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[1] It is known from in situ observations that large‐amplitude spatially localized Langmuir
waves are frequent in the solar wind, and usually correlated with the presence of
suprathermal electron beams, during type III events or close to the electron foreshock.
It seems that the influence of the solar wind density fluctuations on the propagation effects
of the Langmuir waves play an important role in the formation of these wave packets. In
this article, we focus on the mechanism of generation of localized wave packets by
electron beams propagating in an inhomogeneous medium. To this purpose, we present a
theoretical model based on the resolution of the high‐frequency component of the
Zakharov’s equation in which a source term describing the electron beam has been
introduced, and show that this model is able to reproduce classical results about beam
plasma instability and wave trapping in density cavities. Then we present simulation
results of the generation of Langmuir wave packets in typical solar wind conditions
at 1 A.U., and discuss the origin and nature of their localization.

Citation: Zaslavsky, A., A. S. Volokitin, V. V. Krasnoselskikh, M. Maksimovic, and S. D. Bale (2010), Spatial localization of
Langmuir waves generated from an electron beam propagating in an inhomogeneous plasma: Applications to the solar wind,
J. Geophys. Res., 115, A08103, doi:10.1029/2009JA014996.

1. Introduction

[2] The study of the beam‐plasma interaction in specific
solar wind conditions is a subject of great importance. It is
well known that the propagation of an electron beam in an
homogeneous plasma leads to the generation of Langmuir
waves, that are electrostatic waves oscillating at the plasma
frequency wp = (4pe2ne/me)

1/2, where ne is the plasma
electron density, e and me the electron charge and mass,
respectively [O’Neil et al., 1971; Matsiborko et al., 1972].
[3] Among several known situations of beam‐plasma

interaction in the terrestrial neighborhood, the solar type III
radio bursts are the most spectacular and studied examples
of the propagation of energetic electrons in the coronal and
interplanetary plasma. The scenario generally accepted for
explaining these radio emissions is the following: energetic
electrons are accelerated in the low corona during solar
flares, and propagate in the antisunward direction exciting
along their path Langmuir waves through beam‐plasma
instability. Then these electrostatic waves are partially
converted into electromagnetic waves that are observed by
earth based radio telescopes and spacecraft.

[4] Nevertheless, problems appear when quantitatively
considering this scenario. Firstly, a simple linear calculation
shows that for typical solar wind and beam parameters, the
energetic electrons should be rapidly thermalized and not
propagate to the observed distances (>1 A.U.) [Sturrock,
1964]. This problem is partially avoided considering the
effect of the velocity dispersion of the beam: the waves
generated by the particles at the head of the beam are
reabsorbed by the particles arriving later, limiting the kinetic
energy loss, as Zaitsev et al. [1972] showed it on analytical
basis, assuming that the dynamics of the beam and the
waves can be reproduced by the quasi‐linear system of
equations [Vedenov, 1967]. The question whether such
equations are relevant to the modeling of type III solar bursts
is still opened.
[5] The second point is related to the observed density

fluctuations of the solar wind. Indeed, measurements by the
ISEE spacecrafts [Celnikier et al., 1983, 1987] or by scin-
tillation observations [Coles and Harmon, 1978] show that
density fluctuations (the amplitude of which can reach
several percents of the solar wind density) are ubiquitous in
the interplanetary medium. The study of the beam‐plasma
instability in the presence of such fluctuations shows that the
diffusion of the waves by the density inhomogeneities
should prevent any instability [Nishikawa and Ryutov,
1976], as the waves should be scattered out of the reso-
nance with the beam on timescales smaller than the typical
exponential wave growth time. As a consequence, no
Langmuir waves, and then no radio signal should be
observed at all.

1Observatoire de Paris, LESIA, Meudon, France.
2IZMIRAN, Troistsk, Russia.
3LPCEE, CNRS, Orleans, France.
4SSL, University of California, Berkeley, California, USA.
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[6] To understand the observed wavefields, a theory of
wave “stochastic growth” has been developed [Robinson,
1992; Robinson et al., 1992], arguing that the waves can
only grow in specific spatial regions called clumps, in which
the geometry of the density fluctuations prevent the 3D
diffusion of the waves out of the resonance with the beam
(the direction of the density gradients should be in these
regions aligned with the direction of the beam generating the
waves, that is the direction of the magnetic field). In this
case the waves growth rate evolution in time can be modeled
as a random walk, and the distribution of the observed
waves amplitudes should be lognormal as a consequence of
the central limit theorem. This prediction fits well with the
observations for small‐amplitude waves [Cairns and
Robinson, 1999], with some slight differences with log-
normal distributions [Krasnoselskikh et al., 2007], and
reproduces the clumpy nature of the observed Langmuir
Waves.
[7] Recent in situ observations by the TDS mode of the

