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Abstract. We have developed a new semi-classical method for calculating the depolarization and polarization transfer rates of
spectral lines of neutral and ionised atoms by collisions with atomic hydrogen (Derouich et al. 2003a, A&A, 404, 763; 2003b,
A&A, 409, 369; 2004a, A&A, 414, 369; 2004b, A&A, 426, 707). Up to now, our depolarization rate calculations have been
limited to simple atoms. In the present paper, we extend our theory to more complex atoms and we apply our new results
to provide the first calculations associated with the upper levels of multiplet 145 of neutral titanium Ti I which constitutes a
remarkable example of the second solar spectrum (Manso Sainz & Landi Degl’Innocenti 2002, A&A, 394, 1093).
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1. Introduction

The so-called “second solar spectrum” is the spectrum of the
linear polarization of the absorption lines observed near the
limb of the Sun. This linear polarization is due to anisotropic
scattering of the incident solar radiation field, the anisotropy
arising from center to limb darkening.

A complete quantitative interpretation of the second solar
spectrum of neutral and ionised atoms can provide accurate
knowledge of the physical conditions of the solar atmospheric
regions. In particular, as the magnetic field acts as a depolar-
izing mechanism (Hanlé effect), the comparison between the
linear polarization calculated in the absence of a magnetic field
and the observed polarization permits the determination of the
magnetic field strength. This is currently the only tool for mea-
suring the weak magnetic field at the surface of the quiet Sun.
The physical interpretation of the polarized spectrum of the Sun
requires solving the coupled sets of statistical equilibrium and
radiative transfer equations taking into account all processes af-
fecting the polarized line formation: collisions, magnetic field
effects and radiative processes (see e.g. Trujillo Bueno 2003).
This is a complicated problem from the theoretical and mod-
elling viewpoints. So far, the work performed on the second
solar spectrum has often been concerned with a single feature.
Our understanding of this spectrum is still very limited. For the
whole spectrum, more than 85% of polarized lines are emit-
ted by complex atoms. The interpretation of the second solar
spectrum raises with the problem of the interpretation of lines
associated with atoms like Fe I, Ti I, Cr I, etc., and ions like
Ce II, Nd II, Eu II, Ba II, Zr II, etc. For example, among

neutral atomic lines reported by Gandorfer (2000), 38% are
polarized Fe I lines and 13% are from Ti I. These atoms/ions
can suffer isotropic collisions with hydrogen atoms before they
radiate. To evaluate the effect of these collisions, methods ca-
pable of giving realistic results for many levels of atoms or ions
and which are computationally efficient are urgently needed. In
fact, it is very difficult and sometimes impossible to treat col-
lision processes involving neutral and ionised heavy atoms by
standard quantum chemistry methods. The depolarizing rates
of complex atoms have not been obtained by any theoretical
method (at least to our knowledge). In the last few years, we
have developed a general semi-classical theory which allows
us to compute in a fairly realistic way collisional depolariza-
tion rates for all transitions of simple atoms (Derouich et al.
2003a,b, 2004a,b, hereafter Papers I, II, III and IV respec-
tively). We thus can obtain the depolarization rates for any level
of any simple atom by interpolation of our results given in the
form of tables.

The goal of the present paper is to generalize our method
to complex atoms. The Grotrian diagram for complex atoms
can have a complicated structure, with different possible
terms 2S+1LJ for which depolarization rates cannot be derived
by extrapolation or interpolation of our results of Papers I, II,
III and IV. We recall that we assumed that the interaction poten-
tial is dominated by the optical electron, and then it is only the
optical electron that can undergo transitions between Zeeman
sublevels during the collision (the frozen core approximation);
this does not imply that the ionic core is a closed-shell. Using
the frozen core approximation and the fact that the fine struc-
ture can be neglected during the collision, we will express the
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scattering matrix elements of complex atoms colliding with hy-
drogen atoms as a linear combination of those of simple atoms
colliding with hydrogen atoms. Given this generalization of our
semi-classical method, it will now be possible to obtain results
for complex atoms/ions with reasonable accuracy; we expect an
accuracy better than 20%. With our semi-classical method we
are able to compute the needed rates for all levels very quickly.

