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ABSTRACT

Context. We examine the dynamics of low-frequency waves in differentially rotating stellar radiation zones, the angular velocity being
taken as generally as possible depending both on radius and on latitude in stellar interiors. The associated induced transport of angular
momentum, which plays a key role in the evolution of rotating stars, is derived.
Aims. We focus on the wave-induced transport of angular momentum, taking into account the Coriolis acceleration in the case of
strong radial and latitudinal differential rotation. We thus go beyond the “weak differential rotation” approximation, where rotation
is almost a solid-body one plus a residual radial differential rotation. As has been shown in previous works, the Coriolis acceleration
modifies such transport.
Methods. We built analytically a complete formalism that allows the study of rotational transport in stellar radiation zones taking into
account the wave action modified by a general strong differential rotation.
Results. The different approximations possible for low-frequency waves in a differentially rotating stably stratified radiative region,
namely the traditional and the JWKB approximations, are examined and discussed. The complete bidimensional structure of regular
elliptic gravito-inertial waves, which verify these approximations, is derived and compared to those in the “weak differential rotation”
case. Next, associated transport of energy and of angular momentum in the vertical and in the horizontal directions and the dynamical
equations, respectively for the mean radial differential rotation and the latitudinal one, are obtained.
Conclusions. The complete formalism, which takes into account low-frequency wave action, is derived and can be used for the
study of secular hydrodynamics of radiative regions and of the associated mixing. The modification of waves due to general strong
differential rotation and their feed-back on the angular momentum transport are treated rigourously. In a forthcoming paper (Paper II),
this formalism will be applied to the case of solar differential rotation. However, the case of hyperbolic gravito-inertial waves should
be carefully studied.
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1. Introduction

The study of helioseismology, asteroseismology and powerful
ground-based instrumentation dedicated to stellar physics is de-
veloping strongly (Turck-Chièze 2005, 2006, 2008; Aerts et al.
2008, and references therein) generating tight constraints on the
internal structure and dynamics of stars. This is the reason why
it is now necessary to build stellar models that take into account
the dynamical processes from the birth of stars to their death.

A coherent picture of the dynamics of stellar radiation zones
where the non-standard chemicals mixing takes place is thus re-
quired (cf. Zahn 2005).

A complex transport, which involves several mechanisms,
takes place in these regions. First, rotation induces a large-scale
circulation, the called meridional circulation, which acts to si-
multaneously transport angular momentum, chemicals and the
magnetic field by advection. This circulation is due to differen-
tial rotation, to structural adjustments and to angular momentum
losses at the surface (cf. Busse 1982; Zahn 1992; Talon et al.
1997; Maeder & Zahn 1998; Meynet & Maeder 2000; Garaud
2002b; Palacios et al. 2003–2006; Mathis & Zahn 2004, 2005;
Rieutord 2006; Espinosa Lara & Rieutord 2007; Mathis et al.
2007; Decressin et al. 2009).

Next, differential rotation induces hydrodynamical
turbulence through various instabilities such as the shear,
the baroclinic and the multidiffusive ones. As in the terrestrial
atmosphere, this turbulence acts to reduce its cause, namely the
gradients of angular velocity (cf. Zahn 1983; Talon & Zahn
1997; Garaud 2001; Maeder 2003; Mathis et al. 2004).

On the other hand, rotation interacts with fossil magnetic
fields. Then, the mean secular torque of the Lorentz force and the
magnetohydrodynamical instabilities such as the Tayler-Spruit
and the multidiffusive magnetic instabilities modify the trans-
port of angular momentum and of chemicals (cf. Charbonneau
& Mac Gregor 1993; Gough & McIntyre 1998; Garaud 2002a;
Spruit 1999–2002; Menou et al. 2004; Maeder & Meynet 2004;
Eggenberger et al. 2005; Braithwaite & Spruit 2005; Braithwaite
2006; Brun & Zahn 2006; Zahn et al. 2007).

Finally, internal gravity waves (hereafter IGWs), which are
excited at the borders with convective zones, propagate through
radiative regions where they extract or deposit angular mo-
mentum at the location where they are damped, leading to a
modification of the angular velocity profile and consequently
of the chemical distribution (cf. Goldreich & Nicholson 1989;
Schatzman 1993; Kumar & Quataert 1997; Zahn et al. 1997;
Ringot 1998; Talon et al. 2002; Talon & Charbonnel 2005;
Rogers & Glatzmaier 2005b, 2006).
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Here, we focus on IGWs. It is likely that there is a magnetic
field in stellar radiation zones and more particularly at the level
of the tachocline(s), at the border(s) between convection and ra-
diation, which may be the zone of the storage of the mean ax-
isymmetric part of the field toroidal component. In the presence
of such a magnetic field, IGWs are then magneto-gravito-inertial
waves (which are often called Magnetic Archimedean Coriolis
(MAC) waves in geophysics) and the field acts as a filter to their
vertical propagation (cf. Schatzman 1993; Barnes et al. 1998).
In this work, we choose as a first step to ignore this interac-
tion between IGWs and the magnetic field, which will be studied
in a forthcoming paper, and to focus on purely hydrodynamical
gravito-inertial waves.

In this context, it has now been undertaken to go beyond
the non-rotating approximation in the treatment of IGWs prop-
agation and induced transport. The Coriolis acceleration which
strongly modifies IGWs as soon as σ ∼ 2Ω (where σ and 2Ω are
respectively the wave’s frequency and the inertial one) is then
taken into account. Depending on the excited wave spectrum
which is assumed (cf. Kumar et al. 1999; Rogers & Glatzmaier
2005b, 2006; Rogers et al. 2008, and the detailed discussion in
Sect. 4.2.1.), the Coriolis acceleration effects have thus to be
studied in a non-perturbative way (cf. Fig. 2) mainly for low-
frequency gravito-inertial waves which may be excited in stel-
lar radiation zones in the neighborhood of the inertial frequency
(2Ω).

To achieve this aim, the Coriolis acceleration has first been
treated using the traditional approximation, that can be applied
in stellar radiation zones in the super-inertial regime where 2Ω <
σ � N in the case of uniform rotation (N is the Brunt-Väisälä
frequency) (see for example Berthomieu et al. 1978; Friedlander
1987; Talon 1997; Mathis 2005). First numerical results using
a stellar evolution code have been obtained (cf. Pantillon et al.
2007; Mathis et al. 2008).

However, in those previous works, a strong approximation
on the differential rotation profile is assumed. In fact, the ap-
proximation of a weak differential rotation, where the rotation
must be almost a solid-body one plus a residual radial differ-
ential rotation, is chosen in order to use the formalism coming
from the treatment of Earth and planetary tides (Eckart 1960,
Miles 1974). This is an imperative first step to understand the
way in which the Coriolis acceleration modifies the transport due
to IGWs.

Nevertheless, this approximation has to be relaxed in the
case of a real star where strong gradients of angular velocity
can appear, both in the radial and in the latitudinal directions,
due to angular momentum transport. First, as shown by Talon &
Charbonnel (2005), strong radial Ω-gradients are created during
the wave-induced angular momentum extraction. Moreover, the
angular velocity of the regions of waves excitation at the borders
of radiative regions with adjacent convection zones depends both
on radius and on latitude (for example the tachocline in the so-
lar case). This is the reason why we generalize the formalism,
treating the case of a general strong differential rotation, the an-
gular velocityΩ being a function both of the radius (r) and of the
colatitude (θ), as can be potentially the case in stellar radiation
zones during the evolution of stars.

First, we derive the equations ruling the dynamics of waves
in a differentially rotating star. Then, we focus on the low-
frequency waves in a differentially rotating stellar radiation
zone. We present and discuss the different approximations that
can be adopted there, namely the traditional and the JWKB
ones, and we derive the associated dynamical equations. Then,
we solve them to obtain the spatial structure of the wave

pressure fluctuation and velocity field in the quasi-adiabatic ap-
proximation (cf. Press 1981; Zahn et al. 1997). A comparison
with the weak differential rotation case is presented. Next, we
study the induced transports of energy and of angular momen-
tum by waves. We treat the matching of their pressure at the
borders with adjacent convective regions where they are excited
by turbulent movements. After a short review of the different
models that can be adopted for such excitation which rules the
waves spectrum, we derive the total transported flux of angular
momentum. Finally, the associated dynamical equations govern-
ing the evolution of the mean differential rotation on an isobar
and its latitudinal fluctuation are obtained, following the formal-
ism used by Mathis & Zahn (2004) and Mathis & Zahn (2005).
This allows us to treat for the first time the action of a general
strong differential rotation on IGWs and their feed-back on the
angular momentum transport, which is of major interest for stel-
lar evolution.

In a forthcoming paper (Paper II), this formalism will be ap-
plied to the case of solar differential rotation.

2. Waves in a differentially rotating star

We have to solve the complete adiabatic inviscid system to treat
the wave dynamics in a differentially rotating star. It is formed
by the momentum equation

DtV = −1
ρ
∇P − ∇Φ, (1)

the continuity equation

Dt ρ + ρ∇ · V = 0, (2)

the equation for the energy, which is given here in the adiabatic
limit
1
Γ1

Dt ln P − Dt ln ρ = 0, (3)

and Poisson’s equation for the gravitational potential

∇2Φ = 4πGρ. (4)

Dt is the Lagrangian derivative: Dt = ∂t +V ·∇. V is the macro-
scopic velocity field that is the sum of the azimuthal velocity
associated with the differential rotation (Ω (r, θ) is the angular
velocity) and of the wave velocity field, u:

V (r, θ, ϕ, t) = r sin θΩ (r, θ) êϕ + u (r, θ, ϕ, t) . (5)

t is the time and r, θ, ϕ are the usual spherical coordinates with
their associated unit vector basis

{̂
ek

}
k={r,θ,ϕ}. In this first step, the

meridional circulation that superposes is ignored. ρ, Φ and P
are respectively the density, the gravitational potential and the
pressure while Γ1 = (∂ ln P/∂ ln ρ)s is the adiabatic exponent, S
being the macroscopic entropy. G is the universal gravitational
constant.

Equations (1–4) are linearized around the differentially ro-
tating steady-state1. Each scalar field X (the density, the grav-
itational potential and the pressure) is expanded as the sum of

1 Here, the angular velocity Ω is assumed to be time-independant. It
will be time-dependant when the angular momentum transport will be
considered in Sect. 4. This means that we make a time-scale separation
between the wave dynamical one, td = σ

−1, and the shortest one which
characterizes the transport of angular momentum. In stellar interiors,
this is relevant, since in the case of wave-induced transport, this shortest
time is of the order of several years (in the Shear Layer Oscillation;
see Sect. 4.3.1 and Talon & Charbonnel 2005) while td ≈ 12 h for
σ = 1 μHz.
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its hydrostatic value, X, and of the wave’s associated fluctuation,
X̃, as:

X (r, θ, ϕ, t) = X (r, θ) + X̃ (r, θ, ϕ, t) . (6)

We obtain (cf. Unno et al. 1989):(
∂t + Ω∂ϕ

)
u + 2Ω êz × u + r sin θ (u · ∇Ω) êϕ =

−1
ρ
∇P̃ − ∇Φ̃ + ρ̃

ρ2
∇P , (7)

where êz = cos θ êr − sin θ êθ is the unit vector along the rotation
axis and r sin θ (u · ∇Ω) êϕ is the Coriolis acceleration term due
to the differential rotation (see for example Zahn 1966). Here,
the centrifugal acceleration γc =

1
2Ω

2∇
(
r2 sin2 θ

)
is ignored (see

the discussion at the end of this section).
Next, we have(
∂t + Ω∂ϕ

)
ρ̃ + ∇ · (ρu) = 0, (8)

(
∂t + Ω∂ϕ

) ⎛⎜⎜⎜⎜⎝ P̃

Γ1P
− ρ̃
ρ

⎞⎟⎟⎟⎟⎠ + u ·
(

1
Γ1
∇ ln P − ∇ ln ρ

)
= 0 (9)

and

∇2Φ̃ = 4πG ρ̃. (10)

The Lagrangian wave’s displacement ξ is given by (cf. Unno
et al. 1989):

u =
(
∂t + Ω∂ϕ

)
ξ − r sin θ (ξ · ∇Ω) êϕ. (11)

Next, X̃, u and ξ are expanded in a Fourier sery in ϕ and t:

X̃ =
∑
σ,m

{
X′ (r, θ) exp

[
i (mϕ + σt)

]}
, (12)

u =
∑
σ,m

{
u′ (r, θ) exp

[
i (mϕ + σt)

]}
, (13)

ξ =
∑
σ,m

{
ξ′ (r, θ) exp

[
i (mϕ + σt)

]}
, (14)

σ being the wave angular velocity in an inertial frame (thus, we
assume that the rotation rate at which the waves are generated is
zero).