S/WAVES instrument equipping the STEREO spacecraft
[Bougeret et al., 2008] stimulated the theoretical investiga-
tion of these intense Langmuir waves (Figure 1 shows an
example of a Langmuir waveform measured by the TDS
instrument). The sampling time of this instrument is of
130 ms, allowing to capture a large number of full Langmuir
waveforms, that happened to be spatially localized on scales
of some hundreds of electron Debye lengths ld = vthe/wp.
Using these data, a study of the Langmuir wave decompo-
sition process into an ion sound wave and a daughter
Langmuir wave have been realized [Henri et al., 2009], and
a procedure to determine the solar wind plasma density
fluctuations at small scales has been developed [Kellogg
et al., 2009]. In the present work, we interest ourselves in
the formation of these localized wave packets. Ergun et al.
[2008] proposed that propagation effects of Langmuir waves
in the inhomogeneous solar wind plasma were at the basis of
the observed spatial localization, and showed, using the high‐
frequency component of Zakharov’s equations [Zakharov,
1972] as a propagation equation for the Langmuir waves,
that several waveforms could be interpreted as trapped
eigenmodes of parabolic density cavities.
[8] The purpose of this paper is to present a model of

wave‐particle interaction based on the spectral resolution of
the high‐frequency component of Zakharov’s equations in
which a term relative to beam particles has been added. As
exposed in the following, our approach enables to reproduce

the eigenmode structure of the electric field in the presence
of density fluctuations, and to study the interaction of this
field with a beam of charged particles.
[9] For reasons of simplicity and of numerical simulations

durations, we shall limit ourselves to the 1D case. This can
be justified by the observed wavefields that are mainly
linearly polarized along the magnetic field direction [Ergun
et al., 2008], and by the fact that as previously mentioned,
the wave growth is supposed to occur in clumps in which
the density gradients are aligned with the direction of
propagation of the beam, so that a 1D modeling of the wave
growth in such clumps seems reasonable.
[10] Let us finally note that the phenomenon that we study

in this work is related to nonlinear propagation effects of the
Langmuir waves, and is of a fundamentally different nature
to the self‐focusing of Langmuir waves, in which the pon-
deromotive force exerted by the localized electrostatic field
on the quasi‐neutral plasma plays a crucial role. We shall
here consider that the electrostatic energy of the waves is
always sufficiently small compared to the electron thermal
energy for the effect of the ponderomotive force to be
neglected, and do not consider the low‐frequency Zakharov’s
equation in the present model.
[11] In section 2, we present the analytical model that we

developed and which is numerically solved in the presented
simulations. Sections 3 and 4 are devoted to the validation
of this model: we expose results of numerical simulations of
classical plasma physics results (beam plasma instability in
an homogeneous plasma and Langmuir wave trapping in a
density cavity in sections 3 and 4, respectively) and show
that the numerical code provides results in quantitative
agreement with the plasma physics theory. Section 5 pre-
sents the results of beam‐plasma interaction in the presence
of gaussian and turbulent density profiles. Section 6 sum-
marizes the main results and concludes the article.

2. Presentation of the Model

[12] The model that we present is designed for the
description of the beam‐plasma interaction in a slightly
inhomogeneous plasma. In the solar wind, density fluctua-
tions dn/n of typical amplitude of ∼1% are ubiquitous. They
are thought to be generated by the solar wind fluid or MHD
turbulence. Here we are not interested by their origin or
stability, and shall just consider them through a given
function dn(x, t) of space and time. In this case, the propa-

Figure 1. Example of localized Langmuir wave packets measured by the TDS instrument on board
STEREO B, on 14 January 2007.
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gation of the Langmuir waves is described by the high‐
frequency component of the Zakharov’s equations [Zakharov,
1972], and their interaction with resonant particles can be
accurately treated using a spectral method that we expose in
this section.
[13] In our treatment, we neglect the electrostatic potential

associated with the plasma density inhomogeneities. This
potential is of the order of e�/kbTe ∼ dn/n ∼ 10−2, that is much
smaller than the potential of the Langmuir waves considered
in this article. Moreover, this potential does not influence the
dynamics of the electron beam, since it is not resonant with it
(the resonant velocity associated with the density inhomo-
geneity is the ion sound velocity cs ∼ (me/mi)

1/2vthe, which is
much smaller than the considered electron beam velocities).
[14] Let us finally note that the use of this method has

already given results in the frame of the study of the inter-
action between resonant particles and oblique waves in
homogeneous magnetized plasmas [Volokitin and Krafft,
2004; Zaslavsky et al., 2006].

