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ON THE IMPLOSION OF A COMPRESSIBLE FLUID I:

Smooth self-similar inviscid profiles

ABSTRACT. In this paper and its sequel, we construct a set of finite energy
smooth initial data for which the corresponding solutions to the compressible
three dimensional Navier-Stokes and Euler equations implode (with infinite den-
sity) at a later time at a point, and completely describe the associated formation
of singularity. This paper is concerned with existence of smooth self-similar pro-
files for the barotropic Euler equations in dimension d > 2 with decaying density
at spatial infinity. The phase portrait of the nonlinear ode governing the equa-
tion for spherically symmetric self-similar solutions has been introduced in the
pioneering work of Guderley. It allows to construct global profiles of the self-
similar problem, which however turn out to be generically non-smooth across
the associated acoustic cone. In a suitable range of barotropic laws and for a
sequence of quantized speeds accumulating to a critical value, we prove the ex-
istence of non-generic C* self-similar solutions with suitable decay at infinity.
The C*° regularity is used in a fundamental way in our companion paper (part
IT) in the analysis of the associated linearized operator and leads, in turn, to
the construction of finite energy blow up solutions of the compressible Euler and
Navier-Stokes equations in dimensions d = 2, 3.
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1. Introduction

1.1. Setting of the problem. In this paper and its sequel [9], we construct a set (of
finite co-dimension) of finite energy smooth initial data for which the corresponding
solutions to the compressible three dimensional Navier-Stokes and Euler equations
implode (with infinite density) at a point, and completely describe the associated
formation of singularity. The first paper will deal exclusively with the isentropic
compressible Euler equations in dimension d > 2, y € RY,

Oop+V-(pu)=0
o+ pu-Vu+Vp =0
(Euler) pet Wflp . P
p=-—="r
p(t,y) > 0.
Our goal is the construction of a family of smooth, global in space, self-similar profiles
corresponding to spherically symmetric solutions of (1.1) which arise from smooth
initial data and blow up at a chosen point (7,0). We are specifically interested in
solutions which do not exhibit growth at spatial infinity. In fact, our solutions will
obey

(1.1)

lim (p(t,y),u(t,y)) =0. (1.2)
[yl—=+o0

Existence of self-similar solutions with spherical symmetry for the Euler equation
with a continuum of admissible blow up speeds has been known since the pioneering
work of Guderley [4] and Sedov [13]. However, the known solutions are either non-
global or non-smooth (in self-similar variables). The former solutions are ubiquitous
in the physics literature and describe physical phenomena of denotation, implosion,
flame propagation etc. and by design contain a shock, discontinuously connecting
a smooth solution to another state. We refer to them as non-global even if, more
accurately, they should be called discontinuous, to differentiate them from the sec-
ond class of solutions — non-smooth ones. The latter appear to be much less known
but can be easily constructed from the phase portrait analysis introduced in [4].
The solutions are global in a sense that they connect the behavior (1.2) at infinity
with the regular behavior at the center of symmetry. In the process, they have to
cross the so called sonic line — a point on it representing a backward acoustic cone
from the singular point in the original variables. It turns out that generically this
crossing is non-smooth. The regularity of the associated solution depends on the
values of various parameters (dimension, equation of state, scaling) but the stan-
dard Lyapunov analysis suggests that it is always finite (although it can be made
arbitrarily high for a particular choice of parameters.) In principle, such solutions,
together with the finite speed of propagation, immediately lead to the existence of
finite energy well localized blow up solutions of the Euler equations. Note however
that for the reason explained above these solutions do not arise from smooth initial
data. But, in principle, such solutions would correspond to a formation of a strong
singularity, in which the solution concentrates at a point and the density blows
up. In the previous rigorous work on compressible Euler and Navier-Stokes equa-
tions such phenomenon was not known and the singularity formation was tied to
either formation of shocks (in the Euler case) or to qualitative arguments based on
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the virial type arguments (for both Euler and Navier-Stokes). For a more detailed
discussion see our second paper in the series [9].

The aim of this paper is to show the existence of non-generic C* self-similar
solutions for quantized values of the blow up speed in the vicinity of a certain critical
value. This is contrary to the Lyapunov analysis which would suggest that it might
never be possible. In the companion paper [9], we will use these solutions as the
leading order blow up profiles for the compressible Navier-Stokes equation (as well as
its inviscid Euler limit) to produce (a finite co-dimension set of) blowing up solutions
arising from smooth initial data. The C* regularity of the profile is needed not only
for the regularity of initial data but much more importantly, in fact, crucially, for
the stability analysis. The stability analysis itself is needed not only to establish
existence of a whole finite co-dimensional manifold (in the moduli space of initial
data) of blowing up solutions but also for the existence result of even just one such
solution. These profiles are merely approzimate solutions for the Navier-Stokes
problem and their stability and thus their C* regularity are essential to ensuring
that the approximation holds until the blow up time.

Remark 1.1. In [10], we will also use these C* self-similar solutions as the leading
order profiles to produce blowing up solutions arising from smooth initial data of
finite energy for the energy super-critical defocusing nonlinear Schrédinger equa-
tions.

Self-similar motion has long been recognized as an important concept in hydrody-
namics (see e.g. [13] and the references therein). It could be said that it originated
in the dimensional analysis of Reynolds and eventually crystallized as a model for
both the simplest and universal behaviors in fluid and gas dynamics. The simplic-
ity stems from the fact that the assumption of self-similar motion (together with
spherical or cylindrical symmetry in higher dimensions) reduces the Euler equations
to a system of ode’s. The universality is supported by the ubiquity of self-similar
solutions as well as the belief that self-similar motions act as an attractor for many
different phenomena in hydro/gas dynamics. In that respect, two types of self-
similar motions have been discussed in the physics literature, [16]. In the first kind,
all self-similar parameters are determined from the dimensional analysis, while in
the second kind, an undetermined (free) parameter is fixed by the boundary con-
ditions or some other physical requirements on the solution. Self-similar solutions
have been extensively used and analyzed in the study of problems involving detona-
tion and implosion waves, combustion, reflected shocks, etc. The current approach
has been pioneered by Guderley [4] and has been given numerous treatments, see
[3, 13]. In that approach, the study of self-similar (spherically symmetric) solutions
of the Euler equations is reduced to the system

dw _ _ Ay
de A
dfi__@ (1.3)
dx A

where A, Aq 2 are polynomials in w, o and the similarity variable Z = e* is related
to the original (¢,y) via
]

1
(T 1)
The 1/r parameter is the similarity exponent (free parameter) and is the inverse of
what in this paper we call speed . The equations (1.3) are an autonomous system of
ode’s. Its phase portrait and, specifically, the set where A, Aj, As vanish determine
the qualitative properties of all solutions.

Z:



1.2. The self-similar equation. Let

p(ty) = ()" 0, 2)

sy =g ) (15)
X dt T v

_)\T frd 1’ —Vf =T

maps (1.1) on [0,7") onto the global in time 7 renormalized flow

O-p+Llr—1p+Ap+V-(pu) =0
Orti+ (r—1a+Ai+a-Va+V(p71) =0 (1.6)
A=2-V

A self-similar profile is a stationary solution to (1.6):

Ur—1)p+Ap+V - (pa) =0 )
(r—1a+Ai+a- Vi+ V(1) =0 '

which produces a blow up solution for (1.1) with the rate of concentration
AE) = Xo(T =), v(t) =vor(T —t).

1.3. Emden transform and Guderley’s phase portrait. In the pioneering work
[4], see also [13, 11], all solutions to (1.7) with spherical symmetry are mapped
through the Emden transform

—Zw(x) (1.8)

with w the component along the radial outgoing normal vector, onto the autonomous
system of nonlinear ode’s:

(w—1)2 4 (92 4 (w2 — rw + Lo?) =0

X

gdw (-1 +o[w(d+1)—r] =0

Ade = A

1.9
AdZ = A, (1.9)

with the explicit

A=(w—1)2%-g?
Al =w(w—1)(w—71) — dw —w.)o? (1.10)
Ay =% [(l+d— 1w —wl+d+lr—r1)+lr—lo?]

and

(1.11)

The above system can be fully analyzed through the phase portrait in the (o, w)
plane. The shape of the phase portrait is highly dependent on the values of the
parameters (r,£,d). Let us introduce the following critical speeds which will play a
fundamental role in the forthcoming analysis

r*(d,0) = 4L
(&0 =7 va (1.12)

7"+(d,€) =1 + (151;\/1202’
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where an explicit computation! shows
1 <7r*(d,0) <ry(d,f) with equality iff ¢ =d. (1.13)

Let us denote

| r*(d,f) for 0<t<d
re(d6) =\ (d0) for £>d. (1.14)
Then, in the range of parameters
1<r<rid/l) for {<d
422, £>0, 1 w0y <r<ri(d ) for £>d, (1.15)

we will prove that the phase portrait contains five fundamental points (P;)1<;<s,
see figure 1, figure 2 and section 2, as well as two sonic lines.

Sonic lines w — 1 = +o. This is exactly the set where A = 0. In the original
variables of the Fuler equations, the sonic lines correspond to the equation

7"(1|}J|7f):_(UiC)7 c:\/gi (1.16)

where ¢ is the sound speed and the right hand side is a function of % On
o(T'=t)"
the other hand, the equation
d
C’ft" = —(u=c)

describes solutions (¢, |y|(t)) — acoustical cones (radial characteristics) of the metric
associated with a solution of the compressible Euler equations. It then follows that
for any point Z* on the sonic line, the set (T"— ¢, Z*\o(T — t)%) is the backward
acoustical cone from the singular point (0,0). On the phase diagram, the points
to the right of the sonic line w — 1 = ¢ will correspond to the (¢,y) points in the
interior of the acoustical (light) cone, while the points to the left of the sonic line
lie in the exterior of the cone. Moreover, the absolute value of characteristic speed
u + ¢ — particle velocity plus the sound speed — is smaller in the exterior and larger
in the interior of the cone.

P5 point. The point
P B r/d _tr
E R I A

is an endpoint of the dynamical system (1.9), i.e.

A1(Ps) = Aq(P5) =0
A(P5) #0

and the relative position of Ps with respect to the sonic line is given by

ws + 05 <1 r<ri(dl).
Points P,, P3. Trajectories can only cross the sonic line at the triple points, where
A=A = Ay,

which are (0,0), (1,0), (r,0) and two other points on the sonic line w + ¢ = 1 which
we refer to as P5, P3 and which exist thank to the constraint (1.15).

Ps point. The point Py = (w = we,0 = +00) is a saddle point at +oco and corre-
sponds to x = —o0, ie., Z = 0.

Lsee (2.29)
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Py point. The point P, = (0,0) attracts solutions which vanish near x — +o0, i.e.,
Z — 4o0.

A classical analysis of the phase portrait, figure 1, figure 2, yields the following
result (see Lemma 3.1 and 3.2 for a proof).

Lemma 1.2 (General structure of spherically symmetric self-similar solutions).
Assume (1.15). Then,

(1) Solutions near the origin: there exists a unique trajectory of (1.9) which
connects Ps to Py. This trajectory corresponds to the unique (up to scaling®)
(local) spherically symmetric solution to (1.7) which is C*° on the ball |Z| €
[0, Z2) with O corresponding to Ps and Zy to P;.

(2) Solutions near infinity: there exists a one parameter family (indexed by the
scaling of (1.7)) of trajectories which connect Pa to Py, and one can fix the
scaling so that Py is reached at the same Z = Zs. The corresponding curve
then corresponds to the spherically symmetric solution to (1.7) and is in C*
on |Z| € (Za,00) with co corresponding to Py.

(3) Connection at Py: in both cases, Py is reached for a finite value of Z, i.e.,
0 < Zy < o0, and the solutions constructed in (1) and (2) can be glued
continuously to each other at Z = Zs.

In other words, the unique?, spherically symmetric solution (5(Z),4(Z)) to (1.7),
which is smooth at Z = 0, extends to the point Zs (which corresponds to P» on the
phase diagram) where it can be glued to any of the one parameter family of solutions
(p(Z),u(Z)) defined for [Z3,00) (which correspond to the trajectories connecting
P, to Py). This procedure yields spherically symmetric solutions to (1.7) which are
C®(RIN{Z = Z,}) and vanish as Z — +oc.

1.4. Regularity at P, and the reconnection problem. It remains to under-
stand the regularity at P,. The above gluing procedure produces a solution with
limited C*(") regularity* at the degenerate point P, see Remark 3.7. As it turns
out, this limited regularity has a dramatic effect on the spectral structure of the
linearized operator for (1.6) close to this self-similar profile, and we do not know
how to use these non-C* solutions to produce finite energy imploding solutions to
the viscous perturbations of (1.1) studied in our second paper [9].

On the other hand, P; is a regular singular point of (1.9). As a result, there al-
ways® exists one trajectory which is C* at P,. Thus, the problem becomes: can we
find parameters (d, ¢, r) for which the Ps — Ps solution is C* at P and can be glued
to a Py — Py solution which is also C* at Py (see figure 1)? Such a solution would
produce a C* self-similar profile with vanishing density and velocity as Z — +oc.

The Lyapunov type (linear) analysis at P» predicts that the regularity of solutions
passing through is determined by the eigenvalues A+ of the Jacobian matrix. Both

A < Ax <0, so that P» is a stable node. As a result, all curves through P» but
A

one will have limited regularity C*+. The exceptional solution is C* but it does

Znote that (1.7) is invariant under the scaling (5(Z), (%)) — (A~ n p(AZ), \"a(NZ)) for any
A > 0. This scaling invariance in Z for (1.7) corresponds to a translation invariance in z at the
level of (1.9).

3up to scale invariance

dwith k(r) ~ T:(Ef;;)_r as r 1 re(d,?).

Sat least away from critical integer values, see Lemma 3.6.
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A

not go to Pg and is thus inadmissible as a global profile. The C*+ regularity is
sharply insufficient for our purposes (linear stability analysis of these solutions as
solutions of the Euler equations misses exactly one derivative, see [10]). Instead,
we consider the regime where A4 10 (and A_ stays uniformly bounded away from
0 and —o0) which corresponds to a limiting degeneracy of the phase portrait for
the critical speed r 1 r<(d,f) given by (1.14) where a vanishing “ <" structure
appears to the left of P,. We perform a careful nonlinear and global analysis near
the eye configuration to show the existence of a discrete sequence of C*° solutions
asr=r, | re.

1.5. Statement of the main result. Our main result in this paper is the existence
of such C* profiles for quantized values of the speed r near the critical speed whose
value depends on ¢ given by (1.4). We introduce the set Oy C (0,+00) \ {d}
defined as the union of the interval (d,+o00) and a subset O} of (0,d) defined by
the condition that ¢ € Oy for ¢ < d if the value of the function v (¢, d) in (F.10) is
> 0. In dimensions d = 2,3, Oy = (0,400) \ {d} and for 5 < d <9 the subset O}
is a finite collection of subintervals and it is non-empty, see (F.9).

Theorem 1.3 (Existence of C* asymptotically vanishing self-similar profiles). Let
d > 2. Let the critical speed r<(d, £) be given by (1.14). Then there exists a function

Soo(d, €) : N"\{1} x Oy —» R
such that for any £ € Oq4 obeying the condition
Soo(d, l) # 0, (1.17)
there exists a discrete sequence
rn <re(d,l), |rp—re(d, )| <1
limy, 400 7 = 7= (d, £)

such that (1.7) with v = r, admits a global C* spherically symmetric solution
(p(Z),u(Z)) which terminates at Py at spatial infinity (i.e. as Z — +00), see figure
1.

Corollary 1.4. Under the assumptions of Theorem 1.3, the Euler equations (1.1)
admit a family of spherically symmetric self-similar solutions, smooth away from
the concentration point (T,0):

p(t,y) = 12('r71) ﬁ(Z)
(T—t) r(vy—1)
u(t,y) = 1('r71) w(2)
(T—t) 7
J=—4 -
/\0(T*7ﬁ)7

for any Ao > 0 with the asymptotics
P (1 + 017/ 400(1)) U« (1 + 0)2) 5 100(1))
P(tay) = 2(r—1) s u(tvy) = (1) 5
ly[7o=D lyl
for some p* > 0. In particular, these solutions decay at infinity but do not have
finite energy.

The function S (d, ¢) appears in the asymptotic analysis of the flow near P5. It
can be explicitly expressed as a normally convergent series

+00
Cd,e
= < ?
Soo(d, £) ngoun(d,ﬁ), lun (d, )] < T2
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where the series uy,(d, ¢) satisfies an explicit though complicated non linear induc-
tion relation. The proof of convergence of the series yields the analyticity of the
mapping ¢ — S (d,¥) in a suitable open set of the complex plane.

More precisely, the function Sy (d, ¢) is in fact composed of two different functions
Sk.(d, ¢), defined for the critical value of the speed r, on the subset O} C (0, d), and
ST (d, ), defined for the critical value of the speed r* for £ > d. It turns out that
the explicit definitions of these functions allow us to extend them holomorphically.

Lemma 1.5 (Holomorphic extension). The following hold

(1) For d > 4 the function £ — S%_(d,l) extends holomorphically to a complex
neighborhood of O.

(2) For d > 4 the function ¢ — S1(d, ) extends holomorphically to a complex
neighborhood of (d,+00).

(3) Ford = 2,3 the function { — S%_(d, ) extends holomorphically to a complex
neighborhood of (0,d).

(4) For d = 2,3, the function ¢ — S (d,?) extends holomorphically to an open
set Q; of the complex plane, with R} \{d} C QF, and (0,d) and (d,+o0)
belong to the same connected component of Qj.

We do not know how to compute analytically the zeroes of Sy (d,¥). However,
for d = 2,3, Lemma 1.5 ensures that, unless the function vanishes identically, the
possible zeroes are isolated with possible accumulation points (0, d, +oc) only. For
d > 4 the same conclusions can be reached about each of the intervals in O} and
(d 4+ 00).

Moreover, since u,(d,£) is given by an explicit induction relation on the coeffi-
cients, we can perform an elementary numerical computation of the series. We first
give the results in dimension d = 2 and d = 3 which will be used for the study
of the compressible Euler and Navier-Stokes equations in [9], see Appendix I. The
assertion in (4) allows us to check the non-vanishing condition for small values of ¢
only.

Numerical claim [Numerical study of the zeroes of S (d, ¢), case d = 2,3| In the
case d =2 and d = 3, we have

S:(2,6) >0 for £=0.1,
5% (3,0) >0 for £=0.1, (1.18)
and X
500(2)6) >0 fO’f’ V= 017
' S5(3,0) >0 for £=0.1. (1.19)

The case of higher dimensions will be relevant for the study of the energy super
critical defocusing (NLS) equation in [10], for which the power nonlinearity involves
the real number p given by

4
p=1+7. (1.20)

We numerically check the non degeneracy So(d,¢) # 0 for a range of dimensions
and integer nonlinearities, see Appendix I.

Numerical claim [Numerical study of the zeroes of Sy (d,¢), case d > 5]
Let p(¢) be given by (1.20). Then the condition (1.17) holds for

(d,p) € {(5,9),(6,5),(7,4),(8,3),(9,3)}. (1.21)
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FIGURE 1. Phase portrait in the range 1 < r < r*(d,¥). Dashed
curve is the trajectory of the solution constructed in Theorem 1.3.

Comments on the results.

1. The set O4. Tt is defined by the requirement vy (d,?) > 0 with vy, explicitly
given by the formulas (F.10) for ¢ < d and (F.15) for £ > d. It turns out that
Voo > 0 for all £ € R*\{d} in dimension d = 2,3. In higher dimensions, Oy also
includes the interval £ > d and its intersection with ¢ < d consists of a finite union
of open intervals. The latter intersection is non-empty for 5 < d < 9. The condition
Voo(d,€) > 0 is convenient for our analysis but is clearly not sharp and could be
relaxed. Let us emphasize that (1.18), (1.21) merely provide explicit examples of
admissible couples (d, £).

2. The asymptotic analysis r T r<(d,¢). The proof of Theorem 1.3 involves a careful
renormalization of the flow (1.9) for |[r —r<| < 1, r < r<. The reason for this choice
is the presence of an "eye" of the phase portrait at the left of P»: as r 1 re, the
critical point at the left of P which is P5 for £ < d and Ps for £ > d, converges to
P,, and this convergence happens with a suitable ordering of the points Ps, P3, Ps
which depends on whether £ > d or ¢ < d, see Lemma 2.6. The choice of the critical
values r4 or r* in (1.14) is dictated by this geometry of the phase portrait. The fact
that two of the points P, Ps, P5 collide at r- induces a degeneracy of the flow at
the critical value which is the starting point of a renomalization process in terms of
a small parameter b = oy, (1). We would however like to stress the fact that, given
the smallness parameter b, the understanding of the C*° regularity of the solution
involves formally the expansion of the solution to the order % which is too large for
a WKB type analysis. Instead, we rely on a holomorphic expansion of the solution
at Py to extract a formal limit involving the limiting series Soo(d, £). The condition
Soo(d, £) # 0 turns out to be sufficient to prove the existence of a C* profile, but we
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P5’

P1

P4

FIGURE 2. Phase portrait in the range r*(d,¢) < r < ry(d,?), £ >
d. Dashed curve is the trajectory of the solution constructed in
Theorem 1.3.

do not know if it is also necessary, as this would require pushing the asymptotic ex-
pansions to the next order. We refer to section 4.1 for a detailed strategy of the proof
of Theorem 1.3 and the description of the role played by the limiting series Soo(d, £).

3. The sequence r,. There is an abundant literature devoted to the existence of
self-similar solutions in various semilinear problems. Let us for example consider
the semilinear focusing wave equation

OPu = Au + uP.

Then, in dimension d > 3, for a suitable range of p, the equation admits a discrete
family of exact selfsimilar solutions of the form

1 z
un(tvx) = LUn(y)a Yy = T_¢
(T — )7

where U, (y) is C* in y and decays like Up(y) ~ |y[7p%1 as |y| — 4oo, see [1]°.
Let us emphasize that the blow up speed in this case is dictated by the scaling
of the equation, and the profiles U, are automatically C* across the light cone.
The quasilinear situation of Theorem 1.3 is however different: the Euler equations
possess a 2-parameter family of scalings, and, as a result, the blow up speed r of
the self-similar profile (1.5) is a free parameter. The choice of the sequence 7, in
Theorem 1.3 is related to the requirement that the profile is C* through the acous-
tic light cone which is no longer automatic. Theorem 1.3 thus provides a family of

6see also [5] for an extension to the defocusing case, and [2, 7, 15] for the case of the semilinear

heat equation.
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admissible” blow up profiles which accumulate at the critical speed 7o (d,¢). This
is, to our knowledge, a completely new phenomenon.

4. The case £ = d. The case d =0 =3 is v = % i.e., the law for the monoatomic
gas, and is always degenerate since for d = ¢:

r=r"(d,d) =ry(d,d) = P, = Py = P

and the phase portrait has a triple point degeneracy which requires a separate treat-
ment.

5. Decay of self-similar solutions. As stated in Corollary 1.4, the constructed self-
similar solutions (p(t,y),u(t,y)) decay as y — oo but do not have finite energy.
Nonetheless, this decay is sufficient for us to construct, in 9], solutions to the Euler
and Navier-Stokes equations which arise from smooth, well localized initial data (in
particular, of finite energy) and form a singularity in finite time via a profile given in
this paper. We also are able to utilize these profiles to produce blowing up solutions
to the super-critical defocusing nonlinear Schrédinger equations (in d > 5) which
also arise from smooth, well localized (in particular, finite energy) initial data, [10].

1.6. Further qualitative properties of the solution. We emphasize again that
the main motivation of Theorem 1.3 is the dynamical study of (1.6), central for the
construction of well localized smooth blow up solutions in the second paper [9], as
well as in [10]. The study of the linearized operator close to the solution given by
Theorem 1.3 and performed in [10] requires, in an essential way, the C* regularity
at P as well as suitable positivity properties which we now collect. These properties
are responsible for the coercivity of the linearized operator, which is why we refer
to them as repulsivity.

Positivity inside the light cone. We first claim the following positivity property in-
side the light cone 0 > o(P,) (Z < Z3) for the Ps — P» trajectory.

Lemma 1.6 (Repulsivity inside the light cone). Let d > 2 then there exists 0 <
e < 1 such that for all (¢,r) in the range

d>2 d=2,3
0<t<d or | £>d (1.22)
r*(d,l) —e(d,l) < r <r*(d,?) ry(d,l) —e(d,l) <r <4 (d, L)

there exists ¢, > 0 such that the Ps — Py trajectory (o(x),w(x)) given by Lemma
1.2 satisfies the following bound. Let
do
F=0+2 1.23
o+ I ( )
then )
(1—w—%’) —F2>¢,
Vo > o(P), l—w—dw—w>c

dzr — Cr

l—w—%’zcr

(1.24)

Taking r = r, for n large enough ensures that (1.24) holds for the solution of
Theorem 1.3. Property (1.24) is sharp: the constant ¢, — 0 as r T r-. Note that
the fact that the repulsivity property (1.24), which is at the heart of the stability

Tselected by the fact that their C*° regularity and the decay at +oco guarantee that the linearized
operator displays dynamical stability properties, [10].
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of the linearized flow, can be proved in the full range ¢ > 0 is surprising, and will
require a substantial amount of algebra.

Positivity outside the light cone. We claim another positivity property in the exte-
rior of the light cone (Z > Z) in a range of parameters which includes the solutions
of Theorem 1.3.

Lemma 1.7 (Repulsivity outside the light cone). Let

d=3, (>3 satisfying (1.17),
or (d,0) satisfies (1.21).

Let ry, be given by Theorem 1.8 and (w, o) be the corresponding C* integral curve.
Then for all n large enough, there exists cp, > 0 such that

(1—w—%)2—F2>cM,

dw
l—w— 3> ¢,

(1.25)

V0 <o <o(P), (1.26)

1.7. Organization of the paper. In section 2, we establish the main geometric
properties of the phase diagram 1, in particular related to the location of the roots
of the polynomials A, Aq, As in the suitable range of parameters. In section 3,
we recall the main dynamical properties of solutions to (1.9), and in particular
discuss the existence of the Py — P» trajectory, and the regularity of integral curves
passing through P. Both sections 2 and 3 are classical and we recall most details
for the convenience of the reader. In section 4, we start the semi classical analysis
r 1 re(d,?), provide an overview of the strategy of the proof of Theorem 1.3 in
section 4.1 and complete the proof in sections 4, 5, 6, 7. The positivity properties of
Lemma 1.6 and Lemma 1.7 are proved in section 8 and section 9, respectively. The
holomorphic dependence on ¢ of Sy (d,¥) is proved in Appendix E, and numerical
results for the computation of S (d, ¢) are collected in Appendix I.

1.8. Acknowledgements. P.R.is supported by the ERC-2014-CoG 646650 SingWave
and would like to thank the Université de la Cote d’Azur where part of this work
was done for its kind hospitality. I.R. is partially supported by the NSF grant DMS
#1709270 and a Simons Investigator Award. J.S is supported by the ERC grant
ERC-2016 CoG 725589 EPGR.

2. The geometry of the phase portrait
The aim of this section is to start the analysis of the nonlinear ODE system (1.9)

(w—l)fli—w+€ag—g+(w2—rw+£02):0 A%:—Al

v = (2.1)
%%—i—(w—l)fl—g%—a[w(%%—l)—r]zo Ag—g:—Ag
by examining the roots of the polynomials A, A1, Ag given by (1.10)
A= (w-1)?%-0?
Ay =w(w —1)(w—7) — d(w — we)o? (2.2)
Ay =3 [(l+d— 1w —wl+d+lr—r1)+lr—lo?]

Their location is heavily dependent on the values of the parameters (d, ¢, 7). Let

oy < M=) A=)
w, = we(ry) = 7 _d(1+\/z)2'
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We observe
w, <1
and from the beginning we restrict to the case
d>2
0<w <w, &1<r<ry(d’)
where we recall (1.11), (1.12). Note also that r* <ry, see (1.13), so that the above
condition is not a restriction in view of r < re.

(2.4)

2.1. Roots of A, A1As. A has been normalized to vanish on the sonic lines
{A=0}={w=14c}U{w=1-0}

which are independent of the parameters. We now study the roots of A,.

Lemma 2.1 (Roots of Ag). Assume (2.4). There exists O'éo) (d,f) € [0,400) such
that the roots of Ay in the range o > 0 are given by

oy 1 dwe (1-0) Y
o> 020
where
1—-0\? 2d(d —1)(£ + 1)
_ 2 2 _1)2
J(we) = d (Z > we 7 we + (d —1)%, (2.6)
I(o) = J(we)—4dwe+ 40l +d—1)a?.
Moreover,
Vo> ol (wy) (o) <0, (w})(c)>0. (2.7)
Remark 2.2. The value aéo) is explicitly given by (2.8) if J(w.) — 4dw, < 0 and
O’éo) = 0 otherwise. In the range of parameters (2.4), both cases O'éo) = 0 and
Uéo) > ( are possible which means that the parabola defining the set of zeroes of

As may or may not touch the line ¢ = 0 in figure 1. This will play no role in our
qualitative study of the flow.

Proof of Lemma 2.1. We solve Ay = 0 for o # 0 which is
0 (U+d—1Dw? = (+d+br—r)w+lr —Lo?

= ({+d-1)w - (£+d+e<1+dz’e> —1—dwe>w+£<1+dz’e> —lo?

= (0+d-1w? - <2€—|—d—1+dwe <1—2))w+(€+dwe)—602.

The discriminant is given by

IV 2
I(o) = <2£+d 1 + duw, <1 — z)) —4[(+ dwe) — o] (L +d—1)
(-0 ,
—
= J(we) — 4dwe + (L +d —1)5?
which justifies the formula for w3 (¢). We now study the sign of J(w,) — 4dw,. The

equation J(w,) — 4dw, = 0 has real roots given by

sk 1

= MU(l+d-1)0" + —%d(ed+£+d—1)we+(d—1)2
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Hence J(we) — 4dw, < 0 for wz*_ < We < wz"*iF in which case I(o) > 0 for

(0) 4dwe — J(we)
> = e ,
7=% T\ rd-) (28)

Next J(we) — 4dw, > 0 for we > wy”, or we < wy* in which case I (o) > 0 for all

o> 050) = 0. The monotonicity (2.7) follows directly from the fact that we have
I'(o) >0 for all o > 0. O

Lemma 2.3 (Roots of Ay). Assume (2.4). For allo > 0, the equation Aq(w,0) =0
has exactly three distinct root branches wi(c) < wa(o) < ws(o) which satisfy the
following:

relative positions: Yo > 0,

wi(o) <0< we <wz(o) <1 <7 <ws(o). (2.9)

monotonicity: Yo > 0,

wi(o) <0, wh(o) <0, wh(o)> 0. (2.10)
asymptotics:
wy (o) = d:f’e 24 0(c%),
d(1 — we)o?
wy(o) = 1—(70_101)(7—%0(03), as 0 —0 (2.11)
_ d(r —we) 3
ws(o) =r+ 1) + O(07),
and
wy (o) = —Vdo + O(1),
wa(0) = we + O(c™2), as o — 400. (2.12)

wy (o) = Vdo + O(1)
Proof of Lemma 2.3. At 0 = 0, we have the three obvious roots
wi(0) =0, ws(0) =1, wy(0) =7
where we recall that (2.4), (1.11) imply
r> 1. (2.13)
Also, for each fixed o > 0, we have

limyy— 400 A1 (w, 0) = 400, limy—s—0o Aj(w,0) = —00
A1(0,0) = dweo? >0, Ai(we,0) = we(we — 1)(we — 1) >0
Ai(1,0) = —d(1 —we)o? <0, Ai(r,0) = —d(r —we)o? <0,

where we used from (1.11), (2.13) that we < 1 < r. Thus, for all ¢ > 0, Ay (w,0)
has exactly three distinct simple roots which then satisfy (2.9) and
8wA1<’U}1(O'),U) > 0, awA1<’U)2<O'),U) <0, 8wA1(’U)3<J),U) > 0. (2.14)

We may now apply the implicit function theorem and conclude that the roots wi (o),
wa (o), ws(o) are smooth function of o for ¢ > 0. Furthermore, we have the formula
for j=1,2,3

Oy A1(wj(0),0)  2do(w;(o) — we)

i) = Ay @he)  Bebilwye) C20 (219
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which together with (2.14) and the location of the roots (2.9) ensures the mono-
tonicity (2.10).
We now compute the limiting asymptotics. Near o = 0, we compute from (2.15):
 2d(wy(0) — w)
0w (w;(0),0)’
which together with the above explicit values w;(0), j = 1,2,3, and the fact that
OwAi(w,0) =w(w—1)+ww-—r)+ (w—1)(w—r)

w}(0) =0, w/(0) j=1,2,3,

yields the expansion (2.11) as o — 0. To compute the expansion of the three roots
near +00, we notice that

Ay(FVdo +c1,0) = d(2¢; — 1 — 14 we)o? + O(0),
Aq(we + co0 2, 0) = we(we—1)(we — 1) —deca + 0(072),

and an appropriate choice of the constants c;, cg yields (2.12) from the mean value
theorem. (]

2.2. Double roots. We now discuss the double roots A; = Ay = 0 which play a
fundamental role in the study of (1.9).

Lemma 2.4 (Double roots). Assume (2.4). The solutions to A; = Ay =0 are:

P =(0,1), PP=(1—-w_,w_) P3=(1—ws,wy),
P4:(070)’ P5:(0-5,w5)7 P5,:(O,T'),

where the points are defined as follows:

P5 point.
fr rvd

Py, P3 points. Let J(we) given (2.6), then

(2.16)

wy = 2(d1—1) (dwe td—1- dTZ@ + J(we)> (2.18)

with

We < wy < 1. (2.19)
Location. Ps, P3, Ps are located on the curve of the middle root (o,wa(0)) of Aj.
Moreover, P>, Ps are on the curve of the lower root w, of As.

Position of the middle root. Let w, < w, and we(c) be the middle root of Ay, then
the relative position of the middle root with respect to the sonic line is:

>1 for 0 <o <o(Ps)
otwse(o)| <1 for o(P3) <o <o(Pe) (2.20)
>1 for o> o0(P).

Proof of Lemma 2.4. It relies on the factorization

A= albg — b1a2
A1 = —bida + bad; (2.21)
Ao = dsay — dyas.
with
ar=w—1, by =Vlo, di =w?—rw+lo?, (2.22)
ag =9, bp=w-—1, dgza[(l—l—%)w—r].
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step 1 Computation of the triple points. From (2.21):
(Al = AQ = 0) 54 (bldg = b2d1 and d2a1 = d1a2) . (2.23)

Also, by definition, a; = bo, and we argue below according to the cases a; = by =0
and a; = by # 0.

Case a1 = by =0, i.e. w=1. If 0 = 0, we have the point P,. If 0 # 0, b # 0 and
hence from (2.22) (2.23)

O:d2:0<1—|—i—r):aj(1—we)#0,

a contradiction.
Case a1 = by # 0. If 0 = 0, then dy = by = 0 and hence 0 = d; = w(w — ), and

hence the points Py = (0,0) and P, = (0,7). If o # 0, then ay,bs,by,a2 # 0. If
do = 0, then d; = 0 and hence

2 _ _
05 = 7 = @+n2> 95 = dte-
We observe
ws < 1w, <1

and hence (2.4) and (2.9) implies that Ps lies on the middle root wa(o) of A;.

If da # 0 then
al b1 d1
o by 4y 1 2 0

Hence w =1+ o or w4 0 = 1 which we consider separately.

Points on the lower sonic line, i.e., w = 1 — ¢. First, note that it suffices to consider
the solutions to Ag(o,1—0) = 0. Indeed, since a3 = by # 0 and dy # 0, then, since
we have Ay = A = 0, we infer

b1 al dl

by ay  dy
It then follows that A; = 0. Thus, we now consider the solutions to Ay(o,1—0) = 0.
Since o # 0:

0=Pw) = (l+d—-1Dw?—={C+d+tr—7r)w+lr— L1 —w)?
(+d—1Dw?— (L+d+btr —r)w+ br — {(w? — 2w+ 1)

d—1w? —({(r—1)+d—r)w+L(r—1)

(
(
(
(

d
= (d—1Duw? - <dwe—|—d—1— l;e>w+dwe. (2.24)
The roots of P are real iff
dw, 2
J = (dwe+d—-1- 7 —4d(d — 1)we (2.25)

2
d2 <1;£> ,wz_2d(d_1£)(€+1)we+(d_1)220
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The discriminant of J, as a second order polynomial in w,, is > 0, and the roots of
J are given by

72 2d(d —1)(£+1)  4d(d—1) /(d—1)
+
= + = (+ 142V .
e 22(1 — 1) { / N/ ] A1 —0) [+ 1+2v7]
Hence

J>0 <= (we<w, or we>uw,)). (2.26)
If J > 0, the roots of P are given by

dw,.

We compute from (2.24):

Pl)=r—1>0
P1l)y=d-1-({(—-1)(r—1)
and
PO)=4(r—-1)>0
PO)=—=[d=1+({(—-1)(r—1)]
Since P is a second order polynomial with non negative second order term, we
conclude

<0 d—1+{—-1)(r—1)>0
>0 d—1—({(—-1)(r—1)>0
This holds for ¢ = 1, and we now distinguish the following two cases:
case £ < 1. We want

O<wi <le ‘ ZE?; (2.27)

d—1
d—l—(l—g)(’l“—l)>0<:>7“<1+17_€
and we observe from (2.4)
d—1 <1—|—d_1
(14 /0)? 1-0

r<ry=1+

case ¢ > 1. We want

d—1
d—l—(g—l)(T—1)>0<:>T<1+m
and we observe from (2.4)
< TRt S W
r<ry= _ —
’ (1+ V)2 (-1

This concludes the proof of the inequality
0<wge <1

This implies from (2.9) that Ps, P3 lie on the middle root wa(o) of Ay which is a
non increasing function of o from (2.10), and hence necessarily

We < W4

Points on the upper sonic line, i.e., w = 1 + 0. We consider the solutions to A (o, 14
o) = 0 or, equivalently,

Qo)=U+d—1)(1+0)2 —({+d+tr—r)(1+0)+br—to* =0.

We compute

Q0)=d+r—-1, QO0)=d+r—L(r—1)>r
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from (2.4), and hence the second order polynomial @ is > 0 for o > 0 and there is
no intersection point on the upper sonic line.

step 2 Location of P,, P3, P;. We have established that P», P, P5 lie on the middle
root of Aj. Next, note that w = 1 — ¢ is decreasing and w;(a) in increasing by
(2.7), so they can intersect at most once, and hence at least one point among Py, P3
must be on the root (o, w; (0)) of Ay. Since w_ < w,, we infer that P is on the
root (o, wy (0)) of As.

step 3 Proof of (2.20). Assume now we < w, , then J(we) > 0 ensures w_ < w4
and, since P», P5 lie on the sonic line w4+ o =1,
o(Ps) < o(Po).
Hence 0 < 0(P3) < o(Ps) are three distinct roots of
R(o)=A1(1—0,0)=(1—0)(—0)(1 —0—71) —d(l — 0 —w)o>

which is an order three polynomial, and hence these are the only roots which are
simple. Since wy (o) lies above the sonic line 0 4+w = 1 near ¢ = 0 and near o = 400
from (2.11), the ordering (2.20) follows O

2.3. Relative positions of P, P35, Ps. We now discuss a very important property
for our forthcoming analysis regarding the relative position of P» and Ps. We
recall the definition (1.12), (1.14) of the critical speed exponents. Let us start with
comparing these values.

