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Abstract. New quantum calculations for the Lyβ, Lyγ, Lyδ profiles perturbed by electron collisions are obtained from the
unified one-perturber theory in the exact resonance approximation (Tran-Minh et al. 1975, J. Phys. B: Atom. Molec. Phys.,
8, 1810; Feautrier et al. 1976, J. Phys. B: Atom. Molec. Phys., 9, 1871). This accounts for the-long range dipole interaction.
The profiles are obtained by summing the partial contributions of each total angular momentum LT. It appears that there is a
threshold Lmin below which some eigenchannels become complex and are not well described by the exact resonance method. To
overcome this problem, the contribution of the first angular momenta is estimated by taking into account the real eigenvalues
and by neglecting the complex ones. Estimation of the error due to this systematic underestimation of the profile is given.
Density effects due to the Debye screening are found in the near wings.
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1. Introduction

We present a quantum treatment of the wing profiles of Lyβ,
Lyγ, Lyδ lines perturbed by electron collisions. Simultaneous
strong collisions are improbable at the typical densities of
stellar atmospheres, therefore the one-perturber approach is
valid. An exact quantum expression for the hydrogen line pro-
files was given by Van Regemorter (1969) and Tran-Minh
& Van Regemorter (1972). Detailed calculations have been
performed for the Lyman α (Feautrier et al. 1976; Feautrier
& Tran-Minh 1977; Tran-Minh et al. 1980) and Balmer β
(de Kertanguy et al. 1979) line profiles.

The semiclassical electronic profile calculations (assuming
straight classical paths for the perturbers) provide a good de-
scription of the line center and of the near wing but fail in the
far wings where the broadening mechanism is dominated by
close collisions. In those regions of the profile, our theoreti-
cal description is based upon the so-called one electron theory
which considerably simplifies the statistical problem of com-
bining the effects of the different perturbers and allows an ac-
curate quantum treatment in regard with the strongly perturbing
nature of the interaction (Baranger 1958).

The profile is given as a sum over the total angular mo-
menta LT of partial intensities expressed in terms of overlap
integrals of the perturber wave-functions. The exact resonance
approximation, described by Seaton (1961), makes exact al-
lowance for the long-range dipole ineraction. In this ap-
proach, the electrostatic potential with the centrifugal energy
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can be diagonalized leading to µm(µm + 1)/r2 eigenvalues and
Jµm+1/2(Kr) eigenfunctions. The µm values are real for LT >
LMin but some of them are complex for LT < LMin. Lmin depends
on the principal quantum numbers of the initial and final levels
of the considered lines. Complex values of µm corresponding to
short-range interactions are not well described by the exact res-
onance approach. For these low angular momenta LT < LMin,
we take into account all real µm values and neglect the complex
ones so that this procedure gives a lower bound of the exact
profile. We compare the results with the empirical estimation
previously used in Motapon (1998).

The sum of partial intensities is limited at LT
Max ≈ KρD

where ρD is the Debye radius and K is the relative motion wave
number defined by �2K2/2m = E where E is the kinetic energy
of the collision. Different temperatures and densities yield dif-
ferent cutoffs inducing profile variations with temperatures and
densities.

In the next section, we give the general expression of the
profile; we describe the exact resonance method in Sect. 3. The
new results for Lyβ, Lyγ and Lyδ lines are given in Sect. 4.

2. The quantum formula

We are interested in the i→f transition from the initial up-
per state i to the final state f (nf = 1 for the Lyman se-
ries). We define a channel Γ by a set of quantum numbers
Γ ≡ nLS l1/2LTS T where l1/2 defines the state of the scat-
tered electron and nLS the state of the atom, LT and S T are
respectively the total angular momentum and the total spin of
the H + e system.
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In the one perturber approximation, valid in the wings of
a line, the quantum line profile I(∆ω) is given by (Tran-Minh
et al. 1975):

I(∆ω) = Ne
|〈LfS f‖d1‖LiS i〉|2
(2S i + 1)(2Li + 1)

×
∫ ∞

0
�ρ(εi′) f (εi′ )dεi′

(2π)3

4Ki′Kf

×
∑

(2S T
i + 1)(2LT

i + 1)δlilf

×
∣∣∣∣∣
∫ ∞

0
drG∗(Γf |Γf |r)G(Γi′ |Γi|r)