2.1. Set of Equations

[15] To describe the interaction of resonant electrons with
waves propagating in a plasma with given density fluctua-
tions dn(x, t), we derive the high‐frequency component of
the Zakharov’s equations adding an external charge density
−enb(x, t) as a source term in Poisson equation (nb is the
density of the electron beam):

r i
@

@t
E þ 3!p

2
�2
d

@2

@x2
E � !p

�n

2n0
E

� �
¼ �2�enb x; tð Þ!pe

i!pt

ð1Þ
In this equation E(x, t) is the electric field envelope, the
actual electric field undergone by the particles being equal
to <(E(x, t)e−iwpt). We take the Fourier transform in space of
this equation, using the conventions (for any function F(x, t)
of space period L),

F x; tð Þ ¼
X

Fk tð Þeikx; ð2Þ

the Fourier component being

Fk tð Þ ¼
Z L

0
F x; tð Þe�ikx dx

L
; ð3Þ

and we describe the beam through N macroparticles using
the discrete density function (introducing the spatially
averaged beam density nb),

nb x; tð Þ ¼ nbL

N

X
�

� x� x� tð Þð Þ; ð4Þ

so that

nbk ¼ nb
N

X
�

e�ikx� tð Þ: ð5Þ

[16] One then obtains the evolution equation for the
Fourier component of the slowly varying envelope Ek(t) in
the form

d

dt
þ iWk

� �
Ek ¼ �i

!p

2n0
�nEð Þkþpk

X
e�i kx��!ptð Þ ð6Þ

where the following notations have been introduced for
reasons of clarity: Wk = 3

2wpld
2k2 and pk = 2pe(nb/N)(wp/k).

[17] The system is closed by the equations for the
dynamics of the N macroparticles composing the beam

dtx� ¼ v�; dtv� ¼ � e

m
<
X

Eke
i kx��!ptð Þ; ð7Þ

for a = 1,…, N. One can check that this system of equations
preserves the total energy

E ¼
X
�

1

2
mv2� � e<

X
k

iEk=kð Þei kx��!ptð Þ
 !

þ
X
k

!p þ Wk

� �E�
kEk

2kpk

ð8Þ

as well as the generalized impulse

P ¼
X
�

mv� þ
X
k

E�
kEk

2pk
: ð9Þ

[18] Despite this property will not be used in the frame of
this article, let us finally note that the equations (6) and (7)
have an Hamiltonian structure (a textbook dedicated to such
Hamiltonian models of wave particle interactions in plasmas
has been published by Elskens and Escande [2003]), that
can be useful to perform analytical perturbation calculation,
and to build symplectic numerical schemes [Sanz‐Serna and
Calvo, 1994].

2.2. Numerical Method

[19] A numerical code integrating the system of
equations (6) and (7) has been developed, using a classical
leapfrog numerical scheme in which the nonlinear term /
(dnE)k is evaluated at each time step using a Fast Fourier
Transform algorithm. To check the validity of our numerical
scheme, the quantities (8) and (9) have been monitored in all
the numerical simulations performed, and we adapted the
time step so that their relative variations always stay below
one percent.
[20] All the results presented in this article are obtained

using a spectral grid composed of 512 points periodically
distributed in Fourier space between −kmax and kmax, and a
periodic box of spatial dimension L = 4000ld, so that
ldDkgrid = 0.0016 and ldkmax = 0.4. The results presented in
Figures 1–9 are normalized with quantities ld for lengths,
wp
−1 for times (i.e., the velocities are normalized by the

electron thermal velocity vth = wpld), m for masses and e for
electric charges.

3. Dispersion Relation Neglecting the Density
Fluctuations

[21] In this section, we look for the dispersion relation of
the Langmuir waves in the presence of an electron beam,
when the amplitudes of the electric field and the density
fluctuations are small enough to neglect the nonlinear term
in (1), or more simply when no density fluctuations are
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present in the plasma. To fulfill this goal, we linearize
equations (6) and (7) using the conventions

x� ¼ x�0 þ v�t þ �x�; Ek ¼ 0þ �Ek :

We obtain

d2

dt2
�x� ¼ � e

m
<
X
k

�Eke
i kx�0þ kv��!pð Þt½ � ð10Þ

d

dt
�Ek ¼ �iWk�Ek þ pk

X
�

�ik�x�e
�i kx�0þ kv��!pð Þt½ � ð11Þ

Looking for a solution of this linearized system under the
form dEk = Ek0e

−iWt, one obtains for W the dispersion relation

W ¼ Wk þ !p
nb
2n0

1

N

X
�

!2
p

kv� � !p � W
� �2 ð12Þ

In the case that we shall consider in this article, in which we
can neglect the velocity spreading of the beam (Dvb/vb � 1),
we have va ∼ vb for all a, and

W� Wkð Þ Wþ !p � kvb
� �2¼ !3

p nb=2n0ð Þ: ð13Þ

Figure 2. Interaction between a cold electron beam and a plasma with no density fluctuations. The main
parameters are N = 16384, vb/vth = 20, and nb/n0 = 4 · 10−5. (top left) The logarithm of the number of
plasmons as a function of time. The observed growth rate is g ∼ 0.03wp (overplotted slope). (top right)
The logarithm of the space‐time Fourier transform of the electric field envelope (arbitrary units), in which
the two branches of the dispersion relation (13) are visible. (bottom right) The destabilized wave spectrum
at the final time of the simulation, on which the resonant wave vector k = wp/vb has been overplotted.
(bottom left) The initial (dashed) and final (solid) electron velocity distribution function.

