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Generation of energy demand and PV production profiles
based on Markov chains for the design and operation of
microgrids

Hugo Radet · Bruno Sareni · Xavier Roboam

Abstract This work provides a simple and straight-
forward method based on Markov chains to generate a
large number of probabilistic energy production and de-
mand profiles when historical measurements are avail-
able. The method is intended for energy modelers seek-
ing a simple generation approach to test different design
and operation methods for microgrids without spending
too much time in this generation phase. Results show
that the proposed method can capture the main statis-
tical features and the temporal variability of real data
at both long and short time scales, despite the method’s
simplicity.

1 Introduction

The design and operation of microgrids are challeng-
ing, especially because many parameters (e.g., future
energy demands, renewable production, electricity tar-
iffs) are inherently uncertain, so their future values can-
not be predicted with perfect accuracy when making
decisions. On one hand, the design of microgrids under
uncertainty might be based on stochastic programming
optimization techniques [1] where a large number of sce-
narios are required. On the other hand, once the size of
the assets has been fixed, short-term probabilistic fore-
casts might be needed by real-time operation strategies
to optimize the power flows between the equipment un-
der uncertainty. For instance, look-ahead control strate-
gies solve, at each time step, a multi-stage optimization
problem, based on several probabilistic forecasts, each
of them associated with a given probability. In both
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cases, a large number of data over multi-time scales are
essential to accurately solve the problems.

Having said that, decision-makers and modelers of-
ten lack appropriate data to run the models, especially
in a stochastic context. In many real case studies, no
historical data are available or the dataset is of poor
quality, over short periods. Therefore, decision-makers
might come up with inappropriate design decisions while
modelers do not have enough data to assess the de-
sign and control approaches they are implementing. To
overcome these difficulties, scenario generation meth-
ods have been widely implemented in the literature [2,
3]. This work mainly focuses on the generation of so-
lar production and energy demands (i.e. electricity and
heat) profiles at an hourly time step.

1.1 Literature review

While short-term forecasting is a relatively new topic
(late 20th century) driven by efficient real-time oper-
ation needs, long-term forecasting for energy systems
has been studied for a long time [2]. Indeed, the latter
has been used for decades, to anticipate the energy de-
mand growth in order to plan future energy production
and transmission infrastructures. However, the recent
and strong development of variable renewable energy
(VRE) has led to new long-term forecast requirements
where short temporal granularity (i.e. at an hourly time
step) is needed to cope with the short-time scale vari-
ability of the production [4]. Also, as noticed by Hong
et al in [2] ”another important step in the recent history,
is the transition from a deterministic to a probabilistic
point of view”: instead of single values, the output of
probabilistic forecasts are probability distributions of
the uncertain parameters.
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Recently, Mavromatidis et al [3] draw a great re-
view of uncertainty characterization for the design of
distributed energy systems, which is of first interest for
this work. A large number of methods are documented
for both the generation of solar production and energy
demand profiles. The readers could refer to this arti-
cle for an in-depth discussion about the different ap-
proaches. The objective of this part is to summarize
the main conclusions and provide a clear insight into
the direction of this paper. Therefore, the first obser-
vation from their review is that the generation method
depends on whether or not historical data are available.
These approaches can be classified into top-down (i.e.,
historical data are available) and bottom-up categories,
respectively. While obtaining solar production data is
relatively straightforward [5], the availability of energy
demand measurements is generally rarer.

In the top-down case, the most frequent and easiest
generation method is the use of probability distribu-
tion functions (PDFs), derived from historical profiles
for each hour. Then, a scenario is built by sampling from
the PDFs. The drawback of such a method is that the
uncertain parameters are treated as independent ran-
dom variables between consecutive time steps, which
might lead to unrealistic behavior where the autocor-
relation and periodicity of the initial dataset are lost.
To overcome this issue, more sophisticated and hybrid
methods have been developed such as autoregressive
models [6], Markov approaches [7], and machine learn-
ing based methods [8] to name just a few. The latter is
probably the most popular approach for both the pro-
duction and energy demands when large datasets are
available [9].