Lemma 2.5 (Comparison of r4 and r*). Let d > 2, then

w, =we(ry) <1
r*(d,l) <ry(d,?).

and
we <w, &1 <ry(dl). (2.28)
Proof of Lemma 2.5. We compute from (2.19):
_ 4(d-1) od—1)
wy = s U+ 12V = ——— <1
Ed(1—0)2? { } d(1 4+ V71)?
and hence from (1.12):
Lr—1) - 0d—1)
d d(1 + V)2

we < w, & s r<ri(dl).

Then
d—1 d+¢
1+(L+¢b2_€+¢é
(d— 1)t +Vd) — (d—Vd)(1+ 2V + 1)
(0 +Vd)(1 +1)?
_ B (V- Vd)?
(Vd Uw+¢®“+v@2>0

ry(d,0) —r*(d,¢) =

(2.29)

We now design an admissible portrait as follows.
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Lemma 2.6 (Admissible phase portrait, see figure 3). Assume
d>2 (>0, 1<r<ry(d?). (2.30)

then the conclusions of Lemma 2.4 hold with 0 < we < w, and P, P3, P5 are well
defined. More precisely, denoting oo = 0(Ps), 03 = 0(P3) and 05 = o(Ps):

1. below the r* speed: for 1 < r < r*(d,{), Ps lies strictly below the sonic line
0<ws+os <1 and

0< o3 <oy <o09. (2.31)
2. r* speed: forr =1r*(d,?),

l<des Ps=P
(>de Ps=Py (2.32)
€:d<:>P5:P2:P3.

3. below the r4 speed: for r*(d, ) < r <ry(d,f) and £ > d,

o5 < 03 < 09 (2.33)
and
Ps— P, as r{ry.

Remark 2.7. We note here the fundamental role payed by the case ¢ = d which
corresponds to vy =1+ % and is a degenerate triple point configuration

r= T*(d, d) = 7’+(d, d) & Py= Py =PF;.
Proof of Lemma 2.6. We observe

_ 0(d—1)(vVl—1)? ((d—1)
w; <1 e <1@m<1©d(2\@+1)+€>0

which holds, and this together with (2.28) ensures that the conclusions of Lemma

2.4 hold and Ps, P53 are well defined, distinct and on the sonic line.
Subcritical speed. For 1 < r < r*(d,{), we compute from (2.17):

Or rvd r
w5+a5_d+€+d+£_r*(d,€)

<1 (2.34)

and hence Ps lies strictly below the sonic line w + o = 1. Since Ps lies on the curve
(0, w2(0)) where wa (o) is the middle root of Ay, the ordering (2.20) implies (2.31).

Critical speed. Let now r = r*(d,¢). Then P5 is on the sonic line and since
(0,1), Py, P3 are the only intersections of wq(o) with the sonic line, P5 coincides
necessarily with Py or P3. For d =/,

r*(d,f) =ry(d,f) = we =w, = P, =P
and hence P, = P3 = P5. For d # /, let J = J(we) > 0 be given by (2.6) and, from
(2.18), let

o9 = o(Py)=1—w_=1-

d
(dwe—I—d—l— We —ﬁ)

2(d — 1) ‘

- sglerei(i)ee



and

o3 = a(Pg)zl—w+:1—2(d1_1)(dwe+d—1—d?e+x/j>
= ! [d—1+d<1—1>we—\/3]
2(d— 1) ]
so that from (2.17):
UQ—Uszggiﬁ
7= 05 = 3T

with

d+4—2
To(g) = Za-nva . > 0
(d—1)Vd ’
=ar —1+¢

where we used that

w0, vaso 2@-DVd oy
d+7
We compute
d+?¢ d+40—2
r*(d, ) —ro = —
2(d—1)vd
d+/¢

_ [2(d-1)\/é+(e—1)(d+e)—<\/E+e)(d+e—2)]

(Vd+€)(2(d — 1)Vd+ (£ = 1)(d + ¢))
(Vd—1)(d+0)

T (VA+0Qd-1)Va+ (- 1)(d+€))(d 4
Therefore,
«~| >0 for £<d
A(r) <0 for ¢>d.

Since Ps coincides with P» or P3, (2.35) implies
Trt) = A%)
and hence the sign of A(r*) is given by (2.36) and (2.35) yield (2.32).

step 3 We now turn to the case r* < r < ri for £ > d. We claim
ry —ro <0

and
J = A2 = —ey(d, O)(r + esld, ) (r — %), e1yc2> 0.

21

(2.35)

A=20d-1)WVdly —d+1—(1-0)(r—1)= (%—Hf) (r—ro(())

(2.36)

(2.37)

(2.38)

(2.39)

Assume (2.38), (2.39), then for r* < r < r;, A <0 and J — A% < 0 implies from

(2.35) that o3 — o5 > 0, and since o9 > o3 by definition, (2.33) is proved.
Proof of (2.38). We compute

St g At d40—2
AV T 2d—1)Vd
\/g-i-ﬁ %—{—f—l
d+ /¢

_ [2(d—1)\/&+(f—1)(d+e)—(\/&+e)(d+e—2)]

(Vd+0)(2(d — 1)Vd+ (0 — 1)(d + 1))

_ (Vd—1)(d+0) Y,
(Vd+0)(2(d — 1)Vd + (£ — 1)(d + £))
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and hence recalling (2.29):

ry—ro=ry—1r"+r"—rg
B (Vd—1)(d+£)(d—¢)
C (Vd+0)2(d—1)Vd+ (£ = 1)(d+ 1))
(Vd—1)(Vd -7
(4d

3 (Ve —Vd)?
+(Va-1) (0 +Vd) (1 +0)?
(d+€)(VE+ Vd) V- Vd
2d—1)Vd+ (—1)(d+0) (1+0)?

and hence the sign is dictated by

P(d,0) = (d+ O)(VI+ Vd)(1 + V) — (VI — Vd) [2(d—1)f+(e—1)<d+e))]
= (d+0) |(VE+ VA1 +2VT+0) = (VI = Va) (¢ = 1)| - 2(d - )VAVE - V)
= (d+9) [f+\f+2\ff+2£+£xf+£xf (fﬂ—ﬂ—f\/&-ﬁ-\/&)}

— 2(d — 1)Vd(VI —Vd)
= (d+0[2Vd+2)Vi+ (Vd+3)(] —2(d — 1)Vd(VI — Vd)
= (d+0)(Vd+3)0+2Vd(d — 1) + VI[(d+ ) (2Vd +2) — 2(d — 1)Vd] > 0

and (2.38) is proved.
Proof of (2.39). We compute

1—0\? 2d(d — 1

J = d2<€ )wg— ;i
= (1=0%(r=1?=2(d-1)(+1)(r-1)+(d—1)

= 1-0*=2r[Q1— 02+ (+1)(d-1)] +(d—1)*+ 1 -0 +2(d—1)(£+1).

)(L+1)

we + (d —1)?

and hence injecting the value of A:

2
J—A? = {ﬂ{(z(ddjz‘/&He) (15)2]

2
oo [(16)2+(€+1)(d1) <2(dd_+12‘/g—1+e) rg]r

2
— d=1?=-1Q-=0?=2d-1)(L+1)+ (2(d_1)ﬂ—1+£) rg}

d+ /1

= —(ar*+2br —c)

with using ¢ > d > 1:

(d—1)Vd
d+0

~(2d-1)Vd ’ _ 4(d—-1)Vd
_( d+¢ +€_1> (-1 = d+ ¢

+£—1] >0
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2
b o— (1—5)2+(e+1)(d—1)—(W—Hﬂ) "o

e =024 (1) d—1)— (AL —2) (W—Hﬂ)

_ 1-2@+£2+£d—£+d—1—Q(d_1>(jjf_2)ﬂ—(Ed+52—2e—d—e+2)
(d+¢—2)Vd
— g ereTava
2(d )[ A+

e NECE AR
¢ = (d—1)2+(1—02+2d-1)(+1) T 14+ 72

= d—1)+0-0?+2d-1)(L+1)—(d+£—2)*>=4(d—1).

Since a, ¢ > 0, the roots are given by

1
r*t==(=bx Vb +ac), r <O0.
a
We now observe that (2.37) implies
r=r" (2.40)
which can also be checked directly, and (2.39) is proved. O

2.4. Slopes of wy(c) and w, (o) at P». The point P, will play a fundamental role
in the proof of Theorem 1.3. In this section we collect the main geometric properties
of the phase portrait near P, in the regime (2.30). We note

o9 = O'(PQ), wo = 1-— g9.

Definition of the slopes We compute the slopes of root curves wy(o) and wy (o) at
P, by defining the following coefficients

c1 = &wAl(Pg) = 3w% — 2(7“ + 1)w2 +7r— dJ%
c2 = 0uAa(P2) = 2wa(l +d—1) — (L +d+ br —1)]

C3 = 8GA1(P2) = —2d02w2 + 25(7‘ — 1)(72 (2'41)
Cy = 8GA2(P2) = —20%,
so that the corresponding slopes are —g—f and —%. We now claim:
Lemma 2.8 (Sign of the slopes). Assume d > 2 and
1<r<r*dl) for £<d (2.42)
r*(d,0) <r <ry(d,l) for £>d '
then
<0, 1<i<4 (2.43)
cocg — cieq < 0. ’

Proof of Lemma 2.8. The argument relies solely on the consideration of the relative
positions of the red and green curves locally near P» which is the same in the range
(2.42). Indeed, in view of the discussion of the roots of Aj, and since we have
established that P, is on the middle root of Aj, we have

c1 = 8wA1(P2) < 0.
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Since P, corresponds to the smallest root w, of As and Ay is a second order
polynomial in w with a strictly positive coefficient in front of the w? term, we have

¢y = 0,A2(Py) < 0.
Also, since o > 0 at P», and since w, < w_ < 1, we have
c3 = 0,A1(FP2) = —2d(w- —we)(1 —w_) <0,
c4 = 0y Mo (Py) = —2(1 —w_)? < 0.
Finally, we compute

cacz —creqa = 0u,A2(P2)0sA1(P2) — 0,A1(P2)0,A2(P)

= 0.D2(P2)d A (P2) <gﬁig§§ - gﬁi%)

= ae((wz)(0) ~ui(0))

o=1—w_

where we used the fact that ¢ = 1 — w_ and w = w_ at P», the fact that ws is
both the middle root of Ay, i.e., wy, and the smallest root of Ao, i.e., w, , with the

formula for wy '(¢) and w) (o) following from the implicit function theorem. Now,
at P, the slope of As is strictly more negative than the slope of Ay since Ps is the
last intersection in ¢ and A; asymptotes to w, while As goes to —oo. Thus, we
have (wy ) (1 —w-) — wh(1 —w_) < 0 and hence

cocg —ciey < 0

as desired. O

Slopes and eigenvalues. In additions to the slopes of the root curves wy(o) and

w, (o) we will also compute the slopes of any integral curve passing through Ps. it
turns out that there are only two possible values:

4= + \/(01 — C4)2 + 4cocs

ct 2.44
This follows since c4 are the solutions of the equation
cic+ + €3
g =——-. 2.45
* C2Ct + C4 ( )
The characteristic matrix
_{ ¢ ¢3
AlP2) = ( 2 ¢y >’

coming from the linearization of (1.9) at P, (see (3.16) (3.17)), possesses the fol-
lowing eigenvalues:

+ - 244
Ny — c1+cy \/(012 c4)? + 4dcacs (2.46)

It may be diagonalized as follows:

Praer=( ot )

_( & o+ 1 L -1 ¢y
p_<1 ; > P _C+_c_<1 _c_>. (2.47)

with
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Lemma 2.9 (Estimates on the slopes). Assume (2.42) and let

A C1Cq4 — C2C3
S 2.48
Ay (eqg+cgc)? (248)
Then,
c- <0<ect
cq4 +coc_ <0
A>1 (2.49)
1< -2 < <-2<0
2 C1
A< )\+ <0
Proof of Lemma 2.9. From cacg > O:
Cy —C1 — \/(61 — 64)2 + 46263 cy —cC1+ \/(01 — 04)2 + 4cocs
<0<
2|cy| 2|cy|
and hence
c— <0 <ecy.
Next, we compute
—c4)?+4 2 —c1c
s I o = C4 + C1 + \/(Cl 04) C2C3 _ (0263 1 4) < 0.
2 —cy —c1+ /(1 — ca)? + deacs
We now observe
Coom + oy = oy — S=YE — atedB (2.50)

CoCy +cq4 = cCqg —

ca—catVA _ cta—VA _ A
2 = 2 = A

and hence A\_ < Ay < 0. We now estimate A:

C4C1 — C3Co — (64 + CQC_)2

4(0203 — 0104)2
— (4C1 — C3C2 —
(—ca —c1++/(c1 — c1)? + deacs)?
( ) (—04 —C1 + \/(01 — 64)2 + 40203)2 — 4(6461 — 6263)}
= —(cg+coc)=
2(—64 —Cc + \/(Cl - 64)2 + 46203)
(ca+c1)? +2(—ca — e1)y/(c1 — c4)? + deacs + (1 — cq)? + deacs — 4(cacr — 0203)]
= —(ca+coco)=
2(—64 —c1 + \/(Cl — 64)2 + 46203)
(—eq — 01)\/(61 —c4)? +4deaez + (e —cq)? + 46263}
= —(cg+coc)=
(—cs —c1 ++/(c1 — c4)? + deacs)?
and hence
cicq — Coc3
A-1 = ——— =~ 1
(cq + coc_)?

((—04 — 01)\/(01 —c4)? +4deaez + (e —cq)? + 402C3)

(ca+ cac)(—cs — 1 + /(c1 — ca)? + deacs)
Using in particular that ci,co, c3,cq4 < 0, this yields
A>1

Next, note that we have

—-— <0
C1
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since ¢3 < 0 and ¢; < 0. Also, since {Ag = 0} intersects w = 1 — o at P, and P,
(0, w5 (0)) is above w = 1 — ¢ for ¢ > 1 — w_ and below for 0 < 1 — w_. Since

—c4/cz is the slope of w = w, (o) at Py, we infer
S
2

It remains to compare c_ to —cg/c1. We compute

c— + B2 e + @
c1 |c1
le1](eqa — 1 — \/(01 — ¢4)? + 4caes) + 2cacs
2|z
C1 (Cl — C4) + 26263 — |Cl|\/(01 — 04)2 -+ 40263
2|c1|fez] '

Now, we have

2 2
<C1 (01 — 04) + 26203) — <|01|\/(01 — 04)2 + 40263)

= C%(Cl — C4)2 +4cocger(er —cq) + 4C%c§ - C%(cl - 04)2 — 40%6263

= 46263(0203 — 0104) <0
and hence

c
c_+£<0.
C1

This concludes the proof of (2.49). O

3. General properties of the dynamical system (1.9)

In this section we establish the general properties of Lemma 1.2 for the dynamical
system (1.9). We assume

l<r<ri{d) for £<d

G220 | (g 0) <r<rp(d ) for £>d

(3.1)

so that the shape of the phase portrait is given by respectively figure 1 or figure 2.
We recall that wa (o) is the middle root of Ay and w5 (o) is the smallest root of A
given by (2.5). The arguments in this section are classical and are given for the
reader’s convenience.
We note

p_ ' P for {<d

< 7| Py for £ >d.

3.1. The spherically symmetric solution emerging from the origin. We first
claim the existence and uniqueness (up to the scaling symmetry) of a spherically
symmetric solution to (1.7) which exists on the interval [0, Z3] and, in the variables
of Emden transform, corresponds to the integral curve P — Ps.

Lemma 3.1 (The solution emerging from Ps). Assume (3.1).
(1) Ewistence: there is o9 > 0 large enough and a unique curve w(o) solution to
(1.9) on (0g,+o00) with

lim w(o) = we. (3.2)

o—400
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P6
o
FIGURE 3. Shape of the phase portrait for 1 < r < r*(¢,d)
It admits the asymptotic expansion as o — +00:
We(we — 1) (we — 1) 1 1
w(o) = we + 112 §+O 1) (3.3)

(2) Original variables: The curve corresponds to the unique (up to scaling in-
variance) spherically symmetric solution of (1.7) defined on the interval
|Z| € [0, Zy]. This solution belongs to C*(|Z] < Zy).

(3) Reaching Py: w exists in fact on (02,4+00) and we have w € C*(0y,400)
with
Voo < 0 < 400, w, (0) <w(o) < ws(o) (3.4)
lim, |, w(o) = wo, '

see figure 1.
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Q
WA AIS0 /7
%
P5’
P1
A1<0 A2<0
A1=0 P6
P4 ‘0
42:0
ﬂ\\o
A2>0

FIGURE 4. Shape of the phase portrait for r*(¢,d) < r < ry(d,?),
{>d

Proof of Lemma 3.1. This follows from the asymptotic behavior of the polynomials
Aq, Ao,

step 1 Flow near FP5. We decompose

w=we.+w, lim w(o)=0.
o—+00

Then, w satisfies
dw d -1 — dwo? d
dw- 2o = w(w )(w —) wo _%s
do o gle+a-nw - (£+d+£r—r)+£r—ea2} o

B w(w d?éw r) - d

N 1)w2+;:17(2€+d+€r n—er V|5

~w(w — 1)( —r)+d<(€+d—l)wQ—w(é—i-d—i-Er—r)—i-ér)@

- 1+ —(+d— 1)w2+g:17(2£+d+€r r)—Lbr F
and hence
d [ 1 [do d
el e - — ([ Z=_2Zp 3.5
do <0d> o (da Uw> (35)

—tw(w —1)(w—r)+ d<(€+ d—1w? —wl+d+r—7)+ Kr)ﬁ)\ 1
= 1+ —(b+d—1)w2+w(l+d+lr—r)—Lr Pod+3’

lo2
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Existence. We solve

w

(3.6)
L[t —fw(w—1)(w—7“)+d<(€+d—1)w2—w(£—|—d—|—€r—7")+£r>ﬂ} do’
= ¢ /U 14 —(l+d—D)wFw(l+d+lr—r)—tr fod+3’

Lo'?

using an elementary fixed point argument which yields the existence and uniqueness
on og < o < 400 of w such that

1
0| S — for o > a9 (3.7)
o

provided og has been chosen large enough.
Uniqueness. Let now w(o) be a solution to (3.5) on [og, +00) with lims_ 400 w(o) =
we. We integrate (3.5). The integral of the RHS of (3.5) converges at +oo from

the a priori bound |w| < 1, and hence @ satisfies (3.6) and the a priori bound (3.7).
The uniqueness claim follows.

Asymptotics as 0 — 400. The integral equation (3.6) for w and the fact that

—tw(w —1)(w —r) + d((ﬁ—l— d—1Dw? —wl+d+br—r) +€r>ﬁ?

1+ —(l+d—1)w2+w(l+d+br—r)—Lr

Lo'?
1
= —Alwe(we — 1) (we — 1)+ O <02>
and
+oo 1 do’
d
—0 /U <—€we(w ].)(U}e - 7") + O <0—’2>> W

 We(we — 1)(we —7) 1 1

B d+2 2O
yield (3.3).

Spherical symmetry and regularity at the origin. From (3.3), on the solution, as
o — 400!

As a result,

Up to a constant
1
x = —logo + O (2> =o=e¢"[1+0(™)] as z— —cc.
o

Recalling the Emden transform formula (1.8), we obtain from (3.3) the asymptotics
as Z =e* — 0

~y—1

A(Z))T:\/gZU(m): L(1+0(2%)
)

( (3.8)
W(Z) = —Zw(z) = —Z [we + O(Z?)]
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We also observe that the system (2.1) can be rewritten with respect to the variables
s:= 72, fi=w—we, g=Z0

in the form
‘ gf———fwf( f.9)
@ =6(sf.9)

for some functions F, G with the property that they are smooth functions of all the

variables in the neighborhood of the point (0, 0, \/g) We may rewrite the above in
the form

)=s 2f ,9)ds
g<s>=\£ +f0 ,f,g>ds

This produces a unique fixed point solution which is C! in s and, obviously, coincides
with the solution constructed from (3.6). Rewriting the above again as

—sfo 2]: (sk, f(sk),g(sK))dr
g(s) = \@—1— sfo (k, f(sK), g(sK))dk

implies that

o = ()

L g Load
— [ R fom) s [ ()3T (Fow, f(s),g(sw) d
0 0

;N

dd
2
ds

F(sk, f(sK), g(sk ))dﬁ+5/0 (k)2 — (F(sk, f(sk), g(sk))) dr

1 d
B /0 (k)2 F (35, f(5r), g(sr))dr + F(s, £(5). 9(s))

_d+2
2

Similarly, for g. This expresses f’(s) (and ¢'(s)) in terms of regular kernels involv-
ing f and g and immediately implies (by step by step differentiation) that both f
and g are C* with respect to s including at s = 0. Recalling that s = Z2 and the
Emden transform relation (3.8) to the original variables @, p, yields the desired local
(defined in a neighborhood of the origin) C*°(R%, R?) spherically symmetric solution.

1 d
; (k)2 F(sk, f(sk),g(sk))dr

step 2 Reaching P». Let w, (o) be the unique curve entering Py constructed in step
1. From (3.3),

Ai(o,w,(0)) = we(0)(w,(0) = 1)(w,(0) — 1) — d(w, (0) — w,)o?
= we(we — 1)(we — 1) <1 - dj_2> 1o <012>

- we(we—l)(we_r)di2 <1>>0

near +o0o. By Lemma 2.3, A; < 0 for w < wi(o) and for w € (wa(0),ws(0)), and
Ay > 0 for w > ws(o) and for w € (wi(0), wa(0)). Similarly, by Lemma 2.1, Ay > 0
for w € (wy (o), w5 (o)) and Ag < 0 for w < wy () and for w > wy (o). From the
asymptotic expansion of w, (o) we can conclude that w!.(c) < 0 for o > 0¢. Given
that w3 (0) — 400 as o — oo, it follows that w,(0) € (wy (o), w] (7)) for o > oy
and thus Ag(o, w,(0)) > 0. Since,

Aq

0> w.(o)= Ay
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it follows that Aj(o,w,(0)) < 0. Combining this with the fact that w,(c) — w, =
lim,_,00 wo(0) and examining the regions of constant signs of A; described above,
imply that w,(0) < wa(o) for all ¢ > 0. Thus, we have obtained

wy (0) < wr(0) < wa(o) for o > oy.

In view of the phase portrait of figure 3 and the strict monotonicity wh < 0 given
by (2.10), this implies that the curve w, reaches P» with

Vo > o9, wy (0) < wp(o) < wao). (3.9)

Let us give a quick proof. From (3.9), we consider the region below the middle root
of A1, above the smallest root of Ay and to the right of Ps.

Ry ={(o,w), wy (0) <w < wy(o),0 >1—w_}

The point P; is the utmost right joint root of A; and Ay . The curves (o, ws (o))
and (o, w, (o)) intersect there and limy o w2(0) = wWe, limy_yo0 wy (o) = —o00.
Therefore, w, (0) < wg(o) to the right of P,. Moreover, in that region wi(o) <
wy (o) and wa(0) < wy (o). As a consequence of the above, in the region R,

A; <0, Az >0.

Now, assume by contradiction that there exists o1 > 1 — w_ such that (o, w,(c))
is in R, for 0 > o1 and (o1, w,(01)) is the last point in that region. Then either
(01, wy(01)) is on the middle root of A; to the right of P, in which case we have

wy(01) =0

But in view of (2.10), wh(o1) < 0, and we have a contradiction since w, (o) < wa (o)
for all ¢ > 01. Or (01, w,(01)) is on the smallest root of Ay to the right of Py, in
which case we have

wl(o1) = —00

This is again a contradiction since wy, (o) > w; (o) all ¢ > 1. Therefore, the curve
can only exit the region R, at 0 = 1 —w_, i.e., through P,. Since there are no other
accumulation points in this zone, the curve must approach P, as o | o9. Therefore,
the curve wy (o) is defined on (o2, +00), is C* on this interval and satisfies (3.4). O

3.2. Solutions crossing red between P, and P.. We now analyze trajectories
that cross the middle root wo (o) of A; between® Py and Pe.

Lemma 3.2 (Solutions crossing red between P, and Po). Assume (3.1). Let
o5 < 0 < o9 and w(o) be the solution to (1.9) with the data w(o*) = wa(c™).
Then:

1. backward flow: w € C*°(0, c*] and

li =0.
lim w(o)
Moreover, o — 0 corresponds to x — 400 and there exist (Woo, 0o0) € R x R such
that for x — +o0
o(x) =00ce ™ (1+0(e™ ™)), (3.10)
w(z) = weee " (1 + O(e™ ")) '

8Since the roots of A; are depicted in red on the various figures of this paper, we will sometimes
say that such solutions cross red between P, and P-.



32 F. MERLE, P. RAPHAEL, I. RODNIANSKI, AND J. SZEFTEL

2. forward flow: w € C®[c*,02) and

Vo* <o < o9, wa(o) <w(o)<w; (o)
limytq, w(o) = wo,

(3.11)

see figure 1.

Remark 3.3. The above lemma shows that all such solutions provide admissible
Py — P4 connections.

Proof of Lemma 3.2. The fact that the solution generates a Py — P, connection with
forward flow trapped in the region (3.11) follows again directly from the phase por-
trait of figure 3 and the monotonicity (2.10). We leave that to the reader, while we
focus on the proof of the asymptotic expansion (3.10) near o = 0.

As 0 — 0, we have
dz _Algw(e) (w(o) —1)* — o*
do Ba(erw(o)) g0+ d—Dw(o)? - (+d+br — (o) + br — (o?]

1+o0(1)
ro
so that x — 400 as ¢ — 0. It thus suffices to consider the flow for x large enough.
Next, note that for (w,o) — 0, we have

%— w| + %—ra < w® 4 o
Decomposing w and ¢ under the form
w(z) = weoe " + W, o(z) =00 "™+ 0,
we have
m—Frw:—(Al_rw), Cl&—i—r&:—(AQ—ra).
dz A dx A
Assuming
w(x), o(x) =o(e™ ™), x — +00,
we infer

+o0
w(xr) = e_m/m e (AAl - rw> dy,

+oo
(x) = em/z e <AA2 - ra) dy.

An elementary fixed point argument then allows to obtain for any (W, 0so) With
|Woo| + |0oo| = 1 a unique corresponding solution (w(z),o(x)) satisfying (3.10),
which is defined for e > 6(¢,r,d) with §(¢,r,d) > 0 small enough, and hence for
|lw| + |o| < §(¢,r,d). We have thus described the behavior of all solution curves
(w, o) converging to Py as 0 — 0, and shown that they all satisfy (3.10). O

The results of the previous two sections provide the proof of all the statements
of Lemma 1.2. We summarize them as follows. We have constructed the unique
spherically symmetric smooth solution of (1.7) on the interval [0, Z3) and a one pa-
rameter of spherically symmetric smooth solutions of (1.7) on the interval (Zs, 00).
These solutions agree at Zs and thus can be glued to each other continuously. Our
goal however is to construct a global C*° solution. At this point it is already clear
that the crux of the matter is the point Ps.
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3.3. Diagonalized system at P». The point P» will play an essential role in the
proof of Theorem 1.3. The dynamical properties of this point in the regime (3.1)
can only be seen after passing to the diagonalized variables (2.47). We recall the
values of the slopes (2.41), (2.44), (2.46), the diagonalization matrices (2.47) and
the non degeneracy properties of Lemma 2.8 and Lemma 2.9 in the range (3.1). We
rewrite the system in coordinates which diagonalize its linear part. We will also
introduce a time variable and recast the system as a dynamical flow approaching
the point P5 (from either side) as ¢t — oo.

Lemma 3.4 (Equations in the diagonal form). Assume (3.1). Let

w=1wy + W ~
c=0+% , X= v , Y=pPlx = v (3.12)
dt _ 1 2 b
dr — A
then (1.9) becomes:
ay 1
= 91 (3.13)

dt e —c_ | G

with

G = <C+ — C_)>\+W + J20V~V2 + CZHWS + d0222 + dgoWg + 6221‘;[/22 + LiuWig + 620323

= —A1+ciy, (3.14)
Gy = (C+ — C,))\,i + é20V~V2 + énﬁ/i + 50222 + é30W3 + 621V~V2i + élgﬁ/iQ + 60323
= Al — C_Ag (315)

and where the values of the coefficients are collected in (F.1), (F.2).

Proof of Lemma 3.4. This is a direct computation.

step 1 Reexpressing A, A1, As. Let w = wo + W, 0 = 09 + 3, we compute the
nonlinear terms

Ay =wd — (r+ Dw? + rw — dwo? + £(r — 1)0?

w3 + 3wIW + 3w W2 + W3 — (1 + 1)(w3 + 2weW + W?) + r(wy + W)

— d(wy + W) (03 + 2098 + X2) 4+ L(r — 1)(05 4 2023 + ¥?)

W (3w — 2(r + Vwy + 7 — do3) + X(—2dogws + 2((r — 1)o9)

W2(3wy — (1 + 1)) + Z2(L(r — 1) — dws) + XW (—2do)

W3 — awx?

AW + 3% 4 dooW? + djy WY + dge X% + W3 — dWwx? (3.16)

+ 4+ Il
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and
Ay = %[(Hd—1)w2—w(£+d+zr—r)+er—502]

%

= 2 Z (04 d = 1) (w5 + 2w W + W?) — (£ +d + br — 1) (ws + W) + br — £(05 + 2025 + £?)]
¥

_ (’2; [(6+d = 1)QwsW + W2) — (4 d + r — r)W — £(2055 + 52)]

- W%[2w2(£+d—l)—(6+d+£r—r)]—2a§2

—1 2 ~1) - -

n W202(€+€d ) Y2 30] £ W wa(f+d—1) f(ﬁ—i—d—l—ﬁr r)

+ W% [“dg—l] + 23[-1]

= oW 4 ¢y + 620W2 +e WX+ 60222 + 621W22 + 23[—1] (317)

where the parameters are given by (F.1).

step 2 Y variable. We now pass to the Y variable:

A1(X) =W + 38 + dooW? + dyyWE + dpe X2 + W3 — dIWs?

(e W+ e X) + e3(W + 8) 4+ dao(c- W 4 . %)% +diy (e W + ¢ S)(W + %)
doa(W + )2 + (c-W 4 ¢ )3 —d(c_ W + e, X)(W + %)?

(cre— + e3)W + (creq + ¢3)8 + doo(E W2 + 2c_c WS + ciig)

din(c-W? + (e + c)WE + ¢4 32) + dpa(W? 4+ 2WE + 22)

(W3 + 32 W2, X + 30_17[/0322 + cii?’) —d(c_W + e X) (W2 +2WS + ¥2)

(cre— +c3)W + (creq + c3)8

(daoc? + diic— + do2)W? 4 (2c_cidag + (c— + ¢4 )d11 + 2do2) WX + (dooc + dircy + do2) X2
(¢ —de_ YW + (3¢% ¢y — 2dc— — de )W?S + (3c—c? — de— — 2de )WE? + (¢4 — dey ) %P

_l’_

i+ 4+

- -
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and
9 9 f+d—-1 9 3

AQ(X) =W + 12X+ eogWe + et WX + egeX” + # Wy —%
= e WH e X)) +e(W+%)
4+ ego(c W + 422 4+ eq1 (oW + e D) (W + ) + ega (W + X)?

{+d—1 ~ o~ - .

+ <€> (W + ey D)P2(W43) — (W +X)3
= (CQC_ + C4)V~V + (CQC+ + 64)2 + 620(C%W2 + QC_C_;,_VNVE + Ciiz)
+ e W2+ (e + c)WE + 432 + epa(W? + 2WE + ¥?)

L+d—1 ~ .o~ . -
+ % |:CQ_W3 + (2 +2c4c)W?E + (2c_cy + )WE? + 0123]
— (W34 3W28 +3WE2 4+ 53
= (eac— 4+ )W + (cacy + ¢4)2
+ (6206 +er1c— + 602)W + (2eg0c—c4 +ern(c— +cy) + 2602)W2 + (62003 +ency + 602)22

d— d—1 . om

P s - ]W?’ [“g(c2+2c_c+) —3] W2y

.
V+d_

s l+d-1 -
(2c_cy + %) — 3] W2 + [—Feci — 1] »3.

Linear terms yield

1 —((crc= + )W + (creq + 3)%) + ep[(cac + ca)W + (cacy + ca)3)]
cr —c_ | (cre— 4+ e3)W + (creq + 3)% — c_[(cac— 4+ c))W + (cacy + c4)X)]

_ 1 ‘ [—(crc— + e3) + ey (cac— + c)]W + [—(creq + e3) + ey (cacq + ca)]S
cr —c— | ((cre= +e3) —c—(cac— +ca))W + [(c1eq + ¢3) — c—(cacy + 1) |2

We then recall the ci equation (2.44) which kills the off diagonal term

—(c1e4 + ¢3) + cy(cacq +¢4) =0
(cre— +¢3) —c—(cac— 4+ ¢4) =0

and compute using (2.50):

,(clc_+c§itit(cgc_+04) _ 7c_(020_+fi)t:r_c+(czc_+04) =coc_ +cq = At
(c1c4+4c3)—c_(cocq+ecs)  cy(cacpteq)—c_(cocptca) _
e = e =cCoCy +C4 = A

For the quadratic terms, we compute for the first coordinate

dyy = —(dooc® + dirc_ + doz) + ¢4 (e0c® + errc + egr)
= (cpreg — dp)c® + (cyein — dir)e + creps — dog, (3.18)
and
din = —(2c_cypdog + (c— 4 ci)diy + 2do2) + ¢4 (2ea0c—cq + eqr(c + i) + 2ep2)
= 2c_cq(cpez0 — dao) + (= + g )(cqenn — dur) + 2(cse02 — doz)
and

doo = —(daoc? + dircy +do2) + ci(eanc + ericy + ep2)

= (cyea0 —do)ch + (crern — dir)ey + cqepr — doo
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and
- f+d—1
dso = —(c® —dec_) + et <+£c2 - 1)
and
- f+d—-1
do1 = —(3c2 ¢ — 2de_ —dey) + ¢4 (U(CQ_ +2c_cq) — 3>
and
~ f+d—-1
dia = —(3c_c? —dc_ —2dcy) +cy <+£(2c_c+ +c2) - 3) .
Similarly for the second coordinate:
€20 = (dooc® 4 dyic_ +do2) — c_(e0c® + errc_ + epa)
= (dao — c—e20)c® + (di1 — c—eq1)c— + doa — c—eq2 (3.19)
and
€11 = 2c_cydy + (C_ + C+)d11 + 2dgo — C_(262()C_C+ + 611(0_ + C+) + 2602)
= QC,CJr(dQQ — 07620) + (Cf + C+)(d11 - 67611) + 2(d02 - C,eoz)
and
o2 = daoct +dircy +dog — ¢ (e + ency + epa)
= (dQ(] — 67620)03_ + (d11 — 07611)C+ + dgo — c_ep2
and

{+d—-1

€21 = (3c%cy —2dc_ —dey) —c_ ( 7

(> +2c_cy)— 3> ,

this is (F.2).
Introducing the time variable ¢ (we note that ¢ — +oo corresponds to both Z 1] Z):

dt 1
dr A
yields
dy (C+7C_))\+W+J20W2+J11W2+J0222+J30W3+d21W22+d~12w22+d~0323
_— ~ ~ ~ ~ C'tic_ ~ ~ ~ ~ ~
dt (et —C)A_B+EaoW24E11 WE 0222 +E30 W3 +E01 W2E+E12W B2 480323
Ccq—cCc— :
This is (3.14), (3.15). O

3.4. Integral curves passing through P.

Lemma 3.5 (Slope of the curves converging to P). Assume (3.1). Let c4, c—, A
be given by (2.44), (2.48). Then,

(1) all integral curves of (1.9) converging to Py have slope given either by cy or
c_, where the slope refers to the limit of %’ as o — 09,

(2) there are only two curves with slope c4, with one converging to Pa from the
region A1 > 0 and the other converging to Py from the region A1 < 0, while
all the other curves have slope c_,

(3) the unique curve converging to Py from the region Ay > 0 with the slope c4
exists on 0 < o < o9 and converges to Py as 0 — 0.
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Proof. The Jacobian matrix of the autonomous system (3.13) at the equilibrium
(W, %) = (0,0) is diagonal with two negative eigenvalues A_ < Ay < 0. Thus,
standard results imply that (0, 0) is an asymptotically stable node, and the following
holds for the trajectories converging to (0,0) as t — +o0

(1) there exists exactly two trajectories tangent to the eigenvector of the Jaco-
bian matrix corresponding to the smallest eigenvalue A_, i.e. these trajec-
tories satisfy

W
lim — = 0,
t—+o0 Y
(2) all the other trajectories are tangent to the eigenvector of the Jacobian
matrix corresponding to the largest eigenvalue Ay, i.e. these trajectories

satisfy

lim — =0.
t—+oo W/

Coming back to (W,X), we infer that the slope of any curve converging to Ps is
either c4 or c_, and there are exactly two with slope c;, while all the others have
slope c_. Also, since ¢y > 0 while the slope w)(o2) of the middle root of A; is
negative, see Lemma 2.9, among the two curves converging to P» with ¢4 slope, one
converges to P» from the region A; > 0 and the other converges to P, from the
region Aj < 0.

The fact that the unique curve converging to P» from the region A; > 0 with
slope ¢4 is defined all the way to o = 0 and attracted to Py is a straightforward
consequence of the phase portrait in Figure 3. O

Lemma 3.6. Assume (3.1). Let c_, A be given by (2.44), (2.48) and assume that
A=K+a, KeN\{0,1}, 0<a<l.

Then, there exists a unique solution curve (w, o) to (1.9) which is a C* function of
x at Py with slope c—. This solution also satisfies that w(co) is a C* function of o
at o2.

Remark 3.7. One can show that all the other curves converging to P» with slope
c_, see Lemma 3.5, are CX+® both on the right and on the left of P,.