Figure 3. Excitation of the eigenmodes of a gaussian density cavity. The main parameters are dnmax/n0 =
−0.09 and sdn = 63ld. (left) The logarithm of the space‐time Fourier transform of the electric field enve-
lope, exhibiting the discrete structure of the trapped waves field. (right) The time Fourier transform of the
envelope (arbitrary units), on which analytical predictions (16) have been overplotted for the eigen-
frequencies corresponding to n = 0, …, 4.
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This dispersion relation exhibits two resonant branches: one
corresponds toWL ∼Wk, and corresponds to Langmuir waves;
the second is WB ∼ kvb − wp and corresponds to beam modes.
In the usual case where vth � vb (i.e., kld � 1), the
solution of (13) is

W
!p

’ nb
2n0

� �1=3

� 1

2
þ i

ffiffiffi
3

p

2

� �
ð14Þ

where we retained the solution with positive imaginary
part, that is, the unstable mode. The formula (14) is the
classical result on cold beam instability, that can be found
in most of plasma textbooks. Figure 2 shows the result of
the numerical simulation of the beam plasma instability in
the hydrodynamic regime Dvb/vb � 1. The beam distri-
bution is taken to be initially homogeneous in a region of

phase space [0, L] × [vb − Dvb/2, vb + Dvb/2], with vb =
20vth and Dvb/vb = 0.05. The results illustrates the dis-
persion relation (13), showing that our numerical code
provides results in good agreement with the classical
plasma theory. The number of plasmons shown in Figure 2
characterizes the intensity of the electric field, and is
defined by Np(t) =

R
W(x, t).dx, where W(x, t) = ∣E(x, t∣2/

8pn0kBTe is the normalized electrostatic energy density.
For the case of an hydrodynamical instability where the
destabilized wave spectrum is very narrow, Np should
grow with a growth rate g =

ffiffiffi
3

p
(nb/2n0)

1/3wp, which is of
the order of the one observed in the simulation; never-
theless, the width of the initial distribution function is not
negligible, so that the observed growth rate is smaller than
the estimate (14), which is the maximum growth rate
occurring for a totally monokinetic electron beam. The

Figure 5. (top left) Langmuir waves normalized electrostatic energy W(x, t)/n0kBTe as a function of
space and time and (top right) logarithm of the space‐time Fourier transform of the electric field envelope
as a result of a beam plasma instability (same beam parameters as in Figure 2). (bottom left) Cut of
W(x, t)/n0kBTe at wpt = 1000 and (bottom right) space Fourier transform of the electric field at the same
time. The density profile is overplotted (arbitrary units) in Figure 5 (left).

Figure 4. Linear stage of a beam plasma instability (same beam parameters as in Figure 2) in the
presence of a gaussian density cavity characterized by dnmax/n0 = −0.03 and sdn = 200ld. (left) The
logarithm of the number of plasmons as a function of time. The straight line is a linear fit with a slope g =
0.03wp. (middle) The electrostatic energy density profile at four different times (wpt = 250, 300, 350, and
400 from bottom to top) at the end of the linear phase. (right) The evolution in time of the wave spectrum
(logarithmic scale) during the linear stage, on which the resonant wave vector k = wp/vb is overplotted.

ZASLAVSKY ET AL.: SPATIAL LOCALIZATION OF LANGMUIR WAVES A08103A08103

5 of 11



evolution of the electron velocity distribution function is
also the one expected: the particle distribution diffused in
velocity space to a state of smaller average velocity.

4. Trapped Eigenmodes in Absence
of Beam Particles

[22] To ensure that our model accurately reproduces the
structure of the Langmuir wavefield in the presence of
density inhomogeneities, and in particular that it is able to
reproduce the eigenmode structure of the trapped waves, we
performed a simulation of the evolution of a spatially nar-
row wavefield (in order to excite a k spectrum as broad as
possible) trapped in a gaussian density cavity, described by