2. Statement of the problem

We consider a perturbed atom/ion in LS coupling with an elec-
tronic configuration composed of three parts:

1. electrons in a filled subshell, that is a configuration con-
taining the maximum number of equivalent electrons (hav-
ing the same value of n and l); there is only one possible
spectral term, namely the term 1S0;

2. equivalent electrons in an incomplete (open) subshell. We
denote by Lc the total orbital angular momentum of these
electrons and by Sc their total spin. 2S c+1Lc is the so-called
parent term. We recall that for a given parent configuration
of the equivalent electrons in a partly-filled subshell there
arises more than one parent term: in this case the parent
term is written in parentheses after the parent configuration;

3. the optical electron with orbital angular momentum l and
spin s (s = 1/2). Therefore, we limit ourselves to the case
where there is only one electron in the external shell. For
example, the 4f7 (8S) 6s 6p2 (4P) 11P5 level is outside the
scope of the present paper but levels like 3d7 (4F) 4p (5G4)
and 3d7 (4F) 4d (5H5) levels can be treated as will be shown
in Sect. 5.

We denote by L = Lc + l the total orbital momentum of the
perturbed atom, by S = Sc + s the total spin and by J = L + S
the total angular momentum. For a given configuration there
are several possible terms 2S+1LJ (that is, the possible values
of L and S ) built on each of the parent terms of the equiva-
lent electrons from incomplete subshells and adding to them
the spin and the orbital angular momentum of the valence elec-
tron. One must reject the values of L and S corresponding to
states forbidden by the Pauli exclusion principle.

In our collision problem, the complex atomic/ionic species,
like Ti I, Fe I, Ce II, etc, collides with a bath of perturbing hy-
drogen atoms. In the solar photosphere and the low chromo-
sphere conditions, the hydrogen atom can be assumed to re-
main in its ground state during the collision. We denote by
|nlml〉 the state of the valence electron of the perturbed atom/ion
in the atomic frame in which the perturbed atom/ion is station-
ary at the origin and the axis of quantization is taken perpendic-
ular to the collision plane. The linear transformation connect-
ing the two representations |lml〉 |LcMLc 〉 and |LML〉 is

|LML〉 =
∑

ml ,MLc

CLclL
MLc ml ML

|LcMLc〉|lml〉, (1)

where CLclL
MLc ml ML

is a Clebsch-Gordan coefficient given by
(Messiah 1961):

CLclL
MLc ml ML

=
√

2L + 1 (−1)Lc−l+ML

(
Lc l L

MLc ml −ML

)
. (2)

The expression between parentheses denotes a 3 j-coefficient.
The scattering matrix elements

〈LML |S sc|L′M′L〉 =
∑

ml,MLc ,m
′
l ,M

′
Lc

CLclL
MLc ml ML

CL′cl′L′

M′Lc
m′l M′L

×〈lml|〈LcMLc |S sc|L′cM′Lc
〉|l′m′l〉. (3)

We assume that only the optical electron is affected by the
interaction with neutral hydrogen. The collision does not af-
fect the state of internal electrons such that Lc, Sc and Jc are
conserved. This assumption has been adopted in our previous
Papers (I, II, III and IV) and in the ABO papers (Anstee 1992;
Anstee & O’Mara 1991, 1995; Anstee et al. 1997; Barklem
1998; Barklem & O’Mara 1997; Barklem et al. 1998).

Consequently, the scattering matrix is diagonal in Lc and its
elements do not depend on MLc . Thus M′Lc

= MLc , and

〈nLML|S sc|nL′M′L〉 =
∑

ml,m′l ,MLc

CLclL
MLc ml ML

CLcl′L′
MLc m′l M′L

×〈nlml|S sc|nl′m′l〉. (4)

In Eq. (4), we consider only the case where l= l′ since quench-
ing is neglected. The scattering matrix elements 〈nlml|S sc|nlm′l〉
are obtained after integration of the semi-classical differ-
ential coupled equations which are derived from the time-
dependent Schrödinger equation (Papers I, II, III and IV) fol-
lowed by the calculation of the scattering matrix elements
〈nLML|S sc|nL′M′L〉 using Eq. (4).