Proof. Recall from Lemma 3.5 that the curves converging to /% with slope c_ satisfy

W = o(X) near P», and hence, we have at Py, i.e., at W =0,

- %
V.= —, v(0) =0. 3.20
= o) (3.20
Now
- dV - dY
W—+¥=—
AW dw
(c4 — o )A_E + EoW?2 + E11WE + 0222 + E30W3 + e W2E + 12W 2 4 9353
(C+ — Cf))urW + JZOWQ + CZHWE + CZOQSQ + JgoW?’ + d~21V~V2i + JuWiQ + J0323
(C+ — C,))\,\i’ + éQOW + éllw\i’ + éog\ijgw + égoWQ + 521W2\i’ + 512W2\I12 + 503@317[/2

(C+ — C,))\Jr + Jgow + JHW‘i' + dvog\iJZVNV + JgoWQ + J21W2\i’ + JlZWZ\I’Z + Jog‘ifSWQ

and hence
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with G2(0,0) # 0. Since A = A_ /A4, we infer

Let k > 1. Assuming that T is C*°, we differentiate k times, and evaluate at W = 0.
We infer
(k=1)

G1(W, )

_ AW () = p | TV ) B(0) —
k41— A v® ) =k NS , k>1,  U(0)=0. (3.21)

|6 #)=(0,0)

Since A ¢ N, (3.21) yields the uniqueness of the Taylor expansion of ¥ at any order.

Let k € N* with k£ > A — 2. We denote by P,(W) the unique Taylor polynomial

of degree k provided by solving the iteration (3.21) for j = 1,--- , k. Then, Pk(W)
satisfies - - -

Wd]f CA-1]P = WG1(~W, Pk(~W))

where Q. is a polynomial uniquely prescribed by k, A, G1 and G5. We decompose

U = P, +é&, & = O(WHHY),

+ Wk-l—l@k’

Plugging this decomposition into the equation for ¥, we infer
- de WG(W, P(W) + & - dP
R P 1(W, Pl )+~€k)_<W b
aw Go(W, P(W) + ) aw
= _Wk—i—le + Wéka(W, €k)

where Hy, is a smooth function near (0,0) uniquely determined by k, A, G; and Gj.
We deduce

[A—1] Pk)

d /- - Er -

2 (w4 ) — _WkAQ TR g (W, 8.

i ( k Q AT k(W Ek)

Now, since &, = O(W**+1) and k > A — 2, we deduce that if a solution curve is C*
at Py with slope c_, then it must satisfy

w
~ = A_ - _ 3 -~ -
5 = WA 1/0 (_wk+1 AQk+lDf1]€—1Hk(w’6k>> d. (3.22)

Using a fixed point argument, there exists a unique solution to (3.22) defined in a
neighborhood of W = 0. Uniqueness follows.
We now focus on the existence of a solution curve C*° at P, with slope c_. Let

U = Praj_o+Era-a
where £41_2 is the unique solution to the fixed point argument fixed (3.22) for

k=T[A] —2> A — 2. With this definition, ¥ yields a solution curve with slope c_
at P», and it remains to prove that it is C*° at P». In fact, it suffices to prove that

Pr+é, = P[A]_Q +5]'A1—2 for all k > [A-I -2, (3.23)
as it will then imply that ¥ has a Taylor expansion at P, at any order and is hence
C™.

Next, we focus on proving (3.23). For k > A — 2, we define 5\ilk7,4 by
Wpa = Pp— Praj_o+ &k — &aj—2
which satisfies in view of the properties of Pj41_2, Pk, €[41—2 and &

00 4] = OWIAIL
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and

- doW . <z = -
W dﬁlj’A—[A—l]fS‘Pk,A = WV adp,a(W, Py, Praj—2, €k, E141—2)

where Jj, 4 is a smooth function near (0,0) uniquely prescribed by k, A, G and Ga.
In view of the above control for dV¥y, 4, we deduce

3 _ W50
N R
0o w

Hence 5@;{7 A vanishes identically, so that (3.23) holds as desired.
We have thus obtained a unique solution (X, W) such that ¥ is C* at W = 0.
Now, proceeding as in the proof of Lemma 3.4, we easily obtain from (2.47) (3.12)

A = VV[CA FWER(W, ¥ + BGo(W, qf)},
W

A = [% L WER (W, ) + BG (W \Iz)},
(W, 9)],

Ay = w[cA2+wFQ(W,@>+@G2

where F}, G, j = 0,1,2 are polynomials in (W, \il) and ca;, j = 0,1,2 are nonzero
constants. Together with (3.14), this implies that

G A
A’ Ay’
are C*° and nonzero at W = 0. In view of (3.13), we have

v 1 dt 1 G
dz

N Cy —C_— 1%__C+—C,K
so that W is a C* function of = at Py. Then U and hence ¥ are also C*° function
of x at P, and hence, (w, o) is a solution to (1.9) which is a C* function of x at

P;. Finally, since 2—; is C°° and nonzero at W = 0, w(o) is a C*™ function of o at
g9. O

4. Renormalization of the flow near P

Our aim in this section is to start the proof of Theorem 1.3 with the renormal-
ization of the flow (1.9) for 0 < re —r < 1 near P» with r~ given by (1.14). We
first detail the strategy of the proof in section 1.3, and then proceed to the expected
renormalization. The proof of Theorem 1.3 will then be completed in sections 5, 6,
7. For the rest of this paper, we assume

e R\{d}, 0<re(dt)—r<1.

We will also denote

| P for £<d

Pe = Ps; for £ <d.
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4.1. Strategy of the proof of Theorem 1.3. We describe the main steps of the
proof of Theorem 1.3.

step 1 Renormalization. We introduce a suitable semi classical parameter, see
(4.11),
0<b= OTT%(l)

and use the geometry of the “eye” Po, P» to produce a suitable renormalization.
Here we use a fundamental degeneracy of the phase portrait, see Lemma 2.6, which
gives the eye property

lim |P= (1) — Py(r)| =0, (4.1)

" re
and the slopes of wy(o) and wy (o) converge to the same value, see figure 3, 4.
Passing to the diagonalized variables (2.47) and after explicit suitable reductions,
this degeneracy leads to a quadratic cancellation, (4.13). Solving for w(o), we are
left with the study of a problem of the form?:

de g
1—u)— —[y—2 u|6 = —=. 4.2
u(l =022 — [y =2+ (1, + 3)u] © = = (12)
Here we introduced the parameters which appear in the renormalization process
N = coo(d!)(l:%_m(l))’ Coo > 0 (4.3)

Vb = Voo(d, £) + 0p—0(1), Voo #0

The trajectory is O(u) with w = 0 at 03, u = 1 at 0=. G is an explicit nonlinear
term. An analogous reduction can be performed to the right of P;.

step 2 Main part of the solution. The nonlinear ode (4.2) has a regular singular

point at the origin u = 0. Therefore, it admits a C* solution with an holomorphic
expansion at the origin

+oo
Ou) = Ok(b,d, O)u*
k=0

where 0;(b,d, ) is given by an explicit b dependent induction relation. We let

y—=1=K+oa,, 0<a,<1 (4.4)
and truncate the holomorphic expansion at the critical frequency':
K—2
O(u) = > O’ + 0 10" 4+ (=1)F Sk 1 Opain (1) — T (rg) (4.5)
k=0

where O i = O(uX) is an explicit integral, and 7 (rg) is a remainder which is of
higher order. Our first fundamental observation is that there exists a strong limit

lim Sk _1 = Sao(d, ). (4.6)
b—0

The proof relies on bounding the formal series solution to a limiting problem with
b = 0 first. This is done in Proposition 5.1, which belongs to the realm of nonlin-
ear Maillet theorems, [8, 14]. The original problem (4.2) can be thought of as a
b-deformation of the limiting problem. The challenge however is that we need uni-

form estimates for all frequencies up to the critical value K which itself is of size ~ %

Yobserve that the notation u for the variable appearing in (4.2) should not be confused with
the one for the solution to the Euler equation (1.1).
10 hich corresponds to the limit of regularity of a generic solution, see Lemma 3.6.
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step 3 Non vanishing of Sy (d,¢). The proof of finiteness of S (d,¢) implies the
analycity of the mapping ¢ — S (d, £) on suitable domains of the complex plane (see
Lemma 1.5). This number can be reexpressed as an explicit normally convergent
series, but we do not know how to prove analytically that it is non zero. We
therefore perform a numerical study of this convergent series which allows us to
provide windows of parameters (d, ¢) for which

Seo(d, £) # 0. (4.7)

step 4 No oscillation at the left of P,. In the variable O, it is easily seen that the
P> — P- separatrix satisfies |©] Spq 1, Lemma 7.11. Hence we pick a large enough
(in absolute value) constant ©* > 1 and aim at reaching the value

Ou")=0% 0<u*<l1. (4.8)

The second fundamental observation is that the function O, can be analyzed
explicitly near u =0

Omain = T(a)D(1 = ) K70y (19)

« {[1 + op0(1)] {F(l ! o+ ﬁ;fﬂ;fu} + lot} .

In a boundary layer close to the integer values
ay € (e1,261) U (1 — 29,1 —€2), & = op0(1), (4.10)

we can ensure that (4.8) happens for a small 0 < u*(e,) < 1. For the interval
2e1 < ay < 1—2e9, we need to understand Oain away from v = 0 where the trun-
cated Taylor expansion no longer dominates, and here we use the explicit integral
representation of Omain to show that (4.8) happens for u*(ay) < % The conclusion
is that for every a, € (0,1) except maybe a very small b dependent boundary layer
around the integer values, the solution to (4.5) reaches (4.8) in time 0 < u* < 1.
This means that we are leaving a large neighborhood around the P, — P5 separa-
trix'! with a prescribed sign ©* > 1. A further use of monotonicity properties of
the flow (1.9) allows us to conclude that the integral curve will intersect either the
root branch ws (o) or wy (o) for some o5 < 0* < 9. The (—1)% prefactor in (4.5)
dictates that the former happens when K is even while the latter holds when K is
odd (if Se > 0 and the other way around if S, < 0.) Once the trajectory reaches
wa (o), by Lemma 3.2, it then continues on to Py, as desired.

step 5 Oscillations at the right of P,. The analysis of the flow to the right of
P, produces the same decomposition (4.9) but with v < 0. We then observe since
limy 1 I'(1—a) = +o0 that by choosing c, in a boundary layer close to respectively
0 or 1, the sign u < 0 allows us to reach

| ©F for g1 <y <261

OW) = o for g9 <1—ay < 26y

, ut <0, |uf|<l.

Then, if K is even, the curve will exit through ws (o) in the first case, in which case
we say it exits red, and through the branch w; (o) in the second case, in which case
we say it exits green. For odd K the situation is reversed (Again, this holds for
Soo > 0. For S, < 0 the picture is reversed.)

step 6 Conclusion by continuity. Given K with the suitable parity (depending on
the sign of S(d,f) # 0), we vary the parameter ay € (1,1 — £2) continuously

11 e the only solution curve connecting P> to Ps.
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and conclude that the C*° curve through P, crosses the red at the left of P, for all
Oy € (e1,1 — e9), while it also crosses the red at the right of P» at the beginning of
the a, interval, green at the end. Hence an elementary continuity argument implies
the existence of at least one value o € (e1,1 — €2) such that the solution curve
intersects the P» — Py trajectory given by Lemma 3.1. The two curves intersect
each other away from singular points and thus, by uniqueness, must coincide. It
follows easily that this constructed solution satisfies the conclusions of Theorem
1.3. In other words, as long as the non degeneracy condition (4.7) is satisfied, the
integer interval v € [K + 1, K + 2|, with K given by (4.4) large enough and of
suitable parity, contains at least one C* Py — P, solution. Since 7 is related to b
through (4.3) and b = o,q.. (1), the above construction produces an infinite family
of global C* solutions parametrized by the speeds 7 T re (d, £) for each (d,¢) such
that Seo(d, ) # 0.

4.2. Degeneracy of the geometry at r<(d,f). We use Lemma 3.4 and the YV
variable (3.12) to map (1.9) onto (3.13). The starting point of the renormalization
procedure is the following fundamental degeneracy property as r 1 r-(d, ¢).

Remark 4.1 (Notation for the parameters). From now on and for the rest of this
paper we adopt the following notation: all slopes, characteristic eigenvalues and
geometrical parameters involved in the renormalization of the flow, Lemma 3.4,
depend of r, and will be noted with an °° subscript when evaluated at r = re.
The non degeneracy and signs of some of these limiting values will be crucial in the
forthcoming analysis, and all relevant values are collected in Appendix F.

Lemma 4.2 (Degeneracy in the diagonalized system). Let

r* —r for {<d

b= =T for £>d (4.11)
and define
A
pt = % (4.12)

then, denoting by We and Se the value at P> of W and % defined in (3.12), we
have

We = —ple=le L O(p?)
S = 2 L o) (4.13)
py = pf + O(b)

where the non degenerate limiting values are computed in Appendix F.

Proof. The value of o2(r) is computed from (2.18) and hence o2 € C*°(1,r). More-

over, J(r) is from (2.25) a second order polynomial with roots r, =1+ (1315/12)2 <

r_ =1+ (ﬁ?/lz)Q and hence the root r; is simple. Since r* < ry, we conclude that

with the definition (4.11), o2(r) and the slopes coefficients ¢;(r) given by (2.41)
are smooth functions of b on [0,0*], 0 < b*(d,¥¢) < 1 universal small enough. We
now explicitly check that the determinant (¢; — c4)? + 4cacg which appears in the
definition of the slopes and eigenfunctions (2.44), (2.46) is non degenerate at re,
see limiting values in Appendix F and the non degeneracy of A_, which ensures that
¢+, A+ are smooth functions of b all the way to b = 0. The eye property (4.1) thus
implies
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Since the coefficients of the matrix P~1 given by (2.47) do not degenerate at re
from direct check, we conclude

Wa| + [B<| < Cb.

The coefficients Jij, €i; of the polynomials of the RHS of (3.13) are computed from
(F.2) and are O(1) at r-. Moreover Gi,Ga vanish at P- from (3.14), (3.15), and
this forces (4.13). O

4.3. Renormalization. We now proceed to the renormalization of (3.13) for 0 <
b< 1.

Lemma 4.3 (Renormalization and quasilinear formulation). Let

W = —bw

g o U=5=0=0 ) —ut (1— u)0(u) (4.14)

’lI):iZ}®u

where Yo and We denote respectively the value at Pe of ¢ and w. Then (3.13) is
mapped to the quasilinear problem

— 4V
[1+H§+Gﬂ%+Nb]M1—wEa (4.15)

+ “ynwu+HyHgm+md_ya+Gﬁ+%04m

ybHy — 2(1+ Hy) + — 2NLy

’}/bNLl
= u
bu

where Hy, Hy, G1,G2o are explicit polynomials in (b,u) given by (G.2), (G.4), and
the nonlinear terms (NL;)i=12 are given by (G.5). Moreover,
e = EEME | o)
d2

R s
Yo = +O(b).

dgen

(4.16)

Remark 4.4. Unfortunately, we need to keep track of all terms in (4.15) since
they will create the limiting problem which, in turn, will give rise to the S (d, )
function, evaluated numerically.

Remark 4.5. In the quasilinear formulation (4.14), (4.15), u =01is P, and u = 1
is Pe.

Proof of Lemma 4.3. This is a brute force computation.

step 1 b renormalization. We renormalize (3.13):

W = —bw
¥ =0b%
Ay =bug
dr _
dt
and define the variable _
b=7 (4.17)
w
We compute from (4.13), (F.4), (F.12) the expansion as b — 0:
(1) = 257 = % + O(h) <0
de(r) = — W50 = EEEWE L o)
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and (4.16) is proved. We now compute the flow from (3.13).
First equation. We compute

gl _ _bgdﬂ
Cy —C_ dr
=W (eq — ) pg b + Wrdag? — bPdiwd + bldpad? — Pdsg® + bldo1 %G — b0d1aws? + bdgs?
Cy —C_
ie.
di —(cq — ) |py [0 + |dao|@? + b(d11 D6 + dsow®) — b*(dp25? + doyw?5) + b3di2we? — bldos®
dr cy —c_ )

We insert (4.17) and compute:

g1
2
= —(C+ — c_)\,u+|u7 + |(i20]u~)2 + b(Cle’LT)& + d~30’LT)3) — bz(czog(}z + 652111725') + b3d12w5'2 — b4d~035'3

= w |:_(C+ — ) |py | + |dao| @ + b(diy @) + dzow?) — b2 (doph® 0 + do1?e)

Ja = (4.18)

+  bdpw*)® - 546203@2@23]
= @ {—(er — )yl + |Idool + bdirdh — Vdoat?| @ + [bdso — VPdred + Vot — bdog?| @2
Second equation. We compute
g2 _ b3dj
Cy —C— dr
b2(C+ — C,))\,é + bQéQ(]'lZ]Q - b3é11w& + b4é()20~'2 - 5353012)3 + b452171)25' - b5512’d)52 + b65030'3

Cy —C—
and hence
bd& 1

E - Cy —C—
X [=(cq = c2)|A_[G + Ex0? — b(E11WF + E30w°) + b (E26? + E21W?F) — b3E10W5 + b1Eg35°]
and

_ Go
T2
= —(cp — e )|A_|5 + E200? — b(E11W6F + E30?) + b2 (E0ad? + E0102F) — bPE101062 + brégsd

= w {_(C+ - C—)P‘—’T/; + éxow — b(énwzﬁ + E30w?) + 62(6027111;2 + émw%/?) — b3E10w%Y?
+ b4é03w21/33)}
= {_(C+ — o)A+ {éZO — benny + 52é021/~’2} w +- [—5530 + b2t — b3eay? + b4éo31;3} 7112} :

Conclusion. We have obtained the system

Fi (4.19)

3

dw _  F» (4.20)
Cy —C—

s

5
\]

2

{4q_amw+\@wm@m_w%mﬂw+p%_wam+mmw_w%wﬂw}

Cy —C—
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and
do Fi
h— = 4.21
dr ¢y —c— ( )
w {—(C+ — C_)‘/\_h; + €909 — bénlz + bQéOQILﬂ w + [—bégo + 5252177; — b3é121;2 + b4éo31/~13} 11)2}

Cy —C—

Remark 4.6. Note that from (4.13)
. Yo
> = — = - O 1
¢ b bao( )
(4.21) then forces the relations for b = 0:

”QZOO _ €50 W
= (ciojcio)p‘io' e (4 22)

ool 58] oo :

|lu-‘r | - Ciofc‘io We -

Note also that we have the signs, valid for all d > 2 and ¢ # d:
dss <0, é2>0,
see (F.8).

step 2 Normalization of w. We further renormalize the flow to obtain the leading
order size 1 constants leading the nonlinear dynamics as b — 0. Let

W= Wotl, 1 =1ed (4.23)
and define
A _ A
=573 (4.24)
A+l blp|
then recalling (4.20)
du 1 dw Fo
. S — 4.25

[_1 n |doo| + bd119e ¢ — b2doarh2 ¢

X WeU
|t l(er — o)
bz — b2dorhe ¢ + b3d1o02 ¢ — brdos g ¢
30 210 + 07d12Y2 ¢ 03Y ¢ w2 u2 (4.26)
gl (g — =)
= |p4fu
X [_1 + [|1~720| +bD11¢ — b21~702¢2} utb [b?’o —bD21¢ + ¥ Diog” — b3D03¢3] uﬂ

with Eij given by (G.1). Observe that by definition of P.:
—1+ |Dao| 4+ bD11 — b Doz + bD3g — b2 Doy + b* D12 — b*Dog = 0.
We then compute
dp _1ds 6do_1ds 1do
dr  wdr w?*dr wdr w dr
d¢ 1du 1 do
— = ——
dr  udr Yot AT
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and recalling (4.21):
b dé Fi -
== = [A_[Ys 4.27
wdr  (c4 —co)w A=y (4.27)

[_¢ i 520 - béll&@‘ﬁ + b2§02¢i¢2 ~

y — WU
(cr —c)[A-|e
—béigy + b2Ea1the d — b3E1202 62 + bEgsdd ¢
. 30 + b2E91 e @ elgzp®~¢ + b ep3z @ wiuQI (4.28)
(cr —c)[A-|e
1 1de
Rt — = - ——
bt [¢pory @ AT

= [—QZ) + (EQ() — bEllqb + b2E02)¢)2) u + (—bEgo + b2E21¢ — b3E12¢2 + b4E~'03¢)3> uﬂ
with Eij given by (G.1), and again by definition of Pw:
-1 + EQO — bEH + b2E02 — bE3O + 62E21 — b3E12 + b4E03 =0.

This yields the renormalized ¢ equation

dp 1du
ar Tuar?
= |utly [—¢ + (Ezo —bEy¢ + b2E02¢>2) u+b <—E3o +bEy ¢ — b Erad” + b3E03¢3) Uz} :
step 3 Quasilinear formulation. Let

d 1 d
Azt __ 1L @
dz |pt| dr’

then equivalently:
Au=u [1 - (|B20| +bDy1¢ — b2D02¢2> u—>b <D30 — bD21¢ + b2 D12g? — b3D03¢3) UQ}
Ap+2Lp =1y [Qb - (Ezo —bEn¢+ b2E02¢>2> u—1>b (_ESO +bEy ¢ — b2E1p¢% + b3E03¢3> UQ] .
with the relation on the parameters:

’ -1+ @20! + QDH — b2Dgg 4+ bD3g — b?Day +b>Dys — b Doz = 0

~ ~ ~ ~ ~ 4.29
—1+4 Ey —bE1 + 62E02 —bE3y + b2E21 — b3E12 + b4E03 =0. ( )

Let
Fi(u,¢) = ¢ — <E20 —bE1¢ + 52E02¢2) u—>b <—E30 +bEyn ¢ — b2 Era¢? + 53E03¢3> u?
e 1 —

Fy(u, ¢) (!Dzol +bDy1¢ — b2D02¢2) u—>b <D30 — bD21¢ + b*D12¢? — 53D03¢3) u?
then this is
Au = uF5(u, @)
u 4.30
‘ Ap +2Lp = yFy(u, ¢). (4.30)
We have from (4.27), (4.25):
Fi = M |Yetie(cy —c )u(—F) (4.31)

Fo = e (c4 — =) |ps [u(—F2)

Then
_,d¢ _ dépdu _ do
M=z =207 M
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and hence the ¢(u) renormalized quasi linear formulation

@ + Q — 'YFl ((;5,’&)
du u uFo(p,u) (432)
limy 0 ¢ =0, lim, ¢ =1.

Reexpression of the nonlinear terms. From (4.29):

Eso =1+ b(Eyy + Es) — b?(Egg + Fa1) + b2 E1g — b* Eg3

Then,
Fi(u,¢) = ¢— (1 + b(Er1 + Eso) — b*(Eoz + Eo1) + b2 E1p — b Eoz — bEnd + 62E02¢2> u
- b (*E:so +bEy ¢ — b E1¢” + 53E03¢3) u?
= ¢—u+b [—(Eu + E30)’U, + E11¢u + E30u2:| +b? {(EQQ + Egl)u — E02¢2u — E21¢u2]
+ v [—Emu + E12¢2U2:| + vt |:E03u — E03¢3u2} .
Similarly,
|Dao| = 1 — (D11 + Dsg) + b*(Dog + Dar) — *Diz + b* Doz = 0
and
Fy(u,¢) = 1- (1 —b(D11 + Dsg) + b*(Doz + Day) — b°Dyg + b*Dog + bD11 — b21~702€f>2> u
- b <D30 — bD91¢p + b*D12¢? — 53D03¢3) u?
= 1l-u+b [(f)n + D3o)u — Dyigpu — D30u2] +b? [*(bm + Dot)u + Doag*u + D21¢U2}
+bﬂ&w—Dn&M}mﬂfmw+D%&My

step 5 Changing variables. We change variables to make the critical points of the
ode appear explicitly. Let

d=¢—u (4.33)
Reexpressing F;. Recall

Fl(u, (b) = ¢—u+b [—(EH + Ego)u + E11¢u + Egguﬂ + b2 |:(E[)2 + Egl)u — E02¢2u — E21¢u2]

+ b [—Elzu + E12¢2U2} + 0t [Eosu - E03¢3U2}

then
—(E11 + Eso)u+ Er1¢u + Bsou? = —(Eny + Eso)u(l — u) + Erud
and
(Eo2 + B )u — Egp¢®u — Esyu® = (Ego + Eay)u — Ego(u+ ®)%u — Eayu’(u+ @)
= (Eoz + Eo)u(l — u)(1 4+ u) — u?(2Eq + Ea1)® — Egpud?
and
—Eu+ Eip¢*u? = —Eppu+ Erp(u+ @)%’
= —Elgu(l —u)(14+u+ u2) + 2E12u3<f> + E12u2:f>2
and

Eosu — Eg3¢*u® = Eggu — Eos(u + @)*u?
= Eogu(l —u)(1+u4u?+u’) - E03(3u4f15 +3utd? + u25>3)
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Thus,
Fi(u,d) = ® +b [ (B + Eso)u(l — u) + Em@]

+ b [ Bos + Boy)u(l — u)(1 +u) — (2B + By )® — EOZu&S?]

+ [ uw(l —u)(1+u+u?) + 2E19uc® + E~’12u2§>2}

+ 4[ u(l —u)(1+u+u?+ud) - E03(3u4<f>+3u3€152+u2&33)}

= u(l—u) [ b(Ey1 + E30) + b*(Eg2 + Ex) (14 u) — B Ea(1 4+ u+ u?) 4+ b Eoz(1 4+ u + u? + u3)]

n [1 + Enbu — (2Egs + Eop)b?u? + 2E196%u® — 3Eg3btu 4]

+obd2 [—Eogbu + Epob?u? — 3E03b3u3} — 233 [Eogb%?}

= (1l —u)bHy(b,u) + (14 G1(bu))® + NL; (u, ®) (4.34)
with

Hl(b u) =- (E11 + Ego) + b(E02 + EQl)( + uz — b2E12(1 —+u + u2) + b3E03(1 —+u + u? + u3)
Gl( ) Fiix — (2E02 + Egl)l‘ + 2E12$ — 3E03$4
NI; (u, ‘I)) = b‘iﬂ [—Eogbu + Elng 2 _ 3E’03b3u3} - b2&>3 [EongUQ}
(4.35)
Reexpressing Fs. Recall

FQ(U, ¢) = 1—u + b |:(D11 + Dgo)u — [)11¢u — Dgoug] + b2 [—(DOQ + Dzl)u + D02¢2u =+ D21¢u2:|

+ b [f)mu - D12¢2u2] + b [—130311 + l~)03¢>3u2}

then
(D11 + Dap)u — Dyigu — Dagu? = (D11 + Dg)u(1 —u) — Dyjud
and
—(Doz + Da1)u + Doad®u + Daydu® = —(Dog + Da1)u + Doz (u + ©)%u + Doy (u + ®)u?
= —(Doz2 + Doy)u(l — u)(1 +u) + u?(2Dgs + D21)® + Dopud?
and
Diou — Dyod®u® = Disu — b12(u + &))2112
= blgu(l —u)(1+u+ uZ) — 2D12u3§> - b12u2&>2
and

—Dosu + Doz¢>u? = —Dogu + Dog(u + &))3 2
= —Dozu(l —u)(1 + u + u? + u®) + Do3(3u'® + 3u’®? + u>d%).
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Then,
Fy(u,¢) =1 —u+b (D11 + D3p)u(l —u) — ]_T)Hu(ﬂ
+ b [ (Dog + Da1)u(l — u)(1 + u) + u*(2Dgg + Doy )® + Doguiﬂ}
+ 3[ u(l —u) 1—|—u—|—u)—2]_7)12u3:1;—f)12u252}
+ b [—Dogu(l —u)(1 +u+ v+ u?) + Dos(3u'® + 3u’d? + uz&;s)]
— (1-u) [1 + b(D11 + Dso)u — b2(Doa + Doy )u(l + ) + B Drou(l + u + u?)
— b*Dozu(l +u+u? + u3)}

(AI; |:—D11b’u, -+ (2[)02 -+ D21)62u2 — 2ﬁ12b3u3 + 3D0364u4}

+ o+

bd2 [Dogbu ~ Dyob?® + 313035%3} + 250 [D03b2u2]
= (1 —u)[l+ Hy(b,u)] + Ga(bu)® + NLy(u, ®) (4.36)
with
Hy(b,u) = b(D11 + Dsg)u — b*(Dog + Dar)u(l + u) + b*Digu(l + u + u?)
b Dosu(1 4 u + u? + u®) (4.37)
and

GQ(:C) = —an + (2[)02 + Dgl)x2 — 2[)12.%'3 + 3[)()3.%'4

NLy(u, ®) = b®? [DO?bU — Dygb®u® + 3150353113} + b23 [b03b2u2] 9

step 6 Final change of variables. We now reexpress (4.32) as
d¢
F: — =~F
2(), u) (Udu +</>) vEF
- dd ~
= [(1 —u)(1+ Ha) + G2® + NL2:| (udu + o+ QU)

— 4 [u(l —wbH, + (1+ G1)d + NLl]
We change variables
= (1-u)V (4.39)
and define
x = bu.

Nonlinear terms. We rewrite from (4.35)

NL; = bMy (z )<1>2 + bQMlg( )@3
My = —Eozl“ + Fy92? — 3Eg32°
M = EQg.’E

and from (4.38):

NLy = bMa ()02 + b2M22( )63
Moy = DOQI — D122? + 3Dg32° (4.40)
Msy = Do3a®
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Then,
NL; = bMoi(1 —u)?W? + b2Myp(1 — u)3 03
= (1—u)[(b—2)Mi1(2)¥* + (b* — 2bx + 2°) M1 07
= (1-u)NL; (4.41)
and

NLy = bMoy(1 —u)? W2 + b2 Moy (1 — u)> 03
= (1-w) |- x) Moy (2)W? + (b* — 2bx + x2)M22\II3]
= (1—u)NLy (4.42)

U equation. We compute

dd  ~ AU AV

— 4 04+2u=u|(l—u)— =T+ (1 =)V +2u = u(l—u)— + (1 — 2u) U + 2u.
u+®+2u u{( u)du :|+( w)W+2u = u( u)du+( u)W+2u
Then,

(1—u)(1+H2)+G2<T>+NL2:(1—u) |:1+H2+G2\IJ+N\TJQ:|
u(l — w)bHy + (14 G1)® + NL; = (1 —u) [buﬂl +(1+G)T + 1\711] .

This gives the ¥ equation:

u

bG bNL
71;1L11+<7+71>x11+’y !
u T T

[1 + Hy + Gl + NLQ] [u(l — )+ (1= 2u) ¥ + 2u:| =5 [le +(1+G)T + NLI]

= u

Equivalently:
— 4w
[1 + Hy+ Gy + NLQ} [u(l —u)o (1= 2u)\11]
b bNL ~
— o |bH, + <z+751> vyl - ! —2(1+H2+G2\I/+NL2>

ie.,
[1 + Hy + GoU + NLQ] u(l —u)7s

n [(1 — 2u)(1 + Hy + Go® + NLy) — v(1 + G1) + 2uG2} v

— 9NL,

bNL
- ulybm—2(1+1%r2)+7 —

Reordering terms. We split Ha:

Hj(b,u) = b(D11 + D3g)u — b%(Doz + Day)u(1 + u) + b2 Disu(l + u + u?)

3
— b4D03u(1 +u+ u? + U3) = Z ij?,j(m)7
=0



51

and similarly

Hl(b,u) = —(EH + Ego) + b(Eog + Egl)(l + ’U,) — b2E12(1 —+u + ’U,Q) + bSEog(l +u + u2 + u3)
3
ijHl,j(bu)
=0

with H; ; given by (G.3). We reorder the nonlinear terms using the same rule:

NLy = (b= 2) My ()92 + (5 — 26 + %) Mip¥° = 30, b/NL,
NLy = (b — ) Max () U° + (8* — 2bw + 2”) Map ¥® = 377 bINLy

with (G.5). O

(4.43)

5. Bounding the Taylor series of the formal limit problem

We now start the analysis of the non linear ode (4.15) for 0 < w < 1. It has
a regular singular point at the origin and our first task is to estimate the growth
of the Taylor coefficients of solutions’ expansions at v = 0. This will be done in
two steps. First, in this section we estimate the growth of the coefficients for a
formal b = 0 limiting system, Proposition 5.1. This will make appear the function
Soo(d,£). Then, in section 6 we will obtain uniform bounds in b for the Taylor
coefficients associated to (4.15) for frequencies k < %

5.1. Formal limit b = 0. Recall (4.15) and let!?
U(u) = ¥(z), z=bu

then
[1+H2+G2\11+NL2} z (1— 5) b%
+ [(1 - > 1+ Hy + GoU + NLy) — v(1 + Gy) +2§G2} ¥
— 2 |9bH, — 2(1+ Ha) + Vbljil ~ 9NL,
o [1+H2+G2\ij+1\?i2} x(bx)‘g (5.1)

+ [(b—2x)(1+H2+G2‘if+ﬁ42) —b’7(1+G1)+2$GQ] U

DNL;
- lyle —2(1+4 Hy) + 22— 9NL,
We introduce the parameters
_ 1A
a—vb—|ﬂl>0 (5.2)
v = —vb(D11 + D3o — E11),

which have a well defined limit as b — 0 noted aug, Voo, and assume

Voo(d, ) > 0 (5.3)

120bserve that the new variable z introduced here should not be confused with the variable
x = logZ of the Emden transform (1.8).
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which is checked in sections F.3 and F.5. In view of the explicit formulas of Appendix
G and remark G.1, the formal limit b — 0 is:
L~ dw
[1+H§§ + G5 + NLy | (—2%) (5.4)
T

+ [~2001+ HE + G0 + NLyg) — an (1 + GF°) + 20657 | &

—— OO
NL —~
=z [aoon(O) —2(1+4 Hy) + e 2NLoy

where we recall'® that the subscript ® means that we compute all parameters
(Dyj, Eij) given by (G.1) in their well defined limit b = 0. Let us stress the fact that
this is not a dynamical limit, since the change variables x = bu maps the original
flow on the set x = 0. Our claim is that for fixed order k, the Taylor coefficients
associated to (5.4) are the b = 0 limit of the Taylor coefficients associated to (4.15)
up to a suitable renormalization, see (6.16).

5.2. Boundedness of the limiting series. The condition (5.3) holds, by a direct
examination, at r* and ¢ > d from (F.15), and at r. on a collection of subinter-
vals of (0,d) from (F.10). In fact, (F.9) implies that in the latter set is non-empty
and for d = 2,3 coincides with (0,d). We also note the fact that the condition
(5.3) is not necessary for the following arguments. We also make the following note
that in the case of T, in principle, all the arguments below can be extended to
the values of £ € (0,d). In particular, from (F.15) the function v is still positive
there. This extension will be important for the analyticity argument in Appendix E.

Our aim in this section is to prove the following bound.

Proposition 5.1 (Boundedness for (5.4)). Assume (5.3). Then there exists ¢y ., >

0 such that the following holds. Let U be the unique C* local solution to (5.4) on
[0, z0], then the sequence

- Tk (0)
Yk =
satisfies
- 'k +ve +2
[l < ot L e+ 2) 5

Remark 5.2. The bound (5.5) falls within the range of nonlinear Maillet type
theorems, see [8, 12, 14]. We shall give a self contained proof which will allow us to
obtain quantitative bounds. The latter is crucial for future uniform b independent
bounds for all frequencies k < ¢ for the full problem, see (6.34). Note also that the

toy model problem 220’ +© = 14z with ¥ = z© leads to the bound W =T'(k)
suggesting that (5.5) is essentially optimal.

5.3. Conjugation formula. We start by conjugating (5.4) to an explicitly solvable
(at the linear level) problem.

Lemma 5.3 (Conjugation). There exist functions &(x), (u;(x),vj(x))1<j<a, holo-

morphic in a neighborhood of x = 0, dependent on (d,f), such that the change of

variables

(z) = M(2)®(z), M(z)=e Jo s®dy
)

(1) =%

(5.6)

D

BRemark 4.1
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maps (5.4) to

20

4
dx+[a°°+(yoo+3)x]®:M0+x xz,uj@]+1:2<x>2u]@] . (5.7)

=1

Proof of Lemma 5.3. This is an explicit computation.

step 1 Linear conjugation. We solve the linear problem

AW -
[z + xHsj | (—m)% + [22(1 + H5j) — aso(1 + G°) + 22G°] ¥ = zF.  (5.8)

by conjugating it back to an explicitly solvable problem:

. dx xQ(l + Hzo) - x2(1 + HQO)
PN @ 2 as(l+ EXr)  as(G° — ESz) — 220G 0 F
dx x2(1 + Hgg) 332(1 + Hé’é’) = :L'(l +H§8)
We have
aoo(l + Elofl') Ao ~ . _ 1 ~ ~
Rty — o (W ER) (1= (DF + DR)e+ g — 14 (D + DRe
= %(1+E1196) [HH% 1+ (DS + DSS) ] aEX (DY + DY)
aso , axclBfY — (Dff + Di)]
+ =4 .
Let
1
5(«’1:) = 332 (1 + Ellx) |::H—_FI§8 - ]- (D + D30) :| aOOEll (_D -+ ‘D3O)
n 0o (G° — EYz) — 220G

z2(1 + H5Y)

Observe that H5S — (D5 + DS9)x and GS° — Ex are polynomials in z starting
with 22, while G° is a polynomial beginning with . The function £(x) is then
holomorphic in a neighborhood of x = 0. We have

d\i/ aoo+yoo+2 ~ F

Define

M(z) = e~ Jo €W)dy (5.9)
a holomorphic function in a neighborhood of = 0, and introduce the change of
variables
F(z)

U(z) = M(z)®(x), G(z)= M@0+ Ha (@)

We have obtained the conjugation formula:

oo Voo +2 G
[932 + } d=—. (5.10)

T

d®

step 2 Conjugation for the nonlinear problem. The equation (5.4) is in the form
(5.8)
A -

[z + zH5; (—x)% + [22(1 + HS) — aso(1 + G5°) + 22GF |V = z(Fo + F)
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for the source term
Foy = acoHyg — 2(1 + Hyj)
and the nonlinear term
— .
NL o = - dv
F o= 9070 9N+ [G;Oxlf + NLSE} (2\1/ + x)
T dx
We conjugate this using (5.10):

¥(o) = M(2(0), Glo) = sty

We express the nonlinearity in terms of ® and obtain a representation:

G= 50+25ﬂ’]+ 2®’ Zgjqﬂ
7j=1

7j=2
where (gj,éj) are explicit holomorphic functions in a neighborhood of the origin.

We have obtained the equivalent nonlinear problem:

4
Q:Q%—i_[aw"‘@w"‘mx]@:x §0+jZ::2§ch)j+ < ) ; gch)J - (5.11)

A direct computation shows
®(0)=0
and we let

o
0=—
X

, (5.12)
so that:
(5.11) & 2? [a:fli) + @] + (oo + (Voo + 2)2] 2O

4 3
= x o—i-waj@J—i—xa:@’—i-@ 25]377@]
j=2 7j=1

& 2@+[ + (Voo + 3)2]0 = +§4:-J'@j+ 1 ZS:(-J‘@J'HE?’:~
xd(L‘ oo + (Voo x|© = & §j x xdm ' §j &

i=2 i=1 i=
doe 1 doe 4
2 _ OF L 2 Aaj
&S o i + [0 + (Voo + 3)2]© = o + a:jgl 1;07 + (xdx> ]21 v;©7

where pj,v; are holomorphic functions of x in a neighborhood of 0, and (5.7) is
proved. O

5.4. The nonlinear induction relation. The uniqueness of a local C* solution
near z = 0 to (5.7), and thus (5.4), follows from an elementary fixed point argument
which is left to the reader. We let

I L N - CT(O R ()
e
and claim the following fundamental nonlinear bound.