�n ¼ ��nmaxe
x�L=2ð Þ2
2�2

�n ; ð15Þ

in the absence of any particle beam. The results are dis-
played in Figure 3, and show the discrete structure of the
trapped waves (i.e., with W < 0) coexisting with freely
propagating Langmuir waves at W ∼ Wk (continuous eigen-
modes). The form of the eigenfunctions is complicated to
obtain for a gaussian density cavity (approximate eigenva-
lues are calculated by Stephenson [1977]), but one can
easily find the analytical form of the first trapped modes
using a Taylor expansion of the density profile near its
minimum: dn ’ −dnmax(1 − x2/2sdn

2 ). The problem then
reduces to the one of a parabolic density cavity, for which
exact solutions of the Zakharov’s equation (1) can be found,
as done by Ergun et al. [2008], under the form of a linear
combination of the discrete eigenmodes En = An(x)e

−iDwnt,
where the eigenfrequencies are given by

D!n=!p ¼ � �nmax

2n0
þ nþ 1

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�nmax

2n0

s
�d

��n
ð16Þ

and the spatial waveforms (eigenfunctions) are

An xð Þ / Hn Qxð Þe�Q2x2=2; Q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nmax=6n0

p
�d��n

: ð17Þ

Here Hn is the n
th Hermite polynomial. Figure 3 shows that

our simulation results are in very good agreement with the
theoretical predictions (16) and (17) for the most deeply

trapped eigenmodes (n = 0,1,2), and that this agreement is, as
expected, less good for higher harmonics, for which the dif-
ference between the gaussian shape of the density hole and its
parabolic approximation has to be taken into account. Let us
note that the parameter describing the density cavity are
exaggerated in this simulation (dnmax/n0 ∼ 10%, sdn ∼ 60ld)
in order to obtain a field structure as visible and clear as
possible.

5. Simulation of the Beam‐Plasma Instability
in Presence of Density Inhomogeneities

[23] In this section, we present results of numerical simu-
lations of the interaction of an electron beam with various
density profiles. It is important to note that the simulations
are performed in a regime in which the propagation term
/ (∂2/∂x2)E is smaller than the term / dnE describing the
effect of plasmon diffusion on the density gradients in
equation (1). This case has in our knowledge never been
investigated, whereas it should be relevant to the solar wind in
which relative density fluctuations of the order of the percent
are observed. We show that in this regime, after a stage of
linear instability similar to the one appearing in an homoge-

Figure 7. Electron velocity distribution function evolution
during the beam plasma instability in the presence of a
gaussian density cavity. Dashed line, wpt = 0; thin line,
wpt = 500; thick line, wpt = 1000.

Figure 6. Thick line, simulation with resonant particles; thin line, without resonant particles (propagation
effects only). (left) Maximum of the normalized wave energy densityW(x, t) as a function of time, showing
clearly the enhancement of energy in the density cavity due to the nonlinear wave‐particle effects. (middle)
The k spectra at wpt = 1000. (right) Normalized wave energy density W(x) at wpt = 1000.

ZASLAVSKY ET AL.: SPATIAL LOCALIZATION OF LANGMUIR WAVES A08103A08103

6 of 11



neous plasma, the nonlinear effects tend to focalize the
electric field energy in the density cavities of the plasma.
[24] First of all, let us note that we shall consider here only

time‐independent density profiles, to make as clear as pos-
sible the physical interpretation of the simulations results.
The time durations tsim of the simulations are taken to be of
roughly 1000wp

−1. Assuming that the density fluctuations

considered here are ion sound waves, their typical evolution
time is tdn ∼ sdn/cs, where cs

2 = kBTe/mi is the ion sound
velocity (here we neglect the ion temperature effect), that is
tdn ∼ (mi/me)

1/2sdn/vth. For the examples considered here,
one has tdn ∼ 8000wp

−1, so that we can neglect the time
evolution of the density fluctuations on the simulated
timescales.

Figure 9. (top left) Normalized electrostatic energy density as a function of space at wpt = 1000, after a
beam plasma instability with the same beam parameters as Figure 2. The red line shows the turbulent
density profile (arbitrary units). (top right) Electric field k spectrum at wpt = 1000. (bottom) The waveform
reproduced using the same method as for Figure 8.

Figure 8. Electric waveform that would observe a spacecraft initially located at x/ld = 4000 assuming
that the electric field envelope is frozen in the state reached at the end of the simulation (wpt = 1000) during
the observation. The solar wind parameters used are described in the beginning of section 5.1, and the
advection speed of the solar wind is taken to be VSW = 300 km/s.
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[25] Another important point is that the thermal Landau
damping has been neglected in equation (1). The timescale
on which the damping of the Langmuir waves occurs is the
inverse of the damping rate gL ’ (pwp

3/2k2)∂vfe(v = wp/k), so
that for a Maxwellian plasma and for waves in resonance
with the beam, one has gL ∼ 10−80wp and can clearly be
neglected in our simulations. Anyway for simulation times
of a thousand plasma period, the damping should be taken
into account for waves with kld > 0.2, and it is checked in
all our simulations that no signal is present for such wave
vectors.