Inserting Eqs. (12), (13) in Eq. (7), the following linearized
momentum equation components are obtained:

i σ̂ u′r − 2Ω sin θ u′ϕ = −∂rW +
1

ρ2

(
ρ′∂rP − P′∂rρ

)
, (15)

i σ̂ u′θ − 2Ω cos θ u′ϕ = −
1
r
∂θW +

1

ρ2r

(
ρ′∂θP − P′∂θρ

)
, (16)

i σ̂ u′ϕ +
1

r sin θ

(
u′r∂r +

u′θ
r
∂θ

) (
r2 sin2 θΩ

)
= − imW

r sin θ
(17)

where

W =
P′

ρ
+ Φ′, (18)

u′r, u′θ, u
′
ϕ being respectively the radial, the latitudinal and the az-

imuthal components of u′.

Next, the continuity equation (Eq. (8)), the energy equation
in the adiabatic limit (Eq. (9)) and Poisson’s equation (Eq. (10))
respectively become

i σ̂ ρ′ + u′r∂rρ +
u′θ
r
∂θρ + ρ

[
1
r2
∂r

(
r2u′r

)
+

1
r sin θ

∂θ
(
sin θu′θ

)
+

imu′ϕ
r sin θ

]
= 0, (19)

i σ̂

(
P′

Γ1P
− ρ

′

ρ

)
+ u′r

(
1
Γ1
∂r ln P − ∂r ln ρ

)
+

u′θ
r

(
1
Γ1
∂θ ln P − ∂θ ln ρ

)
= 0 (20)

and

1
r2
∂r

(
r2∂rΦ

′)+ 1
r2

[
1

sin θ
∂θ

(
sin θ∂θΦ′

)− m2

sin2 θ
Φ′

]
= 4πGρ′. (21)

On the other hand, we get from Eq. (11):

ξ′k =
u′k
i σ̂
+ r sin θ

(
u′r
i σ̂
∂rΩ

i σ̂
+

u′θ
i σ̂

1
r
∂θΩ

i σ̂

)
εk,ϕ, (22)

where k = {r, θ, ϕ} and εk,ϕ = 1 if k = ϕ and 0 otherwise.
In a differentially rotating region, the waves are Doppler-

schifted due to the differential rotation. Thus, the local wave an-
gular velocity that corresponds to the operator

(
∂t + Ω∂ϕ

)
is:

σ̂ (r, θ) = σ + mΩ (r, θ) . (23)

This Doppler-shift is an essential ingredient in the angular mo-
mentum deposition or extraction respectively through prograde
(m < 0) and retrograde waves (m > 0) damping (see for exam-
ple in Talon et al. 2002; note that we have chosen here the sign
convention adopted by Lee & Saio 1997; and Mathis et al. 2008).

From now on, we neglect the non-spherical character of the
hydrostatic background due to the deformation associated with
the centrifugal acceleration, γc. We thus stop the expansion of

the equations to the first order in ε = Ω
Ωc

whereΩc =

√
GM
R3 is the

critical angular velocity of the star, R and M being respectively
its radius and its mass. We thus have:

X = X (r) (24)

and the gravity g (r) and the Brunt-Väisälä frequency N (r)
given by:

g =
dΦ
dr

and N2 =
1
ρ

dP
dr

⎛⎜⎜⎜⎜⎝d ln ρ
dr
− 1
Γ1

d ln P
dr

⎞⎟⎟⎟⎟⎠ · (25)

The general dynamical equations for waves in a differentially
rotating star now being given, we focus our attention on radiative
regions and on the approximations which can be applied there.

3. Low-frequency waves in a differentially rotating
stellar radiation zone

3.1. The traditional approximation

In the general case, the operator which governs the spatial struc-
ture of the waves, the Poincaré operator, is of mixed type (elliptic
and hyperbolic) and not separable (for a detailed discussion we
refer the reader to Friedlander & Siegman 1982; Dintrans 1999;
Dintrans et al. 1999; and to Dintrans & Rieutord 2000). This
leads to the appearance of detached shear layers associated with
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the underlying singularities of the adiabatic problem that could
be crucial for transport and mixing processes in stellar radiation
zones, since they are the seat of strong dissipation (Stewartson &
Richard 1969; Stewartson & Walton 1976; Dintrans et al. 1999;
Dintrans & Rieutord 2000; Ogilvie & Lin 2004).

However, in the largest part of stellar radiation zones, we are
in a regime where 2Ω � N. Since we are interested here in low-
frequency waves where σ � N, the traditional approximation,
which consists of neglecting the latitudinal component of the ro-
tation vector (Ω = Ω (r, θ) êz = ΩV êr + ΩH êθ with ΩV = Ω cos θ
and ΩH = −Ω sin θ), −Ω sin θ êθ, for all latitudes in the momen-
tum equation, can be adopted in the case where 2Ω < σ when
Ω is uniform (see e.g. Eckart 1960; Lindzen & Chapman 1969;
and Miles 1974; for a modern description in a stellar context
see Nicholson 1989; Bildsten et al. 1996; Papaloizou & Savonije
1997; Lee & Saio 1997; Talon 1997). Then, it has been shown
by Friedlander (1987) that variable separation in radial and hori-
zontal eigenfunctions remains possible. This approximation has
to be used carefully, as it changes the nature of the Poincaré op-
erator, and removes the singularities and associated shear lay-
ers that appear. Therefore, assuming solid-body rotation, it is
only valid in the super-inertial regime 2Ω < σ � N, where the
stratification dominates, that corresponds to the ergodic (regular)
elliptic gravito-inertial mode family (the E1 modes in Dintrans
et al. 1999; and Dintrans & Rieutord 2000). In the sub-inertial
regime, where σ ≤ 2Ω, that corresponds to the equatorially
trapped hyperbolic modes (the H2 modes in Dintrans et al. 1999;
and Dintrans & Rieutord 2000), the traditional approximation
fails to reproduce the waves behaviour and the complete mo-
mentum equation has to be solved (detailed examples are given
in Gerkema & Shrira 2005 and Gerkema et al. 2007).

Therefore, we restrict ourselves here to the regular low-
frequency waves for which the traditional approximation is us-
able. Its application domain in the case of general strong differ-
ential rotation will be discussed in Sect. 3.4.6.

Let us now adopt a local analysis of the problem in the sim-
plest case of a uniform rotation (see also Lee & Saio 1997). The
wave vector k and Lagrangian displacement ξ are expanded as

k = kV êr + kθêθ + kϕêϕ = kV êr + kH (26)

ξ = ξV êr + ξθêθ + ξϕêϕ = ξV êr + ξH , (27)

where kH = kθ̂eθ + kϕ̂eϕ, kH = |kH |, k = |k|, ξH = ξθ̂eθ + ξϕ̂eϕ,
ξH = |ξH |, ξ ∝ exp [i (k · r − σt)] and ξ = |ξ|.

For low-frequency waves in stably stratified regions, we can
writte:

k · ξ = kVξV + kH · ξH ≈ 0, (28)

since ∇ · (ρξ) ≈ 0 (this is the anelastic approximation that filters
out acoustic waves which have higher frequencies), from which
we deduce the following indentity:

ξV
ξH
≈ −kH

kV
· (29)

Next, using the results given in Unno et al. (1989), the following
dispersion relation for the low-frequency gravito-inertial waves
is obtained:

σ2 ≈ N2 k2
H

k2
+

(2Ω · k)2

k2
· (30)

In this expression, the mixed behaviour of waves is clearly iden-
tified, the two terms corresponding respectively to the disper-

sion relations of IGWs, σ2 ≈ N2 k2
H

k2 , and of inertial waves,

Fig. 1. Wave types in differentially rotating stellar radiation zone and
associated frequencies (where fL is the Lamb’s frequency).

σ2 ≈ (2Ω·k)2

k2 . In the case where the “traditional” frequency hi-
erarchy, 2Ω � N and σ � N, is verified (this is the case for
example in the radiative region of the Sun, cf. Fig. 1), the previ-
ous dispersion relation gives:

k2
H

k2
� 1. (31)

The vertical wave vector is then larger than the horizontal one
while the displacement vector is almost horizontal:

|kH | � |kV |, |ξV | � |ξH |. (32)

On the other hand, we get (2Ω · k) ≈ 2ΩVkV . The latitudinal
component of the rotation vector can thus be neglected in the
whole sphere.

3.2. The JWKB approximation

Under the assumption that σ � N, each scalar field and each
component of u′ can be expanded using the JWKB approxi-
mation (see Landau & Lifchitz 1966; Fröman & Fröman 1965;
Vallée & Soares 1998, and references therein for mathematical
details). In this case, the vertical wave number is very large,
the associated wave-length being thus very small. Therefore, the
spatial variation of the wave is very rapid compared to that of the
hydrostatic background (cf. compared to those of ρ, g and P).
Then, the wave spatial structure can be described by the prod-
uct of a plane-like wave function multiplied by a slowly varying
envelope and we obtain:

u′k = ûk (r, θ)S (r) , (33)

ξ′k = ξ̂k (r, θ)S (r) (34)

with

ξ̂k =
ûk

i σ̂
+ r sin θ

(
ûr

i σ̂
∂rΩ

i σ̂
+

ûθ
i σ̂

1
r
∂θΩ

i σ̂

)
εk,ϕ, (35)

ρ′ = ρ̂ (r, θ)S (r) , (36)

P′ = P̂ (r, θ)S (r) (37)

and

Φ′ = ΦCZ (r, θ) + Φ̂ (r, θ)S (r) . (38)

The case of the fluctuation of the gravitational potential is par-
ticular since it is the sum of the fluctuating potential associated

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810544&pdf_id=1
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with the waves propagating in the studied radiation zone and of
the one associated with the movements in the convection zone,
ΦCZ.

The JWKB phase function is given by:

S (r) = exp

[
i

(∫ rc

r
kV

(
r′
)

dr′ +
π

2

)]
, (39)

where the property of low-frequency waves given in Eq. (32)
has been used to neglect kH in exp

[
i
∫

r
k · dr′

]
. The arbitrary

phase origin is chosen so that ξ′r is real at r = rc (see Zahn et al.
1997; Mathis 2005; Pantillon et al. 2007; and Mathis et al. 2008).
Moreover, the JWKB amplitude of the fluctuationA (r) = A 1

k1/2
V

is absorbed in the f̂ (r, θ) functions.
If the JWKB approximation is adopted, this also implies

that the quasi-linear approximation, where the non-linear wave-
wave interactions are neglected, is assumed.