Hjk =
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Lemma 5.4 (Bound on the limiting sequence). For some large enough universal
constant ¢(Voo, o) > 0:

I'(k o + 2
641 < el ) =D sy (5.13)
Also, we have
009k
< 00y Qoo .14
‘ uoo+k+3)’ (oo, og) < 00 (5.14)

where gy is defined below, see (5.15).

Proof of Lemma 5.4. We compute the nonlinear induction relation and estimate the
sequence using convolution estimates for the I' function.

step 1 The induction relation. We formally expand!

0 =250 Oyt 5.15
G=pote ['x ijl 1107 + 2> (x0") Z?:l vi©7 | = 32050 gra® (5.15)
and obtain, from (5.7), the induction relation:
de
:6'2% + (oo + (Voo +3)2)O =G
+oo +00 +oo too
& Z KOzt + Z aooOrx” + Z(Voo + 3)6kxk“ = Z gra®
k=1 k=0 k=0
“+oo “+oo “+o0o
& Z(k‘— 1)0k_1x +Zam0km +Z Voo +3) kek 1= ngx
k=2 k=0 k=1
acsoto = go
& | (Moo +3)00 + acct = g1
(k4 Voo + 2)0k—1 + accbi = g, k> 2
acsto = go
< (k + Voo + 3)0k + aoclit1 = g1, k>0 (5.16)
We now compute gj, from (5.15). By Leibniz
(o= 2Lt =5 3 E 00 = g
k! da* k:' k1 ko) Ik
ki+ko=k k1+ko=k
Therefore,
(2107 Va1 = (1107 o1 = > Piky Oky - Okjy -
ki+..kjp1=k—1
Then
d®
— ) =k
<:E dx ) k ’
yields

de e
<1‘3 (acd) vj (“)]> = <( da ) I/]@]> = Z Vjky 9k2 ce 6kj+1 (kj+29k'
k+1 k=2 pytoikjyo=k—2

lg being smooth but not analytic, the expansions are only formal and the equalities below
correspond to equalities between Taylor expansions at any order.
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and (5.16) yields the induction relation for k > 5:

4
(k + Voo + 3)0k + acolki1 = (o)1 + Y

Py Y

Viky Oy - - - 9kj+1 (kj+29kj+2)
7j=1 k1+...kj+2:k—2

/'ij19k2 e ij+1
j=1 k1+...kj+1=k71

(5.17)
step 2 Renormalization of the sequence. We claim the bound:
16| < C(Voo,aoo)l—W, Vk > 1 (5.18)
and
|(k 4+ Voo +2)0k—1 + acobi| < c(v, a)w, vk > 1. (5.19)

These imply, from (5.12) and (5.16)

|0k| = [(2O)k] = [Or—1] < c(Vo0, Aoo)

T'(k—14veo+3)
ak, ’
algogk < C(Vooﬂloo)
T(Vootk+3) | — 1+k2

and (5.13) and (5.14) follow. We therefore focus on the proof of (5.18), (5.19). We
start by renormalizing the sequence. Let

ak, )
Wk = Tl +kt3) K
ak
(ho)k = T (Voo +k13) (110)k+1
k

(5.20)
hy = 2o
k r(ywtk+3)“k

I = Tt Ve
then (5.17) becomes

I'Voo + k +4)ass

[Nveo + k +3) v + k +3)
s W1 + (K + Voo + 3)ka =

k aloco (hO)k
1 4
=03 >

. hjklwkg . wkj+1ﬂgillr(uoo + k; + 3)
LS

3=1 k1+..kj11=k—1
Y

4
E : Pjky Wi,
=1k

1Eki+.. .kjro=k—2

1

Ce. wijrl (kj+2wkj+2)Hg:12F(Voo + kz + 3)
1
Wgt1 + Wk = m(ho)k
[e.e]
+ o

4
(kz—l—voo+3)(k—i—1/oo+2)Z Z

j+1
I T (oo + ki + 3)
hj]gl'ka o W
jzl k1+...kj+1:k—1

D0k — 1+ oo + 3)
+ Gt 4

_ T20 (v + ki + 3)
- Rty Wiy « -« - Wk, (Kjpowp, ) i=1
T v 3] 2, o, e e (K ) T

— 2+ Voo +3)
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We obtain the upper bound

C
[we| < Jwg| + ]Z:OTﬂT(hO)k (5.21)

j+1
Cu a Hj-jl Voo + ki +3)
+ == ’hk Wk « - - Wk ’ =
2 JR1 2 j+1 _
1+ k ]Zl . kzm - T(k—1+ve +3)

Cuso,a ~ H]+21—\(Voo +]€l +3)
+ == O; E E ’h]’kl’ka ...waH ]+2‘ A

We now proceed via a bootstrap argument and iteratively improve the control of
the sequence wy, from a large exponential bound to boundedness, the key being the
use of suitable uniform convolution estimates. The latter are proved in Appendix B.

step 3 Large exponential bound. Since the functions hg, h, b are holomorphic and
(5.20), there exists A = A(Voo, aoo) > 0 such that
k

“T(k+1)
Pick Cy > Cy(Voo, aoo) > 1 large enough, we claim
lwy| < CE. (5.23)

The bound holds for k£ < 5 by choosing Cy large enough. We assume the bound for
j < k and prove it for k 4+ 1. We have from (5.22) the rough bound

|(ho)k| + [hi] + [hx| < CF
provided Cj has been chosen large enough. Then, from (5.21), (B.5):

4
| | < Ck + CVOOyaooC(]]C + CVoo:aoo Cj-‘t-QCvk‘fl
Wit 0 1+ k 1+k2z v 0
Jj=1

Vi > 1, [(ho)k| + k| + || < (5.22)

and
|wk+1 | i Caoo Voo

CET = Co T Co(1+ k)
for k > 1 and Cy > Cy(Veo, ano) large enough. (5.23) is proved.

<1

step 4 Improvement of the exponential bound. Let Cy(v,a) be a large enough
constant such that (5.23) holds. Pick a small enough universal constant §(Vee, @oo) >
0 such that 6(Veo, o) < (Co(Veo, o)) . We claim the following: assume that
there exist

€6§Cn <, (5.24)
such that
V> 1, |wy| < K,CF, (5.25)
then there exists K11 = Kp41(Ky, Cy) > 1 such that
k
Vk>1, |wy| < Knst (Cncﬂ) . (5.26)

Pick £*(Ky, Voo, Goo) large enough, then the bound (5.25) implies (5.26) for £ < k*
provided we choose K 1(Ky, Voo, o) > K, €9 We now bootstrap the bound
(5.26) by induction for k£ > k*, assuming it for j < k and proving it for k + 1.
Assume

k1 <ko--- < kjyu,
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and let m = k1 + - -- + k; and use the rough upper bound from (5.22) to estimate

H‘Zillr(yoo + ki + 3)
'k —14 v +3)
D (voo + ki +3)
sl T(k— 1+ voo +3)
| |H{:1r(uoo + ki +3) Do + m 4 3T (Voo + Kj1 +3)
T T (Voo +m+ 3) [(Voo + k — 1+ 3)

[P |[wrey | - - - Jwpe, 4 ||

A

(Kncsl)|wk2] oo wg

case m < kj1 In this case, we let

N |

m=xz(k—-1), kjri=01-2)(k-1), =<

For § < z < , from (B.2) and the monotonicity of q),gz_)lz

() > 82, (5) > J slogd|

Then, using (5.25), (B.1), (B.5):

C
et N Y (KaCi gy |

14 k2
kit tkj=m s <<l

TE_ T (Voo + ki + 3) T(voo + m + 3) (T (Voo + kjy1 + 3)

X
I'voo +m +3) IM'veo +k—1+3)

c o TU_ T (veo + ki +3) ki 8logs|

< Voo ;oo K]cm =1 o0 1 K C G+ == k
ki +--+kj=m s<w<l

Croo,a00 5 k—1 775\10@5\]@ Hg:lF(l/OO + kZ + 3) cVoo7a°° 5 ( 75'103;5')16
< K,C 8 < K, C 8
= Tpp2imn € Z TV +m+3) ~ 1+k2° " ne

kl_i'_‘.._i'_k‘j:m

For % <z < 6, with R, = R, introduced in Lemma B.1, we have in view of
(B.2),

3 (x) > wlk;gx! > $|1;g5|

and thus, since 0 < § < Cj?,

m/|logd| _ mllogd|
4 <e 8

(2) m|logd|
mcgnefk‘bk (x) < 1_|_mem10gCnf 1 < memlogco,



Using the bootstrap bounds (5.25) and (5.26) for kjy1 < k —1:

600700
e Y Y (|

Futety=m e <y g5

T T(voo + ki + 3) T(voo + m + 3) (T (a0 + kjs1 + 3)

X
I'veo +m + 3) MNVoo +k—1+3)

Cuooa ; H]:,lf(l/oo +ki+3) _s\kit1 e s
< 00 yboo K]CTI’L 1= K (O )
— 14+ k2 Z n='n F(Voo +m+ 3) Z n+1 n€ _—

kit-+kj=m Br <2<6
< CywafOKITZQKnH (C’ne_‘s k Z nglf(uoo + k; ;— 3)
* ki1+4-+kj=m (UOO Tmt )

Cuoo,aooKsKn—f—l 5 k

= 1+ 122 (Cne )
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m|logd|

Cm

n

where we used (B.5) in the last step. For z < %, there are m<zk < R, terms
in the sum and k; < m<kx < R, fixed. We therefore use <I>§€2) () > 0 and the

bootstrap bounds (5.23) and (5.26) for k11 < k — 1 to estimate:

Cu,a
2 O (G| |

k1+~~~+kj:mm§%

T_ T (Voo 4 ki 4 2) T(Woo + m + 3) (T (Voo + kjy1 + 3)

T T(veo +m £ 3) T(ve + k—173)

oot Ky s\ i T_ T (veo + ki + 3)
< 00y loo 1=
- 1+ k2 (0”6 ) Z L(v+m+3)

k1+~-~+kj:m

CV,aKnJrl -5 k
< e ()
case kj11 < m In this case, we let § > 0 as in Lemma B.1, and let

kiji1=2k—-1), m=(1-2)(k—-1), =<

N |

Since k1 < ko < ...kj41, we have

k‘—lzm—i-kj_H S(j—‘rl)k'j_H

and we are always in the range § < ]% <z< % We then use verbatim the same

(2)

chain of estimates as above: from (B.2) and the monotonicity of ®,”:

() > 82, (5) > | sllogd|
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Therefore, using (5.25), (B.5):

c oo ,,Woo k
D DR I ¢ eteis [T PR /S [
kitetkj=mg<p<i

TU_ T (Voo 4 ki 4 3) T(Woo + m + 3)(T(Vao + kjyo + 3)

X
(Voo +m+3) IMNVoo +k—1+3)

Co a - I IMNvso + ki + 3) _ 3liogs]
< 00 y oo K]-‘rlck 1 Zfl k
N [y Z n n F(Voo+m+3) Z ¢ !

ki1+4-+kj=m 6<:c§%

CV<>07a<x> 5 ~vk—1 _Llogé\k HiZIF(VOO + kl + 2) cVoo,“oo 5 ( _ dllosd|
< K°C 8 < K (C 8
= qyg2intm € Z T +m+2) —14+k2 "¢

k1+...+kj:m

Conclusion The collection of above bounds inserted into (5.21) ensures:

|wi41| < |wg| + Clzzokaijf; + cuw’al‘x’fi{{nﬂ (C’ne*‘s)k
Then, provided that k > k*(K,, v, a) has been chosen large enough:
W1 < K, 4 c,,,aAk n c,wa;
K1 (Cred)k+1 Kni1Cne™d  T(k+ 1)K 1(Cre 9k~ (1 4+ k2)(Cpe9)
< 1 + om0 <1

2 1+ k2
and (5.26) is proved.

step 5 Boundedness. The initial bound (5.23) allows us to apply (5.25), (5.26)
iteratively a finite number of times!® to obtain the bound for some large enough
constant C' > 1 depending on v4, and ae:

vk > 1, ]wk\ <C
and (5.18) is proved. As a byproduct, we obtain

’ a’]gogk—l-l
k+1

= Jwp + Wy | < 292 (o)
T(vso+k+1+3)| " F Tk 0Jk

- Jj+1
Crros oo IV T (Voo + ki + 3)
+ ’ 2 Z Z |hjk1wk2 .. .wkj+1| v
1+k G=1ki4..kj1=k—1 T(k—1+vs +3)
- Jj+2
et h H'zlr(yoo+ki+3)
+ oo,ooz Z |hk Wk, « + - Wk Wi ’ i
2 JR1 2 +1 12 —
bhh J=1ki+. kjo=k=2 ! ! Nk —24ve +3)

< Cuoo,aooAk i Cloo 000
T(k+1) ' 1+k
and (5.16) follows as well. O

15Recall that Cny1 = e °Ch so that C, = e ™ Cy. Thus, we need C,, = Coe™™ =1, i.e. it
suffices to choose the number n of iterations as

Voo, Goo) = 10g(Co(Voo, aoo))

0(Voo, o)

where have adjusted the choice of § to ensure that the formula provides an integer value for n.

X
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5.5. Proof of Proposition 5.1. In view of (5.13) and the conjugation formula
(5.6), the bound (5.5) directly follows from the following continuity lemma.

Lemma 5.5 (Continuity). Let M (x) be holomorphic in a neighborhood of 0, then
there exists cpr > 0 such that for all functions ® which are C*° at the origin,

sup aoo|( )k| < ¢ sup aoo|¢k’|

_— = 5.27
k>0 Dk +voo +2) 7 7 po I'(k 4 Voo +2) (5.27)

Proof of Lemma 5.5. Since M is holomorphic in a neighborhood of the origin
1 |d*M .
k! | dzF 0=

lmy| = 0)

and then N
a’oo|mk’
sup ————————<¢
0 Tk + v +2) =M

We estimate using (B.5):

k
aoo’(M(I))k| k § : |mk‘1¢k2|
=a

Nk+v+2) LTk + v +2)

k1+ko=
< sup a§o|¢k| sup a’go\mk\ Z F(k?l + Vo + 2)F(k¢2 + Voo + 2)
k>0 F(k + Voo + 2) k>0 F(k + Voo + 2) Ky =k F(k’ + Voo + 2)
k
aso | Pkl
< cysup —————
= MBIk + voo + 2)
and (5.27) is proved. O

6. Bounding the Taylor series for (4.15)

We now start the study of the full problem (4.15). We first aim at obtaining
uniform in b bounds on the coefficients of the Taylor series as well as the convergence
to the limiting problem as b — 0. We recall the notation

y-1=K+a,, KeN, 0<ay,<l

6.1. b dependent conjugation. We conjugate the b dependent problem (4.15) to
an explicitly solvable (at the linear level) b-dependent equation.

Lemma 6.1 (Linear conjugation). There exist a function &(z) which is holomor-
phic in a b-independent neighborhood of x = 0 such that the conjugation

U(u) = My(x)®(u), G= ﬂ%(lngo) (6.1)
with ~
My(z) = 5@ (6.2)
and )
vy =V
v = —b(D11 + D3g — Eny) (63)
maps

[1 + Hio) u(1 — u)% (1= 2u)(1 + Hao) — 7(1+ G1) + 2uGa] U = —uF (6.4)

I6The link between (4.15) and (6.4) will be given later, see (6.20) (6.21). Also, see (G.3) for
the definition of Hag.
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to
dd y—1 ~v4+1y+1 G
—_— = o =— . 6.5
du u + 1—wu 1—u (6.5)

Remark 6.2. We see immediately the fundamental difference between (6.5) and
(5.10): for the b-dependent problem, the point u = 0 is a regular singular point,
while it is a singular singular point for b = 0. As a result, we will see a change in
the behavior of the Taylor series for large frequencies, which will be reflected in the
nature of the weight w, ,, see Lemma 6.3.

Proof of Lemma 6.1. This is a direct computation.

step 1 Linear conjugation. We rewrite (6.4)

av % F
ZF _duy — (6.6)
du Cb (1 — u)(l + Hg}o)
with
ﬁ _ v(1+G) B 2Go o 1-2u
Cb u(l —u)(l +H270) (1 —u)(l—l—HQ’()) u(l —u)
v(1+ Gy) _ 2Go 1 N 1
uw(l—u)(1+Hyp) (1—u)(l+Hyp) uw 1—u
From (4.35):
ql({L‘) = E}l.%' + .?Gl _ _
G = —(2E02 + E21>.Z' + 2E121‘2 — 3E031‘3
and ~ ~ ~ ~
’}/(1 + Gl) . "}/(1 + Eq11bu + qu1) . y Ellb’y n 'ybGl
uw(l—u) u(l —u) Cu(l-uw) 1l—u  1-u
yields
% _ gl Eqpby 1 vbG1 — 2Go 1 N 1
G |u(l—w) 1-w|14+Hy (1—u)(l+Hy) u 1-—u
We recall that £ = bu and rewrite
Y Y = = ~ =
= ———|1—-(D Ds3p)b —_— 1 D D
w(l —w)(1+ Hao) u(l—u)[ (D11 + DaoJbu + <1+H2,0 +(Du+ 30)“’“)]
1 1 b(Di1 + D
_ 7<+ )_7( 11 + D3o)
u 1—u l1—wu
vb |1 1 ~ ~
— -1 D D
+ 1_u[$ <1+H270 + (D11 + 30)96>]
and
E1iby _ Euby | Euby 1
= + —1].
(1—u)(1—|—H2’0) 1—u 1—u 1—|—H270

We have therefore obtained the formula:
ddp ~ ~ =
Spb 1 1 1 1 b(D11 + D F11b
Z‘u_7< )_u+1 vb(D11 :%O)Jr 117+§(3«“)
b

u 1—u

—u 1—wu 1—wu 1—wu

with

= i, ta

vbél - 2G2 ’yb 1
1+ Hgyo

~ ~ ~ 1
-1+ D+ D +9bEy | ————1).
(D11 30)37) YoE11 <1 T Hao >
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We recall from (5.2)
v = —yb(D11 + D3g — F11),
and rewrite:

acy

w _Y—1 y+v+l (o)

. — . 6.7
G U + 1—u +l—u (6.7)

step 2 Computation of the kernel. We now use the analyticity of £ in |z| < é and
£(0) = 0 to compute:

+oo 1

1 X 1 X b
k=1 k=1

l—u 1-—u
+o0 k—1
_ &) k j
= T Ay
k=1 7=0
Let v, be given by (6.3), we have obtained:

d¢ +00
@ _ 71

£l Sy

We compute a primitive of the remaining term:

+1 = Ix ~ . = ~ .
Zf’“ e Z 1 Z 0" Z kabk DGt =3 o
j=1 j=1

k=j+1

with
. 1 I 1=
§f == &GbFT == g bb
U J =0
The holomorphic bound |;| < C7 ensures

cloo1 CJ
< prOk I < 2 < - 8
ol jkzg O < e < (63)

for 0 < b < b* universal small enough. We have therefore obtained the formula

ddp
. Y1 y+ur+1 d ~
- = —-— 6.9
where
+oo B ‘ ~ ‘
= &at, |Gyl <7 (6.10)
i=1

is holomorphic in a neighborhood of x = 0 independent of b.

step 3 Conclusion. From (6.6), (6.9):

dW y—1 ~v4+1y+1 d -
du U + 1—u +du

and (6.5) follows. O
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6.2. The b-dependent discrete weight. We study the discrete weight associated
to (6.5).
Lemma 6.3 (Properties of the weight). Let

F'y—1-kT(v+k+2)

wey (k) = =T , keN. (6.11)

then:

(1) value for k> K: Vj >0,
F(K + 7+ + 2)
ay) - .
NK+a)l(j+1-a,)

Wi (K + ) = (~1YT(a,)0(1 - (6.12)

(2) v dependence:

/yw’)/al/b (k + 1) — 7
w'y_l)l/b""l(k‘) ’y - 2

Vk >0, (6.13)

(3) induction property:
VE>1, (v —k—=2)wy—1p41(k) = (K + v +2)wy—1+1(k—1)=0.  (6.14)
Proof. (6.12) directly follows from (6.11), (A.10).
We then compute for k£ > 0:
YWy (k+1) T(y—=1—-(k+1)IE+14+1,+2) AI(y—-2) ~

Wyti1k) | T(y— Ho=2blints) - Dy -1 7-2

and (6.13) is proved. We now turn to the induction formula: for k£ > 1,

(v =k = 2wy141(k) — (kK 4+ vy + 2)wy—1,,41(k — 1)
D(y—2—k)T(k+vp+142)

IR I -2)

- (k+ub+2)r(7_2_(k_;)()j(_k2—)1+ub+1+2)

— F<7_k—1)F(k+Vb+3)7F(’Y—k‘—1)1“(k:—|-yb+3)_O
: (i -2) - 2) =0

O

6.3. Boundedness of the sequence. We claim the following b-dependent nonlin-
ear bound which, in a certain sense, is a deformation of (5.5).

Proposition 6.4 (b-dependent boundedness). There exist universal constants ¢, o >
0 and 0 < b* < 1 such that the following holds for all 0 < b < b*. Let ¥ be a solu-
tions of (4.15) and define

1 d"o
wk - EW( )7
then
VO< k<K, || < cpawyy, (k). (6.15)
Moreover, let U™ be the unique local C* solution to the limiting problem (5.4) and
- 1 dFpee
oo - O
then ”
. k 700
vk > 0, %gr(l)b—k =Y. (6.16)
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The rest of this section is devoted to the proof of Proposition 6.4.

6.4. Proof of (6.15) for frequencies k¥ < . We claim the following small fre-
quency bound.

Lemma 6.5 (Uniform small frequency bound). The limit (6.16) holds. Moreover,
there exists ¢, q > 0 such that for all k* > 0, there exists 0 < b*(k*) < 1 such that

VO <b<b*(k"), YO<k<E", |Ug|<cpawsyy,(k). (6.17)
Proof of Lemma 6.5. Recall
U(u) = ¥(z), z=bu

so that
U 1 d*w 1 d*0 -
=k duk O = e 0 =
and (6.16) is equivalent to
%E}% Y =i

This follows immediately by passing to the b — 0 limit for fixed & in the induction
relation for the ¢ from (5.1). The details are straightforward and left to the reader.
Similarly, note that we also have

.9k 00

We conclude from (5.5) that there exists ¢, , such that

F'v+k+2)

k> bl < epa . 1
Yk >0, |42 <e, 5 (6.19)

Pick now an arbitrary £* > 0, then from (6.16), (6.19):

~ r k+2
VO <b<b(K), YO< k<K, [l <20, 0T ET2)
a
We now estimate using (C.1):
el o A X [Prlbry " | |a”
Wy (k) = T T(ve+k+2) I'(v+k+2) (v + k+2)
F'v+k+2)
< 20y E)
= fAaT, Tk 1 2)

Since v, — v as b — 0, we may choose b*(k*) small enough so that

IF'(v+k+2)
VO < b< b*(k"), VO<kE<EK* ———— "= .
(), VOsk<k, o Trs2) S
Then,
W]k| < 401011,&
w%”b(k)

and (6.17) is proved. O
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6.5. Nonlinear conjugation. The proof of (6.15) now requires a careful track of
the b-dependencies in the full problem (4.15). The first step is to use Lemma 6.1
and analyze the nonlinear conjugated problem.

step 1 Nonlinear conjugation. Recall (4.15):

— dv
[1 + Hy + Go¥ + NLy | u(1 - u) ==

+ [(1 — 2u)(1+ Hy + GoW + NLy) — (14 G4) + zuGQ] v

= Uu

INL,
vbH, — 2(1 + Hy) + =1 — 9NL,
T

= [1 + HQ()] u(l — u)% + [(1 — 211,)(1 + HQ()) — ’y(l + Gl) + 2UG2] g

with recalling % = g:

F =~bH;y — 2(1 + Hy) (6.21)

Vbﬁq
T

3
. . — | av
—9NLy — (1 —u) | Y b Hyj(w) + GoW + NLy | ——

Jj=1

b . ~ b1 - 2u) N
(G2¥ +NLy) + 2(GoW + NLp) = === "W Hyj() o ¥

X

+

—_

j=

From (6.1), (6.5) we now obtain the nonlinear conjugated problem:

®=— (6.22)

du U 1—wu l1—wu

d(I)_ 7—14_7—1—%%—1} g
step 2 Computation of G. We plug (6.1) into (6.21) and decompose
G =Go+ L(P) + NL(P) (6.23)

as follows.

Source term. We have

vbHy — 2(1 + Hy)
b, x)=
Go(b, @) My(1 4+ Hayp)

which, from (6.10), admits a holomorphic expansion in a neighborhood (independent
of b) of z =0 i.e,

+oo
Go(x) = _ gorz" (6.24)
k=0

for some b-dependent coefficients ggi satisfying
lgok| < C* (6.25)

for some C > 0 independent of b.
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Small linear term. It is given explicitly by

1 L
L(P) = Mb(1+H20){(1u) [Z;HHQJ‘(»’U)

My(z)®) — Z b Hoj(x Mb<I>}

1 2 1H2J( )
= — —bM;(z)(1 — VH — 9 9V H. i)
My(1 + Hag) ol ! Z 2 (r ; ( x 2])
3 .
— (I—uw)My(z) | Y b Hyj(x)| (6.26)
j=1
We rewrite
1w o, b !
(1 —u)®" = O =(—-—1]|ud
U T
and obtain
3
1 b Hyj(x) >
L) = ————— — v H. T ) o d
(®) My(1 + Hag) { ! Z (o ; ( T N
3 L Hai(z)
— M) <b7+12f - bJHQJ-(x)> ud’
i=1 o
Therefore,
,C((I)) =b [(bhl(:c) + :Iihg(x))q) + (bhg(fz’) + a:h4(:v))ufl>’]
where
z) = hjpa®, |hl < CF
for some C > 0 independent of b.
Nonlinear term. We have
NL(®) (6.27)
1 ’be\-Ll = — ’ T b
= —2NLy — (1 — WU+ NLy| U U+ Ny (2——|T,.
My(1 + Hag) { . 2 — (1 —u) [Gz + 2} + (G2 + 2)< :1:> }
We rewrite

(1 - u) [GQ\II+1<IVLQ} L [GQ\IJH\AIEQ} Wl = (b - 1) [GQ\I/H\?EQ} n

u x

and thus NL(®) is given, structurally, by

4 4 3 3
D) :$Zm§1)@j+me§2)@j+ me§3)®j+me§4)©j ud’
j=2 j=2 j=1 j=1
with

“+o0o
{4 {4 ¢
m§ )(a:) = ngk)xk, |m§k)\ < C*.
k=0
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Conclusion. We have obtained the conjugated nonlinear problem (6.22) with

G = Go+b[(bhi(x) + zhy(x))® + (bhg(z) + zhy(z))ud’] (6.28)
4 . 4 - 3 . 3 .
+ x2m§1)®3+b2m§2)qﬂ+ x2m§3)¢3+62m§4)¢3 ud’.
j=2 j=2 j=1 j=1

step 3 Final change of variables. We now let

® = bu® = 20 (6.29)
so that (6.22) becomes:
@,_[vlJererJrl}q):_ g
U 1—u 1—u
-1 1
PO S =Y R T E
U 1-u 1—-u
-2 y+uy+1 g
o - |1 0= —
< [u * 1—u ] bu(l — u)
& u(l—u)@/—[7—2+(ub+3)u}@:—%. (6.30)

We now express G in terms of © and track the orders of vanishing in . We compute
ud’ = u[bu®’ + 0] = x(ud’ + O).
Then,

b [(bhi(z) + zho(2))® + (bhs(x) + whe(z))ud’]
= [b°hy + bzho] 2O + (b2 hg + bahy)[uz®’ + 20)]
= [V*z(h1 + h3) + ba?(h + ha)] © + [b*whs + 2°hy] uO'

= [b%ﬁl + waiLQ] O+ [623:53 + bx2ﬁ4] u®'.

For the nonlinear term:

4 4 3 3
x ng”qﬂ' + bzm§2>q>f' + xsz’)cbj + bzm§4)q>ﬂ' ud’

j=2 j=2 j=1 j=1
4 4 3 3
=z Z xjmg-l)@j +b Z m§2)xj@j + |z Z mg-g)a:j@j +b Z m§4)xj@j (zu® + 20)
=2 =2 j=1 j=1
[ 4 3 4 3
= Z :Ej“mg-l)@j + Z m§3)mj+2®j+1 +b Z m§2)xj@j +b Z m§-4)a:j+l@j+1
| =2 j=1 =2 j=1

3 3
+ Zm§~3)xj+2@j + me§4)xj+1@j (u®)
=1 j=1

3
m§-3)xj+2@j +b Z ﬁ1§4)xj+1@j (u®’).

4 4
= Za:jﬂﬁl;»l)@j +me§-2)xj@j +
=1 j=1

3
Jj=2 =2 Jj=
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We now rewrite

G =0+ [bzxﬁl + b$2i12:| O + {bzxﬁg + bx2f14] u®’ (6.31)

4 4 3 ’
+ DNl 40y T mP a0 | 3wl el 4 by T nad e | (ue)
j=2 =2 J=1 =

where, for some large enough universal constant C' = C), , > 0 independent of b < b*
and all k£ > 0,

[(Go)kl + [(Ra)e] + ()] < CFO* (6.32)

6.6. Bounding the sequence 6}, and proof of Proposition 6.4. We let!”
1d*o 1 d*e 1 d*g
= — — = — = —— 0
so that from (6.29):

¢0=0

b =001, k> 1. (6.33)

Lemma 6.6 (Boundedness for the 6, sequence). There exists ¢, o > 0 and b*(v, a)
such that for all 0 < b < b*, for all0 <k < K —1,

0] < [wy-1,04+1(F)] (6.34)
(This implies (6.15).) Moreover,

10,0, (8)
VO<E<LSK <cepg————. 6.35
<K gl < car 2 (6.35)

Proof of Lemma 6.6. This is a direct consequence of the form of G given in (6.31)
(6.32).

step 1 Small frequency universal bound.

Lemma 6.7 (Stability by multiplication). Let h(u) = 3320 b*hu® with the holo-
morphic bound

\hi| < CF.
Then there exists Cp, and 0 < b*(Ch) < 1 such that for all 0 < b < b*(C}p,) and any
0<k*<K,
h
0<k<k* Wny y, (k) 0<k<k* Wy, (k)
Proof of Lemma 6.7. First observe that (C.2) implies the lower bound
F(v—1-k) I'(vp+k+2)
VO<k<K, wy,lk=——Twn+k+2)> ——— 6.37
v b( ) F(’y—l) ( ) (7_1)14: ( )
which then gives the upper bound!®:
el bC(y — 1))k 2Ca)k C
LWCH - @) )2. (6.39)
Wy (B) " T+ k+2) " T(k+w+2) ~ 1+Ek
for all 0 < k < K. Therefore,
k vk
oWl BT G (6.39)

W, (R)] ™ e, (R)] T 14 k2

170Observe that the coefficients ¢ and 0y appearing here should not be confused with the ones
of section 5.4 for the formal limit problem.
BWe use in particular v, > 0 and the fact that T' is increasing on [2, +-00).
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for all 0 < k < K. We then estimate using (C.5), for k<k* < K:

(ho)i 1 k
st = 2 P
< Yok . |hk(1]|<; ) [Pks| Wy, (k1) wy,, (ko)
key-Hho—Fk o (K1) ey, (K2) Wy, (K)
< O, max || Z Wry (K1) Wy, (K2) < C), max ||
0<k<k* Wy, (k) it Wey v, (K) 0<k<k* Wy, (k)
and (6.36) is proved. O

We conclude from (6.1), (6.17) that there exists ¢, , such that for all £* > 1,
there exists 0 < b*(k*) < 1 such that for 0 < b < b*(k*) and 0 < k < k*,

|6k| < cvatnyu, (). (6.40)
Thus, from (6.33):
1
O] = 3 |Prs1] < %cy,awmyb(k: +1).

Together with (6.13), we deduce the existence of M, , such that for all £* > 1, for
all 0 <b < b*(k*),

|6
w'Y_lva"Fl(k)

step 2 Induction relation. We now compute from (6.30) the induction relation
satisfied by derivatives at the origin. We formally expand

400 +oo
O => b, G=> gu"
k=0 k=0

V0 < k < k¥, < M,,. (6.41)

and obtain from (6.30):

(6.42)

w(l —u)® — [y =2+ (1 +3)u] © = —%
+o00 +oo +oo 1 oo
2 k—1 k k+1 _ k
& Z(u—u VkOru —(V—Q)Zeku —(l/b+3)29ku ——ngku
k=1 k=0 k=0 k=0
“+o00 “+o00 —+00 “+o00 1 —+00
k k k k_ k
& Zk@ku — Z(k — 1)0g_1u” — (v —2) ZHku — (vp + 3) ZGk,lu =-3 ngu
k=1 k=2 k=0 k=1 k=0
o | -2 =
(k—~v+2)0 — (k+vp+2)0k_1 :_%7 k>1
o | %= a9
(v=Fk =20+ (k+vp+2)01 =%, k>1
Let

then (6.14), (6.13) yield:
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(v =k = Qwy—1,41(k) Gk + (K + v + 2wy 141 (k — 1)G1 = ‘%k
& (k+ v+ 2)wy—1p11(k = 1)(G + G—1) = %
& GoA Q= ——2 I . (6.43)

a(y —2) (k4 vy + 2)wy , (k)

step 3 Bootstrap bound. Let M, , be the universal constant in (6.41), we now
bootstrap the bound

VE* <k<K- 1a |Ck| < 2M1/,a (644)

which, by (6.41), holds for 0 < k < k* arbitrarily large and 0 < b < b*(k*). We
argue by induction, assuming the claim for 0 < j < kj,q — 1 and proving it for king
with kinq < K — 1. We claim the following crucial nonlinear bound for gy,

Cy oM
o] ratlve (6.45)

<k<kina >~
TS ES Rnd ] S 1k

Source term. The estimates (6.38) and (6.32) yield the following uniform in b, k <
K:

Gl _ _BCF
wfy’yb(k) o wv:”b(k‘)) o 1 + k

Small linear term. Let 1 < j <4 and j < k < kijpq, then from (6.41) (6.44):

|0k—j| < My, qwy—1,m,4+1(k = j) (6.46)
We now observe the relation for 0 < j <4 from (6.13):

Vlwy—rp1(k = )| _ 00y = Dlwyu(k=j+ D] _ Y wy, (k= (= 1)
|w771’b(k)’ ‘w’%l/b(k)‘ B , ‘w%l/b (k)|

and from (6.14) for 0 < j < 4:

k+Vb+1 kj*1+yb+2
w’Yva(k) = mw'Yva(k_l) = 7_2_(k_1)w'%”b(k_]‘)
i k—m+4 vy +2
= w’Yva(k_])HJ i

m=ly—2— (k—m)

which leads to the estimate:

|Wap, (k —m)| y—2—k+j ™
[0y, = M)} ppm. <, 6.47
T3 [ el ey e e P A (647)
and then
' s i—1 s j—1
Pl (b=, B G 0
|Weyu, (K| |Wey1, ()| (1+k)
Moreover, from (6.38):
bk k
< < . (6.49)

|y —1,0+1(F)]
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We estimate the worst term using (6.32), (6.46), (6.48), (6.49), (C.5): for k < king,

‘ (bx%w@’)k‘ — b ‘ (u%w@')k] — b2

(fuw@') kZ‘ =00 > (ha)k, (kabh,)

k1+ko=k—2

< bekCu,aMy,a Z ‘w'yfl,yb+1(k31)w'yfl,ub+l(k2)| < bkcl/,aMV,abQU)'yfl,ubJrl(k - 2)
ki1+ko=k—2

CV,aMI/,a |w7,ub‘
- 1+k

since bk < by = a. We estimate similarly for k < kijnq:

‘ (b%ﬁgu@ ) ’

(ﬁgu@’) kl‘ < W3kcyaMyal w1051 (k — 1)| < 02cy,a My, gy, (k)

Cua ua|w’y,vb(k)’
- 1+ k

Remaining linear terms do not have the k loss of (u®’); and are easier to estimate.

Nonlinear term. The worst nonlinear term is for 1 < j < 3:

‘(mf’)ﬂ”@](u@’ ) ’ _ pit2 ‘ <u3+2 (3)93 u®) ) ‘ _ 2 <~ Qi (ue/ ))

k—(j+2)|
en for all ¢ < kjnq — 1 from (6.32), (6.46), (6.49), (6. an .6):
Then for all £ < k f ( ), (6.46), (6.49), (6.44) and (C.6)
~(3) ~i
\(m§ o (UG/)) )z = > §k)19k2 Oyir (R0, 2)
kit +kjpo=L
< gCV,aMzZ,ng Z Hﬁ_l‘wv L+1(Fi)| SgCV,aMg,Zl‘wv—l,Vb-i-l(e”
ki+-+kjpa=~

Therefore, recalling (6.48), for 0 < k < kipqg:

(2200 o)) | = v+ | (el (ue))

k—(j+2)

< keya MV w1 (k= (4 2)) < CV7GM££1W|M%VI;(]€)|
i1 [ wym (K)] _ e, aM
< Cl&CLMu,a (1 + k)] < 1+ k | %Vb( )|

since j7 > 1. Similarly, for 1 < j < 3:

‘ (bm§4)xj+1®j(u@’)) k’ = b/ !

(m§4>@j(u@’))
< bkc,,,aMnglij [wy—1,p41(k — j—1)]

4
Jj+1 ’w%llb(k)‘ C'j’aMVva
< bkevaMy, 1+k7 = 1+k [y (F)]

k—j—1

since bk < by = a and 7 > 1. The two remaining nonlinear terms in (6.31) do not
have the k loss of (u©'); and are thus better by a factor of The collection of
above bounds concludes the proof of (6.45).

1+k



73

step 4 Closing (6.44). From (6.45), (6.43), we have for k < kipq:
4

VvaMu,a

C
|Gkl < [Ch—1] + TR

We sum over k € {k*, kinqa} and conclude from (6.41):

kina 1 Cua,M4
) v,a
[ ES WA 72 SMyat ——— <2Myq
e

provided k* > k*(M, 4) has been chosen large enough. (6.44) is proved. This also
concludes the proof of (6.35) and of Lemma 6.6. O

The proof of Proposition 6.4 follows immediately from (6.33), (6.34), (6.13), (6.1),
and Lemma 6.7.