5.1. Choice of the Initial Conditions

[26] We perform simulations in a range of parameters
relevant to the solar type III electron beams observed at 1 A.U.
We take for the solar wind parameters the following typ-
ical values at 1 A.U.: Te ∼ 105 K and n0 ∼ 5.106 m−3, so
that ld ∼ 10 m, fp = wp/2p ∼ 20 kHz, and vthe ∼ 106 m/s.
[27] Concerning the impulsive electrons, they are laun-

ched at a velocity vb = 20vthe, that is vb ∼ c/10 which cor-
responds to an average velocity of the type III exciters (that
ranges usually from c/20 to c/3). The observed velocity
dispersion of the beams is quite small and is taken in our
simulations to be Dvb/vb = 0.05. All these parameters are
consistent with the measurements performed by the Wind
spacecraft [Ergun et al., 1998] of a type III burst observed
on 5 April 1995. An important parameter characterizing the
beam is its density. The ratio nb/n0 has been taken around
10−5 in order to obtain a good signal‐to‐noise ratio in our
numerical simulations, and to obtain a growth rate large
enough to observe the instability and its saturation during
the 1000wp

−1 time of simulation. We must note that this
growth rate is clearly over estimated compared to the
observations. Nevertheless, as detailed below, this choice
does not affect the main physics of the wave focusing effect
discussed in this article. As this parameter also determines
the electrostatic energy density of the Langmuir waves at the
saturation of the beam instability (W / (nb/n0)

4/3), the
electric field intensities obtained in our simulations will be
higher than the one observed by the TDS instrument on
S/WAVES.
[28] The simulation box with periodic boundary condi-

tions is taken with a length L = 4000ld, which enables to
study gaussian density holes in the range of width sdn = 20–
500ld. In the following we shall focus on the typical case of
a density hole characterized by sdn = 200ld and dnmax/n0 =
−0.03.

5.2. Linear Stage of the Instability

[29] Figure 4 shows the number of plasmons, that is
Np(t) =

R
W(x, t).dx as a function of time, and the time

evolution of the wave spectrum in k space until the satura-
tion of the instability, which we roughly defined to happen
when the Np(t) function stops to grow exponentially, that is
at wpt ∼ 500. We can see that the instability is comparable to
the case in which no density fluctuations is present (see
Figure 2): the plasmon number increases with an exponen-
tial growth rate g/wp ∼ 0.03, and the wave spectrum is
mainly monochromatic and peaked around the most unsta-
ble mode k = wp/vb. Nevertheless, one can clearly see the
influence of the density perturbation through the broadening
of the k spectrum that appears after wpt ∼ 250, and to the

corresponding enhancement of the electrostatic energy close
to the minimum of the density profile.
[30] These results can be understood with the help of

equation (6) for the most unstable mode. The order of
magnitude of the terms composing the evolution equation
for Ek are: Wk/wp = (3/2)k2ld

2 ∼ (vthe/vb)
2 ∼ 1/400 for the

linear propagation term whereas it is of dn/2n0 ∼ 1/70 for the
“focusing” term and gk/wp ∼ (nb/n0)

1/3 ∼ 1/30 for the wave‐
particle interaction term. Thus during the linear stage of the
instability the linear propagation effects can totally be
neglected. The two dominant effects are the exponential
wave growth, which is homogeneous in space, and the
focusing effects that start to play a role after a few e‐folding
of the electric field.
[31] This order of magnitude hierarchy is changed when

considering the actual beam plasma instability at 1 A.U., as
the observations suggest much smaller growth rates. In this
case the wave‐particle term gk/wp would become the smal-
lest one, the two others terms being unchanged. Thus, the
dominant effect during the linear stage would be the
broadening of the wave spectrum responsible for the wave
localization discussed in section 5.3. As this effect does not
depend on the amplitude of the electric field (the high‐
frequency Zakharov’s equation being linear with respect to
E(x, t)), but rather on the shape of the density fluctuation
dn(x), the localization of the waves would not be changed
in its nature, but would happen simultaneously with the
electric field exponential growth.