Internal gravity waves - induced transport in stellar interiors
was first studied by Press (1981). In this work, he emphasizes
the possible non-linearity of the problem of IGWs excited by tur-
bulent convective movements. He then shows that JWKB solu-
tions, using crude prescriptions for the wave excitation, are at the
limit between the linear and the non-linear regime. Furthermore,
Rogers et al. (2008) obtain results where the non-linear regime
develops in the case of an excited spectrum at the convection-
radiation border computed through 2-D numerical simulations
which account for a real solar stratification (see Sect. 4.2.1 for
a more detailed description). This non-linear behaviour then
shows that the quasi-linear approximation has to be used care-
fully depending on the excited spectrum that is assumed.

As discussed by Rogers et al. (2008), the quasi-linear ap-
proximation is relevant as long as the Froude number (Fr), which
gives the ratio between the wave-inertia term and the stratifica-
tion one, is small compared to unity. This number has been com-
puted by Rogers & Glatzmaier (2006; cf. Fig. 4 in this paper) in
the solar case using the same numerical simulations as those dis-
cussed above. Then, they showed that Fr � 1 in the bulk of the
radiation zone, while it strongly grows in the tachocline where
IGWs are excited by the turbulent convection and at the center
because of the wave’s geometrical focusing already identified by
Press (1981).

Therefore, it is reasonable to adopt the quasi-linear approx-
imation, being aware that it has to be used with caution in the
excitation region and at the center.

3.3. Dynamical equations

Simultaneously using the traditional and the JWKB approxima-
tions and assuming the anelastic one where sonic waves are fil-
tered (i.e. ∇ · (ρu) ≈ 0), we derive the dynamical equations for
low-frequency waves in differentially rotating radiation zones.
Substituting the expansion given in Eq. (33) to Eqs. (15–17), the
final radial, latitudinal and azimuthal components of the momen-
tum equation are obtained:

i σ̂ ûr = ikVŴ − ρ̂
ρ
g, (40)

i σ̂ ûθ − 2Ω cos θ ûϕ = −1
r
∂θŴ, (41)

i σ̂ ûϕ +
ûθ

sin θ
∂θ

(
sin2 θΩ

)
= − imŴ

r sin θ
, (42)

where

Ŵ =
P̂
ρ
· (43)

The different simplifications adopted for each component of the
momentum equation have to be detailed.

For its radial component (Eq. (15)), the traditional approx-
imation, for which it is assumed that 2Ω � N, allows one to
neglect the radial component of the Coriolis acceleration which
is thus strongly dominated in the vertical direction by the buoy-
ancy restoring force. Furthermore, in a rigourous way, the iner-
tial term i σ̂ ûr also has to be neglected since σ � N. However, it
is first conserved here to make the historical link with the works
in the non-rotating case by Press (1981), Schatzman (1993)
and Zahn et al. (1997) and with those in the uniformly rotat-
ing case by Pantillon et al. (2007) and Mathis et al. (2008)
where it is conserved. Finally, the last right hand-side term
−1/ρ2 ∂rρ P′ is not taken into account because of the anelastic
approximation. Then, the latitudinal component (Eq. (16)) sim-
plifies since ∂θ P = ∂θ ρ = 0 , the other terms all being of the
same order of magnitude and thus conserved. Finally, the term
1/(r sin θ) ûr ∂r

(
r2 sin2 θΩ

)
is neglected in the azimuthal com-

ponent (Eq. (17)) since the wave’s Lagrangian displacement is
mostly horizontal (and thus ûr � ûθ) for low-frequency IGWs
(cf. Eq. (32) and the discussion in Sect. 3.4.5).

In addition, the continuity equation is2:

− ikVûr +
1

r sin θ
∂θ

(
sin θ ûθ

)
+

imûϕ
r sin θ

= 0 (44)

while the energy equation becomes

− i σ̂
ρ̂

ρ
+

N2

g
ûr = 0. (45)

Finally, Poisson’s equation is given by:

− k2
V φ̂ = 4πG ρ̂. (46)

Cowling’s approximation, in which the fluctuation of the gravita-
tional potential is neglected in the momentum equation, is made
(Cowling 1941). Therefore, Ŵ does not involve φ̂, the wave self-
gravitation.

We are now ready to derive the wave spatial structure.

3.4. Spatial structure of the velocity field and associated
properties

3.4.1. Spatial structure of the horizontal components
of the velocity

The first step is to derive the spatial structure of the horizon-
tal components of the velocity field as a function of Ŵ = P̂/ρ.
To achieve this, we succesively eliminate ûθ and ûϕ between
Eqs. (41) and (42). This leads to the following expressions for
each of them:

ûθ =
i

rσ̂
1

D (
r, θ; ν̂

) [
∂θŴ − i ν̂

cos θ
sin θ

(
imŴ

)]
, (47)

ûϕ =
i

rσ̂
1

D (
r, θ; ν̂

) ⎡⎢⎢⎢⎢⎣i (̂ν cos θ +
∂θΩ

σ̂
sin θ

)
∂θŴ +

imŴ
sin θ

⎤⎥⎥⎥⎥⎦ · (48)

2 Since the JWKB approximation is adopted, we keep only the highest
order derivative term in the radial direction. Then, the one associated
with ∂rρ is neglected.
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We have defined the local spin parameter ν̂ (r, θ), which is the
inverse of the local Rossby number, namely the ratio of the local
inertial frequency to the wave’s local frequency:

ν̂ (r, θ) =
2Ω(r, θ)
σ̂ (r, θ)

(49)

andD that depends on the rotation rate (Ω) and on its latitudinal
gradient3:

D (
r, θ; ν̂

)
= 1 − ν̂2 cos2 θ − ν̂ ∂θΩ

σ̂
cos θ sin θ. (50)

Here, following Ogilvie & Lin (2004), we notice that in the case
where σ̂ = 0 we get the corotation resonance while the case
where D = 0 is equivalent to the Lindblad resonance encoun-
tered in accretion discs (see for example Goldreich & Tremaine
1979).

We make the hypothesis, which will be verified in the next
section, that Ŵ can be expanded as

Ŵ =
∑

j

w j,m
(
r, x; ν̂

)
(51)

where w j,m is its jth spectral component and x = cos θ.
Then, it comes from Eq. (47) that:

ûθ =
∑

j

ûθ; j,m
(
r, x; ν̂

)
(52)

where the jth spectral component is given by:

ûθ; j,m = i
1
r
σ̂Gθj,m

(
r, x; ν̂

)
(53)

with

Gθj,m
(
r, x; ν̂

)
= Oθ

ν̂;m

[
w j,m

(
r, x; ν̂

)]
, (54)

the linear operator Oθ
ν̂;m

being:

Oθν̂;m =
1
σ̂2

1

D (
r, x; ν̂

) √
1 − x2

[
−

(
1 − x2

) d
dx
+ mν̂x

]
(55)

where

D (
r, x; ν̂

)
= 1 − ν̂2 x2 + ν̂

∂xΩ

σ̂
x
(
1 − x2

)
. (56)

Similarly, we obtain from Eq. (48):

ûϕ =
∑

j

ûϕ; j,m
(
r, x; ν̂

)
(57)

with

ûϕ; j,m = −1
r
σ̂Gϕj,m

(
r, x; ν̂

)
(58)

where

Gϕj,m
(
r, x; ν̂

)
= Oϕ

ν̂;m

[
w j,m

(
r, x; ν̂

)]
, (59)

3 It can also be written as:

D (
r, θ; ν̂

)
= 1 − ν̂2

[
cos2 θ +

1
2
∂θ (lnΩ) cos θ sin θ

]
.

the linear operator Oϕ
ν̂;m

being given by:

Oϕ
ν̂;m
=

1
σ̂2

1

D (
r, x; ν̂

) √
1 − x2

×
[
−

(̂
νx −

(
1 − x2

) ∂xΩ

σ̂

) (
1 − x2

) d
dx
+ m

]
. (60)

From the expressions obtained for Oθ
ν̂;m

and Oϕ
ν̂;m

, one can note
the dependance of ûθ and ûϕ on the differential rotation profile
given by Ω (r, θ).

The spatial structure of the latitudinal and azimuthal com-
ponents of the velocity field is now derived as a function of the
pressure field. We have to derive its governing equation.

3.4.2. Spatial structure of the radial component
of the velocity field and of the pressure

Eliminating the wave’s density fluctuation ρ̂ between the ra-
dial momentum equation (Eq. (40)) and the energy equation
(Eq. (45)), we obtain the relation between ûr and Ŵ:

ûr = −
(

N2

σ̂2
− 1

)−1
kV

σ̂
Ŵ ≈ − σ̂

N2
kVŴ . (61)

Inserting it in the continuity equation (Eq. (44)), we get for w j,m,
as defined in Eq. (51):

Oν̂;m
[
w j,m

(
r, x; ν̂

)]
= −k2

Vr2

σ̂2

(
N2

σ̂2
− 1

)−1

w j,m
(
r, x; ν̂

)
≈ −k2

Vr2

N2
w j,m

(
r, x; ν̂

)
, (62)

where the “Generalized Laplace Operator” (hereafter GLO),
Oν̂;m, is derived:

Oν̂;m = 1
σ̂

d
dx

⎡⎢⎢⎢⎢⎢⎢⎣
(
1 − x2

)
σ̂D (

r, x; ν̂
) d

dx

⎤⎥⎥⎥⎥⎥⎥⎦ − m
σ̂2D(r, x; ν̂ )

(
1 − x2

) ∂xΩ

σ̂

d
dx

− 1
σ̂

[
m2

σ̂D (
r, x; ν̂

) (
1 − x2

) + m
d

dx

(
ν̂x

σ̂D (
r, x; ν̂

) )] · (63)

Oν̂;m is called the GLO since it reduces to the classical Laplace
tidal operator in the case of a uniform rotation Ω (r, θ) = Ωs, Ωs
being the considered solid-body angular velocity (see Laplace
1799; and the detailed discussion in Sect. 3.4.5).

The w j,m are thus the eigenfunctions of the GLO, namely

Oν̂;m
[
w j,m

(
r, x; ν̂

)]
= −λ j,m

(
r; ν̂

)
w j,m

(
r, x; ν̂

)
, (64)

the eigenvalues λ j,m being deduced from the following disper-
sion relation4:

k2
V; j,m (r) =

λ j,m
(
r; ν̂

)
N2

r2
(65)

that determines the radial wave number kV; j,m at each r. The
λ j,m > 0 solutions correspond to the propagating waves, namely
the gravito-inertial waves, while the λ j,m < 0 solutions corre-
spond to the evanescent ones.

4 λ j,m has the dimension of a times squared [t2] and is thus expressed
in s2 (see also Eq. (83)).
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Following Ogilvie & Lin (2004), it can be shown that the
GLO is self-adjoint, namely that∫ 1

−1
f ∗ (x)Oν̂;m [

g (x)
]
dx =

[∫ 1

−1
g∗ (x)Oν̂;m [

f (x)
]
dx

]∗
for any two functions f and g satisfying the regularity conditions
at the poles (∗ is the complex conjugaison). The eigenvalues λ j,m
are therefore real while the eigenfunctions corresponding to dis-
tinct eigenvalues are orthogonal with:∫ 1

−1
w∗i,m

(
r, x; ν̂

)
w j,m

(
r, x; ν̂

)
dx = Ci,mδi, j, (66)

where δi, j is the classical Kronecker symbol and Ci,m the normal-
ization factor.