On the other hand, when the case study lacks ade-
quate energy demand measurements (e.g., newly built
buildings), model-based methods are usually implemen-
ted to generate profiles. The most common approaches
are probably the use of ready-made Building Perfor-
mance Simulation (BPS) tools (e.g., energyPlus [10]),
but other model-based techniques are also implemented
(e.g., resistance-capacitance (RC) models [11], a stochas-
tic model where the input parameters are characterized
based on interview information [12]). More elaborate
methods are derived for large-scale districts where the
previous approaches might not be appropriate (creating
a model for each building of a district is quite labori-
ous...) [13]. In the bottom-up case, uncertainty is added
to the input parameters of the simulation. The draw-
back of these methods is that a non-negligible amount
of time is usually required to get familiar with BPS tools
and collect all the numerous input parameters. Thus,
energy modelers who are only seeking a fast generation

method to test their design and operation algorithms
might be discouraged by these approaches.

1.2 Main contributions

The main objective of this work is to provide a unique
and straightforward method to generate a large number
of probabilistic energy production and demand profiles
when historical measurements are available. The en-
ergy modeler point of view is deliberately adopted in
this work. The focus is more on creating a dataset to
test different microgrid design and operation algorithms
rather than the scenario generation accuracy. Never-
theless, the last section will show that the proposed
method can capture the main statistical features and
variations of real data despite the method’s simplicity.
Also, another important aspect is that the generation
approach can be used simultaneously to generate long-
term scenarios for design and short-term forecasts for
operation purposes. Hence, the method is intended for
modelers seeking a simple generation approach without
spending too much time in this phase.

Therefore, the method implemented in this work is
based on Markov chains over representative periods.
The model only requires historical measurements of the
uncertain time series in order to provide a wide range
of contingencies. The methodology is introduced in sec-
tion 2. Next, the performance of the approach is demon-
strated on a residential case study from the Ausgrid
dataset in section 3. Finally, the discussion and conclu-
sion are drawn in section 4.

2 Methodology

The uncertain parameters (i.e. energy demands and so-
lar production) are modeled as discrete random vari-
ables over a probability space (π,Ω). The following work
aims at providing a method to build the discrete sam-
ple space Ω where a scenario is a sequence of all the
random variable realizations over a given horizon H,
associated with a probability πs.

2.1 Building the Markov chains

Therefore, as said previously in the introduction, the
generation method is based on Markov chains over rep-
resentative periods. A Markov chain is a stochastic model
where the main ingredients are the states and the tran-
sition matrix:

– States are observable realizations of the underlying
random variables. The finite set of observed states is
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called the state space. In our case study, they are de-
rived from the energy demand and production mea-
surements.

– The transition matrix is a probability matrix where
each cell is associated with the probability of going
from one state to another.

The first step of the methodology (step 1 in figure
2) is to identify representative periods from the initial
annual dataset to account for the different time scales
variability. The Markov chains will be later computed
over these periods. Therefore, each month of the year
is gathered to avoid seasonality issues. Then, for each
month, week and weekend days are divided into two
classes as the energy demand pattern usually depends
on the working activity. Finally, each day is segmented
into 23 hourly periods to account for intraday variabil-
ity. Thus, 23 x 2 x 12 Markov chains will be computed
from the historical dataset. The classification of the rep-
resentative periods is depicted in figure 1. Note that
the representative periods are arbitrarily set based on
both statistical explorations of the initial dataset and
intuitions of the authors. Any other classes could be
adopted depending on the nature of the random pro-
cesses. This latter issue is definitely a weakness of this
approach, which is further discussed in the last section.

Fig. 1 Representative periods classification to account for the
different time scales variability.