∣∣∣∣∣
2

(1)

where Ne is the electron density, ρ(εi′ ) =
m�Ki′
(2π�)3 is the energy

density of the initial state, εi′ is the kinetic energy of the per-
turber when the atom is in the i′ state, f (εi′ ) is the kinetic
Maxwell energy distribution. Ki′ and Kf are the wave numbers
of the initial and final channels respectively. |〈LfS f‖d1‖LiS i〉| is
the reduced matrix element of the atomic dipole. The sum Σ
extends over liLT

i S T
i n′i L

′
i l
′
i , LT

f = lf for the Lyman lines.
The frequency ω of the light emitted is expressed in terms

of the kinetic energy of the perturber when the atom is in the i
or f state with energy Ei or Ef :

�ω = Ei +
1
2

mv2i = Ef +
1
2

mv2f (2)

and the detuning ∆ω is defined by:

�∆ω =
1
2

m(v2i − v2f ). (3)

The radial wave-functions G(Γi′ |Γi|r) are defined in terms of
the initial and final channels Γi′ and Γi for the collision prob-
lem of the upper level i. Expanding the total wave function in
terms of the set of atomic wave functions (Percival & Seaton
1957), we find for each LT

i and S T
i a set of coupled equations

for the G(Γi′ |Γi|r) functions. It is well known that the interac-
tion between the electron and the H atom in the lower state is
negligible for Lyman lines. Therefore G(Γf |Γf |r) is the radial
part of a plane wave:

G(Γf |Γf |r) = −2i

√
πr
2

Jlf+1/2(Kfr) (4)

where Jlf+1/2 is the cylindrical Bessel function.
The problem is how to calculate the overlap integrals:

I(i′|i) =
∫ ∞

0
drG∗(Γf |Γf)|r)G(Γi′ |Γi|r). (5)

3. Radial wave functions and overlap integrals

3.1. The exact resonance method

The I(∆ω) profile can be expressed as a sum over the total an-
gular momentum LT

i of the system (see Eq. (1)). We write:

I(∆ω) =
LD∑

LT
i =0

ILT (6)

where the cut-off LD, corresponding to the Debye radius, takes
into account the screening by the other electrons. Leaving apart
the problem of the first angular momenta LT

i for which spe-
cial treatments are necessary (Feautrier et al. 1976; Feautrier &
Tran-Minh 1977; Motapon 1998), we focus our attention on the
larger values of LT

i . Exchange is not important and the dipolar
part of the potential is predominant.

Retaining only asymptotic forms of the dipole potential, the
exact resonance method of Seaton (1961) yields the following
coupled equations:

r2

(
d2

dr2
+ Ki

2

)
G = AG (7)

where A/r2 contains the dipolar potentials Vi j and centrifugal
terms.

Two sets of coupled equations must be solved, according to
the total parity πi = (−1)li or πi = (−1)li+1. To solve Eq. (7),
we diagonalize A. We obtain eigenvalues am and the unitary
matrix of eigenvectors X. The system is equivalent to:

r2

(
d2

dr2
+ K2

i

)
G = aG (8)

where a is the diagonal matrix whose elements are am. Setting
am = µm(µm + 1) the solutions are:

gmm(r) = −i
√

2πrJµm+1/2(Kir) exp
(
−i
µmπ

2

)
· (9)

By a unitary transformation we obtain:

G(Γi′ |Γi|r) = exp
(
ili′
π

2

)
(XGX−1)i′i. (10)

Analytical solutions for the µm are only obtained for the level
n = 2 (Tran-Minh et al. 1980). For n > 2 we must perform
the numerical diagonalization of the a matrix; we evaluate the
quantity:

µm = −1
2
+

1
2

√
1 + 4am. (11)

The condition 1 + 4am = 0 determines the lower value LT
min of

the total angular momentum for which all the eigenvalues are
real.

Following Tran-Minh et al. (1975), Feautrier et al. (1976),
Feautrier & Tran-Minh (1977), Motapon (1998), the overlap
integrals are, for LT

i ≥ LT
min, linear combinations of integrals of

the form:

I(µm,Ki, lf ,Kf) =
∫ ∞

0

1
r

Jµm+1/2(Kir)Jlf+1/2(Kfr)dr. (12)

These integrals are known in terms of hypergeometric func-
tions (Gradshteyn & Ryzhik 1965):

F

µm + lf + 1
2

,
−µm + lf

2
, lf +

3
2

;
K2

f

K2
i

 for Ki > Kf

F

µm + lf + 1
2

,
µm − lf

2
, µm +

3
2

;
K2

i

K2
f

 for Kf > Ki.