In order to determine the depolarization and polarization
transfer rates of the term 2S+1LJ , we need the S sc-matrix el-
ements in the |nJMJ〉 basis, so we need to express the scat-
tering matrix elements 〈nJMJ |S sc|nJ′M′J〉 as a function of the
〈nLML|S sc|nLM′L〉 elements. We can show that

〈
nJMJ |S sc|nJ′M′J

〉
=

∑

ML ,MS ,M′L,M
′
S

CLS J
ML MS MJ

×CL′S ′J′
M′L M′S M′J

〈nLML|〈nS MS |S sc|nS ′M′S 〉|nL′M′L〉. (5)

The spin is neglected during the collision, thus the S sc-matrix
is diagonal in S and its elements do not depend on MS (the
vector S is conserved), therefore S = S ′, MS = M′S and

〈nJMJ |S sc|nJ′M′J〉 =
∑

ML,MS ,M′L

CLS J
ML MS MJ

CLS J′
M′L MS M′J

×〈nLML|S sc|nL′M′l 〉 (6)

which gives, using the expression for 〈nLML |S |nL′M′L〉 given
by Eq. (4) and after some angular algebra transformations,

〈nJMJ |S sc|nJ′M′J〉 = (−1)J+J′+MJ+M′J

×√
(2J + 1)(2J′ + 1)

√
(2L + 1)(2L′ + 1)

×
∑

J′′
(2J′′ + 1)



Lc L l
L′S J′
l J J′′



×
∑

ml,m′l ,M
′′
J

〈nlml|S sc|nlm′l〉
(

l J′ J′′
m′l M

′
J M′′J

)

×
(

l J J′′
mlMJ M′′J

)
(7)
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Fig. 1. Only the optical electron of the complex atom A, denoted by 2,
interacts with neutral hydrogen core (a proton) located at P and its
valence electrons denoted by 1. The collision does not affect the other
internal electrons in filled or in incomplete subshells.

where { } (3 lines × 3 columns) denotes a Wigner 9 j-coefficient
(Messiah 1961). Equation (7) shows that, in the approximations
described above, 〈nJMJ |S |nJ′M′J〉 can be written as a linear
combination of the 〈nlml|S |nlm′l〉 and so the interaction poten-
tial needed to calculate the scattering matrix S sc between the
sublevels |nJMJ〉 → |nJ′M′J〉 (J = J′ and J � J′) is the one
needed to calculate 〈nlml|S |nlm′l〉. This is the most important
conclusion of the present work.

3. Interaction potential

The model for the interaction between the hydrogen perturber
and the perturbed complex atom/ion, which is assumed to be
totally electrostatic, is shown in Fig. 1. The interaction poten-
tial V has a cylindrical symmetry about the interatomic axis and
so it is diagonal in the rotating frame which is in fact more con-
venient for the interaction potential calculation (Roueff 1974).
In this frame, we denote by µl the projection of the orbital an-
gular momentum of the valence electron l on to the interatomic
axis which is taken as the axis of quantization. The (l + 1) el-
ements Veff,µl (0 ≤ µl ≤ l) of the so-called RSU interaction
potential matrix are given by (more details in the ABO papers,
see also Papers I, II, III, IV):

Veff,µl = Veff,−µl = 〈100|〈nlµl|Veff |nlµl〉|100〉
= 〈100|〈nlµl|V |nlµl〉|100〉
− 1

Ep
(〈100|〈nlµl|V |nlµl〉|100〉)2

+
1

Ep

∫ +∞

0
P2

n∗l Ilµl (R, p2)dp2, (8)

where Ilµl are lengthy complicated analytic functions (Anstee
1992; Barklem 1998) and Ep is the Unsöld energy (Unsöld
1927, 1955; ABO papers; see also Papers I, II, III and IV for
more details about Ep according to depolarizing collisions).
Pn∗l is the Coulomb radial wave function for the valence elec-
tron of the perturbed atom with quantum defect δ = n − n∗.