It can be shown that the sign of λ j,m depends on that ofD; see
Ogilvie & Lin (2004) for a more detailed discussion. Singular
points of Eq. (64) occur at the poles, or when σ̂ or D vanish
(these are respectively the corotation resonance or the Lindblad
one, as has been discussed).

The boundary conditions have been given by Ogilvie & Lin
(2004): close to the north pole, the two independent solutions
are w j,m ∝ θm and w j,m ∝ θ−m in the case where m � 0 while
we get w ∝ 1 or w ∝ ln θ when m = 0. The condition that the
w j,m are bounded selects the regular solution. A similar condition
is required at the south pole. This provides the two boundary
conditions for our eigenvalue problem.

Moreover, as it can be seen immediately, eigenvalues de-
pend on the radial coordinate, r. Ogilvie & Lin (2004) describe
a “parametric” dependance, since Oν̂;m is a differential operator
in x only. We prefer here to say that the use of the JWKB solu-
tion allows us to reduce the problem of a bidimensionnal partial
differential equation in r and θ to the one of a differential equa-
tion in x for each r, the obtained solution being also completely
2D without any variable separation in r and x. This is because
the GLO depends on x, but also on r through ν̂ and D. In this
way, even in the case of a shellular rotation Ω (r, θ) = Ω (r), the
problem is not separable, the only separable case being the weak
differential rotation one (see Sect. 3.4.5).

3.4.3. Phase and group velocities; radiative damping

Using the wave’s dispersion relation given in Eq. (65), the
monochromatic vertical group velocity is derived

VV
g; j,m =

dσ̂
dkV; j,m

= − σ̂
kV; j,m

= −VV
p; j,m < 0, (67)

VV
p; j,m being the associated vertical phase velocity; it is negative

here since we are studying the case of a solar-type star where
waves are excited by the turbulent convection in an upper ex-
ternal envelope (the opposite is obtained in the case of massive
stars where waves are excited by a convective core).

Moreover, the vertical radiative damping (we have to remem-
ber that kV; j,m � kH; j,m) is given by (see for example Kumar et al.
1999):

τ j,m
(
r, θ; ν̂

)
=

∫ rc

r

Kk2
V; j,m

|Vg; j,m| dr′ =
∫ rc

r
K
λ3/2

j,m

(
r; ν̂

)
N3

σ̂

dr′

r′3
, (68)

K being the thermal diffusivity. One can note that the non-
uniform rotation modifies the damping rate since λ j,m is now in
the integrand of the dissipation integral (cf. Eq. (91)). Moreover,
since Oν̂;m depends on m, the differential damping between the

prograde and the retrograde waves is modified due to the action
of the Coriolis acceleration as in the weak differential rotation
case (see Mathis 2005; Pantillon et al. 2007; and Mathis et al.
2008).

As in Press (1981) and Zahn et al. (1997), we adopt here the
quasi-adiabatic approximation. In this way, the pressure fluctu-
ation and the velocity field of a monochromatic wave are given
by:

P j,m (r, t) = PAd
j,m (r, t) exp

[
−τ j,m (r) /2

]
, (69)

u j,m (r, t) = uAd
j,m (r, t) exp

[
−τ j,m (r) /2

]
, (70)

PAd
j,m and uAd

j,m being their respective spatial structure in the adia-
batic case.

3.4.4. Final pressure field and velocity field

Using the results reported previously, the pressure field P̃ and the
velocity field u of the low-frequency waves in a differentially
rotating radiation zone can be derived. Assuming the quasi-
adiabatic approximation, we obtain for the pressure field:

P̃ (r, θ, ϕ, t) =
∑
σ,m, j

P′j,m (r, θ, ϕ, t) , (71)

where

P′j,m(r, θ, ϕ, t) = −ρw j,m
(
r, θ; ν̂

)
sin

[
Φ j,m (r, ϕ, t)

]
× exp

[
−τ j,m

(
r, θ; ν̂

)
/2

]
, (72)

the phase function Φ j,m being given by:

Φ j,m (r, ϕ, t) = σt +
∫ rc

r
kV; j,m dr′ + mϕ. (73)

Then, we get for the velocity field:

u =
∑

k={r,θ,ϕ}

⎡⎢⎢⎢⎢⎢⎢⎣∑
σ,m, j

uk; j,m (r, θ, ϕ, t)

⎤⎥⎥⎥⎥⎥⎥⎦ êk (74)

where

ur; j,m(r, θ, ϕ, t) =
σ̂

N

λ1/2
j,m

(
r; ν̂

)
r

w j,m
(
r, θ; ν̂

)
sin

[
Φ j,m (r, ϕ, t)

]
× exp

[
−τ j,m

(
r, θ; ν̂

)
/2

]
, (75)

uθ; j,m(r, θ, ϕ, t) = − σ̂
r
Gθj,m

(
r, θ; ν̂

)
cos

[
Φ j,m (r, ϕ, t)

]
× exp

[
−τ j,m

(
r, θ; ν̂

)
/2

]
, (76)

uϕ; j,m(r, θ, ϕ, t) =
σ̂

r
Gϕj,m

(
r, θ; ν̂

)
sin

[
Φ j,m (r, ϕ, t)

]
× exp

[
−τ j,m

(
r, θ; ν̂

)
/2

]
. (77)

On the other hand, since we have to use it to compute the vertical
flux of angular momentum (see Sect. 4.1.2, Bretherton 1969; and
Pantillon et al. 2007), we derive from Eq. (11):

ξθ =
∑
σ,m, j

ξθ; j,m (r, θ, ϕ, t) (78)

with

ξθ; j,m(r, θ, ϕ, t) = −1
r
Gθj,m

(
r, θ; ν̂

)
sin

[
Φ j,m (r, ϕ, t)

]
× exp

[
−τ j,m

(
r, θ; ν̂

)
/2

]
. (79)
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3.4.5. Discussion of the weak differential rotation case

In the weak differential rotation case where the angular velocity
is expanded such that

Ω (r, θ) = Ωs + δΩ (r) (80)

with δΩ � Ωs, the structure of low-frequency waves is mainly
modified by the solid-body rotation, Ωs, the residual radial dif-
ferential rotation, δΩ, being only taken into account in the ra-
diative damping term (this is the case treated by Mathis 2005;
Pantillon et al. 2007; and Mathis et al. 2008). In this case, the
local frequency and the local spin parameter become

σ̂ = σ̃ = σs + mδΩ and ν̂s = νs =
2Ωs

σs
, (81)

where σs = σ + mΩs.

The GLO, Oν̂s;m, then reduces to the classical Laplace’s tidal
operator Lνs;m:

Oν̂s ;m =
1

σ2
s
Lνs;m

=
1

σ2
s

[
d
dx

(
1 − x2

1 − ν2s x2

d
dx

)
− 1

1 − ν2s x2

(
m2

1 − x2
+ mνs

1 + ν2s x2

1 − ν2s x2

)]
(82)

of which the eigenfunctions are the usual Hough’s functions
Θ j,m (x; νs) (Hough 1898; Longuet-Higgins 1968; Miles 1977)
that depend on x only since νs is now uniform in the considered
radiation zone, Lνs ;m being thus a linear differential operator in
x only.

The dispersion relation obtained in Eq. (65) is then given by

k2
V; j,m (r) =

N2

σ2
s

Λ j,m (νs)

r2
with Λ j,m (νs) = σ

2
sλ j,m

(
ν̂s

)
, (83)

where the classical eigenvalues for the Laplace tidal operator,
Λ j,m (νs), have been introduced and related to the λ j,m

(
ν̂s

)
.

Finally, the operators Oθ
ν̂s ;m

and Oϕ
ν̂s ;m

are simplified

Oθν̂s ;m =
1

σ2
s
Lθνs ;m

=
1

σ2
s
×

⎡⎢⎢⎢⎢⎢⎢⎢⎣ 1(
1−ν2s x2

) √
1−x2

[
−

(
1−x2

) d
dx
+mνsx

]⎤⎥⎥⎥⎥⎥⎥⎥⎦, (84)

Oϕ
ν̂s ;m
=

1

σ2
s
Lϕνs ;m

=
1

σ2
s
×

⎡⎢⎢⎢⎢⎢⎢⎢⎣ 1(
1−ν2s x2

) √
1−x2

[
−νsx

(
1−x2

) d
dx
+m

]⎤⎥⎥⎥⎥⎥⎥⎥⎦, (85)

where the linear differential operatorsLθνs ;m and Lϕνs;m have been
defined in Mathis (2005) and in Pantillon et al. (2007).

We thus obtain a separation of variables in r and θ, as in Lee
& Saio (1997), Mathis (2005), Pantillon et al. (2007) and Mathis
et al. (2008), with in the adiabatic case:

w j,m
(
r, θ; ν̂

)
=

P j,m (r)

ρ
Θ j,m (cos θ; νs) , (86)

and

Gθj,m
(
r, θ; ν̂

)
=

1

σ2
s

P j,m (r)

ρ
H θj,m (cos θ; νs) , (87)

Gϕj,m
(
r, θ; ν̂

)
=

1

σ2
s

P j,m (r)

ρ
Hϕj,m (cos θ; νs) , (88)

where we recall the respective definition ofH θj,m and ofHϕj,m:

H θj,m (x; νs) = Lθνs;m
[
Θ j,m (x; νs)

]
, (89)

Hϕj,m (x; νs) = Lϕνs;m
[
Θ j,m (x; νs)

]
. (90)

Finaly, the thermal damping rate becomes using Eq. (83):

τ j,m
(
r, θ; ν̂

)
= Λ

3/2
j,m (νs)

∫ rc

r
K

N3

σ̃4

dr′

r′3
· (91)

3.4.6. The traditional approximation in the case of general
differential rotation

In the weak differential rotation case (see Sect. 3.4.5), the tradi-
tional approximation can be applied in spherical shell(s) where

D (r, x; νs) = 1 − ν2s cos2 θ > 0 everywhere

(∀r and ∀θ ∈ [0, π]), (92)

thus as long as 2Ωs < σs � N (νs < 1) (cf. Figs. 2 and 3),
that corresponds to the super-inertial regime where the adiabatic
wave operator is elliptic and to regular (elliptic) gravito-inertial
waves (see Dintrans & Rieutord 2000, for a detailed classifica-
tion of gravito-inertial waves). In the other spherical shell(s),
where both D ≤ 0 and D > 0, which corresponds to the sub-
inertial regime (σs ≤ 2Ωs < N, νs ≥ 1), waves (and the adiabatic
wave operator) become hyperbolic and trapped in an equatorial
belt where θ ∈ [θc, π − θc], θc being the critical colatitude

θc = cos−1

(
σs

2Ωs

)
(93)

where D = 0 and where the adiabatic wave velocity field (and
operator) is singular. There, the traditional approximation cannot
be applied (see Sect. 3.1 and references therein) and the regular-
ization of the adiabatic wave velocity field is allowed by ther-
mal and viscous diffusion that lead to shear layers, the attractors,
where strong dissipation occurs that may induce transport and
mixing (Dintrans et al. 1999; Dintrans & Rieutord 2000). The
description of this regime is out of the scope of this paper and
should be examined in the near future.

In the case of a general strong differential rotation (Ω(r, x)),
the traditional approximation can be applied as long as 2Ω� N
and σ � N in spherical shell(s) where

D > 0 everywhere (∀r and ∀x ∈ [−1, 1]) (94)

that corresponds to the regular elliptic gravito-inertial waves.
In the other spherical shell(s), where bothD ≤ 0 andD > 0,

critical surfaces appear, on which D = 0. Then, the traditional
approximation fails to reproduce the wave behaviour since the
adiabatic wave operator (and velocity field) becomes singular
and thus it should be abandoned (Friedlander 1987), as in the
sub-inertial regime in the weak differential rotation case.