Averaging over the initial energies in Eq. (1) implies integration
over εi′ from zero to infinity. However it is necessary to have
1
2 mv2f ≥ 0, therefore εi′ ≥ �∆ω. Thus the lower integration limit
is εmin = 0 for ∆ω < 0 and εmin = �∆ω for ∆ω > 0. As a
consequence, a full velocity average must be carried out.
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Table 1. Number of channels and minimum value of the total angular
momentum for each parity in the exact resonance theory.

Level πi = (−1)li πi = (−1)li+1

m LT
min m LT

min

n = 2 3 3 1 0
n = 3 6 5 3 3
n = 4 10 7 6 5
n = 5 15 9 10 7
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Fig. 1. Contributions of the first angular momenta to the Lyman α pro-
file. Full curve: this work, dotted curve: Motapon (Motapon1988)

3.2. Contribution of the low angular momenta

The number m of channels required for the collisional treat-
ment increases as n2, this prohibits refinements such as ex-
change effects and introduction of short range potentials taken
into account in the Lyα calculations. However, the exact reso-
nance method fails for low angular momenta as some µm values
become complex leading to resonances in the cross sections.
Table 1 gives the values of LT

min and m for levels n = 2, 3, 4, 5
relevant for the Lyα, Lyβ, Lyγ and Lyδ lines and for the two
parities of the (H+e) total system.

We give in Appendix A the numerical values of the µm cal-
culated for the n = 3 level. These numbers were calculated us-
ing Mathematica. It appears (see Table A.1) that, for the (−1)li

parity, only one µm value among six is complex for LT
i = 3, 4,

two µm values are complex for LT
i = 1, 2 and three µm for

LT
i = 0. For the (−1)li+1 parity (Table A.2), there is no com-

plex value for LT
i = 3, 4, one is complex for LT

i = 1, 2 and two
are complex for LT

i = 0. The same trend exists for higher n-
levels. So the number of complex channels is small and limited
to the first angular momenta and we have adopted the follow-
ing procedure in the calculations: we have taken into account
all the real µ values in the summation involved in the matrix
product (see Eq. (11)) and we have neglected the contribution
of the complex µ values. As a consequence, the final result is
a lower limit of the exact value since all the contributions are
positive (see Eq. (1)).

Figure 1 compares at T = 12 200 K, for three blue and
red detunings of the Lyman α line, the contributions (normal-
ized to the Holtsmark intensity) of the first angular momenta
obtained in our calculations with the extrapolation procedure
used in Motapon (1988).

The results are quite similar in the near wing, but system-
atic differences occur for large detunings: our results are larger
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Fig. 2. Contribution at T = 12 200 K of the first momenta LT
i to the

Lyβ, Lyγ, Lyδ lines at ∆λ = −10 Å (left) and ∆λ = 10 Å (right).
All the contributions are relative to the corresponding total Holtsmark
intensities.

in the blue wing and lower in the red wing, and the differences
which are very small for ∆λ = 2 increase with ∆λ. If we re-
call that our procedure gives a lower limit of the profile, the
extrapolation procedure of Motapon (1998) appears to under-
estimate the intensity in the blue wing and thus to overestimate
the asymmetry between the two wings. In fact the correct re-
sult should take into account the short range interactions that
are important for these low angular momenta (Feautrier et al.
1976). Hopefully, the contribution of these first angular mo-
menta is almost negligible in the near wing (less than 1%) and
increases very slowly when the detuning increases.

The same tendency is found for all the Lyman lines.
Figure 2 presents the contributions of the first angular momenta
for ∆λ = ±10 Å and T = 12 200 K (the values are relative to
the corresponding Holtsmark intensity given for the three lines
in Table 2).

3.3. Upper limit of LT
i

The sum over LT
i in Eq. (1) extends until LT

Max = LD, where
LD = KρD corresponds to a cutoff at the Debye radius ρD =√

kT
4πNee2 which gives LD = 4.02 × 106 T√

Ne
. Values of LD are

given in Table 3 for T = 12 200 K.
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Table 2. Holtsmark profile (in frequency unit) for the Lyβ, Lyγ, Lyδ
wings.