5.3. Nonlinear Stage of the Instability

[32] Figure 5 shows the normalized electrostatic energy
density W(x, t)/n0kBTe as a function of space and time as a
result of a beam‐plasma instability in the presence of a
gaussian density cavity: after the linear stage of the insta-
bility, in which the wave growth is quite homogeneous in
space, the electrostatic energy generated from the beam is
strongly focalized inside the density cavity.
[33] The Fourier transform of the electric field envelope

shown in Figure 5 shows that no energy is present in the
negative wave vectors, meaning that no plasma wave
reflection had time to be realized at wpt = 1000. In this case
it is clear that no trapped eigenmode is present in the density
cavity. Nevertheless, a spatial localization of the electro-
static energy in the density cavity is clearly visible, that can
be understood as follows. During the initial stage of the
simulation, the beam is nearly monokinetic, so that it gen-
erates an essentially monochromatic wave spectrum, peaked
at the resonant wave vector kres = wp/vb. The electrostatic
energy deposition from the beam is thus homogeneous in
space. Then the nonlinear focusing effect starts to play a role
and the wave spectrum is broadened by the resonant cou-
pling between the Langmuir waves and the density pertur-
bation. This process is described by the term

�nEð Þk¼
X

k′þk′′¼k

�nk′Ek′′ ð18Þ

so that starting from the monochromatic resonant Langmuir
wave, the wave spectrum evolution is given by

d

dt
þ iWk

� �
Ek � �i

!p

2n0
Ekres t ¼ 0ð Þ�nk�kres ð19Þ
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where dnk−kres / exp − p2sdn
2 (k − kres)

2. Then the initial
evolution of the wave spectrum consists in a gaussian
broadening, that can be seen in Figure 4 (right) and Figure 5
(right). In real space, a gaussian bump thus develops in the
wave energy profile, spatially correlated with the density
cavity. After this initial gaussian broadening, the evolution
due to the coupling term (18) is more complicated to
describe mathematically; nevertheless it is clear that it will
act to broaden the spectrum until reflection of the waves
occurs (the simulation is stopped just before the reflection of
the first plasmons).
[34] It can be seen in real space that the maximum of the

energy density is not located at the minimum of the density
profile, but in the positive density gradient region located at
the right of the minimum, that is the location of the reflec-
tion points of the waves destabilized inside the hole (and
which thus oscillate at a frequency slightly below the
average plasma frequency).
[35] Thus, the propagation effects of the Langmuir waves

in the inhomogeneous plasma explains the spatial localiza-
tion of the waves in the density cavities. In addition, our
models enables to investigate the combined effects of the
resonant particles on this focusing. To distinguish between
both, we performed a simulation without any beam particles
(that is, setting the right‐hand term of (1) to zero), taking as
initial condition the electric field at the saturation of the
instability in the case discussed in the previous pictures
(that we defined to be wpt = 500), and letting it evolve
until wpt = 1000.
[36] The results of this simulation are presented in Figure 6,

and show that the electrostatic energy localized in the hole is
more important in the presence of resonant particles. We
shall not quantitatively investigate this phenomenon in this
article, nevertheless, we can qualitatively understand it
through the following considerations. In the absence of
resonant particles, the nonlinear propagation effects tend to
focalize the energy already present in the hole at the
reflection points. Then there is an increase of the maximum
of the energy density Wmax with time, but no increase of the
total energy present in the hole, as the equation (1) preserves
the total number of plasmons when its right hand term is set
to zero. The picture is different in the presence of resonant
particle: the focusing of the electric field that occurred
during the linear stage of the instability influences the
motion of the particles, that becomes chaotic (as the reso-
nant domains of different waves are overlapping [see
Chirikov, 1979]). This motion, and the consequent diffusion
of the electron velocity distribution function results, as
illustrated in Figure 6, in an energy transfer from the parti-
cles to the waves, and in particular in a enhancement of the
wave energy spatially localized in the density hole. The
effect of the resonant particles can be understood in more
details looking at the k spectra at the end of both simulation:
when resonant particles are present, the distribution of ∣Ek∣
is not symmetric anymore: particles have taken energy from
the small k waves (that is, the one that have high phase
velocities and thus accelerates the beam particles) and have
given energy to the high k waves, that are the one deceler-
ating particles in average. This can be seen on the particle
distribution function shown in Figure 7: a large diffusion has

happened between the saturation stage and the end of the
simulation. Comparing this distribution with the one shown
in Figure 2, we can see that the diffusion is more efficient
when a density cavity is present (vmin − vmax = 14–24) than in
the case of an homogeneous plasma (vmin − vmax = 16–22).
[37] The case of charged particle diffusion by a gaussian

wave packet is treated by Fuchs et al. [1985], but the con-
sistent effect of this diffusion on the wave evolution has (to
our knowledge) never been studied. The equations treating
this subject should generalize the quasi‐linear equations
with no averaging on the waves phases as this information is
essential to describe the spatial localization of the total field
energy.
[38] Finally to enable a comparison of our results with the

waveforms captured by the instruments on board the WIND
or STEREO spacecraft, we show in Figure 8 the waveform
that would observe a spacecraft assuming that the electric
field is frozen in the state reached at the end of the simu-
lation. This is shown only for example, firstly because the
beam density is overestimated, giving electric field ampli-
tudes too high by a factor of two compared to the most
intense Langmuir Waves observed, and secondly because
the “frozen field” assumption actually does not hold on
physical basis: the time for the considered solar wind
portion to pass by the spacecraft location is T = L/VSW ∼
100 ms ∼ 10000wp

−1 that is much larger than our simulation
times, and should be larger than the typical time of sta-
bility of the considered density structures. This last point
raises the matter whether the reproduction of the wave-
forms measured by an instrument like TDS can be done on
the basis of a time‐independent model (in which the fields
are considered as constant in time during the 100 ms time
of the measurement).