To illustrate this, we consider the radiation zone of a solar-
type star. Its external border with the convective envelope, where
a tachocline layer is assumed, is located at the radius r = RT (in
the Sun, RT ≈ 0.71 R�; see for example Schatzman et al. 2000).
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Fig. 2. νs (σ) = 2Ωs/σ in the frequency range relevant for the calcu-
lation of angular momentum transport taking Ωs/2π = 430 nHz for
axisymmetric waves (m = 0). The traditional approximation is allowed
when νs < 1 and forbidden otherwise (νs ≥ 1).

Fig. 3. D (θ; νs) as a function of θ and σ for axisymmetric waves
(m = 0). The critical surface D (θ; νs) = 0 (cf. Eq. (93)) is given by
the thick black line and the iso-D lines such that D (θ; νs) > 0 and
D (θ; νs) < 0 are respectively given by the red and the blue lines. The
traditional approximation applies in spherical shell(s) such that D > 0
everywhere (∀r and ∀θ ∈ [0, π]); there waves are regular at all lati-
tudes. In other spherical shell(s), where both D > 0 and D ≤ 0, the
traditional approximation does not apply due to the singularity where
D = 0. Therefore, for Ωs, the traditional approximation applies in the
domain in the (σ, θ) plane to the right of the vertical thick red line.

We consider three different angular velocity profiles.
First, we define a radial differential rotation, Ω1 (r), which

has a smooth gradient troughout the radiative core:

Ω1 (r) = Ωs

[
1 + sinc

(
π

r
RT

)]
, (95)

where sinc (X) = sin X/X and Ωs is solid-body rotation which is
taken as the reference. Following Mathis et al. (2008), we choose
Ωs/2π = 430 nHz.

Next, we consider a second radial differential rotation

Ω2 (r) = Ωs

[
2 − AcErf

(
r − rc

lc

)]
, (96)

which has a strong gradient located in the core of the radiation
zone (r ∈ [0,RT/3]) and a central rotation Ω2 (0) = 3Ωs (to ob-
tain this profile we put Ac = 1, rc = 0.15RT and lc = 0.075RT)
as could be the case inside the Sun (Turck-Chièze et al. 2004;

Fig. 4. Rotation frequencies Ω1 (r) /2π (blue line) and Ω2 (r) /2π (red
line). The reference solid body rotation, Ωs/2π, is given by the thick
dashed black line.
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Fig. 5. Rotation frequency Ω3 (θ) /2π (blue line). The reference solid
body rotation, Ωs/2π, is given by the thick dashed black line.

Garcia et al. 2007; Mathur et al. 2008). Erf (X) is the classical
error function (cf. Abramowitz & Stegun 1972).

Finally, we study a third differential rotation that depends
only on the colatitude (θ), Ω3 (θ), to illustrate the effect of the
latitudinal gradient of the rotation frequency. We choose here
the horizontal differential rotation obtained through helioseis-
mic inversions at the bottom of the solar convective envelope
(Thompson et al. 2003):

Ω3 (θ)
2π

= A + B cos2θ +C cos4θ, (97)

where A = 456 nHz, B = −42 nHz and C = −72 nHz.
First, ν̂ is considered. In the case of radial differential ro-

tation, Ωi (r) (i = {1, 2}), its variation is directly given by the
rotation frequency profiles modulated by 1/σ̂ (cf. Fig. 6 where
we focus on axisymmetric waves (i.e. m = 0) that filters out
the Doppler shift and thus allows us to isolate the effects of the
differential rotation itself). Then, the surface ν̂ = 1, which corre-
sponds to νs = 1 in the weak differential rotation case, is given
by σ̂ = 2Ωi (r).

In the case of the latitudinal rotation, Ω3 (θ), we obtain the
same behaviour, the surface ν̂ = 1 being given by σ̂ = 2Ω3 (θ)
(cf. Fig. 7 for m = 0).

In the case of a strong differential rotation, the tradi-
tional approximation can be applied in spherical shell(s) where
(cf. Eq. (94))

1 − ν̂2 cos2 θ − ν̂ ∂θΩ
σ̂

cos θ sin θ > 0

everywhere (∀r and ∀θ ∈ [0, π]) . (98)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810544&pdf_id=2
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Fig. 6. Top: ν̂ (r; 2Ω1/σ) as a function of r and σ for axisymmetric
waves (m = 0). The surface ν̂ (r; 2Ω1/σ) = 1 is given by the thick black
line and the iso-̂ν lines such that ν̂ (r; 2Ω1/σ) > 1 and ν̂ (r; 2Ω1/σ) < 1
are respectively given by the blue and the red lines. Bottom: same for
ν̂ (r; 2Ω2/σ).

For a radial differential rotation, this corresponds to spherical
shell(s) where

4 [Ω (r)]2 cos2 θ < σ̂2 � N2 everywhere (∀r and ∀θ ∈ [0, π])

that leads to 2Ω (r) < σ̂� N.
The cases of Ω1 and Ω2 are illustrated in Fig. 8 for m = 0.

In each of them, a forbidden spherical shell appears, where both
D ≤ 0 and D > 0 (the adiabatic waves velocity field is singular
whereD = 0), that corresponds to an higher rotation frequency.
Its spatial location and radius depend on the Ωi (r) profile and it
becomes smaller as the frequency increases.

Finally, in the case of a latitudinal differential rotation, such
as Ω3, the allowed domain, in which the traditional approxima-
tion can be applied, is modified both by the rotation frequency
profile and its latitudinal gradient. This is shown in Fig. 9 for
m = 0, which has to be compared with the weak differential
rotation case studied in Fig. 3.

4. Wave-induced transport of angular momentum
From now on, we study the wave-induced transport of energy
and of angular momentum in spherical shell(s) where the tradi-
tional approximation can be applied. In other words, we focus on
the transport associated with the regular elliptic gravito-inertial

Fig. 7. ν̂ (RT, θ; 2Ω3/σ) as a function of θ and σ for axisymmetric waves
(m = 0). The surface ν̂ (RT, θ; 2Ω3/σ) = 1 is given by the thick black
line and the iso-̂ν lines with ν̂ (RT, θ; 2Ω3/σ) > 1 and ν̂ (RT, θ; 2Ω3/σ) <
1 are respectively given by the blue and the red lines.

waves, the hyperbolic regime being beyond the scope of this pa-
per.

Therefore, since we are now working in allowed spherical
shell(s), all the classical averages over longitudes (ϕ) and co-
latitudes (θ) can be defined.

4.1. Fluxes transported by a monochromatic wave

The goal of this paper is to study the influence of a general dif-
ferential rotation on low-frequency waves and their feed-back on
the transport of angular momentum. The first step in this part of
the work is now to derive the fluxes of energy and of angular
momentum carried by a monochromatic wave.

4.1.1. Fluxes of energy

In the general bidimensional case which is studied here, the flux
of energy in the direction of the kth coordinate is given by the
acoustic flux (see Lighthill 1978; Press 1981; Unno et al. 1989)5

F E
k; j,m =

〈
P′j,muk; j,m

〉
ϕ
, (99)

where P′j,m and the uk; j,m components (where k = {r, θ, ϕ}) were

obtained in the previous section and 〈...〉ϕ = 1
2π

∫ 2π

0
...dϕ.

5 Following the derivation given in Unno et al. (1989), we get the
wave-energy equation first derived by Ando (1985):(

∂t + Ω∂ϕ
)

E + ∇ · FE = −φ̃ ∂tρ̃ − ρr sin θ (u · ∇Ω) uϕ,

where the energy (E) and the wave-energy flux (FE) are given by:

E =
1
2
ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ u2︸︷︷︸
1

+

⎛⎜⎜⎜⎜⎝ P̃
ρcs

⎞⎟⎟⎟⎟⎠2

+

( g
N

)2
⎛⎜⎜⎜⎜⎝ P̃

Γ1P
− ρ̃
ρ

⎞⎟⎟⎟⎟⎠2

︸������������������������������︷︷������������������������������︸
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

FE = P̃u + ρuφ̃,

c2
s = Γ1

P
ρ

being the sound-speed. Terms 1 and 2 correspond to the ki-
netic and the potential energies.
When the Cowling’s approximation is assumed, the wave-energy flux
thus reduces to the acoustic flux: FE = P̃u.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810544&pdf_id=6
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Fig. 8. Top: D (r, θ; 2Ω1/σ) as a function of r and θ for σ = 500, 1000, 1500 nHz for axisymmetric waves (m = 0). The critical surface
D (r, θ; 2Ω1/σ) = 0 is given by the thick black line and the iso-D lines for D (r, θ; 2Ω1/σ) > 0 and D (r, θ; 2Ω1/σ) < 0 are given by the red
and the blue lines. The traditional approximation applies in spherical shell(s) such that D > 0 everywhere (∀r and ∀θ ∈ [0, π]); there, waves are
regular at all latitudes. In other spherical shell(s), where bothD > 0 andD ≤ 0, the traditional approximation does not apply due to the singularity
where D = 0. Therefore, for Ω1, the traditional approximation does not apply for σ/2π = 500 nHz while it applies for σ/2π = 1000 & 1500 nHz
in the external spherical shell with the inner border given by the thick red circle. Bottom: same forD (r, θ; 2Ω2/σ).

Radial flux of energy

The flux of energy transported in the radial direction is thus
given by

F E
V; j,m (r, θ) =

〈
P′j,mur; j,m

〉
ϕ
. (100)

Using the expression derived in Eqs. (72) and (75), we thus ob-
tain:

F E
V; j,m = −

1
2
ρ
σ̂

N

λ1/2
j,m

r
w2

j,m exp
[
−τ j,m

]
. (101)

Horizontal flux of energy

In the same way, the flux of energy transported in the horizon-
tal direction is given by the sum of fluxes in the latitudinal and
azimuthal directions:

F E
H; j,m (r, θ) = F E

θ; j,m (r, θ) + F E
ϕ; j,m (r, θ) (102)

where

F E
θ; j,m =

〈
P′j,muθ; j,m

〉
ϕ

and F E
ϕ; j,m =

〈
P′j,muϕ; j,m

〉
ϕ
.