7. Quantitative study of the C*> solution

We now turn to the qualitative of the C*° solution of (4.15). Understanding of the
Taylor expansion at u = 0 is not sufficient to analyze the solution away from u = 0.
Our main goal is to show that truncating the Taylor series at k = K yields the
dominant terms in the solution which, together with a remainder, can be computed
and estimated thanks to an explicit integral representation.

We study the C* solution. We define the operator

u'ny /u (1 _ 'U)%Lyb g

(1 _ u)7+ub+1 v7—1 b

T(G) =

dv. (7.1)

Remark 7.1. Recall from Lemma 3.6 that there exists a unique solution curve
which is C* at P», i.e at u = 0. Recall also from Remark 3.7 that all other solutions
have only finite regularity at w = 0. The operator 7 in (7.1) will be used in the
fixed point formulation (7.20) to identify the unique C* solution at © = 0. Note
that the non smooth solutions exhibit a u?~2 singularity at u = 0.

7.1. Remainder function. We introduce several special functions defined via the
integral operator (7.1). These will be fundamental in understanding the leading
order terms which appear when the Taylor expansion no longer dominates.

Lemma 7.2 (Definition and properties of the first remainder function). Let
Mo(u) = (K +uvy+2)wy_1,,41(K — )T (0u"). (7.2)
Then
Mo(u) = (14 0K i00(1))T () KT T (). (7.3)
Moreover, there exist universal constants 0 < ¢, 1 < ¢,2 such that for all 0 < b <

b*(v), the following holds:

behavior for small u: for 0 < u <b,

Mo(u)
o1 < <ec, 4
@1 Dlay)D(1 — o) K iimanyR = %2 (7.4)
behavior for large u: for b <wu < %
M,
1 < o(w) <y (7.5)

R—1 :
(oy)I(1 — ay) K763 (%) u®

—Uu
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control of the iterate: let 1 < j <5, then

”T(“]MO) <& (7.6)
Mo lpequeyy = 0
control of the derivative:
1 |uMgl e
<u< — < —. .
weugg, Dol (7.7

Proof of Lemma 7.2. This follows from the explicit integral representation (7.1).

step 1 Proof of (7.3). By definition:

Mo(u) = (K + vy +2)wy—1,+1(K — 1)T (bu')
F(ay)igf:;jb +2) T ()
T )T(K 4 v, +3)

- 1“7([( “1+ay) T(eu")

= (14 0K 100 (1)) () K472 T (b’

= (K+w+2)

where we used (A.8) in the last step.
step 2 Estimate for 0 < u < b. For u < b,

(1 . ’LL)K _ eKlog(l—u) _ e—Ku+O(Ku2) 0(1).

=€

Then, from (7.3):

-2 U (1 — )V
Mo(1) = (1 + 0K o0 (1))T () E o H4mer 2 / (L= o)™ K gy
0

u
_ eO(l)F(a’y)Kyb+4—a7uK—1+a7/ daU :eO”(l)lr(%) FvbtA—ay  K—1+ay, 1-ay
0o v %y

= eo(l)I’(av)I’(l — ) Kooy K
where we used the fact that!®

1

§§$F($)§1f0r0<$§1,

and (7.4) is proved.

9Indeed, we have zT'(z) = I'(z + 1) and the well known bound 0.88 < T'(z) <lon 1<z < 2.
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step 3 Estimate for b < u < % First, from (7.3), (A.1), (A.8), we have the global
bound

v—2 L1 —p)rtw
vpt+4—a u ( U) K
My(u) < e I'(ay)K v 0 —upo /0 e dv
+4 ul ! K+14a,+
vpt+d—a - a+uvy,, —a
< CVF(O‘V)K ! (1 _ u)’y-ﬁ-l/b—i-l /0 (1 U) 7 v dv
4 uK—l—i—oz,Y
14 —Q
< ol (a,)K™ v KT T B(1 - oy, K+ oy + v +2)
< o l(aq) KT uft e (1 = a)I(K + vy + oy +2)
>~ v Y (1 _ U)K+1+aw+ub+1 F(K +u + 3)
K-1 o
vy+4— U u
< al(ay)I(1 —a)) K" (1 - u) Koy

1—u

K-1
< l'(a)T(1 — ay) K73 <u> U,
This gives the upper bound in (7.5). For the lower bound, we use:

u b
/ (1 — v)EHIFastvy=as gy > / (1 — o) BFIFar Ty, =ay gy
0 0

b b —
= e[f(K“Fl“Fa"/JFVb)U‘i‘O(KvQ)] di > c dv > Cl,bl “ > CVF(l — a’}’)
0 v 7 Jo v T l—a, T Kl

Then, (7.3) gives

uK—l-i—aay F(l _ 047)

+4—
MO(U) > CVF(Q'Y)KVb Qy (1 — U)K+1+O¢w+”b+1 K1-ay

v

1—wu

u K-1
@FmﬁFﬂ—aﬁKW%<> u®
and (7.5) is proved.

step 4 Control of the iterate. For u < b, and since j > 1, we estimate from (7.4):
T(ujMo) _ cy w2 /u (1— U)’Y'H’b vE+I o < cy /u vI=% du
0 0

My = uK (1 —w)rtwetl vr—1 b = ul-oy b
; :
SN LT S
b(j+1—ay) = b(2—a,)
For b < u < 1, we estimate from (7.4):

b +u b K+j

1— )yt J
/ %v”\%(v)dv < / T(a)T(1 — ay) K %dv

o V7 0 v7
bj+1*av .
< FmQFﬂ—aﬁK%Hﬂ“f—Tj—fSWP@QFQ—@QK%%
7+ Oty

and from (7.5)

U (1] — )Vt u (1 — )7t K—1 ‘
/ %vao(v)dv < cl,/ %F(QW)F(I — ) KT (v) v dv
b b

vr—1 vyl 1—v

u
< ¢ I'ay)I(1 - aV)K”b'H)’/ vty < ¢, T () T(1 — any ) K73,
b
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Thus,
I M. 72 1
T (uw! My) < Cv — X “ 7D (ay)I(1 -
Mo vp+3 [ _u T« (1 - u)’7+l’b+1 b
[0y )T (1 — ay ) K3 ( 122 uy
< &
— b

and (7.6) is proved.

step 5 Control of the derivative. From (7.1):

WITO = 2 |§+ 10 -2+ 0+ 3)7(0)] (78)

which yields, recalling (7.3):
uMy = (14 0Kk poo(1))T () K= [T (bu!)]
_ (A4 oxs400(1))L ay) K [bUK

+[(v—=2)+ (v + 3)u]7‘(buk)}

1—wu b
_ (L 0xspoo(1)T (o K24 uk 4 [(v = 2) + (v + 3)u] Mo (7.9)
1—u 1—u ) '
From (7.4), (7.9), we estimate for u < b:
M| [ (o) K7ttt c o _ o
s G + - < —
My Loy (1 — ay) Kota—evy K p = b
and for b < u < 3 from (7.5), (7.9):
lu M| [, ) Kota=ary K cy _ Cy
< +-<—
MO T vp+3 U K=l « b b
(ay)T'(1 — ) K™ <1_u) U™y
and (7.7) is proved. O

We now establish additional estimates for the remainder functions.

Lemma 7.3 (Holomorphic representation and bounds). Let j > 0 and

Mj(u) = (K +j + v + 2)(_1)jw/\/_1’yb+1(K —1 —l—j)T(buK+j), (7.10)
then we have the following convergent series representation for |u| < 1:

—+o00
Mi(w) = 3 (=1 wy 11 (K — 1+ mputm, (7.11)
m=j+1

Moreover, let 1 < j <5, then there exist universal constants 0 < c,1 < ¢,2 such
that:
behavior for small u: for 0 <u <b,

M;(u)
cy1 < (o, ) T(1 - o) KT K+ <cy2 (7.12)
behavior for large u: for b < u < %
M;(u
Cu1 < i) yre] <cyo. (7.13)

T(0)T(1 — oy ) K¥t3 (ﬁ) uon

oy ) Kl/b+3
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Proof. step 1 Holomorphic representation. Given a C*° function G with G =
Ou_o(uf), © = T(G) satisfies the linear equation

w(l—u)® — [y =24 (1, +3)u]© = % (7.14)
which can be formally solved via a series representation:
g= Zk ogku
0 =Y/ Ok
ie.,
u(1 —u) (Zeku ) (y =2+ (1 + 3)u ZGku
400 oo I
= > (kP — kO = > (v = 2)0puF — (v, +3) Y O
k=1 k=0 k=0
+00 +oo
= —(y—2)+ Z(k — 7+ 2)0pu” — Z(k + vy + 2)0p_ 10"
k=1 k=1
+0o0o
= —(y=200+ > _[(k—7+2)0 — (k+ v+ 2)0p_1] u*
k=1
with the induction relation
Oo = — 5575
(Y—k=2)0+ (k+vp+2)0p_1 =%, k>1.
Let
O,
G = ;
Wey 1l/b+1(k)
then as in (6.43):
i 9k
+ (g = — , k >1
G Gt a(y —2) (k4 vy + 2)wy u, (k)
which yields
v S (=D,
C _ k J , k>1
’ a(7—2) JZ (4 v+ 2)wy,, (4)
and thus
ek ( )kww 1,y —l—l(k)slm k>0
S, — 1 Zl?b (—1)ig; (7.15)
k= T a(v=2) £43=0 0+ 2)ws, ()

Given j > 0 and
G = uK+j

this yields:
0 for k<K+4+j-1

O, = .
k ’ (_1)kw'yfl,ub+1(k;)SK+j for k> K+
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Therefore, the representation is a normally convergent series®® for |u| < 1. Using
(6.13):

+oo
T@ ) = Sgyy Y (DFwy k)’
k=K+j
Y (—1)FH k k
- _ : - —1) w~— k)u
a<7_2> (K+]+Vb+2)w%yb(K+]) kg(;rj( ) ol l,l/b+1( )
1 (—1)f-tHd = k k
_ = : . — 1) wn_ k)u
b (K—I—] +Vb+2)w’yfl,ub+1(K+] — 1) k§+j( ) ol 1,l/b+1( )
gives
400 oo
Mi(u) = (=) Y (=D wy gy (B)uf = ) (=1 w0y g1 (K= 1m)u ™
k=K+j m=j+1

and (7.11) is proved. We now assume j > 1.
step 2 Estimate for 0 < u < b. From (6.12) (6.13) and (A.8), we have

D(K +j+ vy +2)

(_1)jw’7_171’b+1(K —1+4j)=T(ay)I'(1 OW)F(K —1+a)(G+1-a,)

- SO o) e

= WD (a)T(1 — a, ) K FIF3-a (7.16)

where we used j < 5 < v in the second step and j > 1 in the last step.
For u < b,

(1 i u)K _ eKlog(lfu) _ efKquO(KuQ) _ 60(1)

and therefore:

Miu) = DK +j+ v+ 2)T(ay)T(1 — o)) Ko 372
u?=? U1 — )Tt K4
% (1 — u)'Y+Vb+1 /0 ’U’Y_l v dv

= OMD(a))D(1 — ) K¥rHiti=ayy K=1+a, /“ v/ dv

0 V™
= eo(l)F(av)F(l — ay)K”b+j+4_a"qu+j.

20From (6.12) (6.13) and (A.8), we have
Woy—1,y+1(k) = O(kK+Ub+3+a“’) as k — 400

which implies that the series converges for |u| < 1.
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step 3 Estimate for b < u < . We have the global bound from (7.16), (A.1), (A.8):

-2 1 — )Vt
+j+a— u’ (I-v) K+j
Mj(u) < ¢, I'(ay)D(1 — g ) KT (1 — uytwtl /0 -1V Ydv

-2 1
< oT(a)(1 - a )K”b+j+4_°”L (1 — v)E+I+ar+mgi—ay gy,
= VA v (1 —u)rtwetl [
K—-1+4«
it U v .
< T (a)D(1 — a,)K7titi-oy — K+1+a7+sz+lB(] +1—a, K+oay+v,+2)
. K—1toy L(j+1—a)D(K + v+ ay+2)
< T (1 — Kl/b+]+4*afy u Y 8l
>~ & (av) ( O"Y) (1 w)E+1+ay+up+l F(K +j +oay+p+3—a )
¥ ¥
K-1 o
4 u u-
< al(ay)P(1 = ay) KT <1_u> K

K-1
< aT(ay)T(1 - a,) K" (“) .

1—u

which yields the upper bound in (7.12). For the lower bound, we use:

u b
/ (1 — v)EFtFay T i=ay gy > / (1 — v) B ey trgi=ay gy
0 0

b J b yi .
_ / o~ (K +1+ay 1 )o+O(Kv?)] Ziﬂ > CV/ Zi“ > ¢, bt
0 0
(7.16) then gives the lower bound:
uK—l—i—a—Y

MJ(U’) > CVF(O‘W)F(l - av)KVbﬂJr “ 1- u)K+1+a7+ub+1 yriTe

1—wu

K-1
> ¢,I'(a,)T(1 — ay) K3 <u> U™y
and (7.12) is proved. O

7.2. Fixed point formulation of the C* solution. For a given function F with
sufficient regularity at the origin, we denote

K- (k)
rp(u) = Flu) = Y fru®, fi= / (0). (7.17)

Lemma 7.4 (Fixed point formulation for the C* solution). Let G be given by (6.31)
and consider the decomposition

g= ZII:—_OI gkuk +rg,
z 7.18
O = Yy Okt + 1o, (7.18)
where
ek = (_ )kw'y—l,l/ +1(k)Sk7 0<k<K-— 17
g s T 9 (7.19)
k= ('Y 2) £=j=0 (j+vp+2)wy,, (5)°
then the unique solution to the fized point problem?*
re = (—1)X 1S 1 My(u) — T(rg). (7.20)

21The fixed point procedure based on (7.20) will be performed in Lemma 7.8, see (7.49) for the
space on e which will be used.
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generates the unique solution © to (6.30) which satisfies:

(k)
YO<k<K -1 lim2 % _
ul0 k!

where (0r)k>0 is computed by induction from (6.42).

Proof of Lemma 7.4. Recall (6.30):

w(l—u)® — [y =2+ (v +3)u]© = —

| Q

We let

G =Yy gt +7g
0 =1 ot +re
step 1 Polynomial cancellations. We compute:

! K-1
u(l —u) (Zeku) — 7—2+(1/b+3)u)29kuk

=0

1

=0

9k,
b

k

(7.21)

K—1 K—1 K—1
= (k&kuk — k&kuk“) — ( — 2)0ku — I/b + 3 Z Hku
k=1 k=0 k=0
K—1 K
= —(y—2)f + (k —~ 4 2)0,u* — Z(k+1/b+2)9k_1uk
k=1 k=1
K—1
= —(vy=2)0y+ [(k—~+2)0p — (k+ vy + 2)0k_1] uk — (K 4+ uvp+ 2)9K_1uK
k=1
Therefore,
K—1 ! K—1 K-
u(l —u) (Ze ) (v—2+ (v +3)u ZQkuk—l-
0 =0
K-1
= > [(k—’H—Q)Hk— (k:+ub+2)9k,1+g—b’“} u”
k=1
— (y—2)60 + %0 — (K + vy + 2)0k_qu
which yields the induction relation
Oy = b(
( —k— )0k+(k‘+1/b+2)0 :%, 1<k<K-1.
Let 9
k
o= —"—""77:
w'yilvl/b“rl(k)
then equivalently from (6.43):
i 9k
+ = s 1<k<K-1
G+ Gh-1 a(y =2) (k+vp+ 2wy, (k) = =
which yields
k
1)k
= —, 0<k<K-1
“= U X Tt TenD

and (7.19) follows.
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step 2 Equation for the remainder. We conclude:

u(l—u)@'—[v—2—|—(ub+3)u]@:—%
& —(K4u+2)0k 1u +u(l —u)rg — [y =2+ (1 +3)u]re = —%

v—=2+ (n+3)u 1 Kk TG
o e SRR PR
e u(l —u) e u(l —u) (K v+ 2)0k1u b
/ Y—2 ytwmtl 1 K _Tg
— = —7 (K 2)0k— - =
< Te [ u + 1—wu }TG u(l —u) [( v+ 2)fk-1u b}
d [ (1—wu)rtrtl ! (1 —w)rHoett 1 K TG
S (S 7 A K 205 _7}
< du( uv—2 " ur—2 u(l—u) [( v+ 2)0k-1u b

and thus, any C* solution must be the unique solution to the fixed point equation:

w7l 2 U (1 — )Tt K TG
re = A= wpot /0 o (K +vp+2)0g 10" — ?} dv

with (7.21) forced by the Taylor expansion??. We now recall (7.2):
Mo(u) = (K + v+ 2)wy 1,41 (K — 1T (bu”)

= (K+vp+2)wy—14+1(K —1) Aot /0 e dv

and thus
o 9[(—1 . _(_1\K-1 .
o = ey Molu) = Tlrg) = (-1 Sic 1 Mo(w) — T9)
this is (7.20). 0

7.3. Convergence of the leading order Taylor coefficient. The truncation of
the Taylor series produces the leading order term, provided the last Taylor coefficient
is non zero. This is the Sy (d, ¢) # 0 condition.

Lemma 7.5. We have
Sk_1= (1 + ob_,o(l))Soo (7.22)
where So, is given by
00 | 1 J OO
1~ (—1)dlg;
Soo(d, l) := = -
(d,6) Z F'v+j+3)

a
J=0

and where g3° corresponds to the limiting problem (5.4) and is given by (5.15).
Proof of Lemma 7.5. Since we have from (5.16)

(7.23)

X\ (1) algse g
S ) |« < <
2ty S | L) s <o
7=0 7=0
and from (6.35),
400 i +00
(=1)7g; ‘
- ~| <c - < ¢y < 400,

jz_; (7 + v+ 2wy, ()|~ ]z_; 1+ 52 :

22The statement on existence and uniqueness of the fixed point, the fact that the corresponding
solution is smooth, and the fact that (7.21) holds has in fact already been proved in a more general
case in Lemma 3.6.
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its suffices to prove the convergence term by term as b — 0. Now, recall (6.18),
9

. 0
Wb =9
Since from the definition of w,,, (4),
. ) ) I'v—1—-y Fv+j5+3
Gt vt Q) = Tptjraia =129 _LwHitd) o 0y

| L(y—1) v

= D(v+j+ 3)%(1 + op—0(1))

we obtain
o Wy, () (v +j+3)
1 ) ustCACEAR LA
b (j + v +2) =7 o
from which we deduce the convergence term by term when b — 0, as desired. [l

7.4. The O,i, leading order term. We may now extract the leading order terms
in ©. From (7.18), (7.19), (7.20) and (7.22),

K-2
@(u) = Z Qkuk + (9K71UK—1 + (—1)K_ISK71MO(U) - T(Tg)
k=0
2

= O + (—1) 5 Sk [wy—1,m,41 (K — D)™ + Moy(u)] = T (rg)

= Oru® + (—1)5 1S [1 + 0p0(1)] Omain (1) — T (rg) (7.24)
k=0
and from (7.11

Omain(v) = wWy—1,01(K — Duf1 4+ My(u)
“+oo
= w1 (K = D ) (=D w11 (K — T4 m)u
m=1

“+oo

= > (D wy 11 (K =14 a1
=0

(K + 7+ v+ 2) K1+

400
= D) —a) ;0 TEK—1+a)0(j+1-a,) (7.25)

Equivalently, from (7.16) and (7.11):

o) PE WD) g
TT(K =14 ay)l(1 - ay)

oy DK+ +3)
TT(K -1+ a,)0(2 - a,)

Omain(u) = I'(ay)I'(1 —

+ T(ay)T(1 - u® + My (u)

NK+wv+2) g4 K+ v, +2
=T -~ 14+ ———TI(1 - M
= T(ay)(1 — ) K370 K1

1 K+ +2 Ml(u)

X

(7.26)

We now turn to the study of O pain.

L o] |y + Ty ) * 8 et i |
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Lemma 7.6 (Properties of ©Opain). The function Opain s positive and strictly
increasing on [0, %] Moreover, pick universal constants %,@* > 1 then for all
0 < b < b*(0%,0), there exists a unique solution u* (o) to

Omain (1 () = ©°, () € (oé) (7.27)

which satisfies the following bounds:

first boundary close to integers. If v, is such that

KVb+3(Jb)K*1
Oy = ——————

wz’th5<0<%

o ’
then
T(a,)D(1 — oy ) K379 (1 (o)) K1 = ©%07 (@) (7.28)
and
u* () = ob(1 + op0(1)). (7.29)

second boundary close to integers. If o, is such that

Kyb+3 b K-1 1

ay =
then (7.29) holds and

K4y, +2

I'(a)T(1 — o, ) K t3—o
(a’Y) ( Oé’Y) F(2 . a’y)

(u* () = ©% (), (7.30)

away from the integers. If a.y, is such that

K3 () K73 ()

<ay<1l-—

o* o*
then
D(an)D(1 — )K" 3 [ —(0) o (u* ()™ = €% (7.31)
i Y 1— u*(a’y) Y :
and " )
— <u'(ay) < 3. (7.32)

26 2

Proof of Lemma 7.6. The strict monotonicity and positivity follows from (7.25),
since Opain is given by a series with positive coefficients. From (7.26) (7.13),

1 1
Omain <2) >M, <2) > ¢yl (ay)T(1 = ozy)Kl’b'H))Z c,,71uK3 > OF

which together with ©p,in(0) = 0 ensures that that there is a unique solution of

the equation
1
emain(u*(ay)) = @*, 0< ’LL*<O&Y> < 5
We now aim at estimating the size of the unique solution u*(a) in various regimes

of the parameter a.

step 1 First boundary layer. We introduce the following function
M*(u) := T(ay)T(1 — ) ) K377 K1

Assume that
Kyb—i-S(o.b)K—l
ay=————-—— forsomed <o < —.

O* o



84 F. MERLE, P. RAPHAEL, I. RODNIANSKI, AND J. SZEFTEL

Then oy |logh| < 1 for 0 < b < b*(6) and we compute:

1 1

B M*(u) K-1 B « M*(u) K—1
v = (meraoraay) = e rowman) 0

Kv+3 (o)1 M*(u) = M*(u) ) F1
=(1 1 b.
(e miamy) | =) (Te) e
Next, we bound from below and above the function Oy (u)/M*(u) for u in the
interval b0 < u < b/d. First, in view of (7.26), we have
@main(u) 1 n K+, + 2U,
M*(u) rMi-o,) I2-o)
M (u)
w10 () )T(1 — ) Ko t3uy
Since all three terms in (7.34) are positive and in view of the range of a.,, we deduce

emain(u) 1 1
W > [1 +0b%0(1>] m > 5

From (7.13) with j = 1, we estimate for b < u < g, using also the fact that
[log(1 —u)| < u:

= [1+o0p-0(1)] |:

+(uK)™ (7.34)

K-1
K)o 1w _ ()T (1 — ay )Kl/b+3( u > o
(uK) M*(u) uK=1T(a,)T (1—a7)Kub+3ua7
< celENE <oet (7.35)

Using (7.12), the estimate also holds for §b < u < b. We conclude that for 6b < u <
b.
3.

Z <es .
2 06, e, ~ O.
Since M*((0,+00)) = (0,400), there exists 0 < u; < ug < 400 such that
* *
IMAuz) oy g M)
2 O o*
Note also that for any u such that M*(u) = O,(571)O,, we have from (7.33)

M* "1 S\ ®o T
= (1 + op—0(1)) ( @iu)) ob=ob <eO”((S 1)> T = 6b(1 + 0ps0(1))

so that u belongs to the range b < u < g This is in particular true for u; and us,
and therefore

@main(UZ) > 1’ @main(ul) < 17

@* - @* -

so by the mean value theorem, u*(c) belongs to the range 6b < u < b/J, and
satisfies

b
b5§U1<U2§g

u*(oy) = ob(1 + 0p—0(1))
and (7.28), (7.29) are proved.

step 2 Second boundary layer. We introduce the following function

M) = D U(1 = a0 oo S
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Assume that we have

1
for some § < o0 < =

o=l — 5
and compute:
y M**(u) x
P(as)T(1 = o) f 2 Ko
- <M**<u><1 — o)1+ 0b—>0(1))) K (M;*fu>> " (o) 7 (1 + 0p0(1)
_ <M;*j“>) “ b1+ opo(1)) (7:36)

Next, we bound from below and above the function Opain(u)/M**(u) for v in the
interval b6 < u < b/¢. First, in view of (7.26), we have

@main(u) F(2 — a.y)
——= = |1 D] (1
M**(U) [ +Ob—>0( )] |: + F(l _afy)(K+Vb+2)U
Me-0) o M ()
(K + vp+ 2)u uE=1T () )T(1 — g ) Ko 30
Since all three terms in (7.37) are positive, we deduce

W > [1+0ps0(1)] >

(7.37)

DN | =

For b < u < b/d, we have, recalling (7.35):
Mi(u) < c,I'(ay)(1 — av)K”"Jr?’*a“’uK*lecTu

and, since
TC-a) oo
(K+w+2u — bu~ ¢
we have
EM**(U) < @main(u) < ecTV M**(u)
2 O, o O, - O.

We may conclude, as in step 1, that u*(ay) belongs to the range 6b < u < b/§, and
(7.29) (7.30) hold.

step 3 Away from the integer boundary layer. We now rewrite (7.26) using (A.8):

F(K+ub+2)uK_1{1+K+ub+2

@main(u) = F(a'y)F(K 1 Od,y) F(Q — Od,y) F(l — ay)u} + Ml(u)

K-1
M
= T(a)I(1—ay)K"" <1 h > U™ 1(u) T+
s ()0 (1 — ay) Kt (1%) uo
(1+ 0ps0(1))(1 —w)* ! L A+ ons0(1)uk (1 — u)ft
(uK)T(1 — ay) (uK) T (2—ay) '
For u = ob, o > %, we have using the bound log(1 — u) < —u:
—a K-1 1-a K-1
WE) (1= )f )R
'l —oy) I'2-oay)

+

Cyo_lfowefcya

= 06%0(1)
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We then obtain the representation formula in this zone

@main (u)

1—u

= T(a)T(1 — )K" 3 <U>K1 u ( M (u)
r

We conclude from (7.13):

K-1
Omain(u) = O & T'(ay)I'(1 - av)Kyb+3 <1gu> ur = @*eOr()
and (7.31) follows.
Also, we have

O. O,y 0.(1 —ay)

T(oy)T(1 = ay) K73 (D(1 = ay))2K 45 T(oy)T(2 — ay ) K703

Thus, in view of the range of «.,, we infer

@* - 1 <b)K1
T (1= ) K7 = T (3 max (1 (3), T (3)) \0

K-1 b K-1
u u®r > | = eO,,(l)
1—u —\J

and (7.32) easily follows. O

so that

7.5. Bilinear estimate for 7. We now develop the set of nonlinear estimates to
control the fixed point equation (7.20).

Lemma 7.7 (Pointwise bilinear estimate). Let
K-1 K-1
F:kauk—i—rp, G:nguk—i-rg,
k=0 k=0

and

Ap=  sup | f| Ag=  sup |9k

0<k<K—1 |wy—1m+1(K)|’ 0<k<k—1 [Wy—141(K)]’

then we have the following pointwise bounds for 0 < u < %

1) Bound for Tr. Let 1 < j <5, then
( J

W(u)‘ < ey ApAc [1+u 720 () K30 ] (7.38)
0

Cv,a — — rGa rr
+ 22 (14w () KT | Ap || + A ||

b ( ( 7) ) " My Lo (v<u) ¢ Mo L (v<u)

Cva || TF rg

= || = — [ Mol Lo (v<u) -

b My L (v<u) Mo L (v<u) (v=w)
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(2) Bound forr. Let 0 < j <5,

TWFG (U)‘ S Cu,aAFAG [1_|_u[(—2r(Oé’y)[(l/b—f—Q—opY + UK—IF(a’Y)KVb-f—?)—Ow]

Mo
o (14+ 0500 ) K30 | AR || 26 Ag || 22
+ e (l+u (ay) ) |Ar My Lw(vgu)—i_ <al5va o)
TR ra
+ Cual||l— — | Mo || oo (v<ar)- (7.39)
Mo L (v<u) Mo Lo (v<u) (v=w)

Proof of Lemma 7.7. We compute
2K 1)

K-1
WFG = ) > 1 91 uk+j+ujrc<z fkuk>

k=0 | k1t+ka=k,0<ki ka<K—1 k=0
K—1
+ulrp (Z gkuk> +ulrprg.
k=0
Then, recalling (7.17):

2K 1)

K—1 K—1
k=0 k=0

k=K—j |kitko=k,0<ky ka<K—1 =

We now apply 7 and estimate all the terms in the corresponding identity.

step 1 Polynomial terms. We compute from (7.2):

1 2(K-1)
ﬁT Z Z Ji1 9k utt
0 k=K —j k1+ka=k,0<ki ko <K —1
2(K—1 .

SY Tl

= k1Y9ko _ K\’
We now observe the bound for m > 0 and 0 < u < 1:
K+m u (1=0)% ) Ktm g,
0 S T,g;u K ) - fO w (11"/_—U1)’Y+Uva S u™ (740)
which gives the estimate
. 2K 1)
ﬁT Z Z fragrs | w7
0 k=K —j k1+ka=k,0<k1 ko <I —1
< sup | f| sup |9k | 1
= \o<k<x—1 [0y—10+1(F)] ) \o<k<r—1 [wy—1+1(k)] | O(K + v + 2)wy—1 41 (K — 1)
2(K—1)
k=K—j | k1+ko=k,0<k1,k2<K—-1
2(K—1)
ArAg -

< ) ) [yt () 311 ()| 9K,

Wey— K -1
=Lap+1( )k:K—j k1 +ho—k,0<k1,ka<K—1
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case K — j < k < K — 1: we use the convolution bound (C.5) which gives the esti-
mate

[yt 1 (k1) [0y -1 1 (k) [ | "7

k= k1+ko= k0<k1 ko<K-—1
K-1
ktj—K _ :
< Ca Wy—1,+1(R)u" 75 =y, g Wy—1+1 (K —1—=(j — 1 —m))u™.
k=K —j

We now recall (6.13) (6.47) which ensures that for m < j —1 <5:

N P I D
Wyt (K= 1) Wy, (K) - =

and leads to the bound:

=
L

1 foi—
o (K > W1yt (k) ||yt (k) | u* 77K
T k=K—j | ki+ko=Fk,0<ky ko<K—1
j—1
< cya Z W < Cva- (7.41)
m=0

case k > K: we use (6.13) and the truncated convolution bound (C.17):

. 2K—1)
” E=1) > > w11 (k) [y -1 1 (R2) | | wH7H
Y= Lvpt+l k=K | kitho=hk,0<ki ko<K—1
2K—1)
C i
< = Z Wyt 41 (k = (K = 1) w141 (K = 7K
W1, sz—i-l
K—2
< cpat! Z Wy—1,y,+1(m + D)u"™ < Cu,auj_l Z w'Y*LVbJFl(k‘)uk‘ (7.42)
m=0

We now claim the uniform bound for v < %:

K—2
Wy—1,1,+1(k u < cCpa (7.43)
k=0

which is proved below. Since from (A.8)

w (K—1) = Mo )T(K =1+ +1+4+2)  T(ay)D(K + v +2)
7 lvetl B T(y—2) T I(K—1+4ay)

= [ +og ()T (a,)K?»T3, (7.44)

we conclude:

u ! Z Wy 1 1 (k)ub < ¢ qui ™! 1+ uK_lf(a,y)K”b+3_a”] , (7.45)
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and the collection of the above bounds yields, using also j > 1,

. 2K—1) |
el > > FraGhs | w7
0 \ k=K —j ki+ko—k,0<ky,ka<K—1
2K 1)
ApAg k+ji—K
Wey—1 1y +1 (k1) || W01, 1 (k2)| | "1
o (K1) 2 > 1=t (B[00 (k)

k=K—j | k1+ko=k,0<k1,ko<K—-1
< cadpAc [+ a2 (o)) K] (7.46)

Proof of (7.43). From (6.13) and (C.3), for some large enough K,:

K-K, K-K, K+1 K,

E : Wy—1,u,+1(k E Wy—1,,+1 (K E Wy, (k) < ¢y

and from (6.13) and (C.4):

K2 K2
D wyimnkt = 30 (7= 2w, b+ Dt
k=K—K,+1 k=K—K,+1
K2 1 Ko
< ¢ Z (y=2)T(y—2— k),yub+2—(7—2—k)27k < oR <e¢,
k=K—K,+1
and (7.43) is proved.
step 2 Cross terms. We estimate pointwise from (7.6), (7.43), (7.44):
j K—1 .
T (u]'rg(zk:o fkuk)> <4 Kz:l (k) k rg T('LLJM())
F | sup Wry—1,0,+1 - —
MO v<’uk —0 T MO Lo (v<u) MO
< CV—’GAF (1+ uK_lf(av)KV”g_o‘V) s
b Mo Lo°(v<u)

and similarly for the other cross term.

step 3 Nonlinear term. We estimate directly from (7.6):

rG
My

W

T( ujrprg)
My

T UjMO
HMOHL‘X’(vSu)g

(u)‘ <
Lo°(v<u) My

Lo°(v<u)

TG
My

iy
My

Cva

- b

”MOHLOO(vgu)’

Loe(v<u)

Loe(v<u)
step 4 Estimate for r. We now revisit the above estimates allowing for j = 0. We

start with the polynomial term. We have:

2K 1)

> > Fragrs | W

k=K—j |ki+ko=k0<ky ky<K—1
2(K—1)

< cadrAcu Y > Wty (k1) [0y 141 (R) | | 7K
k=K—j | k1+ko=k,0<k1,ko<K-1
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For j >0and K —j <k < K —1, we use (7.41) and (7.44) which imply:

> S sl s ()l | R
k

< Cy,aw'y—l,Vb+1(K — ]_)uK < Cu,ar(a»y)Kyb+3_a7uK.

K-1

K—j | ki+k2=k,0<k1,ko<K—-1

For K <k <2(K —1) and j > 0, we argue differently, depending on u.

case u < b. We recall (7.42) which yields:

2(K-1)
S ) 0y 11 ) 0 g ()| | 5
K=K | kidko=k,0<kika<K—1
K-2
< W1yt (K — l)uKuj Z Wy—1,y+1(m + L)u™.
m=0

We now have the rough bound from (6.14):

m-+uv,+3
y—m—3

. m+uy+3
S K+oa,—m-—2

Cv

b

w'Y_lva+1(m+1) = wW—LVb-H(m) wW—LVb-H(m) < w'Y_lva"Fl(m)'

for m < K — 3. Then, from (7.43) and (7.44):

(K1) |
utoy > w11 (B1) [y 11 (R2) | | P
k=K k1+ko=k,0<k1,ko<K—-1

Coal (o) K0 +3-
= b

K-3

Kai

ut E w’Y—laVb-l—l(m)um
m=0

+cyyaF(a7)K”b+3_a‘Y uKujwV,L,,bH (K — 1)uK_2
vl () K370
- b
which yields the bound:

uK+j+Cy,aF(Oé,y)KVb+3_a7 UK’LLjF(O[»Y)KVb+3_a’YUK_2

2K 1)

Z Z fk1 ko uk+j

k=K—j | k1i+ko=k,0<k1,ka<K-1

< cub’a ApAcT () K37 uR 4 Ap Agey oT () K 37070 B T (o) ) K0 P37 K72,

Therefore, from (7.4) for u < b:

2K 1)

Jéo 2 > P iy |

k=K—j | k1+ko=k,0<k1,ko<K—-1
et Ap AcT (o)) K30l + Ap Aey oI (0 ) K 370K T () ) Ko 3700 K2
I'(oy)T(1 — g ) Ko Ha—ary K
c,,AFAG—|—cl,Alr:AGr(047)K”bJrQ*O‘VuKﬁ2 < c, ArAg [1 + quQF(av)KV”Q*aV}.

IN

IN



91

case u > b. We recall (7.42) (7.44) (7.45) which yield

2(K—1)

(S S et G0l g ()] | K
k=K | kitka=k0<ky ka<K-1

= le,auj_lr(a'y)KVHS_%uKuj_l 1+ uK_IT(Oéfy)KubJr:%—m]
and thus, for b < u < %, from (7.5):

1 2(K—1)

Mo > > FraGny | 0

k=K—j | kit+ko=k,0<k1 ke<K—1
ApAGT (o) K370 w1 [1 4 uf 71T (0 ) K037

1—u

K—1
T(0)T(1 — oy ) K3 (L) ue
< aApAg 1+ uKﬁll“(aV)K””?”aW] )
We estimate the cross term from (7.43), (7.44)

; _ K—1
UJTG(ZkK—ol fkuk) k rG
= < Ap | sup Wry—1 41 (K)V —
Mo vSu};} Y=L+ ( ) My Loo(v<u)
< AR (1 + uK_IF(a,Y)K”b‘Hs_O‘”) %
01l Lo (v<u)
and the nonlinear term
wrpra TR rG
w| < |5 ua Mol o

O

7.6. Controlling the final remainder. We are now in position to prove the exit
condition for the C* solution for a large enough range of parameters.