5.4. Case of a Turbulent Density Profile

[39] We previously considered the case of a gaussian
density cavity in order to obtain a clearly understandable
physical picture. Now we investigate the more realistic case
of a random density profile, with valleys and hills having an
amplitude of 1% of the solar wind density, and with typical
wave vectors comparable with the resonant Langmuir wave
vector wp/vb so that wave trapping can occur. Figure 9
summarizes the result of a simulation of beam‐plasma
interaction with parameters similar to the previous simula-
tions, but with a random density profile. The latter was
obtained by taking a gaussian power spectrum for the den-
sity dnk / exp(−k2/sk2) with (ldsk) = 10−2, and by multi-
plying each Fourier component by exp(i�) with � taken
randomly in the interval [0, 2p]. We then compute the real
part of the inverse Fourier transform to obtain the density
profile in real space.
[40] One clearly sees that at the end of the simulation time

t ∼ 1000wp
−1, the electrostatic energy profile is anticorrelated

with the density profile: large‐amplitude localized wave
packets have formed close to the local density minima
whereas the electrostatic energy almost vanishes in the
overdense regions. As in the previously presented simula-
tions, no wave signal is present in the negative wave vectors,
and thus no eigenmode structures have been formed: we
observe a spatial localization of the electric field due to the
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broadening of the destabilized wave spectrum through
propagation and nonlinear wave‐particle interaction.

6. Conclusions and Perspectives

[41] In this article, we presented an original tool to study
the self consistent interaction between plasma waves and a
resonant beam of particle in a slightly inhomogeneous
medium, based on the spectral resolution of the high‐
frequency component of the Zakharov’s equations in which
a term relative to the dynamics of the beam particles had
been added. We first showed, in sections 2 and 3, that the
developed model and the associated numerical code were
able to recover the classical results about the cold beam
instability in an homogeneous plasma and about the
Langmuir wave trapping in density cavities.
[42] Then we used the numerical code to investigate

the destabilization of electrostatic waves by a beam of
suprathermal particles in an inhomogeneous plasma, this
topic being of central interest for the understanding of the
Langmuir waveforms in situ observations by spacecrafts
exploring the solar wind, especially during type III bursts
events.
[43] The main results is that on the typical timescale of

stability of the considered density holes, the discrete
eigenmode structure of the trapped waves does not have
time to be established. Instead, we observe a broadening of
the wave spectrum, resulting in a spatial localization of the
Langmuir wavefield correlated with the density cavities.
More precisely, the maximum of the electrostatic energy is
located in the positive gradient regions located after the local
minima of the plasma density, which is coherent with the
solution of the WKB equations for Langmuir waves prop-
agation, despite we are not in the domain of validity of this
equation for the considered density gradients as the desta-
bilized wave vectors do not check the WKB assumption that
can be written in our case ksdn � 1. Moreover, we showed
that this spatial localization of the Langmuir waves in the
density cavities is enhanced by the nonlinear interaction
between the resonant particles and the waves. This effect has
only been qualitatively studied and should be more quanti-
tatively investigated in the future.
[44] Let us finally recall that the results presented are

obtained in a regime in which the Langmuir waves growth
rate is much higher than the one evaluated from in situ
observations realized during solar type III bursts events.
This choice has been done for the instability to develop on a
∼1000wp

−1 timescale, so that the numerical simulation could
be performed in a reasonable computational time. The
choice of the 1000wp

−1 simulation duration was also done as
it was identified as the timescale on which we could con-
sider the density inhomogeneities to be time independent. In
the more realistic regime where g/wp � k2ld

2 � dn/n, the
broadening of the wave spectrum is the dominant effect, and
the phenomena of wave‐reflection, not observed in this
article, could have time to occur even during the linear stage
of the instability. Such a regime could thus be favorable to
the generation of trapped eigenmodes, at the condition that
the density cavities stay stable on a time long enough.
[45] We can conclude that the existence of trapped

eigenmodes in the solar wind gives clear indications of the

existence of density cavities that are stable on timescales
much longer than the time given by a linear theory of ion‐
sound waves. An important problem to be studied in the
future thus consists in the correct description of the time
evolution of the density fluctuations, that could be done
using the equation of the low‐frequency motions where the
nonlinearities of the low‐frequency density perturbations are
sufficiently stronger than those related to the high‐frequency
waves. Such a study should be done in a forthcoming article.
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