Using Eqs. (72, 77), we get:

F E
θ; j,m = 0 (103)

due to the quadrature between P′j,m and uθ; j,m and finally:

F E
H; j,m = F E

ϕ; j,m = −
1
2
ρ
σ̂

r
w j,mGϕj,m exp

[
−τ j,m

]
. (104)

4.1.2. Fluxes of angular momentum

The equation for the transport of angular momentum is given by
(see for example Brun & Toomre 2002; or Mathis & Zahn 2004):

ρ
d
dt

(
r2 sin2 θΩ

)
+ ∇ ·

[
ρr2 sin2 θΩUM (r, θ)

]
=

sin2 θ

r2
∂r

(
ρνVr4∂rΩ

)
+

1
sin θ
∂θ

(
ρνH sin3 θ ∂θΩ

)
− 1

r2
∂r

[
r2F AM

V (r, θ)
]
− 1

r sin θ
∂θ

[
sin θF AM

H (r, θ)
]
. (105)

Since this work is dedicated to the secular rotational transport
during the evolution of the star, the Lagrangian time derivative
d/dt = ∂t+ ṙ∂r is kept, meaning that the radial coordinate r is the
mean radius of the layer (the isobar) enclosing the mass Mr with
dMr = 4πρr2dr. ṙ êr is the radial velocity field that corresponds
to the contractions and dilatations of the star during its evolution.
The second term on the left-hand side corresponds to the flux of
angular momentum, which is advected by the meridional circu-
lation,UM . Then, as in Zahn (1992), we assume that the effect
of the turbulent stresses on the large-scale flows are adequately
described by an anisotropic eddy-viscosity, whose components
are respectively νV and νH in the radial and the horizontal direc-
tions. In stellar radiation zones, they act to reduce their cause,
namely the radial and horizontal gradients of angular velocity.
Finally, F AM

V and F AM
H are respectively the radial and the hori-

zontal components of the Lagrangian flux of angular momentum

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810544&pdf_id=8
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Fig. 9. D (RT, θ; 2Ω3/σ) as a function of θ and σ for axisymmetric
waves (m = 0). The critical surface D (RT, θ; 2Ω3/σ) = 0 is given by
the thick black line and the iso-D lines for D (RT, θ; 2Ω3/σ) > 0 and
D (RT, θ; 2Ω3/σ) < 0 are respectively given by the red and the blue
lines. The traditional approximation applies in spherical shell(s) such
that D > 0 everywhere (∀r and ∀θ ∈ [0, π]); there, waves are regu-
lar at all latitudes. In other spherical shell(s), where both D > 0 and
D ≤ 0, the traditional approximation does not apply due to the singu-
larity where D = 0. Therefore, for Ω3, the traditional approximation
applies in the domain in the (σ, θ) plane to the right of the vertical thick
red line.

transported by the Reynolds stresses of the IGWs6:

F AM
V =

〈
ρr sin θ ur uϕ + ρr sin θ 2Ω cos θ ur ξθ︸���������������������︷︷���������������������︸

L

〉
ϕ

, (106)

F AM
H =

〈
ρr sin θ uθ uϕ

〉
ϕ
. (107)

Radial component of the flux of angular momentum

The radial component of the monochromatic flux of angular mo-
mentum is then given by:

F AM
V; j,m (r, θ) =

〈
ρr sin θ ur; j,muϕ; j,m

+ρr sin θ 2Ω cos θ ur; j,m ξθ; j,m

〉
ϕ

(108)

that becomes, once again using Eqs. (75, 77, 79):

F AM
V; j,m =

1
2
ρr sin θ

1
N

λ1/2
j,m

(
r; ν̂

)
r2

× σ̂2 w j,m

(
Gϕj,m − ν̂ cos θGθj,m

)
exp

[
−τ j,m

]
. (109)

Following Zahn et al. (1997), the mean vertical flux of angular
momentum on an isobar is defined:

F AM
V; j,m (r) =

1∫ π
0

sin3 θ dθ

〈
F AM

V; j,m

〉
θ
, (110)

where 〈...〉θ =
∫ π

0
... sin θ dθ. We obtain:

F AM
V; j,m =

3
8
ρr

1
N

λ1/2
j,m

(
r; ν̂

)
r2

×
〈
sin θ σ̂2 w j,m

(
Gϕj,m − ν̂ cos θGθj,m

)
exp

[
−τ j,m

]〉
θ
. (111)

6 The additional term L in F AM
V has been discussed by Bretherton

(1969) and added by Pantillon et al. (2007). It corresponds to the
Lagrangian flux of angular momentum through a level surface in a ro-
tating system.

Horizontal component of the flux of angular momentum

In the same way, we derive the latitudinal component of the
monochromatic flux of angular momentum:

F AM
H; j,m (r, θ) =

〈
ρr sin θ uθ; j,muϕ; j,m

〉
ϕ
= 0 , (112)

due to the quadrature between uθ; j,m and uϕ; j,m.

4.1.3. Action (luminosity) of angular momentum

We can define the monochromatic action of angular momen-
tum (that is called luminosity of angular momentum in stellar
physics)

LAM
V; j,m (r, θ) = r2F AM

V; j,m. (113)

In the adiabatic case, where the radiative damping is not taken
into account, this action of angular momentum (as well as the
action of energy, namely r2F E

V; j,m) is conserved as demonstrated
by Hayes (1970) and Goldreich & Nicholson (1989a). In the adi-
abatic case, we thus obtain:

LAM
V; j,m (r, θ) = LAM

V; j,m (rc, θ) , (114)

where rc is the radius of the position of the border between the
radiative region and the convective one that excites the waves. In
the quasi-adiabatic case, this becomes:

LAM
V; j,m (r, θ) = LAM

V; j,m (rc, θ) exp
[
−τ j,m

]
(115)

that gives

LAM
V; j,m =

1
2
ρcr3

c
1

Nc

λ1/2
j,m

(
rc; ν̂c

)
r2

c

× sin θ
[
σ̂2 w j,m

(
Gϕj,m − ν̂ cos θGθj,m

)]
r=rc

exp
[
−τ j,m

]
(116)

where[
σ̂2 w j,m

(
Gϕj,m − ν̂ cos θGθj,m

)]
r=rc
=

σ̂2
CZ (rc, θ) w j,m

(
rc, θ; ν̂c

)
×

[
Gϕj,m

(
rc, θ; ν̂c

) − ν̂c (θ) cos θGθj,m
(
rc, θ; ν̂c

)]
. (117)

We have defined the local spin parameter at r = rc

ν̂c (θ) = ν̂ (rc, θ) =
2Ω (rc, θ)
σ̂ (rc, θ)

=
2ΩCZ (rc, θ)
σ̂CZ (rc, θ)

(118)

where

σ̂CZ (rc, θ) = σ + mΩCZ (rc, θ) , (119)

ΩCZ (r, θ) being the angular velocity of the convection zone.

As in Eqs. (111, 112), the mean action of angular momentum
on an isobar is derived:

LAM
V; j,m (r) = r2F AM

V; j,m. (120)

We thus obtain:

LAM
V; j,m =

3
8
ρcr3

c
1

Nc

λ1/2
j,m

(
rc; ν̂c

)
r2

c

×
〈
sin θ

[
σ̂2 w j,m

(
Gϕj,m − ν̂ cos θGθj,m

)]
r=rc

exp
[
−τ j,m

]〉
θ
.

(121)

To derive the total angular momentum flux transported by IGWs,
the match between the turbulent convection and the waves now
has to be examined very carefully to obtain a correct treatment
of their excitation.
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4.2. Waves excitation by convection and total action
of angular momentum

4.2.1. Energy flux transfer

The first method to treat the wave excitation problem is to re-
late the flux of angular momentum to the wave-energy flux.
Following the procedure used for the non-rotating and the weak
differential rotation cases (cf. Zahn et al. 1997; Pantillon et al.
2007), we define m̂ such that:

F AM
V; j,m = −

m̂
(
r, x; ν̂

)
σ̂

F E
V; j,m. (122)

Using the respective expressions of F E
V; j,m and F AM

V; j,m given in
Eqs. (101) and (109), we get

m̂
(
r, x; ν̂

)
=

sin θ σ̂2 w j,m

[
Gϕj,m − ν̂ cos θGθj,m

]
w2

j,m

· (123)

This can be understood as the efficiency transmission factor that
gives us, for each frequency and each latitude, the energy trans-
fer from the convective movements to the waves. It also allows
us to quantify the bias in the excitation between prograde and
retrograde waves.

In the non-rotating case (Ω = 0), we get m̂ = m and therefore

F AM
V;l,m = −

m
σ
F E

V;l,m = −2
m
σ
F K

V;l,m , (124)

where F K
V;l,m is the kinetic energy flux (in the case of low-

frequency gravity waves, the energy equipartition is obtained so
that F E

V;l,m = 2F K
V;l,m; on the other hand j reduces to the classical

orbital number of spherical harmonics, l).
Using Eq. (115), we thus have:

LAM
V; j,m

(
r, x; ν̂

)
= LAM

V; j,m
(
rc, x; ν̂c

)
exp

[
−τ j,m

]
(125)

where

LAM
V; j,m

(
rc, x; ν̂c

)
= −r2

c
m̂

(
rc, x; ν̂c

)
σ̂CZ

F E
V; j,m

(
rc, x; ν̂c

)
. (126)

Taking all the spectrum of excited waves,LAM
V and its associated

average on an isobar are finally given by

LAM
V

(
r, x; ν̂

)
=

−r2
c

∫
σ

∑
m, j

{
m̂

(
rc, x; ν̂c

)
σ̂CZ

F E
V; j,m

(
rc, x; ν̂c

)
exp

[
−τ j,m

]}
dσ(127)

and

LAM
V (r) =

−r2
c

∫
σ

∑
m, j

{〈
m̂

(
rc, x; ν̂c

)
σ̂CZ

F E
V; j,m

(
rc, x; ν̂c

)
exp

[
−τ j,m

]〉
θ

}
dσ.

(128)

The transported flux of angular momentum now being derived, it
is necessary to look for a robust prescription for the excited wave
energy spectrum at r = rc. This will give the excited frequencies,
that are crucial for the waves damping (cf. Eq. (68)) which rules
the transport of angular momentum, and the associated energy
flux F E

V; j,m

(
rc, x; ν̂c

)
. This will be discussed in Sect. 4.2.3.

4.2.2. Amplitude of each monochromatic wave

The second method to approach the problem of wave excitation
is to work on the amplitude of each monochromatic wave.

We assume that the pressure field in the convection zone at
r = rc can be expanded formally in the following Fourier form:

PCZ (rc, θ, ϕ, t) = ρ
∫
σ

∑
m

{
WCZ;m (rc, θ;σ)

× exp
[
i (mϕ + σt)

]}
dσ, (129)

where the WCZ;m are the Fourier coefficients in time of PCZ for
each m. Since, the

{
w j,m

}
j,m

form a complete orthogonal basis,

WCZ;m can be projected on them:

WCZ;m (rc, θ;σ) =
∑

j

a j,m (rc;σ)w j,m
(
rc, θ; ν̂c

)
, (130)

where the a j,m projection coefficients are given by:

a j,m (rc;σ) =

〈
WCZ;m (rc, θ;σ)w j,m

(
rc, θ; ν̂c

)〉
θ〈[

w j,m
(
rc, θ; ν̂c

)]2
〉
θ

· (131)

Assuming the continuity of the pressure between the turbulent
movements in the convection zone and the waves inside the
radiative region, summing over the spectrum of excited fre-
quencies, the total action of angular momentum associated with
waves is derived

LAM
V =

1
2
ρcrc

1
Nc

∫
σ

∑
m, j

{
λ1/2

j,m

(
rc; ν̂c

)
a2

j,m (rc;σ)

× sin θ
[
σ̂2 w j,m

(
Gϕj,m − ν̂ cos θGθj,m

)]
r=rc

exp
[
−τ j,m

]}
dσ

(132)

with its associated average on an isobar

LAM
V =

3
8
ρcrc

1
Nc

∫
σ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
m, j

λ1/2
j,m

(
rc; ν̂c

)
a2

j,m (rc;σ)

×
〈
sin θ

[
σ̂2 w j,m

(
Gϕj,m − ν̂ cos θGθj,m

)]
r=rc

exp
[
−τ j,m

]〉
θ

}
dσ,

(133)

where Nc = N (rc) is non-zero due to the convective penetration
and the overshoot (see Zahn 1991). We are now looking for a
robust prescription for PCZ. To achieve this aim, the different
approaches reviewed in Sect. 4.2.3 are examined.

In every case, the pressure field at r = rc can be expanded in
spherical harmonics:

PCZ (rc, θ, ϕ, t) =

ρ

∫
σ

∑
l,m

{
WCZ;l,m (rc;σ) P̃m

l (cos θ) exp
[
i (mϕ + σt)

]}
dσ,(134)

where the normalized associated Legendre polynomials have
been defined:

P̃m
l (cos θ) = (−1)

m+|m|
2

[
2l + 1

4π
(l − |m|)!
(l + |m|)!