Lemma 7.8 (Uniform control of the final remainder). Pick universal constants
%, ©* > 1, then for all 0 < b < b*(6,0") < 1 small enough, the following holds. Let

Kvt3 (pg) K1 Kvt3 (pg) 5!
o* o
and let u*(ovy) be the solution to (7.27) described by Lemma 7.6. Then the C*°
solution to (7.20) satisfies for all 0 < u < u*(cvy) the bound:

rgl | [Trgl
Lol b. 4
i T I < Vb (7.48)

Proof of Lemma 7.8. We recall the fixed point formulation (7.24) of the C*° solution
and the expression (6.31) for the nonlinear term:

G=0o+ [b2ajl~11 + bajzﬁg] O+ |:b2$ilg + b$2il4] u®’

<ay<1-— (7.47)

4 4 3 3
+ Z :Uj+1'rh§-1)@j +b Z m§-2):uj@j + Z ﬁzgg):ﬁj“@j +b Z m§4)xj+1@j (u®").
j=2 j=2 j=1 j=1
We now bootstrap the bound
re(u)]

My < O (7.49)



92 F. MERLE, P. RAPHAEL, I. RODNIANSKI, AND J. SZEFTEL

Let us first check that (7.49) holds for v small enough. From (7.24), we have

[T (rg)(w)] Ig(v)l> |7 ()]
MO MO

lre(u)]
My

< et < cCpat <Sup

v<u U
) 1
b(K + vy + 2)wy—1,,11 (K — 1)

where we have used (7.2) in the last inequality. Also, we have, using (6.35) and
(6.13),

< Cyat <sup |g(;<))’
v

v<u

. 1G(v)]
1 = <
s S = Lol < oo

’w’Y:Vb(K)| c |w7_1’yb+1(K - 1)|
I+K — 7 1+ K)(y—2)

We infer for u small enough that

re(u

’ ?\50)’ < Cya < O,
so that (7.49) indeed holds for u small enough. We therefore work on the interval

u € [0, Upoot] With 0 <upeot < u*(ay) where (7.49) holds, and aim at improving
(7.49).

step 1 Uniform bounds for 0 < u < u*(ay). By definition (7.25):
Omain(U) = Wy—1 41 (K — 1)1th1 + Mo(u)

and hence, since O ,in is non decreasing:

Vu € [0,u"(ay)], 0< My(u) < Omain(t) < Omain(u*(ay)) = O (7.50)
Observe that in the regime (7.28):

P(a)T(1 — 4y K30 (0 () K1 = Clge
in the regime (7.30), recalling (7.29):
Dy (1 — g K40 (o 0y) 1 < DO 0a)OT R O
u*(ay) (K 4+ v, + 2) )

and in the regime (7.31), recalling (7.32):

S C@*,57

Vp+3—a * - 1— (o))t *
P(ay)D(1 = ay) K3 (u () K < | (Ku*gavsg% 0% W < Co 5
v

In all three cases
Vu € [0,u* ()], T(ay)D(1— ) K37 K1 < Cu s, (7.51)
Also, we have, using (7.51),

C *
T(a)D(1 — a)) K200 K 2 < T(a))T(1 — ) K220 (1 ()2 < =20
Ku*(oy)

and thus, using (7.29) (7.32), we deduce
Vu € [0,u* ()], T(ay)T(1 — ) K270y K2 < O 5. (7.52)

We now decompose rg according to the decomposition (6.31) of G and estimate all
the terms.

step 2 Source term. For any holomorphic function H(z), we have from (7.17):

400
Ire| = Z hyu®
k=K

+oo
<) (bChu)t < (bCy) K uk.
k=K
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We therefore estimate for u < b from (7.4):

rul (bCr) " u® < (bCr)"
My ~ T(ay)I'(1 — ay) K td=ovy K = (o)) (1 — o) Ko H3

and for b < u < £ from (7.5):

75| < (bCr)Kul _ (bCy)K
o K—1 = — -
MO F(Oéfy)r(l — )Kyb+3 (lu > ua'7 F(a’y)r(l a'y)K b

—Uu

It implies the rough bound

TH

LS < bt .
i < (7.53)

L>(0<u<3)

In view of (6.32) this bound can be applied to the source term Gy.

step 3 Derivative term. Let

K-1
0= 0.uF+re,
k=0
then
K-1
u®’ = Z kOpu® + urg
k=1
Therefore,

(’U,@/)ka@k, OSkSK—l

7.54
Tuer = Urg. (7.54)

Moreover, from (7.20):
urg = (=1)"* 'Sk _yuMg(u) — u [T (rg)]
We recall from (7.8):

u[T(G)] = [ -2+ 3>umg>}

which yields

ruer = (~1F S qubd(u) — —— [ [t~ 2) + (1 + Bl Trg)]

We obtain the estimate, using (7.7) and (6.34):

]M@O S Cu 1+ |7“g + | (Tg)‘]

M - (7.55)
SUPg<k<K—1 711,7!?%1'“1‘(@ <%

step 4 Linear term. Recall from (6.36) that for a holomorphic function:

YO0 < k < K — 1, ‘(H@)k‘ < CHw7_1’Vb+1<k).
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no derivative term. We apply (7.38) with the bounds (7.53), (7.50), (7.51) (7.52)
and (6.34) to derive for 1 < j < 5:

'T(TUJHG)) (u)‘ < Cv,aAGAH [1 + uK+j_2F<a,Y>KVb+3_a’Y]

My
4+ (14 R 0y K0 | Ag || + Ay |-
b Mo || oo (v<u) L (v<u)
Cva || TO TH Co+s
+ — = - | Mo || Loo (v<u) < Cra + 0
b MO LOO(USU) MO Loo(’l}gu) (U_u) v,a b

where we used the bootstrap bound (7.49) in the last step. Now, writing
b*xhi© = b3u(h1©)
br2he© = b3u?(he©)

gives

T[22k +ba2ha)0
Mo

C
< b3 [Cya+ ®b 5] < bQC@*,g.

Similarly, from (7.39), (7.49), (7.53), (7.50), (7.51) (7.52) and (6.34):

TwHO

= (u)| < Co+
M W ’ = o
Therefore,

"'[b2zh +ba2hs]©

< bBCo- 5.
MO >~ [Sh¥)

derivative term. We first use (7.55), (7.39) to estimate for a holomorphic function

T, ’
uw) H(u®’) (u)‘ < Cua [1—|—U,K IF(a,Y)KVb—H;_a’Y +uK—21—\(a’y)KVb+2—a~Y]

My b
+ Coa (1_|_ K 1F( )Kub+3 a—y) 1+ 7:;\;9/ ]
0 Lo (v<u)
Twe’ 1 Twe’
+ Coxs <Co+5 |+
Mo L (v<u) b Mo L (v<u)
and from (7.55), (7.38):
T(TujH(u@’)) 1 1 || ruer
JHON] ()| < Coeg | + || .
’ My W =Cens syl et
We conclude, using (7.55):
T (420 +ba2ho]uer 11 ||reer ruer
< b?Co- — 4 || <O . b+ b2 Tu®’
‘ My = 0o 12 Ty g P 7
< Cowg |b+b +bHTTg
Loo(v<u Loe(v<u)

L> (vgu)]
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and
T[b2xﬁ1+bx2i~lz]u@’ 1 Tu®!
<bCorys |~ o
My <b0Cers |7+ Mo || ey
< Covy |V?+1° g 4+ b2 T(rg)
My Loe (v<u) Mo Lo° (v<u)

step 5 Nonlinear term.

no derivative term. First, we have in view of (6.34) (C.6) that for 1 < m < 5 and
0<k<K-1:

(Ol < Z Ok |+ [Ok,,| < v Z Wy—1,m,41 (k1) - Wy—1p,41(km)
ko +--m =k kvt =k

< Cu,aWy—1,0,+1 (k)

We then estimate, using (7.39) iteratively in m for 2 < m <5, 0 < 5 < 5, and using
also (7.49), (7.53), (7.50), (7.51) (7.52):
m—2
L°°(v<u)>

) Z A@é -+ (AG) +
Lo (v<u) =1

% [1 +uK—lr(a’y)Kyb—l—?)—a.y_'_uK—QF(a’y)Kub-l-Q—a,y]mfl § 09*75

Te
My

re
My

r.,.igm
1}(4@0('“)‘ < Cl/,aAuj <A® +

Similarly, for a holomorphic function H:

TwiHe™ (u)

< * .
My < Cors (7.56)

which implies that

T . ~ (1 . 2) ..
231,:2 x]-‘rlm; )@J+b2?:2 m§ ) i ©J

My

< C@*ﬁbg.

Similarly, for 1 < j <5 from (7.49) (7.53), (7.50), (7.51):

T(ryinei) Co s
ZNWHOIJ < 1970
‘ M, ()| <=5

gives

' aitimiNeitb ot mPaiei

My

Cox s

<

Tr 4
‘ Z] S 09*761)2

derivative term. We estimate from (7.56), (7.39), (7.55), (7.50), (7.51) (7.52):

Twi HO™ (1) 1 Tyue’
- 7 < * -
My (u)‘ < Co+s Tt Mo Lm(vgu)]
1 1(|rg T (rg)
< C * - - e DRV :
- O, b + b < M() Lo (v<u) * H MO L (v<u)
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Similarly,
‘TrujHG)m(uG)’) (u)‘ < C@*,d L Tue’
L Couly, rea) ).
b Lo®(v<u) L (v<u)
Therefore,
‘T[Z?:1 fn§3)xj+2@j b33, rh<.4)xj+l @j] (u@/)|
My
1 1
< b3C@*75 -4z g HT 'f’g
b b Lo (v<u) Lo°(v<u)
< Co-sb% |1+ H o)
Loo('u<u MO Loe(v<u)
and
T [ZL (D eit2ei 1033 m§4>xj+1@j] (u®") |
Mo
b L°°(v<u) My Loe(v<u)
< bOges |14~ i ’T(rg) :
Mo Lo° (v<u) My Lo°(v<u)
step 6 Conclusion. The collection of the above bounds yields:
Irg] 2 ’ rg ’ T(Tg)‘
= < Coxsb” |1+ ||— +
Mo Mo Lo° (v<u) Mo Lo°(v<u)
and
776l o s |14 |79 + ‘T(rg)
0 Mo Loe(v<u) Mo Lo° (v<u)

which imply for 0 < b < b*(0%, ) small enough
rgl | [Trgl
i, < Vb
which, reinserted into (7.20), yields:
rel or
— < v,a b 5
My = Cy, +Vb < 5
and (7.49), (7.48) are proved.

O

7.7. Exit on the left of . We are now in position to establish the fundamental
exit property of the C* solution to the left of P,. Recall from Lemma 3.6 that the

unique C* solution has a slope c_ at P5. Recall also from (2.49) that c_

is strictly

between the slope of the middle root wa (o) of Ay at P» and the slope of the smallest
root wy (0) of Ay at P». Thus, at the left of P, for v small enough, the C* solution
lies strictly above the middle root of Ay, and strictly below the smallest root of As.
The goal of Lemma 7.9 below is to show that the C° solution exists this region, i.e.
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that there exist a value 0 < U, < 1 such that at u = U, the solution either touches
the middle root of Ay, or touches the smallest root of As. Indeed, since at such a
point we have respectively w’(0) = 0 or w'(0) = —o0, and since (w5 )'(0) < 0 and
wh(o) < 0 respectively by (2.7) and (2.10), touching either root implies that the
C® solution exists the region for u > U,.

We assume without loss of generality that

Suo(d, £) > 0 (7.57)
and need only to reverse the parity of K in Lemma 7.9 below if So(d,¢) < 0

Lemma 7.9 (Exit on the left). Pick universal constants 3,©* > 1 large enough
as in Lemma 7.8, then for all 0 < b < b*(©*,§) small enough and o, in the range
(7.47), the C* solution exits on the left of Po at u = Uy, where 0 < U, < %, by
crossing the smallest root of Ao for K odd, and by crossing the middle root of Ay
for K even.

Proof of Lemma 7.9. step 1 Reaching ©*. Recall (7.24)
= > OdF + (=1 S [1 4 0p50(1)] Omain () — T(rg)

then, provided ©* has been chosen large enough, we conclude from (7.43), (7.48),
(7.50) that for 0 < b < b*(©*,6) small enough, for all u € [0, u*(a,)]:

O() — (~1)F S Oman(w)] < = (7.58)
Therefore,
* _1\K-1 *
O _ (DS 0() _ o 759)

2 - Soo
step 2 Computation of A1, As. We now unfold our changes of variables and show

that, depending on the sign of (—1)%~1S,,, we must have passed through either the
green or the red curves. To this end, we examine A; and Ay under the assumption

ul < 3 19 (u)] < 26.. (7.60)
From (6.29), (6.1), (4.39)
d=(1-—u)l
U(u) = My(2)®(u)
d = bu®

where M), is bounded and given by (6.2). Moreover, from (3.15), (4.19), (4.31),
(4.34), (4.22):

Al —c Dy =Gy = V2F) = =0\ _|petie (cy — c_)uF)
= W\ |Yetis(cy —c_ [ —u)bH1(b,u) + (1+G1(bu))&>+NL1(u,§>)]
= —b*iZén(1+ O(b)u [ (1 —w)bHy(b,u) + (1 + G1(bu))bu(l — u) My© + NLy (u, 6)}

NL1 (u, ®)

_ _waié20(]‘ + O(b))u2(1 —u) [H1(b, u) + (1 + G1(bu)) M© + bu(l — u)
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and from (3.14), (4.18), (4.31), (4.36), (4.22):
—A + e Ay =G = —b2Fy = Ve (ch — )|y |uFy
= bAbe(cy — ) |pg|u [(1 — ) [1 + Ha(b,u)] + Go(bu)® + NLy(u, 6)}

= b?|dyo|w2 (1 4+ O(b))u(l — u) |14 Ho(b,u) + Go(bu) My + NL2(“7‘I))]

1—u

From (6.2), for x = bu and u < 1,
My(xz) =1+ 0(b), (7.61)
and from (4.35), (4.37), (4.38) and (7.60)

Hl(b, u)~: —(En + E3()) + O(b)
G = bEyyu+ O(b?)

NL; = O(bzu)

Hj(b,u) = O(b)

Ga(z) = O(b)

NL, = O(b2u)

It implies that, as long as O(u) # 0, we have:
A — ¢ Ay = —O(u)bu {uﬁézob%u — ) (1+0 (@) + O(b))}
—A| + ey Ay = |doo|@2 b*u(1 — u)(1 4 O(b))

ie.,

Ay = @2 b2u(l — u) <1+O <#

cr—c— O(u

Z

_l_
_|_

b)) [—c+ézoe(u)bu+c_|¢i20@
)

b) [—égo@(u)bu + |J20|}
or, equivalently,

Ar=— a2 bu(l — ) (140 (ghy +6)) [erea0®(w) + e ldao|

By = a2 Pu(l — ) (140 (gl +) ) [~e0@(w) + Idaol ]
Note that we have used the signs, valid for all d > 2 and 0 < £ < d:

Ay = —L @2 b2u(l — u) <1+O (¥

cr—c O(u

Z

dao < 0, &9 >0,
see (F.8).

step 3 Touching A; =0 or Ay =0. At u = u*(a), by (7.59) we have
—1 K-1 * *
D) = bure(u), N0 5 &

Soo 2

We now claim that there exists
Then, from (7.62), since dag # 0 and éx > 0 by (F.8), and since ®(0) = 0, we must
have crossed A; = 0 or Ay = 0, depending on wether K is even or odd.

Assume K odd, so that from (7.59) ©(u.) > 0. The case K even can be treated
similarly. Since u < 3 and My(u) = 1+ O(b):

T(u*) = bu*O(u*) (1 + O®)), V(U*) = 6.
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In view of (4.15)
[1 + Hy+ GoW + Nig] u(l — )W’
+ [(1 — 2u)(1 + Hy + GoW + NLg) — (1 + G1) + 2uGa | ¥

’Ybﬁl

= u ["}/le —2(1—|—H2)+ —2N\i12

Then, on the interval u € [u*,U*] with U* < 2 and
| Soo |bU*O*

4
we have for b < b*(©*) from (G.2), (4.43), (4.38), (4.35):

< U(u) < 20" (7.63)

‘ ’Hl b,u) + (E11 + E30)| + |Ha| + |Ga| + |G1] < Coxb
INLy| + [Nt | < Cond

We insert this into (4.15) and conclude from (7.63), provided ©* > 0 has been
chosen large enough,

wl’ > L. (7.64)

12

Therefore,

otz w0 (2)7 2 B (1T
for

4
w7 4 \ 4 5,

— > > o _

(U*> T | Seo|bur©*’ w= <|Soo|bu*@*> u” (14 O(b[logbl))

where we have used the fact that u* > bd in view of (7.29) (7.32). Since u* < 3, we

established that the contact happens before u = %. O

7.8. Exit on the right. Below, we obtain an analog of Lemma 7.9 on the right,
albeit in a significantly more restricted range of ., in (0,1). We assume (7.57).

Lemma 7.10 (Exit on the right). Pick universal constants %, ©* > 1 large enough
as in Lemma 7.8, then for all 0 < b < b*(©*,0) small enough and o, given by

K-1
ay = e ((;:/a (7.65)

or Kl
K+ (bv3)

o* ’
the C*° solution exits on the right of Py at u = Uy, where 0 < U, < %, by crossing
A1 =0 in the case (7.65) and by crossing A = 0 in the case (7.66).

ay=1- (7.66)

Proof of Lemma 7.10. For a. given by (7.65) or (7.66) we only need to consider u
in the the range —b < u < 0. In that range, the proof of Lemma 7.10 follows very
closely the one of Lemma 7.9 for the case 0 < u < b. The C* regularity at the
right of P» all the way to u = 0 together with the property (7.21) follow again from
the explicit integral representation of the remainder function. We focus on the exit
behavior.
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step 1 Bounds on M;. For —b < u < b, we have

(1 o 'LL)K — eKlog(lfu) — 60(1)

so that the cases 0 < u < band —b < u < 0 can be treated similarly in the definition
of 7 and, as a consequence, in My and Mj. In particular, the proof of (7.4), (7.6),
(7.7) and (7.12) obtained for 0 < u < b immediately extends to the case —b < u < 0,
i.e., we have for —b <u <0

Mo(u)
vl < <cpa, 7.67
1= T (a1 — o Kl = &2 (7.67)
for 1 < j <5,
I M, y
HT(uO) < i, (7.68)
My Lo° (—b<u<0) b
| _ e,
V-b<u<0 ——<—. 7.69
Sus0, S sy (7.69)
and for 1 <j<5and -b<u<0
M;(u)

Cr1 < (o)) (1 — ay) Ko tita—ayy Ktj < v (7.70)

step 2 Estimate on O,in. Recall from (7.26)

Omain(u) = F(a,y)l"(l — O[’y)KVb“rn??—Oé.yuK_l
! K+ vt 2 o M (u)
X {[1 + op—0(1)] [F(l — ay) + (2 _b%) U] + (uK) uK—lr(%)F(ll_ e } .

In view of (7.70), we deduce for b3 <u < —bd,
Omain(t) = T(a,)T(1 — ) K37y K1 (7.71)

< {trronatl s+ e tae] +o (esf)}

step 3 Boundary layer. In view of (7.71), we easily obtain the following analog of
the first two cases of Lemma 7.6 for ., given by (7.65) or (7.66). Pick universal
constants %, ©* > 1 then for all 0 < b < b*(0*,9), we have:

first layer: if ay is given by (7.65), then there exist a solution to

@main(u*(a'y)) - (_1)K71@*7 (772)
satisfying the following bounds
()T (1 — ay) K30 (1 () K1 = ©%0 (07 (7.73)
and
u* (o) = —Vob(1 + 0p0(1)). (7.74)
second layer: if o is given by (7.66), then there exist a solution to
@main(u*(a'y)) = (_1)K@*, (775)
satisfying (7.74) and
K 2 -
T(a)T(1 — ) K300 T 20w 1)K — @re0u67), (7.76)

I'2-—oay)
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step 4 Estimate on rg. In view of (7.67) and (7.74), we have for u*(a) defined in
step 3

X N ¢, ©F

Ve (a0, 0< M) < alM(u (o) € U = Cong (T
Also, proceeding as in the proof of (7.51) and (7.52), we obtain the following analogs
Yu € [u*(y),0], T(ay)T(1 — ) K37 |y K71 < O s (7.78)

and
Vu € [u*(y),0], T(ay)D(1 — ) K279 4| K72 < O 5. (7.79)
The estimate (7.48) holds for —b < u <0, i.e. for —b < u < 0, and we now claim:
Irel 1Tl (7.80)

My My

Indeed, the proof of (7.48) for the range 0 < u < b does not use the sign of u,
and all estimates hold by replacing everywhere u with |u|. Using also (7.77) (7.78)
(7.79), the proof immediately extends to the range —b < u < 0. Thus, (7.80) holds
for —b <u <0.

step 6 Conclusion. Recall (7.24)
K—2
O(u) = Z O’ + (—1)E 1S [1 4 0p—0(1)] Omain(u) — T (rg)
k=0

then, provided ©* has been chosen large enough, we conclude from (7.43) (with
u replaced by |ul), (7.80), (7.77) that for 0 < b < b*(©*,9) small enough, for all
u € [u*(ay),0]:

O(1) — (~1) S Oman()] < =
Therefore, if a, is given by (7.65)
©" _ O(u*(ay)) .
— < <2 .81
s <5, = e, (7.81)
and, if o, is given by (7.66),
% < —@(g(%)) < 20", (7.82)

We now note that (7.62) holds independently of the sign of u € (—1,1). If o, is
given by (7.65), then, by (7.81),

O (u*) = bu"O(u*),
and, if a, is given by (7.66), then, by (7.82),

O(u*) = bu*O(u"),

The rest of the argument of step 3 in the proof of Lemma 7.9 extends to the case
u < 0. Therefore,
first layer: if a is given by (7.65), there exists U*(c) such that

3
—ISUT S, oY) = -6,
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and the smooth solution crosses A; = 0 for u > —3/4.
second layer: if o, is given by (7.66), there exists U*(a~) such that

3
—LSUT <, 2(UT) =6,

and the smooth solution crosses Ay = 0 for u > —3/4. This concludes the proof of
Lemma 7.10. U

7.9. Proof of Theorem 1.3. We are now in position to conclude the proof of
Theorem 1.3.

step 1 Continuous deformation of c.,. Let K be even and large enough, we claim
that there exists o in (0, 1) such that the C> solution ®[K, aX](u) coincides with
the unique Ps— P, solution (to the right of P») and exits to the left of Py by crossing
A1 = 0 before reaching P5 (and, as a result, extends to Py.).

Indeed, let %,@* > 1 large enough and 0 < b < b*(©*, ) small enough as in
Lemma 7.9, and «, in the range (7.47). Assume also that K is even. Then, in view
of Lemma 7.9, the C* solution exits on the left of P» by crossing A; = 0 before
u = 2. Consider then the C* solution ®[K, a,](u) on the right of P,. Let also
Pred)[K, a](u) denote the unique solution, constructed earlier, which corresponds
to the P, — P trajectory. Then, let

Flay) = ®[K,a) <—f’l) — [ o <—i> . (7.83)

Then, for o, given by (7.65), since ®)[K, a,](u) is located between the A = 0
and Ag = 0 curves for any u < 0, and, since ®[K, a](u) has crossed Ay = 0 before

u = —3/4 and cannot cross A; = 0 twice, we deduce
KVb+3 (b\/g) K—-1
F o > 0. (7.84)

Also, for o, given by (7.66), since ®") (K, a.,](u) lives between Aj = 0 and Ay = 0
curves for any u < 0, and, since ®[K, a,](u) has crossed Ap = 0 before u = —3/4
and cannot cross As = 0 twice, we deduce

Kot (b\/g>K—1

Fl1l-
o

<0. (7.85)

Continuous dependence of the ode on the parameter «, € (0,1) implies the con-
tinuity of F. We then infer by the mean value theorem the existence of aﬁ{ such
that

Kot (b\/g) K-1
@*

Kot (b\/5> K—1
@*

F(af)=0, of € 11— (7.86)

Then, by the uniqueness of solutions to the ode at u = 3/4, ®[K, ozi( ] must coincide
with DK o],

To the left of Py, with o in the range (7.47), we have that ®[K, 045] crosses
A = 0 before reaching P .
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Thus, we have obtained for any even K large enough the existence of aff in (0,1)
such that the smooth profile ®[K, aff |(u) coincides with the Py — Py solution to the
right of P; and exits on the left of P, by crossing A; = 0 before reaching P5. The
constructed solution is C* to the right and the left of P, with derivatives satisfying
(7.21) on both sides.

step 2 Conclusion. Since the curve crosses A1 = 0 for 09 < 0 < 03, it is attracted
to Py by Lemma 3.2. It remains to show that in the (o(x),w(x)) parametrization,
the point P, is reached in finite time. Indeed,

SUS
and thus, from (3.17), (2.50), (F.3):
¥ do Ao (cac— 4+ c1)E(1+0(1)) Ay
dr  dx A —209(1 + c-)X(1 4 o(1)) 20’2(1+c,)( +o(1)) >0

which proves the claim. The resulting C*° solution corresponds to the global Ps —
P, — P4 trajectory.

7.10. Uniform control of the P, — P- separatrix. We conclude this section with
a simple uniform estimate on the separatrix P, — P~ which will be required in the
proof of the exterior positivity property, see Lemma 9.9.

Recall that all integral curves of (1.9) that have a slope c_ at P are parametrized
by © with respect to the u variable. In view of Lemma 3.5, the separatrix P, — Po
is one of these curves, and we denote by ©g its © parametrization. The following
lemma provides a bound on Og.

Lemma 7.11 (Computing Og). There exist universal constants C,b* such that for
all 0 < b < b*, the unique separatriz curve in the eye Py — P satisfies:

- ~ 2
Vo <u<l1, ®S+E11+E30+E < Cb. (787)

Proof of Lemma 7.11. This follows from the fixed point representation of the sepa-
ratrix.

step 1 Bound on the separatrix. We first claim for the separatrix
O] 1 (7.88)
uniformly as b — 0. Indeed, there holds from (6.30):

=2 vyt tl _ g
© [ - + Ty ]@— 717“(1_“) (7.89)
(1 —w)rtoett ! G(1 — u)trtl
< { uY~2 ] T bu(l —wur?
and the separatrix is the unique solution which reaches u = 1:
u'y—2 1 g (1 _ O.)'y—i—ub—l—l
05 = T /u i e (7.90)

Let the operator

w2 1 — gVt
7(9)(w) = [ iy o,

(1 —wu)rtmtl 1—o0) o2
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we claim, recalling a = b,

1T(G) Loeo,1] Sa 1G]] Lo (j0,17) (7.91)
Assume (7.91), then the source term is given by (6.23):

G =Go+ L(P) + NL(®)

® = bu®
 ybHy—2(14Hy)
Go =+ M;(1+H20)2

which is just bounded and (7.88) follows by an elementary fixed point argument.
Proof of (7.91). We estimate for 3 <u < 1:

u’ny 1 1 (1 _ O.)’Y+I/b+1
d
/u b ’

(1 —w)rtwtl 1—o0) o2
w2 1 ! 2 2
1 =)t ds < < =
(1 — w)rtwtl pyr—1 /u (1-0) 7= b(v+w) ~a

andf0r0<u<%:

u’y—Z 1 1 (1 _ 0-)’\/+l/b+1
d
/u bor( ’

(1 _ u)’Y+Vb+1 1— 0') oV—2
u 2 (1—u)™ 1 do 2 3
/ < < -
(1 —w)rvtwetl b w o7 T b(y—2) T a

and (7.91) follows.

step 2 Next term. We now extract the main term. Since Hy = O(b) we have

bH{ — 2(1 + H. go——CLEH—i—EgQ -2
Go = T2 ( 2)=go+0(b), _ _(M )
Mp(1 + Hxo) @=7b= 1
Let
o=".6
a
then from (7.89):
o Y2 v+uwtl 5 g
© [u * 1—u ]6_ bu(l —u)
with
5 -2 1
gzg—bu(l—u)(7 Mt )go:g—bfngO(b)ZO(b)
U 1—-u a a

and hence (7.91) ensures ”(':)HLOO([(LI]) < b which is (7.87). O

8. Interior positivity

This section is devoted to the proof of Lemma 1.6. This is the first positivity
property at the heart of the control of the linearized operator in [10]. In this section
we fix (d, £,r) and assume that we are in the range (1.5) for some sufficiently small
0<e(d ) <1 Welet (o(z),w(z)) be the Ps — P, trajectory given in Lemma 3.1,
and aim at proving the positivity property (1.24) in the region o > oy, where we
recall the definition (1.23).

The proof relies on classical maximum principle arguments for ODEs along the
Ps — P> curve. We will need to compute various numerical constants depending on
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(d,¢,r). Their signs will be essential and checked at r = r=(d, ) only, using (1.22)
and e(d, ¢) small enough. We will work in the variables

w
W=w-—wsy, X=o0— 03, @:f

and use the algebra which follows from (3.16):

A1 =X [e1® + ¢35+ [doo®? + d11 @ + dp2]E + [@° — dP|X?]

Ay =3 [02<I> + ¢4 + [e20®? + e11P + 2T + [e21P? — 1]22] (8.1)

A=-%[205(1+ @)+ (1 — 9?)]
8.1. Sharp bound on the slope function ®. We recall the notations

{r—1
1)

Lemma 8.1 (Sharp bound on the slope function). Assume (1.22). Let

w2:1—02.

Oé(’)") = 7111'26:1'115
2d(¢4+/d)

0 = a(ra) = | AVA- DD T T (82)
a S| daeve? for r=r
EN/AY] -
then for % > 0:
c_
— < . .
1+a(7“)2_(1)<0 (83)

Remark 8.2. The bound (8.3) is saturated at P.
Proof of Lemma 8.1. We compute

vi &Y 0 wva

) et = SR T 4 T ieva Vs va)
l
= VAV (84)

and
Ve 0d—1) VA1 + V) —£(d—1)
1+Ve  d1+V0? d(1+/0)?
- et (8.5)
d(1+1)?
It implies that ws > we for r close enough to re (¢). For 0 < a < a®™ let us consider
the function ® of ¥ given by

wa(ry) —we(ry) =

O=(14+aX)® =0+ alW
then

0(0) = e- (8.6)
O (+00) = —a(wz — we)
From (8.2) and (F.3), (F.11) which imply that c_ < 0,

e |

- < —a(wr —we) & a< = a(r).

W2 — We

We compute:
aw dd o Ay dd  A; — DA,

> o T YT oA,
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Thus,
@b db AW A -9y A A - @A oA,
- d Yy A, Ay A,
 (1+aX)2A; - DA,
B Y(14 aX)Ag

step 1 Repulsivity. We assume that there exists a point ¥ where ® = c_ with
> > 0. First, we claim that

(1+aX)?A; — PA, > 0. (8.7)
Assuming that, since Ay < 0 in this zone, we obtain

d®
— < 0.
s
Since the &)( ) > c_, this leads to a contradiction and implies that 1 + Tray < @ <0.

(8.3) follows by passing to the limit o — a(r).
Proof of (8.7).

1+aX)?A; —c_ A
T = ( to ) 21 ¢ 2 = (1 + 042)2 [016_ +c3 + [dg[)c% + dnc_ + dog]z + [C?i - dc_]Ez]

— c_ [CQC +cq+ [6200 +ejic— + 602]2 + [6216 — 1]2 ]

From (2.45), cic— 4¢3 — c—(cac— + c4) = 0. At r<(d, ¢) we also have the additional
cancellation (coc— + ¢4) = Ay = 0. Therefore,

= (1+ 062)2 [dzoCQ_ +diic— + do2 + (C?i - dC_)Z]

[6206 +e11c— + €ep2 + (6210 — 1)2]

T
by
c_

(1+ 20X+ a222) [dgoc_ + diie— +doz + (¢ 3 —de_ )z ]

3
- c_ [62062_ +eq1c- + ega + (ea1c® — = Zfi (14 0pyo(1))%"

where A% corresponds to the limiting values at r = e (d, £). We claim

A® >0 (8.8)
which concludes the proof of (8.7) for r close enough to r*(d, ¢).
step 2 12180. We compute:

AP = d55(c™®)? + dfNe + dgs — ¢ (e55(c™)” + €5 + ef3)
= —620(030)3 + (¢)?(d3g 20 — 611) (dif — ega)c™ +dgy = €35 > 0

from (F.8), (F.13).

step 3 flgo We compute:

AP = (a™)? [(¢®)? — de™®] = —c®(a™)*(d — (¢)?).
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402d
[d(\/& — 1)+ 0V + 1)]2
- a Vi- 1)+ e+ )] - e
[d(\/&—l)w(\/&ﬂ)r([d( A dH)] 4€>

d [d(\/&— 1)+ (VA +1) — 24 [d(ﬁ— 1)+ 6(vVd+1) +24
[d(\/é — 1)+ 0V + 1)} ’
d [d(\/& — 1)+ £(Vd — 1)] [d(\/& — 1)+ 0(/d + 3)]

= >0

lava -1+ eva+ )]’

d—(c¢*)? = d-

case 1 = ry:

Hence A > 0.
step 4 fl‘fo We compute:

A = ()P —de™ — @ (e (™) — 1) 4+ 20™°(dS5 () + d5 e + dS5)
d—1
3

= —(d—1)c® — () — 20 (d55(c)? 4 d55c™ + d55).

case r = r*.

Vd+d—1 20\/d  24Vd
(+Vd dVd—1)+L(Wd+1) (+Vd

dyoc™ +di] =

_ 2Vd ~ _ _
- (£+\@(d(\/&1)+€(\/3+1)){ d[d(x/& 1)+€(\/&+1)}+€(\/&+d 6)}
_ 2\/;Z g2 _ _ _ _ 92
_ (€+\/8)(d(\/&—1)+€(\/§+1))[ B(Vd—1) - (d(d 1) e}<0
It implies

d33(c>)? 4 d5e™ + dSs = ™ (dS5e™ + dS3) — ei@&
o 20\/d 2V/d Y- 2
B d(\/&—1)+z(\/&+1)(e+\/&)[d(\/3—1)+z(\/&+1)][ FVd=1) - t/d(d-1) L
_ o Wd

(4+d

d

_ . {avd|@Wa-1)+ i -1) +
[d(\/& — 1)+ 0(Vd + 1)] (€ +d)

2

_ [d(\/&— 1)+ 6(Vd + 1)] }
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and
WA |2V —1)+Vd(d - 1) + 52} - [d(\/& 1)+ oV + 1)}
= E(Vd-1)[AVd— (Vd—1)] + £ [4d(d — 1) — 2d(d — 1)] + ¢2 [4\/&— (d+2Vd + 1)}
= PWd-1)BVd+1)+2d(d— 1)l —2(d+1-2Vd)
Therefore,

50(c)? + di e + dgs (8.9)
(Vd[d*(Vd — 1)(3v/d + 1)+2d(d—1)€ éz(d+1—2f)]
|a(Vd 1) + 6V +1) Y0+ V)

In the numerator, the polynomial in ¢ is increasing on 0 < £ < d; it is > 0 at £ = 0,
so that it is strictly positive on 0 < ¢ < d. Therefore,

50(c)% + dy e + dgy > 0.
Hence 1211 > 0 near r*.

case r = r4. We compute

g —2d _5—\/Z—d—1+ (+dVe

20 — 02 1+\/Z (1+\/Z)2 (1+\/Z)2
_2d(1+\/2)+£+d\/2—£+x/2+d+1_\/2(—d+1)_d+1_—(d_1)
(1+ V1) Ve 1+ Ve

(8.10)

and hence

gd—1
l

d—1

AP = —(d=1e® - (@) T 420 30(c)? + dife™ + dfg)

step 5 Ay. We compute
A = 20 [(c®)? = dc™®] + (a™)?(d55(c™)? + di5e™ + dg3)
= —20200400(61 — (030)2) + (OCOO) (d%(ccio) + dllc + d02)
Since —1 < ¢® <0, a® > 0 and d35(c>)? + d$5¢> + dg5 > 0, we infer Ay > 0.
This concludes the proof of (8.7). O
8.2. Formula for F'. The function F' given by (1.23) has a special structure.
Lemma 8.3 (Formula for F). Assume (1.22). Then,

(d—1)o

F=="A

(w—w_)(w—wy) (8.11)

where (w_,wy.) are the w-coordinates of Pa, Ps.
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Proof of Lemma 8.3. We compute

do 1

F = U+%:Z[UA_A2]
= [’ =201 -0 — (- d = D+ (C+d+ b —r)w — b + £0”]
= — 5 [[@=Dw? — @7+l - D)yt - 1)]
= —(d- 1w —w)w—w,) (8.12)
where (w_,wy) are the ordinates of Py, P3 from (2.24). O

8.3. Positivity to the right of P,. We claim the following fundamental lower
bound at the right of Ps.

Lemma 8.4 (Positivity to the right of P). Assume (1.22). Then, for ¥ > 0:

dw
l—-w———F> 0. 8.13
W= >c> (8.13)

Proof of Lemma 8.4. The key here is the sharp bound (8.3).

step 1 Value at P,. We compute at Ps:

do AQ

5 [ea® + cs + [e20P? + €11 P + €02) + [e21P? — 1]37]

= o2+ 3 — —% [209(1 + @) + 2(1 — 32)]

and therefore since ®(P2) = c_ and —1 < c_ <0, ¢2 < ¢4 < 0 from (2.49):

coc_ + ¢y c—(ca —cyq)
(Po) =02+ 0a(1+ )  2oa(ltec)
and
At
l—wy— F(Py)=——2+ >0
2 (F2) 209(1 4 c_) ~
Then,
dw A1 cic— +c3 C_At
dx A 202(1+c_)+ =) 202(1+c_)+ (%)
and

dw )\Jr C,)\+ >\+
1— _ — F P) = — — = —— . .14
< YT e > (P2) 209(1+c_) 209(1+c-) 209 >0 (314)
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step 2 Bad set and no contact condition. We now study the null equation:

dw _ Ay Ag]
A<1—w—dx—F>O@A[1—w+A—U+A =0
& [1-w)P-’](l-w-—0)+A1+A=0
s 1-wP-1-w?e—-(1-we?+o?

+ w(l—w)(r—w)—d(w—we)JQ—i—%[(ﬁ—i—d—1)w2—w(€+d+€r—r)+€r—602} =0

(d+/¢—1)w?

= (1—w)[(1—w)2+w(r—w)]+[ 7

—(1—w)2+r—g(€+d—|—€r—r)]a
—[d(w —we) +1 —w]e? =0

(d—1Dw?+ ({+r—d—r)ywtl(r — 1)] o
¢

& [d(w—we)—i-l—w]aZ—[

—(1—w) [(1—w)*+w(r—w)]=0.

To the right of P», between the red and green curves, we have w, < w < wg < 1.
As a result, the coefficients a(w),y(w) of the above quadratic equation

a(w)o? + B(w)e —y(w) = 0

are positive and therefore there is exactly one positive root og(w). The dependence
of op(w) on w is continuous and og(wz) = o2. In the (X, W) plane the null set is
represented by the continuous null curve (3o(W), W) with W € [we — wo, 0].

We now compute the derivative at P, recalling (2.41):

(1 —w—op(w))A + Ay (w,00(w)) + Ag(w, op(w)) =0 = ¢ + oy + c2 + ohcs =0
1+ ¢ éw{)(@) _ _C3+C4
c3+ cy 1+ co

= 06(’11)2) = —

and hence the local representation in the (X, W) plane of the null set:

3+ ¢4

B c1+c2
On the other hand, from (2.45), (F.3):

c3 + ¢y

o te

& (I4+c)X s <.

Wo(Z) = ¥+ 0(%?).

<cetea<—(ate)em &ceie +egt e ¢4 <0

_¥

= lies for
1+a(r)X?