The interaction potentials enter into the semi-classical cou-
pled differential equations arising from the Schrödinger equa-
tion. These coupled equations must be solved to obtain the
(2l+1)2 S sc-matrix elements 〈nlml|S sc|nlm′l〉. For a given quan-
tum number l we obtain (2l+ 1) coupled differential equations.

4. Depolarization and polarization transfer rates

Using Eq. (7), we obtain 〈nLJMJ |S sc(b, u)|nLJM′J〉 in the case
where the quantization axis is taken as perpendicular to the col-
lision plane (b, u). The depolarizing collisions are isotropic and
we now have to perform an average over all possible orienta-
tions describing the collision plane (b, u) in order to obtain the
transition probabilities

P(nLJMJ → nLJM′J , b, v)〉av =

1
8π2

∮
dΩ|〈nLJMJ |I − S sc(b, u)|nLJM′J〉|2, (9)

where I is the unit matrix and T (b, u) = I − S sc(b, u) is the
collisional transition matrix between the Zeeman sublevels de-
pending on the impact-parameter b and relative velocity u.

The statistical equilibrium equations can be expressed on
the basis of irreducible tensorial operators (ITO) which is espe-
cially well adapted to the context of scattering polarization and
the Hanlé effect (cf. Sahal-Bréchot 1977; Landi Degl’Innocenti
1982). The ITO are defined in Brink and Satchler (1962) or any
other book devoted to angular momentum theory (e.g. Blum
1981). In the ITO representation, the average depolarization
probability (J = J′) of tensorial rank k is a linear combination
of the transition probabilities between the Zeeman sublevels
(Sahal-Bréchot 1977):

〈Pk(nLJ, b, v)〉av = 〈P(nLJ, b, v)〉av − (2k + 1)

×
∑

MJ ,M′J

(−1)2J−MJ−M′J

(
J k J
−MJ0MJ

)

×
(

J k J
−M′J0M′J

)
〈P(LJMJ → LJM′J , b, v)〉av, (10)

and the average collisional polarization transfer probability
(J � J′) is given by (Sahal-Bréchot 1977):

〈Pk(nLJ → nLJ′, b, v)〉av = (2k + 1)

×
∑

MJ ,M′J

(−1)J+J′−MJ−M′J

(
J k J
−MJ0MJ

)

×
(

J′ k J′
−M′J0M′J

)
〈P(LJMJ → LJ′M′J , b, v)〉av. (11)

Integration of the probabilities given by the above equations
over the impact-parameter b and over a Maxwell distribution
of velocities f (v) for a temperature T of the medium, can be
performed to obtain the depolarization (J = J′) and the polar-
ization transfer (J � J′) rates (Papers I and II):

Dk(nLJ → nLJ′, T )(J = J′ and J � J′) 
 nH

∫ ∞

0
v f (v)dv

×
πb2

0 + 2π
∫ ∞

b0

〈Pk(nLJ → nLJ′, b, v)〉av b db

, (12)

where nH is the neutral hydrogen density, b0 is the impact-
parameter cutoff and we use b0 = 3a0 as in Papers I, II, III
and IV.
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Fig. 2. Depolarization rates per unit H-atom density for the Fe I atom,
D2(4 4 4, T )/nH and D2(4 5 5, T )/nH, as a function of temperature T .
The rates are given in rad m3 s−1.

5. How does our theory work?

To demonstrate how the theory works, we treat in detail the ex-
ample of the Fe I 5396 Å line which is the transition between
the 3d7 (4F) 4p (5G4) and 3d7 (4F) 4d (5H5) levels. Let us con-
sider the collision between the iron atom in each of these two
states and a bath of perturbing hydrogen atoms in their ground
state 1s (2S1/2).