Once the representative periods have been identi-
fied, a Markov chain is built for each hour where:

– States are aggregated (to keep the synchronicity)
and normalized vectors of energy demands (i.e., elec-
trical and thermal consumption) and production. To
limit the number of state values for each hour, a
given number k of relevant states is selected using
the k-medoids clustering algorithm [14]. Therefore,
each hour of each representative day is represented
by {1, ...,k} state values, associated with k vectors
of aggregated and normalized power levels (step 2
in figure 2).

– Probabilities are computed based on the transition
from one state to another between two consecutive
hours. Thus, a 24 hours day is associated with 23
k ×k transition matrices (one for each hour) with k

state values for each hour (step 3 in figure 2).

2.2 Scenario generation

Based on the Markov model previously introduced, en-
ergy demand and production scenarios are generated by
giving an initial state, a timestamp and the length of
the horizon. In practice, the power values (which corre-
spond to the Markov chain states) are sampled from the
transition matrices where categorical distributions are
built for each hour. The probability of each scenario πs

is given by the product of all the hourly probabilities.
The generation process corresponds to the last step in
figure 2.

3 Evaluation on a case study

The generation method is evaluated using the Ausgrid
dataset [15] where the 39th customer is arbitrarily cho-
sen. Figure 3 shows the 3-year time series at an hourly
time step for the electrical and thermal demands, in
addition to the normalized solar production (in gray).
Note that the first hour corresponds to the 1st of July
as the season cycle is opposite to Europe.

While well-established metrics (e.g. root-mean-square
error (RMSE), mean absolute error (MAE), etc.) are
usually derived to assess the performance of short-term
forecasting methods, the evaluation of long-term sce-
narios is less obvious at first glance. Therefore, following
[7], [8] and [12] the evaluation for long-term scenarios
will be based on a combination of both statistical and
visual examination in comparison with the measured
data.

3.1 Statistical assessment over the representative
periods

To run the evaluation, Markov chains are built from
the 3-year dataset of measured data. Then, 1000 sce-
narios of one year at an hourly time step are generated
for the study. A single scenario is plotted in figure 3
with colored lines for comparison. A first general ob-
servation is that the shape of the profiles seems con-
sistent with the measured data depicted in gray in the
figure. This conclusion is also verified at a lower time
scale as depicted in figure 4 and 5. Indeed, the latter
show the comparison between the real data and the
Markov model for both the week and weekend days of
each month. As observed in the figures, it seems that
the Markov model correctly reproduces the main sta-
tistical features of the initial dataset for each of the
representative days (e.g., the model mean values match
those of the historical dataset). Furthermore, the sea-
sonal issues are accurately addressed by the model as
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Fig. 2 Description of the scenario generation method based on Markov chains: from historical data (0), days are classified into
representatives week and week-end days for each month (1), for each hour, a given number of states is selected using the k-medoids
algorithm (2), then the transition matrices based on the probabilities of going from one state to another between two consecutive
hours are computed (3) and finally, synthetic scenarios are generated by giving an initial state, a timestamp and the length of the
horizon (4).

Fig. 3 Overview of the 3-year time series from the 39th Ausgrid
customer (in gray) and a one-year scenario generated with the
Markov model (in color) for example.

it follows the monthly variations of the real data. This
latter observation is reinforced by comparing the power
level amplitudes, in addition to the sunrise and sunset
times of the different months. Note that for this case
study, there are no major differences between the week
and weekend days energy demand patterns. This latter
observation might not be true with other residential
customers.

3.2 Short time scale variability

Despite those statistical similarities, the Markov model
still introduces short time scale variability from one sce-
nario to another as shown in figure 6, where the energy
demands and production are depicted over one week
for 10 scenarios randomly chosen in July. Indeed, power
values are not simultaneously the same between scenar-
ios, which leads to a wide range of contingencies. This
latter aspect is of first importance when dealing with
the design and operation under uncertainties of micro-
grids. Also, remember that each scenario is associated
with a given probability which is computed thanks to
the transition matrices (see section 2). Thus, the gen-
eration procedure is also suitable for short-term proba-

bilistic forecasts, which can be later used by look-ahead
control strategies to operate microgrids.