Therefore, the curve ® = H;ﬁ, which is equivalent to W =

¥ > 0 small, strictly above the null curve (Xo(W), W).
We now claim that, if we can show that

dw c_
V>0 (1—w-""_Fr)(s_—“ V>0 8.15
> 5 ( Y e >< ’1+a(r)2>> ’ (8.15)

it will imply that (1 —w —w’ — F) > 0 VX > 0 along the solution curve. We argue
by contradiction. First, using (8.14), we could find a positive value ¥ such that
(1—w—w —F) (X0, W(3p)) = 0. Therefore, the point (X9, W(3p)) belongs to the
null set. Since along the solution curve w, < w(o) < we for any o > o9, the point
(30, W (%)) must lie on the null curve (Xo(W), W). That is Xo(W (X)) = Xo. We
now follow this curve from the value W (3g) to W = 0. For W sufficiently small the
null curve lies below the curve W = ﬁ, while at the point (Xg, W(Zo)), which

belongs to the solution curve, it must be above W = % Therefore, the curve
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W = % and the null curve must intersect, which is impossible in view of the
claim (8.15).
From now on, we focus on the proof of (8.15).
step 3 Computation of 1 —w — w’. We compute in (W, X) coordinates:
Al —w—w)=A1—w)+ Ay = (09 — W)E [205(1 + @) + (1 — D?)]
+ X [Clq) +c3 + [dgoq)Z +di1 P+ dOQ]E + [‘1)3 — dq)]22]
- 2{ — 03 [205(1 + ®) + £(1 — B2)] + B [205(1 + ) + £(1 — 32)]
@+ cs + [dag®? + diy @ + doo]S + [B3 — d(I)]ZQ}
= X {By+ B + By¥?}

with
By =c1P +c3 — 20’%(1 + q))
B = dgoq)2 4+ d11® + dps — 0'2(1 — @2) + 20’2@(1 + q))
By = ®% —d® + &(1 — 9?) = —(d — 1)®

Let

K(,®) = By(®) + B1(®)% + Bo(9)¥?,
then we have obtained:
A(l-w)+A;  YK(X,9)
A A '

To ease the notations, we let & = «a(r) and compute

co cie— 9 c—
KX = -2 1
< ’l—i—aZ) 1—|—042+63 02< +1+a2>

/
l—w—w =

2
C_ C_
+ (d20+302)<1+a2> -i-(0111—i-2<72)(14_0[2)-5-0502—02]E
c_
— -1 »?
(d )1+a2
1
— m{(clc, —202c_)(1+aX) + (c3 — 202)(1 + aX)?
+ (d20 + 30’2)62_2 + C—(dll + 20’2)2(1 + OAE) + (d02 — 0’2)2(1 + 052)2
s
> o B>t
— —1)e_2?(14 aXx _ Lizo B
s o) - Fab

which yields the formula:

3 SR}

(1—w—w’) (Z A(1+Oz2)2

We now compute the coefficients B;. For By, we need to keep the exact structure at
r, but for B 2 3 is suffices to compute the approximate values at r = r< (d, ¢) which
is done below.

step 4 By. We compute for all r:

By = cic. —203¢c_ +c3—205=c Ay —205(14c_).
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step 5 Bf" We compute
B = (%™ = 2(05°)%¢X)a™ +2a%(¢5° — 2(05°)) + (¢°)*(d35 + 3057)
+  (d9] + 205°) + dgg — 05°
case r = r*. We compute using c{°c> + ¢§° = 0:
e — 2(05°)2c™® 4+ 2(c° — 2(05°)%) = ¢ — 2(05°)2(2 + )
= = 2(05°)” = 2(05°)*(1 + )
B _2d(€+1)_202(1+c)__2d(£+1)_ 2d (Vd —1)(d —¢)
o+ Vae?E TR T 0+ VA (VA2 d(VA— 1) + (VA + 1)
2d
= - C+D)[d(Vd—1) +(Vd+1)] + (d— 0)(Vd -1
w+¢@2pw@—n+ww@+1ﬂ{(+)[( )+ VA + 1)+ (d—H(Va-1)}

- 2d {Qd(\/&—l)+(d\/&—d+2)£+(\/&+ 1)62}
(£ +Vd)? [d(x/& — 1)+ 0(Vd + 1)]

and hence
(€5°¢ — 2(05°)%¢X)a™ + 20> (c5° — 2(05°)?)

_ 2d {2d(Vd ~ 1) + (@Vd — d+ 20 + (Vi + 1))
(€ +Vd)? [d(\/ﬁ — 1)+ (Vd + 1)]

2d(6 + v/a) 4d2{2d(ﬁ—1)+(d\/&—d+2)e+(x/&+ 1)52}
ava-yTavaT) (£ + Vd) {d(\/&—l)—i-ﬁ(\/&%-l)r |
Then,
3(c®)?05° 4+ 205°¢® — 05° = 05°(3(c>)? +2¢> — 1) = 05°(1 + ) (3¢ — 1)

_Vd (Vd—1)(d—?) N 60v/d
(+Vdd(Vd—1)+(d+1) d(Vd - 1)+ £(Vd+1)

Va(d—1)(d - ¢) [d(\/a )+ LTV + 1)}
(C+va) [aWi-1+evatn]
Now, recalling (8.9):

- P (¢
o 5, (0

(0+a) [a(vVa - 1) + v/ + 1)

with
Pél(z):a;d?{zd(\/&— 1)+ (dvVd — d+2)0 + (Vd + 1)%}
+ Vd(d- )(d—e)[d(xf—l +OTVd+ 1) }
— AP (Vd—1)3Vd+ 1) +2d(d — 1) — (*(d + 1 — 2V d)]
= VA(Va-1)(d—0) [d(Vi— 1)+ {7V +1)]
+ 8d3(Vd—1)+¢ [d3\/&—2d3+d2\/&+8d2} + 2 [de\/&+4d2+2d\/& + B3Vd(d+ 1 — 2V/d)
> 0
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and thus B® < 0. We can fully expand:
(d—0) [d(\/& — 1)+ 4(7Vd+1)| = P (Vd—1) + (6dVd + 2d)¢ — (7v/d + 1)
and
Pg (0) =8d*(Vd — 1) + Vd(Vd — 1)d*(Vd — 1)
+ [d3\/&—2d3 + d®Vd + 8d2 + Vd(Vd — 1)(6dvd + 2d)] ¢

+ [2d2\/& +4d? + 2dVd — VA(Vd — 1)(TVd + 1)} I
n

Vid(d+1—2Vd)e?
— 9dBVd— 10d° + d>Vd + [d?’x/&—zd?’ +7dVd + Ad? — 2d\/&] ¢

+ [202Vd+4d? — 5aVd + 6d+ V| 2 + [aVd - 2d + V| &,
case 7 = r4. We compute using c{°c> + ¢5° = 0:

e — 2(05°)2c>® + 2(c° — 2(05°)?) = ¢ — 2(05°)(2 + ™)

= §°—2(058°) — 2(05°)* (1 + ¢)

:coo_2(aoo)2:_2\/i(d+\/2)_ 2 2VId+ VO +1+ V]
’ ’ L+V03  (1+V0)2 (1+0)3
=20 —2(d+ 1)V -2

B (1+ V)3

and hence

00 00 00\2 00\ . 00 00 (00 00\2 __26_2(d+1)\/z_2 d(l—i—\/Z)z
(7% = 2(03°)°cX)a™ + 207 (c5° — 2(03°)7) = RERVE ( d\/Z—i—E)

—2dl — 2d(d + 1)V/¢ — 2d
(L+VO(avVei+e)

Then
3(c®)?05° 4 205°¢>® — 05° = 05°(3(c>)? +2¢> — 1) = 0.
Finally recalling (8.10):

d—1
1+70

(¢>)2d3S + cdSS + dS = dSS — dfS + dSs =

and hence

—2dz—2d(d+1)\/2—2d+ d—1  —2df—2d(d+ 1)V —2d+ (d— 1)(dVl +¢)
(L+ V) (dVE+ ) 1+V¢ (1+ VO (dVE+ )
(d+1)0+ (d? + 3d)VI + 2d “0
(L+ V) (Vi +0)

BF =
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step 6 Bg.
case r = r*. We compute at r = r*(d, {):

with

>

B5® = (¢ — 2(05°)*)(a™)? + > a™(d5S + 205°) + 20> (dgs — 05°) — (d — i"
< —20d  2d )QQH N  2dVd N 2v/d
(C+Vd)? L+ Vd)? - (+d £+xf

(2d + 20d)4d? _ 2av/d

- : 01+ c (d—1)]—(d— e
_d(\/é—1)+£(\/&+1)_2 {+Vd

_ (dv2dad 4dvd (+14c (d—1)—(d—1)c
ad- 1)+ ed+ 1) AVa- iy et @ te

- (2d + 2¢d)4d? - 4dv/d (£+ L 2d-1)Vd )
aVd-1)+eva+ )] dVA=D Ui+ d(Vd—1) + (Vd+1)
_ 20V/d(d — 1) __ Pg,(0)

dVd—1)+e(Vd+1) [d(\/a—l)+€(\/&+1)r

Pp,(0) = 8%(d+ 0) + 44V [ (¢ + 1) [d(Vd — 1) + (/A + 1)| - 20(d — 1)V
20v/d(d — 1) [d(\/ﬁ — 1)+ 4V + 1)]

S + 42 (d — V) + [20° — 22Vd + 14¢* + 24V/d| ¢ + (2% + 24V + 2+ 2Vd | 2
0

which implies Py (£) > 0 and B < 0.

case r = r,. We compute at r = r4({):

32 (5% —2(05° ) ) (™ ) + cXa®™(d]] + 205°) + 2a™°(dgy — 05°) — (d — 1)
(¢5° = 2(05°)) (@™)? + (2d55 — d5 — 405°)a™ +d — 1

C2Vld+VEY 2 a1+ vo?\’
(L+V03 1+ V)2 dvVi+¢
—0—dVe 2d—4 | d1+VO?

[2<(1+\f> >+1+\f aiie T

_E0+VD 2VE(d+ V) + 201+ V)| +

[—2f—2d\/2+(2d—4)(1+\/2) +d-1

(dVE + 0)2 x/2+£
P+ V20 + (2d+ 2)ViE + 2] +d(—2€—4\/+2d—4) de1
(dVl +0)? dVi+ 1
Pg, (0)

(dVE + 0)2
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with

P (0) = d*(1+ VO)[20 + (2d + 2)VE + 2] + d(20 + 4V — 2d + 4)(dVE + ) — (d — 1)(dVE + £)?
= (d+ 1)+ (2d® + 6d)0VL + (d® + 7d* + 4d)¢ + (8d*)V{ + 2d°

and hence P, (¢) > 0 and B < 0.

step 7 Bs.
case r = r*. We compute at r = r*(d, {):

By = (a®)*(d3y —05°) — (d—1)c®a™ = o™

2d(¢ + Vd) Wd o Vd
dVd—1)+0(Vd+1) \ (+Vd (+Vd

20\/d B 20/d
- 1)d(\/&— D+ eVd+1)| dWd—1)+eVd+1) e +1) = (d= 1)
2a(d + €)Vd

dVd—1)+6Vd+1)

case r = r4. We compute at r = r4({):

By = (a™)(dgs —05) — (d—1)c=a™
_ ool very (—t—ave 1
a N 1+vV02 1+¢

B A1+ V02 (=0 —dVi—1—7 tde1
M avie (1+ /1)

0~ (d+ 1)V - 1) +(d— 1)(d\/E+£)]

dvi+ ¢ [d (
d(1 4+ V02l + 2dV1 + d)

[~ =24Vl —d] = — NIV

<0

>
dvi+ ¢
step 7 Computation of F.

A A—A
an—ka’za—f:%

)

= X {(02 4+ 2)[202(1 + @) + Z(1 — @2)] + c2® + cs + [e20D> + €11P + €02]Z + [e21 D — 1]5%}
b

= _Z{2U%(1 + CI’) +co® + ¢y

+ [202(1 + Q)) + 0'2(1 — @2) + 620@2 +en1P + 602] Y+ [1 — (I)2 + 621‘1’2 — 1] 22}

2{(%3 +02)® + [(200 + €11)® + (€20 — 02)D2] T + (€91 — 1)@222}
(—A)

where we used that for all r,

Cy = —20’%, €p2 — —30’2.
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We therefore obtain

c_

FlY ——

<’1+a2>
= 2 @02t e) T 1 |20 en) +(—)67’22
- A2 621+ ay 72 6111+ ay T\ TR\ TS
+ (o2 = 1+oz2
= ———2(2 1 by 2 Y by

A(1+ I {( 02+02)c +aX)+ (202 + e11)c-X(1 4+ aX)

Ezz'zo AX!
(A)(1+aX)?

(a0 — 09)(c_ )28 + (ea1 — 1)(0_)222} - (8.17)

As for the B;, we compute Ay for all r but Ay at 7 =1*(d,£) only.
step 8 Ayg. We compute:
Ag = (205 + ¢3)c_
step 9 A°. We compute
AP = a™(2(05°)? + ¢5°)c™ + (205° + €39)c™ + (55 — 05°)(c™)?

case r = r*(d, ). First,

2vd  d(Vd—1)+¢1+Vd)  20/d—d(Vd—1)— {1+ Vd)

RS T T W - 00+ V)
VA A-1) (-0
00+ /d) 00 4 /d)

and

a®(2(05°)* + ¢5°)

B 2d(¢ + /d) 2d  Wd B

o d(Vd—1)+ (VA +1) { L+ V)2 Ll +Vd)? [d(\/g D+ 1)} }

- 20vd [26\/& - (d(x/& — 1)+ ((Vd + 1))]
U0+ V) [d(Vd = 1)+ (v/d +1)]

B 2dVd(vd — 1)(d - ¢)
U0+ Vd) [d(Va = 1) + ((Vd +1)]
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As a result,
a™(2(05°)% 4 ¢5°)c™ + (205° + e39)c™
__ 2dVd(vd — 1)(d — ¢) _(Vd-1)(d-20) )
e+ Va) [d(\/&— 1)+ 6(vd + 1)] We+vdy |
[ 20V/d (Vd —1)(d — )[2dvd + d(vd — 1) + £(V/d + 1)]
[d(Vd— 1)+ ((Vd +1) (¢ + /d) [d(\/&— 1)+ 6(vd + 1)}
2Vd(v/d —1)(d — 0)[3dvd — d+ ¢(/d +1)]
(6+ V) [d(d = 1)+ ((Vd + 1)}2 '
We expand
(d—0)[3dVd —d+ ¢(Vd+1)] = d*(3Vd — 1) + £(dVd + d — 3dVd+d) — (Vd + 1)¢?

= d@BVd—1)+ (—2dVd+2d)0 — (Vd + 1)
and obtain
a®(2(05°)% + )™ + (205° + €55)c>
20/d(vd — 1) [d2(3\/21 — 1) + (—2dv/d + 2d)0 — (Vd + 1)52]

(6+ V) [dd - 1)+ ((Va + 1)}2

6d3/d — 8d° + 2d2v/d + {—4d2\/& +8d% — 4d\/8} 0 —2vd(d — 1)¢?

(+a) [d(va - 1) + v+ 1)

We now add

(600—0'00)(000)2— \/E(d_1+€) . \/3 62 _ \/E<d_1) 26@ ’
T VA V) T V) \dVd 1) + UV + 1)
4bdv/d(d — 1)

(+a) [a(va—1) + v+ 1)

and get the formula:
Py,

A =
L v [d(ﬁ—1)+e(\/&+ 1)}2

with
Pay = 64°Vd—8d° + 2d*Vd + [~4d*Vd + 84 — 4dV/d + 44>V — 4dV/d] ¢ - 2V/d(d — 1)1
= 64V~ 8 + 20V + [84? — 8aVd| ¢ — 2/d(d ~ )¢

case r = r4(d, ). Recall

A = a™®(2(05°)2 + )™ + (205° + €59)c™ + (€55 — 05°) (¢>)2.

Observe
2 2

_ =0
1+Vl 1+V7

205° + €75 =
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and 5 5
2(63°)? + ¢ = — =0
(2) 2 (1_{_\/2)2 (1_‘_\/2)2
and hence
o o oo f4+d—1 1 d—1
1 — €~ 02 =

(A+V0 14V (1+D)
step 10 A5°. We have

AL = a™®(205° 4 €35)c™ + (€57 — 1)(c™)2.

case r = r*(d, ). First,

(55— 1)(c)? = (e +d—1 1) 20v/d ’ _ 40d(d — 1)
S 0 dVd—1)+e(Vd+1))  [dd—1)+Vd+ 1)

and
a™(205° + €99)c
2d(¢ + V/d)
d(Vd—1)+¢(/d+1)
4dv/d(vd —1)(d — )
[d(Vd — 1) + £(vVd + 1)]2

which implies

(Vd-1)d-0] | 20\/d
o€+ Vd) d(Vd - 1)+ £(Vd+1)

Py,

AF = .
d(Vd —1) + £(Vd + 1)}

with
Py, = 40d(d — 1) + 4dVd(Vd — 1)(d — €) = 4d*(d — Vd) + £(4dV/d — 4d).

case r = r4(d,?). Recall

Ay = 202 + enr)e— + (ez1 — 1)c*

and hence
2 2 l4+d—1 d—1
=0 [ e
step 11 Conclusion. We are now in position to prove (8.15). From (8.17), (8.16):
3 poyi 2 i
o0 (2s) = T T AN e
by - .
= Arany & A

with A3 = 0. We claim for 0 < r<(d,{) — 7 < 1:
Bi+A4; <0, 0<i<3 (8.18)

Since A < 0 at the right of P, where ¥ > 0, (8.18) gives
3

_ by - .
lew—w —F) (v € - B; + A;)Y
(l-w-w )< ’1+a2> A(1+a2)22( +A)E >0

1=

and (8.15) is proved.
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step 12 Proof of (8.18) for re = r*.
By + Ayg. We compute using ¢4 = —205 for all r

Ag = (205 4+ co)e =205(1+c_) +eac +cg=205(1+c_ )+ At
and hence
Ag+By=203(14c )+ A +c Ay —205(1+c_)=(1+c_ )\, <O.
Bl‘x’ + A7°. We compute at r*

Boo 0o PB (6) PAI
X4AP = - S+ :
(¢+Vd) [dVd—1) + eV + 1) (+Vd) [dVd—1) + eV +1)
P, — Pa,

(¢+ V) [a(Vd 1)+ (v/d+ 1)}2
with
Pp, = Pa, = 94°Vd ~ 108" + &V + |d*Vd-2d" + TdVd + 4d* — 24V ¢

+ 2BV 4d? ~ 5dVA + 6 + V| 2+ |dVd - 2d +Vd| £

- [6d3\/& — 83 + 2d2Vd + [8d2 - Sdﬁ] ¢ —2Vd(d— 1)e2}

= 3d3Vd—2d3 — d*Vd + [dW& — o+ TV — Ad? + 6d\/8] ¢

+ [2d2\/&+4d2 —3d\/&+6d—\/ﬂ 2 [d\/&—2d+x/ﬂ I
>0

for d > 2 and therefore B + A% < 0.
B3s° + A3°. We compute:

P, — Pa,

BQ—I-AQ:— 5
[d(ﬂ—l)—k(ﬁ—kl)}

with
Py, — Pa,
= 8"+ 4d3(d — Vi) + [2d° — 2PV + 140 + 24V | € + [2d° + 24V/d + 24+ 2V/d]

[4d2(d —Vd) + £(4dVd — 4d>}

— 8diy [2d3 —2d2Vd + 14d2 — 2dVd + 4d} ¢
n [2d2+2d\/& 4 2d+ 2\/8} 2> 0

for d > 2, which implies By + Ay <0.
B3 —l—Ago. We have B3 + A3 = B3 < 0.
This concludes the proof of (8.18) for re = r*.

step 13 Proof of (8.18) for re =ry4.
By + Ag. We have verbatim as above

A0+30:A+<0.
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B 4 A, We compute:
(d+ 1)+ (d2‘+3d)x/2+2d+ d—1
(1+ Vo) (dVE+¢) 01+ V0)
Cl(d+1)0+ (d® +3d)VI+2d| — (d—1)(dVE+ L) Or(0)

B + Af = —

01+ VO) (dVT + 0) T+ VO (VI 0)
with
Q1(0) = (d+ )% + (d? +3d)NVl + (d+ 1) — d(d — 1)V >0

for £ >d, d=2,3.
B3° + AS°. We compute:

B3 + Ay
(d+ 1) + (2d* + 6d)0V1 + (d° + Td* + 4d)¢ + (8d*) V1 + 24 L1
(dV + 0)2 ‘
. 210
UdVE+ 0)2

with
Q2 = (d+ 1)0% + (2d* + 6d) 2V + (d° 4 Td* + 4d)6* + (8d>) IV + 2d*¢
— (d—1)(d*0 +2d0V0 + 02)
= (d+ 1)+ (2d? + 6d)*VE + (d® + 7d? + 3d + 1)6% + (6d* + 2d)¢V/7
+ (3d* —d®) > 0.

B$® + AZ°. We have B + A = B < 0.
This concludes the proof of (8.18) for re =74 O

8.4. Proof of Lemma 1.6. We are now in position to finish the proof of Lemma
1.6. We need to show (1.24). To the right of P2, w' > 0 and F > 0 from (8.11).
Therefore, the first statement in (1.24) follows from (8.13). For the second, to the
right of P» we have 0 > 09 and A < 0, i.e., 0 > 1 —w. These, together with (8.13),
imply

1—w

1—w—w — F>l—-w—w —-F>c>0

o
The third statement follows from F' > 0 at the right of P». (1.24) is proved.

9. Exterior positivity

We now turn to the proof of Lemma 1.7. We will establish the following result
which gives a precise range of validity of (1.26) and enlarges the set of admissible
parameters. Let

lo(d) =d —2Vd for d>5. (9.1)
Also, recall the definition (1.20) of p. The following implies Lemma 1.7.

Lemma 9.1 (Necessary/sufficient conditions for (1.26)). Assume d > 3 and (1.22).
Forl > d, re =1*(d, (), let £2(d) be given by (9.1), and assume moreover that (£, d)
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satisfy:

V3 </t for
0.11 < £ < l5(5) = 0.53  for
0.2 <l <l(6) =110 for

Il
© 00O Uw

e, 9<p< 37,
r.e., 5 <p<21,

S T Y
I

0.3 <l <tly(7)=1.71  for re., 4<p<14, (9-2)
045 < 0 < 5(8) =234 for d=8 ie, 3<p<9,
0.65 < £ < l3(9) =3 for d=9 e, 3<p<T,
Then there exists €(d, ) such that for all
re(d,f) — e(d, 0) < < r=(d, ) (9.3)

and for any Py — Py trajectory with c_ slope at P as in Lemma 3.2, there exists
¢ > 0 such that

1-—w—-w)?-F?>e¢,

YO0 <
SO0, 1—w—w >c¢.

(9.4)

Remark 9.2. We note that
L < ly(d) & r*(d,l) > 2 (9.5)

The latter is a fundamental property for the study of the defocusing (NLS) problem,
[10]. The lower bounds in (9.2) are actually given by the condition

0> 0(d) (9.6)

where
0(d) 9.7)
(@A~ d+5vd 1) +\/(dVd — d + 5vd — 1) + 4(dVd — d — 2Vd)(Vd + 1)
2(Vd + 1) ’

see (9.13). We will see below that (9.6) is a necessary condition for (9.4) to hold
near 7*(d, 0).

Remark 9.3. From (8.11), we have that along the solution curve for o < o9
F <0 for w < ws, F > 0 for w > ws.

We will first treat the case w < ws, in which case it suffices to prove 1 —w—w'+F >
0, and then the case w > ws, in which case it suffices to prove 1 —w —w’ — F' > 0.

9.1. Bound on the slope for the P, — P; separatrix. The P, — Py separatrix23,
i.e., the unique solution connecting P, and P, with the slope c; at P described
in (3) of Lemma 3.5, furnishes a natural lower bound for the solution curves of
Theorem 1.3. We start with a rough estimate on its slope??.

Lemma 9.4 (Upper bound on the slope for the P, — P; separatrix). Under the
assumptions of Lemma 9.1, the P,— Py separatriz given in (3) of Lemma 3.5 satisfies

w
0<@s=5 <ct (9.8)

where we recall that W = w — wg and ¥ = 0 — 09.

23We will sometime denote by a subscript S, e.g. &g

24%e mean here the slope of the line segments from P> to points on the separatrix.
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Proof of Lemma 9.4. We have 0 < 09, i.e., ¥ <0 and W = w —ws < 0. Therefore,

w
d=_—->0.
E>

step 1 Setting up. We have

—w 1—-o
s(P2) = v, Bs(Py) = — === =

and hence at r = re:

g_l—ﬂ:wrl—%zw%l)
e o0y i d d
P (P°) — @s(Py°) = M_ﬂ_(d_l)ﬂ>0for r=r

1+/2 R S

>0 for r=r1r*

which ensures
Dg(Py) — Pg(Py) > 0. (9.9)

We now recall
dds  Ap—PsAs
v XA

and study the sign at a possible point of contact on the curve with the value
bg(X) =cy, L <O0.
From (8.1), at the point of contact:

A1 —ci A
1T+2 = cioq +e3—cp(cach + ca) + [doocd + diicy + doo — i (ea0c? + er1c4 +eg2)] O
+ [Ci —dcy — C+(6glci - 1)] »2 = Ag+ A+ AQZZ.

We have Ay = 0 from (2.45). We now compute all coefficients at r< (d, £), and the
associated non degeneracy claim will follow for 7 close enough to re(d, ¢).

step 2 Sign of AS°.
case r = r*. We compute:

(+d—1
¢
= f[d—ld—1)+1]=—d—1)(1+6) <0

AS° _zﬁ—ﬂ—e( ﬁ—4>_z%ﬂw—ﬂw+d—n+e

case r = r4. We compute:

AT = (e)? = de = ¢ (e(cT)? = 1) = ¢ [(1 — e3)(cF)* — (d — 1)]
NI 4

¢ (1+ 1) (1+1)?

—%d—Dlz—M—lkf

step 3 Sign of A°.
case r = r*. We have

AP = d55(e)? + dRTe +dgs — e (e55(c3)” + efiel + e))
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We compute:

5o () + e + e = \/&(d—1+£)€2_d(\/ﬁ—l)—i—ﬁ(l—k\/g)g_ 3vd
208 W T e+ Va) 0(0+V/d) (+Vd
(d(d—1+0) —dvVd+d—(1++d) —3Vd

(+d
—dVd+d—3Vd+dVd—d—1—d)+?Vd

(+Vd

—dVd+d—3Vd+0(dVd—2vVd —1) + 2/d

(++d

V- (d-0), 2Vd,  (V/d
(4 d (+vVd (+d

= f[(erd £)+2df+f}

= €+f[ £2+€(\f+d)+2d\f+\q

d33(cX)? + dige + dfs =

Therefore,
(6 +Vd)AT = ¢ [e?-e(\/md)_zdx/&—\/a}
— ]-dVd+d -3V dvi—2vd - 1)+ V)
- 5[52(1—\/&)—6(\/&+d+d\/&—2\/&—1)—2d\/&—\/&+d\/&—d+3\/&
= [(\/&—1)€2+(dx/&+d—\/&—1)£+d\/&+d—2\/ﬂ <0.
case r = r4. We have
AP = d3(e)? + dReT + dgs — ¢ (e55(¢)? + efgeT + €53)

We compute:

z+d—1<\/é(d+\/2)>2 2 («/Z(d+\/2)> 3
1

P + ST+ =

1+V7 1+V0\ 141 +V
(U d—1)(d+ VO —2V(d+ VO (L + VE) — 3(1 + V1)?
(1+ V)3
o (l+d =) (P +2dVE+0) —2VE(d + (d+ D)VE+£) — 3(1+ 2V + 0)
N (1+ V)3
P+ 2d -2+ (P —d—6)+ (2d> —4d — 6)VI+d> —d> -3  Q(¢)
(1+0)3 1+ V)3

d3o(c3°)? + dige + dgs
= VE—d—1 (Vd+ V) 2_ 2 (VUd+ VO  (+advi
1+ V02 1+Ve L+Ve\ 142 (1+Ve)?

0=Vl —d—1)(d+VE)? = 2dVI(d+ VO (1 +VE)? — (£ +dVE)(1 + V1)
(1+ V)
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and
Qa(0) = (L =Vl —d —1)(d+ V) = 2dVE(d + V) (1 +V0)? — (€ + dVI) (1 4+ V71)?
= [2 =0Vl — (d+ D))(d* 4 2dVE + €) — 24>V +2d0)(1 + 2V + £) — (L + dVE) (1 + 2V + 0)
= 0+ (2d - 1)Vl + (d* - 5d — 2)0% + (=5d* — 7d — 2)1\/1
+ (—=d® —bd?® — 4d — 1)l + (—2d? — d)V/?.

Hence

DAVt 1V VDR (VD
with
Qs = Vid+V0)Q1 — Qo
- (dx/é+e){62+(2d-2)£¢2+(d2—d—6)£+(2d2—4d—6)\/2+d3—d2—3}
— B —(2d—1)PVl— (d® = 5d —2)% + (5d* + Td + 2)¢\/1
+ (d®+5d% +4d + 1)0 + (2d> + d)V?
= (d—1DVE+ (2d® +2d — 4)2 + (d® + 6d* — 3d — 4) 0V + (4d3 — 2d — 2)¢
+ (d* = d*+2d> - 2d)VI >0

and hence A$° < 0.

Derivative at P». Near P, we have the Taylor expansion:

dd ALY+ AQZZ Ay Ay
i =—>0. 9.10
d¥  Y[ea® 4+ ¢4+ O(X)] - cocr +cqg A ~ (9.10)

Conclusion. At the point of contact, we therefore obtain:
d® A1 —ciBy  B(A1+A%)  [E[(—]A] £ [A2f[X]) _ [BI(A] - [A2[[X))

e XA Ay Ay Ay
Let

S=-%, o) =93(%),
then B

d® _ B(jA] - |A[®)

s Ay
Assume now that there exists 0 < X* < o2 with (=¥) > cy, then from (9.9),
(9.10), the curve is strictly below ¢y for 0 < ¥ <1 and for |¥ — 02| < 1. Therefore,
there must exist X1 < X* < ¥y with

B(5) = B(5) = ¢y
3'(5;) >0
P'(33) <0

Since Ag > 0 in this zone:
|A1] — |A2|21<0, |A] —|A2]22 >0

which forces

a contradiction. O



125
9.2. Study of F on the P, — P, separatrix.

Lemma 9.5 (Value at P»). Under the assumptions of Lemma 9.1, for the Py — P
separatriz and for re(£) —e(d,l) <r < re(d,l):

Fs(P,) <0 (9.11)
Moreover, in the case ¢ < d, we have:

(30 < e(d, ) < 1 such that Y0 <e <e(d,l), (1—w—w + F)(P)>0]
& 4> (d) (9.12)

with £y given by (9.7).
Remark 9.6. The necessary admissible range near r* is therefore
01(d) < € < ly(d) = d —2Vd.

We compute numerically:

1(5) = 0.1023, £5(5) = 0.5279,

01(6) = 0.1845, £5(6) = 1.101,

0(7) = 0.2525, £5(7) = 1.7085, (9.13)
01(8) = 0.3098, (5(8) = 2.3431,

1(9) = 0.3589, £5(9) =3

Proof of Lemma 9.5. We compute all coefficients at 7= (d, £) and argue by continuity
for r close enough to r<(d,?). Near P, from (8.1), (2.45), (2.50):

3 [e2® + cs + [e20D? + €11 P + e2] T + [e21 D? — 1]32]

Fg = — )
s = % S Roa(1+ ®) + 51— 82)] +0(2)
Ccoc+ + ¢y A
- 2T L0 =0t s + O[S
72 202(1—|—ci)+ (=) U2+20’2(1+C+)+ (%)
and
W = A1 a®togt[dn®® +du® +dp]Y + [P0~ dOT?  ciey + e LOE)
A —[202(1 + @) + (1 — ®2)] 209(1 + cy)
C+)\,
= ———— —+0(%
209(1 + cy) (%)

and we compute these quantities at P, and r = re.
case re = 1.

2(05°)*(L+0) + A=
20’2(1 —{—f)
1
= rTOaT v [2a(1+0) = [d(d— V) +2d + ((d + V)
(d—0)(d — V)

ToVA1+ O+ V)

Fs =
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and
1—w—w’+F5

. A . A T A (1+ O

T T emr ) T T E e _2[02 T e +£)] T 202(1 1 0)

 2(d-0)(d—Vd) 1+¢ d(d—+d)+2d+ 0(d+ Vd)

VA1 + 0+ V) Ngi%f) (0 + V/d)?

1

- ST [2(d— 0)(d— V) + (1+0) (d(d — V) + 24+ ((d + V)]

B Py(l)

T V(1 + ) + V) 014
with

Py(t) = —2(d — 0)(d — V) + (1 + ) (d(d — V) +2d + (d + V)

= —2d(d — Vd) +d(d - Vd) + 2d

+ 0[2d= V) +d(d = V) + 24+ d+ V| + 2(d + V)

= —d*+dVd+2d+ [d2—d\/8+5d—\/8} (+ (d+Vd)e?

= \/&{—d\/&+d+2\/&+ [d\/&—dHM&— 1} 0+ (Vd+ 1)52} (9.15)
Observe that

Py1) = —2(d—1)(d—Vd)+2 (d(d— Vd) +2d+ (d+ Va))
= 2d—Vd)+2(2d+ @+ V) >0
and
Pa(0) = —2d(d — Vd) +d(d — Vd) +2d < 0
which implies the condition
0> Bl(d), 61(d) <1

with ¢; given by (9.7).

24 — .
case T r4+. We compute

cocy + ¢y —ca(l+cy)+eacr +ca (e —cy)
Fg =09+ = = <0
5= 209(1 + cy) 209(1 + cy) 209(1 + cy)
from (2.49), and F(P5°) =0 from (F.11). Then at ro and P5°:
A 203(1 —cy A 1 A
l—w—w + Fg =0y — C+ _ o3(1+cy) —cy :_( +c4) <0
209(1 4 c4) 209(1 4 c4) 209(1 4 cy)
([

9.3. Positivity in the region where w < wy. We now consider any solution
curve Po — Py with the c_ slope at P, given in Lemma 3.2. Recall that such curves
cross the middle root of Aj at 0 < g, < g9. In view of the signs of A, Ay and Ay,
see figure 3, these curves are:

e decreasing on (o4, 02),
e increasing on (09,0%), where 0 < 09 < 0, is such that w(oo) =0,
e w(o) <0 on 0,00
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In particular, on [0, 02], w(o) can reach the value we only on (o9, 0,) where it is
increasing, and hence there exists a unique 0 < o1 < o3 such that we have

w > wy for o1 <o < o9

w<wy for 0 <o <oy (9-16)

Lemma 9.7 (Positivity in the region where ¢ < o1 and w < wsa). Under the
assumptions of Lemma 9.1, any Py — Py curve with c_ slope at Py satisfies (9.4) in
the region w < wg and 0 < o < o1,

Proof of Lemma 9.7. Using (8.11), we have along the solution curve in the region
w < wa:
F<0, w<wy<l1l and A >0.

Note also that the solution curve has the slope c_ at P» and can not intersect the
separatrix curve (strictly) between P, and Pj. Therefore, it must lie above the
P»-Py separatrix. As a consequence its function ¢ also satisfies (9.8):

0<®<ey,
where the lower bound follows from the fact that we consider the region w < ws.
Thus we focus below on the region
O<o<o, w<wy,, 0<PLcy.
step 1 Study of 1 —w —w' + F.

Remark 9.8. We will consider the expression for 1 —w — w' + F
Ay — Ay
A

not just as a function on the solution curve but more generally as a function of o
and w.

l-w—w+F=(1-w+o0)+

We compute

(1 -w—w)+F=-"T 0wy —w) + (1wt G
1

= m{ —(d—=1)o(w—w_)(w—wy)

+ E[(l —w)[(1 - w)2 — 02] +w(l —w)(r—w)—d(w— we)02} }

:-7%@u—w+aw—%nﬁ+u—n@L—wmw—wp—ayﬂ@m—wf+w@—m§
:_7%@u—nm—wmﬁ+u—nm,—m@4—wm—ayﬂwm—wf+w@—mﬁ
:-jkgu—nm—wmﬂ+m—nwu—wmu—wm—al—mu+@—mw}
_ ;%f) (9.17)
with
Py(w) = [(d—1)o + £(r — 2)]w? + a1(0)w + az(0) (9.18)
and
Cdwe—1 _Ur—1)-1
W= = (9.19)

We study the roots of Py(w) for 0 < w < wy = w_ < wy < 1 < r which ensures:

(1 —w)[(1 —w)?+wlr—w)]>0

(wy —w)(w- —w) >0 (9.20)
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Then, at r*(d, {):

<d—1)<w§o—(w*>°">=(d—l)wé"’ﬂ—z(r*—l)=(d—1)(1—ag°)+1—e< d+! _1>

(+d
_do@on Y _Md=Vd _dl+Vd-dVd+ Vi td+ VA Vat+Y)
B (+vd  +vd (+d 0+ Vd

and at r(d,/):

o ey d=DVE o U(d—1)
(d—1)(w3® — (ws) )—7”\/Z +1 RERV/E
dVi+1  Ud—1) L+ (d+1)Vi+1

L+VE (1+VE0? (1+V0)?

and hence for r close enough t0 re:
W9 > Wk.

step 2 Root for we < w < 1. In this regime, we have from (9.20), since w > wy >
w*, only one positive root

1
20(d — 1) (w — wy)

1= D w)(wy — w) 4400 = w1~ w)? + wlr — w)l(d — 1)(w - w,)}.

= o1 (w) = { —(d— 1) (w_ — w)(ws —w) (9.21)

The points P, = (02, ws2), P3 = (04,wy) and P; = (0,1) are among the roots of
P;(w), and hence the curve o;(w) must pass through these points and connects
continuously (o2, w2) to (0,1).

step 3 Positivity on ® = c;. Let the line
(D) ={W =c43, 0<0 <oy} (9.22)
we claim that under the assumptions of Lemma 9.1:
l—w—w+F>0 on (D) (9.23)
Indeed, we compute:

Al—w—w'+F)=1-w+o0)A+ A — Ay
= (1-wy—W+02+ %) {-E[202(1+ @) + £(1 — ©?)]}
+ E[e1® + ez + [doo®? + di1 @ + dpo]E + [0° — dD]¥?]

by [02<I> + ¢4 + [e20®? + €11 P + 2] + [e01D? — 1]22]
= —XG(%,0)
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with

G(Z,®) = 200 + 2(1 — ®)][202(1 + @) + 2(1 — %))
— 1® — 3 — [dog®? + dy1 D + dga]X — [@3 — dD|X?
+ @+ s+ [e20P” + 1P + e2] T + [en @ — 1]
= 40314 @) + X[209(1 — ®?) + 209(1 — )] + ¥2(1 — )*(1 + ®)
c1® — c3 — [doo®? + d11® + o] — [@3 — dD]%?
ca® + cq + [e20P? + e11P + eg2] Y + [eg1 D? — 1]%2
405(1 4+ @) + c2® + ¢4 — 1P — c3
[4o9(1 — ®%) + eg0®? + €11P + ega — dao®* — d11® — dpa| ¥
(1= ®)2(1+ @) + e ®* — 1 — > + dD|%?
Ap(®) + A1 (P)X + Ay (D)X,

_l’_

+ 4+

and we now distinguish re =r* and r- = r4.

step 4 Proof of (9.22) for 7« = r*. We compute the A; on (D) at r =r*(d,?) i.e.,
® = ¢y = /¢ and evaluate the obtained sign of G.
Computation of AF. We have from (9.14), (9.12):

AF = Ao P O-H02 0 = 205 (140) fdg()?g T (zid(\%)? >0,

Computation of A7°. We have

T=An+ A
with
Ayp = 405°(1 — %) + 5507 + €550 + €55
_ 4vd (1_62)+\/E(d—1+£)€2_d(\/c?—1)+£(1+ﬂ)€_ 3vd
(+Vd 00 +/d) 00 +/d) (+Vd
(VA —4Vd+eVd(d —1+0) —d(Vd—1) — 61+ Vd) — 3vd
B (+d
 Vd—dVd+d+ C(—4Vd+ Vd) + 6(Vd(d— 1) — 1 — Vd)
B (+Vd
o 3VAR —[(d—2)Vd—1]{+ Vd(d— Vd - 1)
B (+d
and
__oo?_oo_oo_w 2 Qd\/g E\/&
Ay = —d$0% —dse d02_< T o )e +<€+\/g>£+€+\/g

0(2dVd +Vd) + (d — £+ Vd) P2
(+d
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which implies

—3VAd2 + [(d — 2)Vd — 110 = Vd(d — Vd — 1) + £(2dVd + Vd) + (d — £ + /d) >

AF =

(+d
(d=2Vd— 0+ (3dVd— Vd— 1)t —Vd(d— Vd— 1)
B (+/d
_ Qa0
(+Vd
with

Qa(f) = Vd(d —Vd—1) — (3dVd —Vd —1){ — (d — 2/d — ().