] 1
2

Pm
l (cos θ) . (135)

The WCZ;l,m are the Fourier coefficients in time of PCZ for each
spherical function. Then, the procedure that has allowed us to
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derive the general formal result given in Eq. (132) is applied.
We thus project PCZ on the

{
w j,m

}
j,m

basis:

PCZ (rc, θ, ϕ, t) = ρ
∫
σ

∑
l,m

∑
j

{
a j,m (rc;σ)w j,m

(
rc, θ; ν̂c

)
×exp

[
i (mϕ + σt)

]}
dσ, (136)

where

a j,m (rc;σ) = WCZ;l,m (rc;σ)P j
l,m

(
rc; ν̂c

)
, (137)

the projection of each spherical function on the w j,m being
given by:

P j
l,m

(
rc; ν̂c

)
=

〈
P̃m

l (cos θ)w j,m
(
rc, θ; ν̂c

)〉
θ〈[

w j,m
(
rc, θ; ν̂c

)]2
〉
θ

· (138)

Then, LAM
V becomes:

LAM
V =

1
2
ρcrc

1
Nc

∫
σ

∑
l,m, j

{
λ1/2

j,m

(
rc; ν̂c

) [
WCZ;l,m (rc;σ)

]2
[
P j

l,m

(
rc; ν̂c

)]2

× sin θ
[
σ̂2 w j,m

(
Gϕj,m − ν̂ cos θGθj,m

)]
r=rc

exp
[
−τ j,m

]}
dσ,

(139)

with its associated average on an isobar LAM
V :

LAM
V =

3
8
ρcrc

1
Nc

∫
σ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
l,m, j

λ1/2
j,m

(
rc; ν̂c

) [
WCZ;l,m (rc;σ)

]2
[
P j

l,m

(
rc; ν̂c

)]2

×
〈
sin θ

[
σ̂2 w j,m

(
Gϕj,m − ν̂ cos θGθj,m

)]
r=rc

exp
[
−τ j,m

]〉
θ

}
dσ.

(140)

4.2.3. Discussion

This search for a prescription for excitation remains major un-
solved and debated question in wave-induced transport theory.
To study this, different approaches have been adopted.

The first analytical one consists of deriving, using phe-
nomenological prescritions, the energy flux transmission be-
tween the turbulent convective movements and the IGWs using
the match of the wave pressure fluctuation with that of the tur-
bulent convection. A Kolmogorov turbulent energy spectrum is
assumed. This procedure is described in detail in Press (1981),
Garciá López & Spruit (1991) and Zahn et al. (1997) in the non-
rotating case and by Pantillon et al. (2007) in the case where the
Coriolis acceleration is taken into account.

The second semi-analytical approach consists of deriving,
in the most consistent possible way, the wave amplitude by
describing their stochastic volumetric excitation by the con-
vective Reynolds stresses and the turbulent entropy advection.
This method takes into account both the spatial and the tempo-
ral correlations between turbulent eddies and waves. The for-
malisms follow the first work by Goldreich et al. (1994) which
was devoted to solar p-modes and adapted to IGWs by Kumar
et al. (1999). These first contributions assumed a Kolmogorov
energy spectrum. These works were then generalized by

Samadi et al. (2001a,b) in order to take into account a general
turbulent energy spectrum which can be extracted from realistic
3-D numerical simulations of turbulent convection in stellar in-
teriors and by Belkacem et al. (2008a,b) who derived a rigourous
treatment of the excitation accounting for the non-radial charac-
ter of the modes that is crucial in the case of IGWs for which the
displacement is mostly horizontal. Finally, the Coriolis acceler-
ation is now taken into account (Mathis et al. 2008; Belkacem
2008) and the generalized formalism has now to be applied to
gravito-inertial waves.

Penetrative convection is also an efficient process to gener-
ate IGWs. This was first investigated by Townsend (1965, 1966)
in the case of atmospheric flows. Then, in the stellar context,
Montalbán (1994), Montalbán & Schatzman (1996–2000), fol-
lowing Townsend (1966), used several models for wave excita-
tion by plumes in order to study the problem of light element
mixing induced by IGWs (see also the work by Lo & Schatzman
1997; and Lo 1997, for the case of convective cores). However,
they considered that waves are generated solely by turbulence in-
side plumes and they did not investigate the generation of waves
caused by the impact of plumes on the stably stratified region
that has been undertaken (cf. Belkacem 2008).

The major approach to obtain prescriptions for the wave en-
ergy spectrum in this case consists of computing numerical sim-
ulations of turbulent penetrative convection at the interface be-
tween convective and radiative regions. Such simulations have
shown IGW excitation (see for example Hurlburt et al. 1986,
1994; Andersen 1994; Brummell et al. 2002; Browning et al.
2004; Rogers & Glatzmaier 2005; Rogers et al. 2006) but spe-
cific work has to be undertaken to provide a quantitative estimate
of the amplitude and of the spectrum of waves.

Initial work dedicated to such a study has been completed
in 2-D Cartesian geometry by Kiraga et al. (2003). In this work,
the assumed stratification is polytropic and the authors add a vis-
cous boundary layer at the bottom of the stable zone in order to
avoid the reflexion of excited waves and thus the appearance of
normal modes in the simulation box. Their main results are that
phenomenological semi-analytical models (the Garcià-Lopez &
Spruit one, hereafter GLS91; or the plume model by Rieutord
& Zahn 1995, hereafter RZ95) significantly underestimate the
flux of IGWs by a factor of 100 (GLS91) and 10 (RZ95) com-
pared to 2-D direct numerical simulations. On the other hand, in
the domain (σ, kH), the numerically obtained wave spectrum is
much broader than those predicted using GLS91 which results in
a lack of high frequency waves and RZ95 where low frequencies
are missing. However, the authors emphasized that 2-D simula-
tions probably produce stronger downflows compared to more
realistic 3-D simulations. This is the reason why Kiraga et al.
(2005) revisited their own work comparing their previous results
with those obtained in a 3-D Cartesian box using the same strat-
ification where downdrafts are significantly less vigorous. On
one hand, the excited IGWs have lower amplitude. On the other
hand, the wave energy flux increases with the depth of the con-
vective layer.

In the same way, Dintrans et al. (2005) proposed a quantita-
tive investigation of the spectrum, the amplitude and the life-
time of IGWs excited by penetrative convection in solar-like
stars using 2-D numerical simulations of compressible convec-
tion assuming that the gas is monoatomic and perfect. The wave
generation is studied from the linear response of the radiative
zone to the plume penetration using projections onto the g-mode
linear eigenfunctions. The authors show that up to 40% of the
total kinetic energy is transmitted to IGWs during times of sig-
nificant excitation.
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Finally, work is now undertaken to take into account realis-
tic stratification, the global geometry, and the (differential) ro-
tation. In this way, Rogers & Glatzmaier (2005b; and Rogers
& Glatzmaier 2006) computed integrated models of the Sun in-
terior (both the convective envelope and the radiative core) in
2-D polar geometry that represents the equatorial plane of the
Sun using a realistic stratification given by a solar model. As in
the work by Kiraga et al. (2003), the frequency spectrum found
is broader than those determined using semi-analytical models
with a more uniform distribution between low and high frequen-
cies. On the other hand, it is shown that non-linear effects have
to be taken into account. These effects broaden the frequency
ridges in the dispersion relation. Furthermore, just under the con-
vection zone, the energy is increased by two orders of magnitude
over what the linear dispersion relation would predict for energy
in waves. Work on such numerical simulations is now in progress
in 3-D spherical geometry with using the Anelastic Spherical
Harmonics code (see Clune et al. 1999; Brun et al. 2004, for the
code description; and Brun 2009).

Therefore, all these possible sources of prescription for the
wave excited spectrum have to be carefully examined given its
uncertainty; this will be studied in the application of our formal-
ism.

4.3. Transport of angular momentum

Due to the structure of the equation for the transport of angular
momentum given in Eq. (105), we follow the procedure adopted
in Zahn (1992) and in Mathis & Zahn (2004, 2005). Therefore,
the angular velocity is expanded as follows

Ω (r, θ) = Ω (r) + Ω̂ (r, θ) . (141)

Ω (r) and Ω̂ (r, θ) are respectively the mean rotation rate on the
isobar and its fluctuation. Moreover, it is assumed that Ω̂ � Ω
that is enforced by a stronger turbulent transport in the horizon-
tal directions than in the radial one. This behaviour of the turbu-
lence is due to the stable stratification of stellar radiation zones
that inhibits the radial turbulent movements. Thus, the horizon-
tal turbulent viscosity, νH , is greater than the radial one, νV . The
associated horizontal gradient of angular velocity is thus weaker
than the radial one. This is the approximation of the so-called
“shellular rotation”. Ω and Ω̂ are respectively defined and ex-
panded as

Ω (r)=

〈
sin2 θΩ (r, θ)

〉
θ〈

sin2 θ
〉
θ

and Ω̂ (r, θ)=
∑
l>0

Ωl (r)Ql (θ) , (142)

where the Ωl are the radial modal functions of the horizon-
tal differential rotation. Due to the mathematical properties of
Eq. (105) and to the definition of Ω, the special angular func-
tions Ql (θ) are defined by (see Mathis & Zahn 2004, for a de-
tailed discussion):

Ql (θ) = Pl (cos θ) − Il with Il =

〈
sin2 θPl (cos θ)

〉
θ〈

sin2 θ
〉
θ

· (143)

On the other hand, we recall that the meridional circulation is
expanded in vectorial spherical harmonics:

UM (r, θ) =
∑
l>0

{
Ul (r) Pl (cos θ) êr + Vl (r)

dPl (cos θ)
dθ

êθ

}
, (144)

Ul and Vl being the radial modal functions respectively in the ra-
dial direction and in the latitudinal one. The circulation is also an
anelastic flow such that∇ ·(ρUM) = 0 that leads to the following
relation between Ul and Vl:

Vl =
1

l (l + 1) ρr
d
dr

(
ρr2Ul

)
. (145)

The definitions being given, we now have to derive the respective
evolution equations for Ω and Ωl.

4.3.1. Transport of the mean differential rotation

Waves deposit their angular momentum in stellar radiation zones
as they are damped. The total local action of angular momentum
is given by

LAM
V; j,m

(
r, x; ν̂

)
=

∫
σ

{
LAM

V; j,m

(
rc, x; ν̂c

)
exp

[
−τ j,m

]}
dσ . (146)

The induced transport of angular momentum by IGWs is then
ruled by the radial derivative of this action of angular momen-
tum:[
ρ

d
dt

(
r2Ω

)]
IGWs

= − 1
r2
∂r

[
LAM

V (r)
]
. (147)

Let us first look at the damping integral given in Eq. (68) and as-
sume that both prograde and retrograde waves are excited with
the same amplitude and have the same eigenvalue (λ j,m). In solid-
body rotation, both waves are equally dissipated when travel-
ling inward and there is no impact on the distribution of angular
momentum. In the presence of differential rotation, the situation
is different. If the interior is rotating faster than the convection
zone, the local frequency of prograde waves decreases, which
enhances their dissipation; the corresponding retrograde waves
are then dissipated further inside. This produces an increase of
the local differential rotation and creates a doubled-peaked shear
layer because positive and negative local shears are amplified
by prograde and retrograde waves and even a small perturbation
can trigger this (the prograde waves transport a positive flux of
angular momentum and the retrograde waves a negative one). In
the presence of shear turbulence, this layer can oscillate (this de-
pends on the vertical eddy-viscosity value), producing a Shear
Layer Oscillation (S.L.O.) (cf. Ringot 1998; Kumar et al. 1999;
Kim & MacGregor 2001; Talon & Charbonnel 2005). This is the
first important feature of wave-mean flow interaction.