1. For the level Fe I (3d7 (4F) 4p (5G4)), we have Lc = 3, l = 1,
L = 4, J = 4 and S = 2. While our previous Papers (I, II,
III and IV) deal only with states with angular momentum
≤3 (p, d, and f ), and the angular momentum of the state
is L = 4 > 3, this does not mean that the calculation of
depolarization is not possible with our theory. The calcu-
lation of depolarization rates for Fe I (3d7 (4F) 4p (5G4))
in fact derives from our results obtained for the p state
(Paper I). This is because the orbital angular momentum
of the optical electron, which is in 4p, is l = 1. Therefore,
the scattering matrix elements 〈44MJ |S sc|44M′J〉 are given
by a linear combination of the scattering matrix elements
〈41ml|S sc|41m′l〉 as in Eq. (7). The destruction rate of align-
ment of the level 3d7 (4F) 4p (5G4) for the local tempera-
ture T , D2(4 4 4, T ), is calculated as explained in Sect. 4
and we find the following analytical expression in rad s−1

for 100 ≤ T ≤ 10 000 K (see Fig. 2):

D2(4 4 4, T ) = 1.1774× 10−15 nH

( T
5000

)0.459

· (13)

2. In the case of the upper level of the Fe I line, 3d7 (4F) 4d
(5H5), Lc = 3, l = 2, L = 5, J = 5 and S = 2. The
scattering matrix elements 〈45MJ |S sc|45M′J〉 can be writ-
ten as a linear combination of the scattering matrix ele-
ments 〈42ml|S sc|42m′l〉. We thus can obtain the destruction
rate of alignment of the level 3d7 (4F) 4d (5H5) in rad s−1

(100 ≤ T ≤ 10 000 K) (see Fig. 2),

D2(4 5 5, T ) = 0.8430× 10−15 nH

( T
5000

)0.485

· (14)

We do not give explicit expressions for 〈44MJ |S sc|44M′J〉 and
〈45MJ |S sc|45M′J〉 according to Eq. (7), as they are rather
lengthy, consisting of (2J+1)2 matrix elements. The linear
combination coefficients may be obtained on request from the
authors.

6. Application

The polarimetric observations at the limb of the Sun show
that one of the more interesting features is the linear polar-
ization of lines associated with multiplet 145 of the Ti I atom
(Manso Sainz & Landi Degl’Innocenti 2002). Since L = 2 and
S = 2 in the upper term level w5D of multiplet 145 of Ti I,
J takes on the values 0, 1, 2, 3 and 4. The destruction rate
of alignment of the state 5D0 is necessarily zero because this
state cannot be aligned by definition (J = 0). In the case of
the level 3 d3 (4P) 4p (5D1), Lc = 1, l = 1, L = 2, J = 1 and
S = 2. According to Eq. (7), the nine (J = 1) matrix elements
〈n1MJ |S sc|n1M′J〉 are given as function of the 〈n1ml|S sc|n1m′l〉
by:

〈1 − 1|S sc|1 − 1〉 = 3
20
〈11|S sc|11〉 + 9

20
〈10|S sc|10〉

+
8
20
〈1 − 1|S sc|1 − 1〉,

〈1 − 1|S sc|10〉 = − 3
10
〈11|S sc|10〉 + 1

20
〈10|S sc|1 − 1〉,

〈1 − 1|S sc|11〉 = − 7
20
〈11|S sc|1 − 1〉,

〈10|S sc|1 − 1〉 = − 3
10
〈10|S sc|11〉 + 1

20
〈1 − 1|S sc|10〉,

〈10|S sc|10〉 = 1
10
〈10|S sc|10〉 + 9

20
〈11|S sc|11〉

+
9
20
〈1 − 1|S sc|1 − 1〉,

〈10|S sc|11〉 = 1
20
〈11|S sc|10〉 − 3

10
〈10|S sc|1 − 1〉,

〈11|S sc|1 − 1〉 = − 7
20
〈1 − 1|S sc|11〉,

〈11|S sc|10〉 = 1
20
〈10|S sc|11〉 − 3

10
〈1 − 1|S sc|10〉,

〈11|S sc|11〉 = 2
5
〈11|S sc|11〉 + 9

20
〈10|S sc|10〉

+
3
20
〈1 − 1|S sc|1 − 1〉. (15)

