure.
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4.2. BcCps1 Is Involved in Hyphal Adherence and Reveals a Two-Phase Hyphal Growth on
Solid Surfaces

In all ascomycetous cps1 mutants studied so far, the radial growth of the colony is
impaired (Figure 1). In B. cinerea, not only this is confirmed, but the reduction is the strongest
(−90%) up to now reported. At the microscopic level, mutant conidia germinate normally
on a plastic or agar surface in vitro and give rise to a young mycelium that develops with
no apparent default during 24 h. Then, abnormal tufts of ramification (multibranching) or
hyperbranching events occur within the mycelium, and hyphal expansion drops drastically.
The deletion of the Bccps1 gene hence reveals that hyphal growth in B. cinerea seems
to proceed in two phases on a solid surface after conidia germination: one initial Cps1-
independent phase and one subsequent Cps1-dependent expansion phase. Interestingly,
an increased expression of Bccps1 was measured between 24 h, 48 h and 72 h of growth,
and this suggests that BcCps1 could play an important role in the unfolding of the second
phase of hyphal development in B. cinerea. As proposed by King et al. [28], Cps1 could
produce a cell wall (or extracellular matrix) polysaccharide necessary for hyphal growth on
solid matrices.

In A. nidulans and A. fumigatus, a decreased adherence capacity has been documented
in cps1 mutants (Figure 1). Interestingly, young mycelia produced in 24 h by conidia of
the ∆Bccps1 strain exhibited no adhesion default, while explants of the mutant mycelium
showed a 40% loss in adhesion to leaves (and also to plastic surfaces, data not shown). A
conserved role for Cps1 in mycelial adherence might therefore be considered. Cps1 could
produce a polysaccharide that directly participates in hyphal adherence, as established for
α-1,3 glucan and galactosaminogalactan [59,60].

The growth of the ∆Bccps1 mutant strain is also altered in liquid cultures, but less than
in solid media (−65%). Together with the reduced growth of the A. nidulans ∆cps1 mutant
in liquid cultures [27], this indicates that Cps1 also plays a role in hyphal development in
liquid environments. Furthermore, the liquid cultures revealed a small pellet phenotype
in the ∆Bccps1 mutant that corresponds to pellets more compact, smaller and smoother
than their parental counterparts. A similar phenotype is observed in the ∆cps1 mutant of
the rice pathogen M. oryzae [24], and this raises the possibility of a conserved function of
Cps1 during hyphal growth in liquids. Remarkably, a similar phenotype also characterizes
mutants of A. nidulans and A. oryzae affected in α-1,3 glucan and/or galactosaminogalactan
synthesis, the above-mentioned polysaccharides involved in surface adherence, but also
involved in hyphal aggregation (self-adhesion) in liquid cultures [60]. If the ∆cps1 mutation
caused a reduction or a mislocalization of these polymers in the FCW, this could explain the
adherence and aggregation defects documented in B. cinerea, A. nidulans, A. fumigatus and M.
oryzae. It could also be consistent with the strong up-regulation of the α-1,3 glucan synthase-
encoding gene in the ∆cps1 mutant of F. graminearum [28] as a compensatory mechanism.

4.3. BcCps1 Is Involved in Conidial and Sclerotial Differentiation

Under favorable conditions, including exposition to light, the life cycle of B. cinerea
ends with asexual reproduction and the dispersal of conidia propagating the fungus and
the disease. Alternatively, the mycelium can differentiate sclerotia for long-period survival
in soils and potential sexual reproduction. In the absence of Cps1, the production of conidia
is abolished in M. oryzae and reduced in N. crassa, as well as in A. nidulans and A. fumigatus
(Figure 1). Deletion of Bccps1 in B. cinerea does not impair the production of conidia, but it
increases the percentage of conidia with abnormal shapes. Considering that fungal cells are
mainly shaped by their cell wall, this could relate to the already discussed role of BcCps1
in cell wall composition/integrity.

Regarding the differentiation of sclerotia, BcCps1 plays a critical role, and it is notice-
able that its ortholog in N. crassa plays a crucial role in protoperithecia differentiation [30].
BcCps1 is not essential to the aggregation and tangling of the aerial hyphae that form the
sclerotial initials. It is not essential either to the subsequent hyphal growth and aggregation
that shape and enlarge the sclerotia. However, its absence stops the maturation process
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before the melanization and densification of the shell. The loss of laccase activity in the mu-
tant’s secretome could partly account for this, as these enzymes are potential candidates in
the melanization process [61]. Furthermore, due to the melanin granules being cross-linked
to the cell wall polysaccharides [62], the role of BcCps1 in the maturation of sclerotia may
again be linked to its role in the biology of the FCW.

4.4. BcCps1 Is Involved in Virulence

The loss of the BcCps1 protein associates with an incapacity of the ∆Bccps1 mutant
conidia at infecting plants. In this respect, our study cumulates with the previous studies of
fungal ∆cps1 mutants that report full or partial loss of virulence in five pathogenic species
(Figure 1). The mutant conidia germinate into a young mycelium at the plant surface,
but fail to initiate infection. This could be explained by the negative impact of the Bccps1
deletion on the production of infection cushions, organs involved in plant penetration
and necrosis [13]. By contrast, some ∆Bccps1 mycelial explants can trigger, although with
delay, small lesions of the plant tissues. Considering the growth defect of this mycelium,
its increased fragility and sensitivity, and its reduced secretion of PCWDE, this residual
capacity at resisting the defense of the host and at colonizing its tissues was unexpected.
The increased secretion of some proteases and oxidoreductases might account for this.

5. Conclusions

Our study of Bccps1 in B. cinerea identifies this gene as an important player in the
biology and life cycle of this pathogen. This gene being absent in plants, mammals and
insects makes the BcCps1 protein a putative target for grey mold disease control. Its absence
affects the FCW, and causes pleiotropic effects as a possible consequence. Identification of
the putative polysaccharide produced by this GT2 enzyme would now be of great interest.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jof8090899/s1, Table S1: primers used in this study. Table S2:
account of Cps1-like proteins in the species included in this study. Table S3: list of proteins detected in
the exoproteome of the ∆Bccps1 mutant compared with the parental strain B05.10 after growth in MS
liquid medium. For quantification, all unique peptides of an identified protein were included, and
the total cumulative abundance was calculated by summing the abundances of all peptides allocated
to the respective protein. ANOVA test was applied at the protein level. Four independent biological
experiments were conducted and analyzed.
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