This SLO acts as a filter through which most low-frequency
waves cannot pass. However, if the core is rotating faster than
the surface, this filter is not quite symmetric, and retrograde
waves will be favored. As a result, a net negative flux of an-
gular momentum will produce a spin down of the core (Talon
et al. 2002) and this is the filtered mean angular momentum ac-

tion,LAM,fil
V (r), that contributes to the secular evolution of angu-

lar momentum (for details, see Talon & Charbonnel 2005). This
may play a key role in flattening the rotation profile as observed
in the present Sun (Charbonnel & Talon 2005).

Then, averaging Eq. (105) on the isobar and using the as-
sumption that Ω >>Ωl, the transport equation for the mean dif-
ferential rotation is obtained:

ρ
d
dt

(
r2Ω

)
− 1

5r2
∂r

(
ρr4ΩU2

)
=

1
r2
∂r

(
ρνVr4∂rΩ

)
− 1

r2
∂r

[
LAM,fil

V

]
. (148)
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The left-hand side is the sum of the temporal Lagrangian vari-
ation of the mean vertical angular momentum (we recall that
d
dt = ∂t + ṙ∂r is the time-Lagrangian derivative) and of the di-
vergence of the mean flux of angular momentum advected by
the meridional circulation. The right-hand side corresponds to
the sum of the ones of the radial turbulent viscous flux and of
the flux transported by the Reynolds stresses associated with the
waves.

Defining the respective radius rb and rt of the positions of the
lower and of the upper border of the radiation region, the bound-
ary conditions for Eq. (148), which is a fourth-order equation in
Ω (see Zahn 1992; Spiegel & Zahn 1992; Maeder & Zahn 1998;
Mathis & Zahn 2004), are given by:

d
dt

[∫ rb

0
r′4ρΩCZdr′

]
=

1
5

r4ρΩU2 + ρνVr4∂rΩ − LAM,fil
V (149)

at r = rb,

d
dt

[∫ R

rt

r′4ρΩCZdr′
]
= −1

5
r4ρΩU2−ρνVr4∂rΩ+LAM,fil

V −FΩ(150)

at r = rt and

∂rΩ = ∂rΩCZ both at r = rb and rt, (151)

where we have defined:

ΩCZ (r) =

〈
sin2 θΩCZ

〉
θ〈

sin2 θ
〉
θ

· (152)

FΩ is the flux of angular momentum loss at the surface at r = R,
where R is the radius of the star. It is driven by magnetic winds in
the case of solar-type stars (cf. Schatzman 1962) and by radiative
ones in the case of massive stars (cf. Maeder 1999).

This equation has been implemented in stellar evolution
codes in simplified cases to study the wave-induced effects on
the rotational transport (Talon & Charbonnel 2005; Pantillon
et al. 2007; Mathis et al. 2008).

The formalism presented here takes into account the latitu-
dinal but also the radial strong gradients of angular velocity that
may develop during stellar evolution, as could be the case in
the vertical direction when the extraction of angular momen-
tum occurs in the bulk of stellar radiation zones (cf. Talon &
Charbonnel 2005). In the case of such strong radial variation of
the rotation rate, the simplest formalism of the “weak differential
rotation” does not apply any longer and the general one, which
is derived here, will be adopted.

On the other hand, in the case of general differential rota-
tion, it is always possible to study the mean vertical transport of
angular momentum, Eq. (148) becoming

ρ
d
dt

(
r2Ω

)
+

3
4

〈
∇ ·

[
ρr2 sin2 θΩUM (r, θ)

]〉
θ
=

1
r2
∂r

(
ρνVr4∂rΩ

)
− 1

r2
∂r

[
LAM,fil

V (r)
]
. (153)

The case of horizontal differential rotation will be discussed at
the end of the next section.

4.3.2. Transport of horizontal differential rotation

In this section, the goal is to derive the equation which governs
the transport of the horizontal differential rotation Ω̂. To achieve
this aim, the procedure developped in Mathis & Zahn (2005) to

treat the impact of a mean-axisymmetric magnetic field on the
rotational transport is adopted.

First, the action of angular momentum of the waves LAM
V

is expanded in the Legendre polynomials Pl as has been done
in Mathis & Zahn (2005) for the Lorentz torque ΓFL (r, θ) (cf.
Eq. (47) in this paper):

LAM
V (r, θ) =

∞∑
l=0

LAM
V;l (r) sin2 θPl (cos θ) . (154)

Using its expression given in Eqs. (127–132), the radial func-
tions LAM

V;l are obained:

LAM
V;l (r) = −r2

c

∫
σ

∑
m, j

Al
j,m (r) dσ (155)

where

Al
j,m (r) =

1〈
[Pl (cos θ)]2

〉
θ

×
〈
(sin θ)−2 m̂

(
rc, θ; ν̂c

)
σ̂CZ

F E
V; j,m

(
rc, θ; ν̂c

)
exp

[
−τ j,m

]
Pl (cos θ)

〉
θ

and

LAM
V;l (r) =

1
2
ρcrc

1
Nc

∫
σ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
m, j

λ1/2
j,m

(
rc; ν̂c

)
a2

j,m (rc)

×
〈
B j,m (r, θ) Pl (cos θ)

〉
θ〈

[Pl (cos θ)]2
〉
θ

⎫⎪⎪⎪⎬⎪⎪⎪⎭dσ (156)

where

B j,m (r, θ) =
[
σ̂2 (sin θ)−1 w j,m

(
Gϕj,m − ν̂ cos θGθj,m

)]
r=rc

× exp
[
−τ j,m

]
.

We establish the equation governing the horizontal transport
of angular momentum by multiplying Eq. (148) by sin2 θ and
subtracting it from its bidimensional original form given in
Eq. (105):

ρ
d
dt

(
r2 sin2 θ Ω̂

)
+ ∇ ·

(
ρr2 sin2 θΩUM

)
+

sin2 θ

5r2
∂r

(
ρr4ΩU2

)
=

sin2 θ

r2
∂r

(
ρνV r4∂rΩ̂

)
+

1
sin θ
∂θ

(
ρνH sin3 θ∂θΩ̂

)
− 1

r2
∂r

[
LAM

V − sin2 θLAM
V

]
. (157)

The fluctuation Ω̂ again has been neglected compared to the
mean Ω in the advection term. Next, we replace Ω̂ by its ex-
pansion given in Eq. (142). For l = 2, this equation separates
into[
ρ

d
dt

(
r2Ω2

)]
IGWs

= − 1
r2
∂r

[
LAM

V;2 (r)
]

(158)

for the SLO part, and

ρ
d
dt

(
r2Ω2

)
− 2ρΩr [2V2 − α (r) U2] =

1
r2
∂r

(
ρνVr4∂rΩ2

)
− 10 ρνHΩ2 − 1

r2
∂r

[
LAM,fil

V;2 (r)
]

(159)
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for the secular one, whereLAM,fil
V;2 is the filtered horizontal action

of angular momentum and

α =
1
2

d ln
(
r2Ω

)
d ln r

·

This can be simplified by assuming that the turbulent transport is
much more efficient in the horizontal direction than in the radial
one (i.e. νV � νH):

ρ
d
dt

(
r2Ω2

)
− 2ρΩr [2V2 − αU2] =

− 10 ρνHΩ2 − 1
r2
∂r

[
LAM,fil

V;2 (r)
]
. (160)

In the asymptotic regime, where t>>r2/νH , a stationary state can
be reached:

νHΩ2 =
1
5

r [2V2 − αU2]Ω − 1
10 ρ

1
r2
∂r

[
LAM,fil

V;2 (r)
]
, (161)

where the horizontal turbulent diffusion balances the horizontal
advection and the Reynolds stresses of the waves.

For l > 2, the situation is intricate, because of couplings be-
tween terms of different l in LAM

V;l that prevent a clean separation
for them.

Therefore, as a first step, we choose here to stop the expan-
sion of the angular velocity at Ω2. This means that we assume
a low resolution in latitude which is valid only as long as the
latitudinal differential rotation (Ω̂) is a linear perturbation of the
mean rotation rate on the isobar (Ω) and can be described cor-
rectly by the first horizontal function (Q2 (θ)), this situation being
enforced by the strong horizontal turbulent transport. However,
care must be taken in the cases where a more refined latitudinal
resolution is needed or where the horizontal differential rotation
becomes stronger. In the first case, supplementary modes (l > 2)
have to be taken into account, while in the second one, the bidi-
mensional original equation for the transport of the angular mo-
mentum (Eq. (105)) has to be solved directly using Eqs. (116)
and (132). This could be achieved numerically or using a semi-
analytical treatment such as those developed by Spiegel & Zahn
(1992).

For the boundary conditions, we assume that there are no
stresses between the radiative and the the convective zones that
leads to:

Ω2 = ΩCZ;2 both at r = rb and rt (162)

and

∂rΩ2 = ∂rΩCZ;2 both at r = rb and rt, (163)

where the angular velocity inside the convective zone ΩCZ has
been expanded as in Eqs. (141) and (142).

Equation (159) allows us to study the effect of the waves on
the transport of angular momentum in the latitudinal direction
during stellar evolution. This is an important point with respect
to the aim we have to study to the first order the secular effects of
tachocline(s) on stellar evolution in a consistent way (see Brun
et al. 1999; Mathis & Zahn 2004). Moreover, this is a key point
since tachocline(s) are precisely the seat of the stochastic exci-
tation of the low-frequency waves that are transporting angular
momentum. This also opens the field for a bidimensional study
to draw a coherent picture of the dynamics of the Shear Layer
Oscillation due to the high degree waves that have a strong ef-
fect on the deeper transport (see Kim & MacGregor 2001–2003;

Talon & Charbonnel 2005) and that also could be the cause of
a non-magnetic cyclic solar and stellar activity (see Dzhalilov
et al. 2002; and Dzhalilov & Straude 2004; Turck-Chièze &
Talon 2008).

5. Conclusion and perspectives

In this work, we present a complete formalism allowing us to
treat the action of a general strong differential rotation on low-
frequency waves in stellar radiation zones and their feed-back
on the angular momentum transport. As has been shown in
Sect. 3.4.6, the traditional and the JWKB approximations can
be adopted for regular elliptic gravito-inertial waves such that
σ � N and D > 0 while 2Ω � N. This allows us to analyti-
cally derive the spatial structure of their pressure fluctuation and
velocity field. The results have been compared to those that have
been obtained in the “weak differential rotation” case where the
rotation is almost a solid body-one plus a residual radial dif-
ferential rotation.Next, the transport equations for respectively
the mean differential rotation and the latitudinal one have been
derived in a form which allows a direct implementation in dy-
namical stellar evolution codes (see Talon & Charbonnel 2005).

In the near future, the hyperbolic regime, where the tradi-
tional approximation fails, and the potential effect of the coro-
tation resonance have to be carefully studied, particulary in the
context of the deposition and extraction of angular momentum
where the Coriolis acceleration modifies both the damping and
the excitation rates.

The astrophysical applications of this work are discussed in
Talon (2007) and references therein.

Finally, these results have to be generalized and applied to
the cases of stellar and planetary tides.

In a forthcoming paper (Paper II), this formalism will be ap-
plied to the case of the solar differential rotation.
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