Having 〈1MJ |S sc|1M′J〉, we then computed the depolarization
rate D2(4 2 1, T ) as defined in Sect. 4 and the analytical ex-
pression in rad s−1 for 100 ≤ T ≤ 10 000 K is
Ti I(3d3 (4P) 4p (5D1))-H(1s):

D2(4 2 1, T ) = 2.5126 × 10−15 nH

( T
5000

)0.412

, (16)

and by using the same procedure for determining the depo-
larization rates of the sublevels 5D2,3,4, we obtain in rad s−1
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Fig. 3. Depolarization rates per unit H-atom density for the upper lev-
els of multiplet 145 of the Ti I atom, D2(4 2 J, T )/nH, as a function
of temperature T . D2(4 4 J, T )/nH is given in rad m3 s−1.

(100 ≤ T ≤ 10 000 K).
Ti I(3d3 (4P) 4p (5D2))-H(1s):

D2(4 2 2, T ) = 1.5036 × 10−15 nH

( T
5000

)0.443

; (17)

Ti I(3d3 (4P) 4p (5D3))-H(1s):

D2(4 2 3, T ) = 1.3999 × 10−15 nH

( T
5000

)0.450

; (18)

and Ti I(3d3 (4P) 4p (5D4))-H(1s):

D2(4 2 4, T ) = 2.2410 × 10−15 nH

( T
5000

)0.420

· (19)

The results for the destruction rate of alignment of the excited
states 5DJ are given in Fig. 3.

We notice that the effective principal quantum num-
ber corresponding to the state of the valence electron 4p
is n∗ = 2.37. The average depolarization rate at T =

5000 K, per unit H-atom density, of the term levels 5D1,2,3,4

is ∼1.9× 10−15 (rad s−1). However, by interpolation of Table 4
of Paper I, giving the variation of the depolarization rate at
5000 K with effective principal quantum number, one obtains
for n∗ = 2.37 that the depolarization rate per unit H-atom den-
sity is 18.42× 10−15 (rad s−1). The depolarization rates for
the multiplet of Ti I are about a factor of ten less than depo-
larization rates for the corresponding case of simple atoms.
This is due to the effect of equivalent electrons in an incom-
plete subshell having non-zero total orbital angular momen-
tum Lc. Under similar conditions in the solar photosphere, the
atomic polarization of simple atoms/ions having Lc = 0 is more
strongly affected by isotropic collisions with neutral hydrogen
than the atomic polarization of complex atoms/ions (Fe I, Ti I,
Cr I, Ce II, Nd II, ...). Coupled with other factors, this helps
explain why the majority (85%) of the polarized lines of the
second solar spectrum are emitted by complex atoms/ions.

We consider only the collisional polarization transfer
Dk(nLJ → nLJ′, T ) pertaining to the |nL〉 level. The atomic

Fig. 4. Polarization transfer rates per unit H-atom density for the up-
per level of the multiplet 145, Dk(4 2 J → 4 2 J′,T )/nH, as a function
of T . The rates are given in rad m3 s−1.

linear polarization transfer rates (k = 2) D2(nLJ → nLJ′, T ) as
a function of T are displayed in Fig. 4. We can provide analyt-
ical expressions, in rad s−1, for the non-zero transfer rates:

D2(4 2 1→ 4 2 2, T ) = 8.6724 × 10−16nH

( T
5000

)0.498

,

D2(4 2 1→ 4 2 3, T ) = 9.7806 × 10−16nH

( T
5000

)0.478

,

D2(4 2 2→ 4 2 3, T ) = 16.3915× 10−16nH

( T
5000

)0.442

,

D2(4 2 2→ 4 2 4, T ) = 12.3407× 10−16nH

( T
5000

)0.456

,

D2(4 2 3→ 4 2 4, T ) = 7.0415 × 10−16nH

( T
5000

)0.521

· (20)

All rates were found to increase with temperature T . As for the
case of simple atoms, the functional form D(T ) = AT (1−λ)/2,
where λ is the so-called velocity exponent, may be accurately
fitted to the depolarization rates and the population transfer
rates.