3.3 Autocorrelation and duration curves

Autocorrelation refers to the correlation of a time series
with a lagged copy of itself. The goal is to determine
if the signal shows similarities between observations at
different time lags. The result is given as a function
of the delay (also called lags in figure 7). Despite the
Markovian property attached to the generation method
(i.e. the future state of the stochastic process only de-
pends on the current state, without any memory of the
past), the autocorrelation of the three variables is also
recovered by the model as shown in figure 7. This might
be explained as Markov chains are computed for each
hour of representative days, leading to realistic power
level sequences.

Finally, figure 7 also shows the duration curves of
the three variables. With this representation, the val-
ues are sorted in descending order, which makes easier
the comparison between the real data and the synthetic
scenarios at a yearly time scale. The area under the
curve corresponds to the total energy consumed (or pro-
duced) over the horizon. As shown in the figure, while
model peak values are consistent with real data, the
Markovian approach tends to generate scenarios with
annual energy demands close to the average. Indeed,
the model’s blue curves are delimited by the real data.
This latter observation is not verified for the produc-
tion profiles. This is probably because the energy de-
mand profiles have redundant patterns, leading to more
peaked state probability distributions than for produc-
tion. Indeed, despite the deterministic meteorological
characteristics (i.e. the sunrise and sunset only depend
on the position of the earth), the PV production is more
likely to have random variations during the day, leading
to more diversity in the generation process.
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Fig. 4 Comparison between the Markov model (in blue) and the real data (in red) for each week day of each month. Mean values
are depicted with a solid and dash line for the model and the real data, respectively. All the values are given in the background of
each figure for both cases.

Fig. 5 Comparison between the Markov model (in blue) and the real data (in red) for each weekend day of each month. Mean
values are depicted with a solid and dash line for the model and the real data, respectively. All the values are given in the
background of each figure for both cases.

4 Discussion and conclusion

In order to generate scenarios for both long and short-
term applications, a simple stochastic model based on
Markov chains was presented in this paper. First, the
methodology was introduced where the Markov chains
are computed over representative periods to account for
the different time scales variability. Then, the method
was applied to a residential case study where the objec-
tive was to build several energy demands and produc-
tion scenarios. The results have shown that the main
statistical features of the initial dataset have been re-
covered with this simple Markov model while introduc-
ing realistic temporal variability to the annual time se-
ries. Finally, the last section has demonstrated that the

Markovian approach is also suitable to generate short-
term probabilistic forecasts, later used to control mi-
crogrids.

The first limitation of this work comes from the clas-
sification procedure manually operated to identify the
representative periods. Indeed, the performance of the
Markov method is directly related to the expert knowl-
edge concerning the structure and patterns of the initial
dataset. Other approaches (mostly based on machine
learning as in [8] for instance) do not require this first
step and might be more relevant if little information
is available about the stochastic processes. Moreover,
although the Markov model introduces temporal vari-
ability into the scenario set, epistemic uncertainties are
not addressed within this approach. Indeed, the model
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Fig. 6 Short time scale variability over one week for 10 ran-
domly chosen scenarios in July. The mean value is depicted in
red.

Fig. 7 (Left) Autocorrelation of the three variables, and
(Right) Load and production duration curves for both the syn-
thetic scenarios (in blue) and the 3-year historical dataset (in
red).

only recovers power levels and daily patterns that were
already present in the historical dataset. When applied
to a real case study, a strong assumption made by using
this method is that the values of the uncertain param-
eters will remain the same in the future, regardless of
their temporal variability. But what happens if the fu-
ture energy demands increase or if the shape of the
daily consumption changes? These latter issues are not
properly addressed by only using the Markov model.

This work aimed at developing a simple method to
generate a large number of scenarios that will be later
used to assess the different design and operation ap-
proaches. Decision-makers seeking quantitative and re-
alistic results must spend a significant amount of time
towards this generation phase.
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