Lyβ IH = 48.266
√
�

me
(∆ω)−

5
2 Ne

Lyγ IH = 125.74
√
�

me
(∆ω)−

5
2 Ne

Lyδ IH = 265.05
√
�

me
(∆ω)−

5
2 Ne

Table 3. Values of the cut-off LT
D for several electronic densities Ne,

T = 12 200 K.

Ne × cm−3 LT
D

1016 573
1017 155
1018 49

From this table and Fig. 2, it appears that full convergence
of the summation is not obtained at Ne = 1018 cm−3, which
leads to density effects in the profile intensity.

4. Results and discussion

All the calculations were performed with Mathematica: the ac-
curacy of the results was tested for the Lyman α line by com-
parison with the Fortran code of Motapon (1998).

In Fig. 3, Holtsmark normalized profiles calculated for
Ne = 1016 cm−3 are reported. At that density, convergence
of the summation of the partial intensities is obtained before
the Debye cutoff and no density effect occurs. We observe that
the electronic profile in the wings gives a red wing higher than
the blue wing. This asymmetry comes from the appropriate dy-
namical treatment with correct relation of conservation of en-
ergy, which gives a lower limit εmin = �∆ω of integration over
the initial kinetic energy for ∆ω > 0. Such an effect cannot be
found in a semi-classical treatment which assumes a constant
relative velocity along the perturber trajectory and thus yields
symmetric profiles (see tables by Vidal et al. 1973).

Figure 4 shows the variation of the profiles for different
densities (T = 20 000 K). This variation due to the Debye cut-
off is negligible in the wings due to the rapid convergence of
the summation over LT

i in Eq. (1). As expected, some varia-
tions appear in the near wing at high densities.

As previously shown for the Lyman α line (Feautrier et al.
1976; Feautrier & Tran-Minh 1977; Tran-Minh et al. 1980),
the Holtsmark profile underestimates the intensity in the near
wing (∆λ ≤ 10 Å) and overestimates the far wing. As explained
above, the exact resonance method gives a lower limit of the
contribution of the first angular momenta and as a consequence
underestimates the intensity. As shown in Fig. 2, the relative
contribution of the first angular momenta increases with de-
creasing temperatures leading to some uncertainties in the far
wings at low temperatures (a few 1000 K). In that case, no ap-
proximate method is valid, and explicit account of short range
and exchange interactions is needed. Such calculations using
the R-Matrix method are in progress (Vo Ky Lan 2004).

The results obtained in the present work may be considered
as correct in the near wing for all typical temperatures of star
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Fig. 3. Blue (left) and red (right) wing profiles of Lyβ, Lyγ, Lyδ lines
for 3 electronic temperatures Te: full line: 5000 K, dashed-dotted line:
10 000 K, dotted line: 20 000 K
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Fig. 4. Density effects on Lyβ blue wing (left) and red wing (right).
Dotted curve: Ne = 1016 cm−3; dotted-plain curve: Ne = 1017 cm−3;
plain curve: Ne = 1018 cm−3; T = 20 000 K.

atmospheres and at higher temperatures (larger than 10 000 K)
in the farther wings (∆λ ≤ 30 Å). The results presented here as
well as results for other temperatures and densities are available
upon request from the authors.
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Appendix A: µm values for the n = 3 level

Table A.1. Complex µm values for n = 3 (π1=(−1)li ).

π1 LT
i = 0 LT

i = 1 LT
i = 2 LT

i = 3 LT
i = 4 LT

i = 5
µ1 4.02746 4.3524 4.9255 5.65777 6.48555 7.37063
µ2 −0.5 + 3.99363i −0.5 + 3.82718i −0.5 + 3.46396i 4.51879 5.3668 6.26934
µ3 2.83101 3.17009 3.76438 3.76438 4.21829 5.14494
µ4 −0.5 − 2.51462i 1.91901 2.55171 2.80923 3.88452 4.92538
µ5 1.54969 −0.5 + 2.2295i 1.64815 −0.5 + 2.81447i 2.51771 3.68226
µ6 −0.5 + 1.4221i 0 −0.5 + 1.43161i 1.11578 −0.5 + 1.51995i 1.72213

Table A.2. Complex µm values for n = 3 (π1=(−1)li+1).

π1 LT
i = 0 LT

i = 1 LT
i = 2

µ1 2.3101 3.17009 3.76438
µ2 −0.5 + 2.51462i −0.5 + 2.22925i 1.64815
µ3 −0.5 + 1.4221i 0 −0.5 + 143161i
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