7. Discussion

Unfortunately, there are neither experimental nor quantum
chemistry depolarization and collisional transfer rates for com-
plex atoms with which to compare. To generalize our method
to the complex atoms, we do not assume any further approxi-
mation with respect to those adopted in our previous Papers (I,
II, III, IV). We therefore expect the error in the depolarization
rates of complex atoms to be similar to that for the rates of
simple atoms, i.e. less than 20%. At the intermediate to long-
range interatomic distances, the interaction energy between the
two atoms is smaller than the energy eigenvalues of the iso-
lated atoms, so that perturbation theory is suitable for calculat-
ing the RSU interatomic potentials used in this work. The de-
polarization and polarization transfer rates are due essentially
to intermediate-range interactions (Paper I). In fact, we have
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found that a mutiplication of the potential values by a factor
of two, at the close or long-range regions of interaction, prac-
tically does not change the values of the calculated prob-
abilities. The main differences between the semi-classical
potentials used here and those from a sophisticated quantum
chemistry approach occur at small interatomic separations.
Since these close regions do not influence the values of depo-
larization rates, the differences with quantum chemistry results
are usually less than 20%. Derouich (2004) has shown that an
error of 20%, which represents the maximum error expected in
our rates, is sufficient to determine the magnetic field by inter-
pretation of the Hanlé effect with a satisfactory precision. For
instance, in the case of the SrI 4607 Å line, we have shown that
an inaccurarcy of 20% on the depolarization rates leads to a 6%
inaccurarcy only on the magnetic field determination (see also
Bommier et al. 2004).

Finally we note that, contrary to what is sometimes
employed in astrophysics, the depolarization rates are not
proportional to the collisional broadening rates, in particu-
lar the depolarization rate is not equal to one half the colli-
sional broadening rate. For example, using the ABO theory,
the collisional broadening rate per unit H-atom density for
the p–d transition corresponding to the Fe I 5396 Å line is
∼3.3× 10−14 rad s−1 at 5000 K, that is to say ∼30 times greater
than the depolarization rates associated to this line, as given
by Eqs. (13) and (14). The method, which has been used until
now due to the lack of any better technique, consisting of ob-
taining the depolarization rates using Van der Waals collisional
broadening rates, can lead to very inaccurate results. The er-
ror in the depolarization rates inferred from this approximation
can be much more important than the error in the collisional
broadening rates from the use of the classical Van der Waals
potential formula, which gives rates typically underestimated
by factors of two or more. In other words, for these depolariza-
tion rates, the error mainly arises both from the use of the Van
der Waals potential and from how they are defined (i.e. the fact
that they are considered proportional to the collisional broad-
ening rates). Note that only if we calculate the rates as correctly
defined in Eq. (12) and employ the Van der Waals potential for
the atom-hydrogen interaction potential, will we find the rates
underestimated by a factor of roughly two as one finds for the
collisional broadening calculations (Papers I and IV).

8. Conclusion

The purpose of the present paper is to extend our theory
to the calculation o f the depolarization and polarization
transfer rates for p (l = 1), d (l = 2) and f (l = 3) levels

of complex atoms/ions allowing calculation of the rates for the
upper levels of the lines of the multiplet 145 of neutral titanium
Ti I. A great advantage of our method is that it is not specific
for a given perturbed atom/ion and it is adaptable to any neutral
and singly ionised atom which is in particular interesting for
heavy atoms/ions. Of course, we can apply our theory to eval-
uate the depolarization and polarization transfer rates of more
polarized lines of the second solar spectrum. The theory is a
powerful tool to quickly calculate depolarization rates needed
for the modelling of the second spectrum of the Sun.
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