Computation of As. We have

Ay(®) = (1 - )21+ ®)+eg®* —1— % +dd
= (1-®)(1—9%) +en®*—1— 0 +4dd
= 1-0 -+ P ey ®?—1- 334 dd
= @[(d—1)+(621—1)@]:®[d—1+(W—l)@}
(d—1)®(L + )

= ; (9.24)

which implies
& =20(d—-1).
Discriminant Recall
G(Z,0) = Ag + A1 + AyX2?,
we compute the discriminant at the critical value:
Qi  8ld-1)P; QF—8l(d—1)Py

: _ 00\2 00 fOO __
Discrg(¢) = (A7) — 4A5°AS° = (1) (1) = (01 Vay?

We collect the values

Py(0) = —d® + dv/d +2d + [dQ —dVd+5d — \/8} 0+ (d + Vd)e?
Qu(t) = Vd(d — Vd—1) — (3dvd — Vd — 1) — (d — 2v/d — £)¢* (9.25)
test(d, () = Q% — 8¢(d — 1) Py

and evaluate numerically:

for 5 <d <12: we find Discry(¢) < 0 in the range (9.2). It fails numerically for
d>13.

for d =3, #1(3) < 0 and for v/3 = 1.73 < £ < 3, Discr3(£) < 0.
Conclusion. Since AS® > 0, we conclude G (2, @) = Ay(®) + A1 (®)L+ A2(®)¥? > 0
on (D) given by (9.22). Therefore,

2G(3, ®)

A >0

l-w—w+F=—

on (D), and (9.23) is proved.



step 5 Proof of (9.22) for re =1r4.
Computation of Ayg. We have since ® = ¢4 and recalling (2.45), (2.50):
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Ay = 405(14cp)+eacy +cqg—creqy —eg=—2c4(14¢) 4 cocq +cq — ey A

= —cg—cact —2(cqa —c2)ey — Ao = —(L+ ) —2(cq — c2)ey

and hence
Ag? = =14 )X > 0.
We compute explicitly
VId+V0)\ 206+ (d+1)VI+1
Ay = 1+
1+Ve (1+V70)3

200+ (d+ 1)Vl +1)2
1+ Vo

Computation of A°. We have

AT = A1+ A
with

Anr = 403°(1 — (¢T)%) + e35(cT)? + €55 + e

4 1_e(d+\/Z)2 +z+d—1z(d+\/Z)2_ 2 Vid+veo 3
1+V7 (L4+VO2 | A+ 1+V02  1+VE 141 1+Ve
Q1(/)
(1+ V)

with

Q = 4 1+2x/2+£—£(d2+2dx/2+£)}+(£+d—1)(d2+2d\/i+£)

— 200+ dVO(1+ V) - 3(1+ 2V + )

= 2(=3)+0Vl(—6d —2) + 0(—3d®> —d — 2) + VI(2d* —4d +2) + d*> — d® + 1.

Then
Arg = —d33(c¢X)? — di§e — dgs
B _e—\/z—d—1£(d+\/2)2+ 2d \/Z(d+\/2)+ C+dVe  Qa(0)
L+V0?2  (A+V0?2  1+VE 1+VE  (1+V0?2 1+ Vi)
with

Q2 = (A 4+ 2dVE + £)(—2 + IV + (d + 1)€) 4 (2dL 4 2d*VO) (1 + 2V + ¢)

+ (L4+dVO(+2Vi+10)
= B4 (=2d+ 1)V + 2(—d® +5d + 2) + IVI(5d> + 7d + 2)
+ (3 4 5d* + 4d + 1) + VI(d + 2d?).

Hence

o Q3
v
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with
Qs = [zﬂ(—?,) FOVO(—6d — 2) + £(—3d2 —d — 2) + VE(2d® — Ad + 2) + d3 — d* + 1] (1+V0)
— B (=2d+ 1)V 4 2(—d* + 5d + 2) + (VI(5d? + 7d + 2)
+ 0P+ 5d* + 4d + 1) + VI(d + 2d)
= 0 —2d+2)0V0 — (B + d+ 3)2 + (2d® — 2)0VE
+ (P +4d® —d+ 1)+ (d® +3d* —3d + 3Vl +d> —d® +1
Computation of As. We have A2(®) > 0 from (9.24) and explicitely

(d—1Ver(l4ey)  d—1Ved+V0) VIA+VE) | (d=1)(d+ VOl + 21+ d)

4= ¢ L 14V [ 1+ /¢ (14 V0)?

Conclusion. We are in the case d = 3. We numerically evaluate Q3(¢) and obtain
Q3(¢) < 0 for £ > 4 in which case A}® < 0 and since ¥ < 0, G(X,®) = Ap(P) +
A1 (@)X + Ag(®)X2 > 0. For 3 < £ < 4, we form the discriminant

o er ggeeaee @3 8+ (d+DVI+1)? (d=1)(d+ VO + 2V +d)
Discr = (A*)] —4AF A3 _(1+\/Z)8 (1+V0)* (1+ D)2
@
(1+V0)®

with
Qs = Q% —8(d— 1)(1+ V02l + (d+ D)VE+1)*(d + V) (L + 2V + d)

and numerically evaluate Q4(¢) < 0 for 3 < ¢ < 4, and hence G(3, ®) > 0. Hence

YG(S, )

A >0

l—w—w +F=—
on (D), and (9.23) is proved.

step 4 Proof of (9.4). Observe that
Py(ws) = £(d — 1)(wy — wy)o? — £(1 — wo)[1 + (r — 2)ws)

is a second order polynomial in o with P,,(w2) = 0, positive highest order coeffiei-
cent and such that at 7*(d, £):

P(](ZUQ) = *f(l — U]Q)U_ + (7’ — 2)21}2]

with
. d+¢ Vd 0(d — ¢ —2V/d)
14 (r (d,ﬁ)—2)w2:1+<£+\/g—2> (1—€+\/g>:1+(£+\/@2
P 2aVdrd+d—0—-2Vd)  ld+1)
B (£ + Vd)? (U + Va2
and
B d—1 Vi
1+(T+(d’£>_2>w2_1+<1+(1+\/E)2_2>1+\/Z
_oq Ve [1_ d—1 ]:1_\/?[(1+\/Z)2—(d—1)]
14+ V¢ (14 V0)? (14 Vo)

1+ (d+1)Ve+e
(1+ V)3

> 0.
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Hence Py(wz) < 0 implies that

Py(wy) <0 for 0<o0 < o3.

Let w3(o) parametrize the line (ws(0),0) € (D), then we also have P,(ws(0)) < 0
from (9.23). We now distinguish three cases:

case (d — 1)o + £(r —2) > 0. Since P,(w) is second order in w with a positive high-
est order coefficient,

P,(w) <0 for w3(o) <w < ws

which, together with the fact that (9.8) holds on the solution curve, implies that
l—-w—w+F>0

along the trajectory. The function 1—w —w’+ F is strictly positive at P, converges
to 1 as 0 — 0 and can not vanish. It implies

l—w—w +F>c>0.

Since, by the Remark 9.3, F' < 0 at the left of P, on the solution curve, (9.4) follows.

case (d — 1)o 4+ £(r — 2) < 0. In this case, for each 0 < 0 < 09, P,(w2) < 0. On the
other hand, we also have the curve o;j(w) which, as we vary w € [wa, 1] connects
0 = 02 and ¢ = 0, and on which P,(w) = 0. Since the point (0,1) belongs to this
curve and lies above the line w = ws, the whole curve o1 (w) must lie above the line
w = wy. In particular, for each 0 < ¢ < 09 we can find a (possibly non-unique)
value wi (o) such that Py(w;) = 0 and wi(0) > we. This implies P,(w) < 0 for
w < wo, thus, in particular, on the solution curve, and the conclusion follows as
above.

case (d — 1)o + ¢(r —2) = 0. Since P,(w) is first order in w, this implies

P,(w) <0 for w3(o) <w < ws
and we conclude as above. ([
9.4. Positivity in the region where w > ws. We now are in position to conclude

the proof of (9.4) and of Lemma 9.1. To this end, it suffices to prove the following
lemma concerning the region w > wo.

Lemma 9.9 (Positivity in the region where 01 < 0 < 09 and w > wy). Under the
assumptions of Lemma 9.1, any Py — Py curve with c_ slope at Py satisfies (9.4) in
the region 01 < 0 < 09 and w > ws.

Proof. For w > wa, in the region Ay > 0, we have
Al—w—w'-F) = (1—w—0)A+A1+Ay >0

since Ag > 0, A > 0 and 1 — w—o > 0 on the solution curve for 3 < 0. Thus, it
suffices to consider the region > < 0 before the solution curve crosses the middle
root of A; = 0. Note in particular that this region is included in

{05—02<E<O}H{A2>O}H{A1<0}ﬁ{1—w—a>0}.
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step 1 Reduction to the control of the P, — P~ separatrix. We compute
Al—w—w'-F)=(1—-w—0)A+ A1+Ay
= (1—wy—W—03—5){-X[202(1 + @) + £(1 — )] }
2 [e1® + ¢z + [doo®? + d11 @ + dp2]Z + [@° — dD]X?]
Y [eo® + s + [e20®? + e11® + €02] S + [ea1D? — 1]
—YH(X,®)

+ +

with
H(Z,®) = —3(1 + ®)[202(1 + ®) + (1 — &?)]
— 1 ® — c3 — [do®? + d11® + dpa]¥ — [@3 — dP]|%?
co®—cy—[ean®? + e11® + epa] B—[eg B — 1]%2
= —c9®—c4—c1P —c3
4+ [~209(1 4+ ®)2—eg0P?—e11P—epy — do®? — d11 P — d2]X
+ [~(1 = ®)(1 + @)% —ep P?+1 — &3 + dP|X2

We introduce the notation

We infer, using (2.45), (2.50):

H(X,®) = —(ca+c1)P—coce —cqg—cre— —c3
+ [~202 — eg2 — dog + (—4og — €11 — di1)® + (—209 — egp — d2g) P?|T
+ [(d=1)® 4 (1 — ey ) P2
= A (l+c)—(ca+0c))®
4+ [~202 — eg2 — doa + (=409 — e11 — dy1)c + (=209 — egp — dog)

+(—40y — €11 — d11)® + 2c_(—209 — €9y — dag)® + (—209 — €99 — dag) DT

+ [(d=1)e— +(1—en)® + (d—1)D +2c_(1 — e21)® + (1 — eg1) P3| T2
= Fy(D) + F(2)® + Fy(X)d?

where

Fo(R) == =M (1+4c )+ 209 —ega — dog + (—409 — €11 — dy1)c_ + (=209 — a9 — dag)c* ]S

+[(d = 1) 4 (1 — eg)2 )22,
Fi(X) = —(ca+c1)+[(—dog —e11 — di1) + 2c— (=209 — ezp — dap)|2

‘l‘[d -1+ 20_(1 - 621)]22,

Fy(X) = (209 — ez — doo)T + (1 — e91)%%
Sign of F. Since —(c2 + ¢1) > 0 and does not degenerate as 7 — r<, we infer
Fi(X) = |e1 + 2l + O(%) > 0.
Sign of F». We have

F5(2) = (202 + €20 + d2o)|Z| (1 + O(R)) (9.26)
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In the case re = r*, we have

2v/d +\/E(d—1+€)+—\/3—(d—£)
(+Vd 00+ ) (+Vd
2vVdl +Vd(d —1+0) —Vdl —(d—¢) 2+ (2vVd—d)l+Vd(d—1)

(e +Vd) 0L+ Vd)

The discriminant of the second order polynomial 2 + (2v/d — d)¢ 4+ v/d(d — 1) is
given by

209 + ez + dao = (9.27)

(2Vd—d)? —4Vd(d—1) = Va(Vi(Vd-2)* -4 -1))
= x/&(d\/fi—&;d+4\/&+4)

which is negative for 3 < d < 9, so that the second order polynomial in ¢ has the
sign of the main term. Therefore,

2+ (2Vd—d)t+Vd(d—1)>0

which implies F5(X) > 0 in the case re = r*.
In the case r< = r4, we have

4205 +20—VI+d1+VI—0) 1
01 +/1)?

in the case d = 3, ¢ > d, which implies F»(X) > 0 in that case as well.

209 + e9g + dog = >0

Computation of the roots. We have Fy(X) = [AL||1 + c—| + O(X) = O(|r — r*(£)]).
Thus, the discriminant

F1(2)? —4F(Z)Fy(B) = |ea + c1] + O(r — r*(€)) > 0.

Using also F»(X) > 0 and F;(X) > 0, the roots are given by

5. _ “IREIEVRE)? —AR(E)[F((X)
s 2| ()| '

We rewrite
~ 2Fy(X)

RO VRS —IBERE)

Conclusion. Since F5(X) > 0 and ®_ < —1, we have 1 —w — w' — F > 0 if and
only if

(9.28)

d>d,.
Since the curve connects P, to Py with c¢_ slope, the solution must lie strictly below

the P, — P~ separatrix and hence ® > ®g and the conclusion follows from the lower
bound along the separatrix curve:

~ 3
‘DS >c_ + q)+ 5 Vu S |:0, 4:| . (929)

Assuming (9.29), we have 1 —w —w’ — F > 0, and (9.4) is proved.
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step 2 Proof of (9.29). We reexpress (9.29) using the renormalization (4.14), u €
[0,1]. Let

for = —209 — ego — doo + (—402 —e11 — du)c_ + (—202 — €20 — d20)62_
fio=—(c2a+ fl)
_ b(14e_ 9.30
Bo ="’ (9.30)
_cp—cCc— é fo
Bl - d~20 [ P + f10:|

We claim that there exist C(d,f) > 0 and Bs(d, ), B4(d,¥) given by (H.10) such
that for all 0 < b < b*(d, ¢) < 1 small enough, Vu € [0, 1], for ro = r*:

|®5 — &, — [By + bByul| < Cb? (9.31)
and for re =ry:
|®g — &, — [Bo + bByu + b*(Bsu + Byu?)]| < Cb® (9.32)
Then, (9.29) follows from the statement: Je(d,£) > 0, 30 < b*(d,¢) < 1 such that
for re =1r*:

VO<b<b*, Yue [0, ﬂ , Bo+bBju > cb. (9.33)

and for re = rg:
3
Y0 <b<b*, Yuc [0, 4] , By + bByu + b*(Bsu + Byu?) > cb®. (9.34)

The proof of (9.32) is detailed in Appendix H together with the explicit computation
of the constants By, B1, Bs, By given by (H.10) which allows us to conclude the proof
of (9.34) below.
case r- = 1*(d, ). We have

b(1+c_) b1+ >

By = — = —L(1+0O(b)).
= ava leral o0

Let
B =205 + €55 + dis + (405° + €35 + d55)e™ 4 (205° + €55 + d55) ()% > 0.

The inequality above follows by a direct check. Then, uniformly in b small enough
and v € [0, 1]:

1 (o'} oo .00 ~00
Bo+bBiu=b o:_c_oo o <_6<2>g+ool800>u +0(0%)
—(c5° +¢%°) dss A e 4
1 %) oo .00 ~00
_ |Oo+c_(x|)+c+~c_ <_ 6(2)2+ OOB m|>u + o)
|c7° + ¢5° |dS5 A [ef° + 50
b ¥ 658|CT°+C§°|> 2
- T ol [ e sl u| + O(b%).
e e S (- B )
We compute:
(e — ) [w_\égguc?wcgoq _ (VA= 1*d-0(+2Vd+d)
|dsg A% 2vVd(d + 0)(d(Vd — 1) + £(Vd + 1))
and
d—1)(d—"¢
14> (vVd - 1)( )

d(Vd - 1)+ £(d+1)
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so that

o S (g B (V- 1)(d-0) i
ez |d35)| ('B R T oVddt 0A(a—1) 1 e+ 1))Q( bu)
with

Q(d, 0, u) = 2Vd(d + 0) — (Vd — 1)(£ + 2Vd + d)u.
We have that Q(d, ¢, u) is strictly positive on 0 < u < u(¢, d) where
2Vd(d + ¢)
(Vd—1)({+2Vd+d)

Also, since ¢ — u(¢, d) is increasing for £ > 0, we have

u(l,d) =

2d3
(Vd—1)(2vd + d)

Now, d — u(0, d) attains its minimum for d = 16 and we find

u(l,d) > u(0,d) = for £ > 0.

3
2d2 16
> — >1ford>1.
Vd-1)@vd+d) 9

Therefore, u(f,d) > 1 for all d > 1 and thus inf,¢[o 1] Q(d, £)(u) > ¢(d, £) > 0 which
ensures

By + bBju > [e(d, ) +O(b)] >0

|67 + 57
and (9.33) is proved.

case r- = 14 (d, £). This case is degenerate since an explicit computation shows that

Bo(b=0) = G ,_,=0

Bi(b=0)=0

and, as a result, we need to consider the order 2. We compute, using Appendix H:

By + bByu + b*(Bsu + Byu?) = b*F(0,d,u) + O(b?)

with
5 5
vVd—1(1+vE)"(1+4 3vd—1(1 )" (1+¢
F(l,d,u) = - (v a+ )2(1—u)+ - (L+vO Z)u(l—u)
208 (1+ (1 4+ d)VE+ ) A1+ 0+ dvi+r)
Then (9.34) follows from
VE>0, Vd>1, inf F(¢,d,u)> 0. (9.35)
uE[O,%]
which is immediate from the above formula for F'(¢,d, u). O

Appendix A. Facts related to the I' function

We collect various classical facts about the I' function.

Euler § function. B(z,y) is defined for all (z,y) with ®(z) > 0 and R(y) > 0 by

1 +oo o1 -
B(z,y) = /0 w1 —w)? du = /0 a ify)ﬁy dY = 11:((33)1(5)) (A1)
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+oo dz +o0o y—Qy
[ mrarmet = ) et Bu-anK ey

T —oy)T(K 414 ay)
= ST (8.2)

Recurrence formulas. We compute for k1 < ko:

" (0 + 0)

I1%2 .
I "2 (g + 0)

Jj=k1

: k . —k
(v—3)= Hjikl(a’y +K+1-j)= Hf:—’}(l+1ik2(aj +4) =

We now recall
Nz +1) =2T(z), € C\Z-

D(k+ 1) = k! (A-3)
where Z_ denotes the set of negative integers, from which
Mxz+m+1)
I =—— Z_ A4

which yields

W T(ay+K+2—Fk) TH+1-k)
k2 _ — i g
WO =) = fa ¥k —k+1) ~ T —F) (88)

Therefore,
_ . o\ _ Tlay + K)
ME Ny —j—2) =T1E D (y — j) = =L ——= A6
Asymptotics. We recall Stirling’s formula
Tz +1) = (14 0ssr00(1)) (g) onz. (A7)
Let
‘$| S 1 <7,
this yields:
z\7+z
Pota+l) gy, g8 Vorh+a)
1 —+00
Ly +1) ! (2)" v2my
_ (1+07H+Oo(1))i€(7+m)[10g7+%+0(“%2)]_710g7
eZB
1 2o 42405 (L T
= (o) ) S o)y (A)
Moreover,
+ 2\
Ko+ 14 0) = (Lt opoa) (222) T VErGr 4 a)
V2 z) |lo z L
= (1+0y54x(1)) ’Yf:;ye('wr )[l g7+v+01(72>]
e
AV 277’7 logy+z+zlogy+O04 (£
= (1+0y540(1)) = o o8r &Y (7)
y+z+3
= VI(1+ 0yppoe (1)) T —— (A.9)

Value on R\N_.
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Lemma A.1 (Value of I'(z) for x € R\N_). Let
r=-K;,+oa,, K,eN', 0<oao,<1

then
Do) T (1 — o)
I'(z) = (-1)F : Al
(@) = (e (A10)
Proof. By definition
MNz+1 Nz+J+1
gy = D41 Tt d4)
x 5o (z + )
and thus, with J = K; — 1 and using (A.4),
N—Ky+o,+K,—1+1) Iag) K, I'ay)
F(x> - Kao—1 . = LK. - (_1) Ka
I o — Ko + ) L2 (az — m) L2 (g +m)
INay) Ia)I'(1 — ay)
— Ky _ Ky
= W iaarm -V T oy
I'(—az+1)
O

Appendix B. Uniform convolution bounds for b =0

Lemma B.1 (Lower bound on the Stirling phase). Let v > 0. Pick a large enough
universal constant R > R, > 1. Then there exist ¢, > 1 and k* = k*(v,R) > 1
such that for all k > k*, for all

1
ki = kx, ko=Ek(l—ux), nggi,
there holds the bound

F(k]. +v+ 2)F(k2 + v+ 2) —k|:<1>(2)(x)]
< k .
Tkt v +2) < eV 1+ ke (Bl)

where the phase function satisfies

o (x) >0, (9)(z) > 0.
Moreover, for % <z < %;
cI)](f) (x) > %x\logaﬂ. (B.2)

Proof of Lemma B.1. We assume k > k*(R,v) large enough and apply Stirling’s
formula

D(z+1) = (14 0psr00(1)) (g) ona
to upper bound
I'(ki +v+2)[(ks + v+ 2)

I(k+v+2)
k1+v+1 ko+v+1
< (1) R () o F v+ 1
~V k+v+1
e RV

< ky+ v+ 167[(k+u+1)log(k+1/+l)f(k1+l/+1)log(k1+V+l)f(k2+u+1)log(k2+u+1)]
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step 1 Study of the Stirling phase. We compute:

(k+v+Dloglk+v+1)— (k1 +v+Dlog(ks + v+ 1) — (ke + v+ 1)log(ke + v + 1)

- k<1+”21> [logk—l—log(l—k?)]
) a2
_ k(l—m 1) [logk—i—log((l—x)—i—y—gl)}

1 1
1/+1)10gk:+k‘< —1—1/;:>log<l+yz )

— k[<x+)log<x+lj_£1)+<(l—x)+Z)log((l—x)-i—y_]gl)}

—(
= —(w+Dlog(r+1)+ (v + 1log (T) +k <1+V7€r1> log <1+ V—}:l)

— k[<x+)log<x+yk+1>+((1—x)+Z)log((l—xwryzl)]

= v+ Dlog(v+1) + k:<1>1(§2) (x)

which yields

ki +v+2)T(ke +v+2) _ko® (z)
<cV1+k . B.
Tk +v+2) = Gvithe T (B.3)
We have
2 2
07(0) = 2P (1) = 0
and
1 1
8;,;(1),(3)( ) = —log <x + VZ) + log <(1 —x)+ v )
(1—2)+ 4t 1—22)
= 10g< +V7+1k = log ( o | =20 (B.4)
k k
for z € [0, } We conclude that <I>( )( ) is a non negative non decreasing function
of x € [0, ]

step 4 Small x lower bound. Assume

el
N |
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where R > R, > 1, then

+1 +1 +1 +1
@éz)(m) = Vk log<yk )—i—(l—kljk)log(l—i-yk )

B <x+”;€r1>log<x+y,€+1> — ((1—90)—}—]/—;;1)10%((1—96)—1—”—;-1)

v+1 kx v+1 v+1
=~ ‘log<1+y+l>‘+<1+k )‘10g(1+k >'+x

+(u—xy+”zl>kg<u—xy+”;lﬂ

log <

vr+1 R v+1
> — 1 14+ — I 1 14+ —
> A og( +V+1)‘+x og:c+og(+ r >‘

v+1 v+1

> I 1+0, 1
> allowr {1-+0. (“ 7+ Jox (7))
> Loflogal

—z|logz|.
= 5 g

O

Lemma B.2 (Uniform convolution bound). Let v > 0, then there exists C,, > 0
such that for all k > 1, for all j > 2,

3 I0_ T(k; + v +2)

< 4, .
Thtvta = (B.5)

ki+-+kj=k
Proof. We argue by induction on j.
step 1 Case j = 2. We apply Lemma B.1 with some large enough R, > 1 and may

without loss of generality assume k£ > &}, with £}, large enough universal constant.
This leads to

F(kl + v+ 2)F(k2 + v+ 2) _k [@(2)(m)]
< e/1 e @]
T(k+v+2) Savlthe

where x = k; /k. We may assume k; < kg so that x < 1/2. For z < By we use the

lower bound <I>](€2) (x) > 0. For z > % the monotonicity of <I>,(€2) on [0,1/2] implies

Rl/ 1 Ry le Rl/
(I)](f)(m) > (I)](f) (k;) > +§? log <k>‘ > Elogk‘, (B.6)

where we required that R, < \/k}, from which

Z T(k1+v+2)T (ke + v+ 2)
i I'k+v+2)

S 1+ > VIt ke 4 > V1+k

kytko=k, 52 <z< ki +ko=k,0<e< iz

1
2
3

3 k2
< 1+ R+ 4 <1
k2

since the second sum has k1 = 2k < R, terms.

v+1
x+7k >‘
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step 2 Induction. We assume j and prove j + 1:

3 (ki 4+ v +2)

kytetkj 1=k Pk +v +2)
S Lk + v+ 2)T(m+ v+ 2) 3 W0k + v+ 2)
ki+m=k F(k Tyt 2) ko+-+kjr1=m F(m TV 2)
< ¢ Z ki +v+2)I'(m+v+2) < ciH
I'(k+v+2)
ki+m=k
and (B.5) follows. O

Appendix C. Study of the weight w.,,, for £ < K

We derive estimates and convolution bounds for the weight w, ,, (k) given by
(6.11). We start with estimating the weight.

Lemma C.1 (Estimates on the weight). There ezist a universal constant ¢ > 0 and
~* > 1 such that for al v > ~v*, the following holds. Let 0 < k <~ — 1, then:

W (k) c
Thtv12) ~ o -y

Proof. From (6.11), we have

Wy, (k) Ty —1-k)
T(k+v+2)  T(y—-1) °
Observe
P(y=1) = (y=2(y-2) = [y = )| T(r-1- k)
= [ -1-p|rer-1-k)
and thus
—DFT(v—1—-k -1
(v %(7(1 - ) _ m_, (711_]> > 1. (C.2)
O

Lemma C.2 (Summation bound). For some ¢, > 0, K, > 1 and all0 < b < b*(v)
we have the following uniform bounds:

K-K,

> (k) < cuab. (C.3)
k=1

and for K — K,+1 <k < K-1:
Wy, (k) = €W (y = 1 — )y +2-0717k), (C.4)

Proof. step 1 Away from the boundary. Pick a large enough universal integer
K, > 1 and assume first k£ < K — K,,. Then,

y—k-2=K+1l4+o,—-k—-2=0,+(K—-k)—1>K,—-1>1.
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From Stirling’s formula:

Wy (K) = Wf(k oy +2)

(v_z_k)%?*’f <k+yb+1)k+”b+1
e

()"
1
< e ® ((7 —-2- k)(k2+ vy + 1)) 2
’Y —

< o

((7—2—k)(k2+ub+1)>%
-

with
Py () = (v — 2)log(y — 2) — (v =2 — x)log(y — 2 — x) — (z + v + D)log(z + v, + 1).

We compute

_9_

P (z) = log(72x)+1log(az+ub+1)lzlog<M)
L 1+’y—ub—3—2a: >0 for 1<a< 273

- 0% T+ +1 <0 for %l’_ggmgK—Q.

Pick a large enough universal constant R, > 1, then for 1 <z < R,

O (z) = (v-2)ogly—2)—(y—2) (1 - ’Yi2> [log(v —2) +log <1 - f 2)}

— (r4+uvp+ 1)log(z+vp+1)

2
_ 7i2+0<v$—2> +alog(y —2) — (¢ + vy + 1log(z + 1 + 1)

1
= zxl —2) |1 _ (1).
-2 00 () e
This yields for 1 <k < R,: ®,(x) > log(y —2) — C, and, as a result,
_2_k)(k+y+1)>%

C
<=

v

Wy, (k) < c e los(r=2) (('Y o

ForRl,<x§7_V#b_3

R,
&, () = y(Ry) = —-log(y — 2)
and thus,
Cy
w’Y(k) < Ry *
")/ 4
We obtain the bound
Z Wey,, (k) < cuab.
1<k<1=%=3

On the other hand,

(v = Ry) = (v — 2)log(y — 2) — (Ry — 2)log (R, — 2)
— (y=Ry+wv+1log(y— R, +vp+1)
o RV—VI,—?) o _ o _RV—I/I,—?)
— (= 2ogly -2 - (-2 |1 22 gty -2 - g (1- 2]
+ O(Ru)z%log(v—Z)-
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The monotonicity of ®, then implies

Ry

Ry, vy —1p—3
4

@3(k) 2 @ (7~ By) > ;

log(y —2) for <k<~y-R,

which yields
Z w'y,ub(k) < Cu,ab

—vp—3
T <k<y-K,,

and concludes the proof of (C.3).

step 2 From Stirling’s formula, for K — K,+1 < k< K — 1:

<k+ub+1>k+Vb+1 %
P(k+tw+2) 1+ o0,(1)) e _ <k:+ub+1> _ G0u(1) =2y (k)
I(y-1) (Lzy v =2
with
O (k) = (v —2)log(y —2) — (k+ vp+ Dlog(k + v, + 1).

Let

k=y—z=K+14+ay—2z, 2+ay<z< K +a,,
then
Oy(k) = (y—2log(y —2) — (v —z+ v+ Dlog(y -z + v + 1)

3— 3 —
= (- 2)log(r~2) — (v 2) [1 ¥ ”_Zﬂ [logw ~2) +log (1 sotdos

= (z—w—3)log(y = 2)+0,(1)

and we obtain the formula
k Py o1 op
w'Y:Vb( ) - (’7 - ) (7 — 2)$—Vb—3

= eO"(l)F(y —1— k),yl/b-‘v-Q—(’y—l—k).

= QW (y = 1 = k) t3-0=F)

We now turn to the convolution type estimate on the weight.

Lemma C.3 (Convolution estimate). There exist universal constants c,q > 0,
0 < b*(v,a) < 1 such that the following holds: for all0 < b < b*, for all0 < k < K,

> wyu(k)wy(ke) < cvawq(k). (C.5)
ki1+ko=k
More generally,
S wyuk) . wy (k) < 6wy (k). (C.6)
k‘1+---+k‘j=k

Proof of Lemma C.3. We prove (C.5). The proof of (C.6) follows by induction and
is left to the reader.
We parametrize

-1k =(y 1)1~ a)
| ki=ka, ko=(1-2)k < |v—1—k =(y—1)(1—ax)
T—1-ky=(v-11-a(l —2))

)
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For k1 = 0 or k9 = 0, the claim is trivial and we therefore assume without loss of
generality
1§]{21§]€2<’}/—2.
We recall
vy—1l—k=ay+(K—-k), 0<Ek<K.
step 1 Generic case. Assume first
E<K-2 (C.7)
which ensures:
y—2—k=a,+(K—-k—-1)>1. (C.8)
Representation formula. We have
Wy (k)wyp(ke)  T(y—1—=k)(y—1—ko) (k1 +v+2)T(ka + v +2)
Wy, (k) Fy—1-kKT(y-1) I(k+v+2)
The function I'(y — 1 — z) is holomorphic and bounded for 0 < R(z) <y —1. Using
the three line theorem, we obtain
P(y=1—k) <T(y=1D'""T(y-1-k)",
P(y=1—k) <T(y=1)"T(y =1 -k)'"7

which implies that
POy —1-k)l(y—1—ks) _,
F(y—1-KI(-1) —
Since the I" function is strictly positive and bounded on [1, R] for all R > 0, we
may use Stirling’s formula to upper bound:

P(y—1—Fk)T(y—1— ko)
L(y—1-k)I(y-1)
<7—27k1)7_2_k1 27m(y — 2 — ky) (7*2*k2>7_2_k2 27m(y — 2 — k)

€ €

(#)V_Q_k 2r(y — 2 — k) (7;2>7_2 27(y — 2)
We compute the Stirling phase:
(v = 2)log(y —2) + (v =2 — k)log(y — 2 — k)
(v =2 —k1)log(y — 2 — k1) — (v — 2 — ka)log(y — 2 — k2)
= (y—2)log(y—2)+ (v —2—k)log(y —2— k)
(v =2 — kz)log(y — 2 — ka) — (v — 2 — k(1 — z))log(y — 2 — k(1 — 2))
Yo () (C.9)

Eyy
Monotonicity for CIJISL (). We compute

< o

and

[CDSL], () = klog(y — 2 — kx) + k — klog(y — 2 — k(1 —x)) — k

_ m%<ngf&fiw>_M%<1+7_g:?ﬁbk)>0 (C.10)

for 0 <z < % In particular,
(z) > 0. (C.11)
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case kp large. Pick a large enough universal constant R, > 1 as in Lemma B.1,
then for z > %, from (B.1), (B.6):

F(kl + v+ 2)F(k2 + v+ 2) S Cymefkq)f)(x) S Cy

I'k+v+2) =S
and therefore, from (C.11):
Wy (k1)wyy(ke)  T(y—1—k)l(y—1—ko) D(ky +v +2)0(k2 +v +2)
Wy, (k) F(y—1-k)I(y-1) I'(k+v+2)

1
Cy <(7—2—k1)(7—2—k2)>2
ki (y—=2—Fk)(v—2)
If k < 752 then ki, ko < 752 and
(v —=2—Fk1)(y—2— ko) <1
(vy=2-k)(v—-2)
Otherwise, vy — 1 > k = k1 + ko > 2k; and, using (C.8):
((7—2—161)(7—2—162)
(vy—=2-k)(v—-2)

>§7—2—k1§7§2k

which implies

Wy (k) (B2) _ e

w%u(k) a kj%

and gives

3 Wy lb )Wy k) (C.12)
k w’Y(k) B
k1+ko=k,Ry<k1<3

case kq small. for x < % ie. ky < Ry, using <I>](€12/ >0, <I>](€2) > 0, we have the bound

Wy, (k1)wy, (k2) (v—2—k)(y—2— ko) >
Wy (k) SCVM( (v—2-K)(y-2) ) ’

and using (C.8):

—2- —2- —2- —2- y
(v k1) (v ka) o k2 _ btk gy B iR <o

(v=2-k)(v-2) T-2-k y-2-k y-2-k
Since the sum has at most k1 < R, terms, we obtain

3 Wy (k)0 (ks) (C.13)
wy (k)
k1+ko=k,0<k1<R,

This concludes the proof of (C.5) in the regime (C.7).

step 2 Boundary terms. We treat separately the cases
ke {K-1,K}. (C.14)
For k1 = 1, we have
Py -1-k)I(y—1—ky) T(y-2T(y—-1-(k—-1))
Py —=1-k)I'(y-1) DK —k+a)l(y—1)
cI'(K—k+a,+1) <.
v K —-k+ay) —
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Then, using <I>,(€2) > 0:
Wy (k1)wyy(ke)  T(y—1—k)l(y—1—ko) D(ky +v +2)0(k2 + v +2)
Wy, (k) F(y—1-kKIl(y-1) I'k+v+2)
< cV1+ k‘le_kq)f)(m) < c,.

We may therefore assume

k1 >2 (C.15)
and therefore,

Y2 k> —2— (k-2 =a, +(K—k) —1+2>1
k1 < ko implies k1 < % < 7771 and
y—1—Fk > 1.

Moreover,
Dy —1—k) =T((K — k) +a,) 2 1
independent of v. As a result, (B.1) yields the upper bound:

ww,(krl)w%,,(kg) _ F(’}/ —1- kl)F(7 —1- k2) F(k‘l + v+ 2)F(k‘2 + v+ 2)
Wy (k) F(y—1-k)D(y-1) L'(k+v+2)
ry —

We compute the modified Stirling phase:
P(y—1—=Fk)T(y—1— ko)
Ily—-1)

(=20) 7t — e =) (2 T a2 = R

€ €

(C.16)

o (1) varti -

N|=

e (O 2-k)(r—2-k2)\? @)
< p—
with
3
YO ()

= (v—=2)log(y—2) — (v =2 = k1)log(y — 2 — k1) — (v — 2 — k2)log(y — 2 — k2)
= (y—2)log(y—2) = (v =2 = ka)log(y — 2 — kx) — (v = 2 — k(1 — x))log(y — 2 — k(1 — z)).

We have verbatim as above

!/
[@%3)} () >0 for 0<z <

N | =

= (v=2log(y =2) = (v =2-2)log(y =2-2) = (y =2 =k + 2))log(y =2 = k +2))
= (y—=2)log(y—2)—(y—4)log(y—4) — (K —k+ay+1)log(K —k+ay,+1)>—c
for some universal constant C' independent of v from (C.14). We obtain the bound

1
Wy (k1) Wy, (k2) <e ((7 —2-k)(y—2- kz)) S T ke k@),
Wy, (k) v—2
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case k1 large. Arguing verbatim as before, we pick a large enough universal constant
R, > 1 as in Lemma B.1 and estimate for x > %,

1
Wy (k1) Wy (k2) <c<(7—2—k1)(’y—2—k2)>2 1
Wy (k) N y—2 K

and
(y—=2—k1)(y —2 — ka)
v —2

<v-2<2k
(C.12) follows again.

case k1 small. Since k; < R,,, and in view of (C.14):

(V=2—k)(y =2 — k)
v—2
and (C.13) follows again. This concludes the proof of (C.5). O

<v-2-ky=7-2—-(k—Fk) <R, +2

Lemma C.4 (Truncated convolution estimate). For K +1 < k < 2K:

Z wﬂ/’l’b (kl)w%l/b(kQ) S chaw'Yayb (k - K)w'}’ﬂ/b (K) (C]‘7>
k1+ko=k,0<k1,k2<K
Proof of Lemma C.4. Let

K+1<k<2K
ki+ k= k
0<k <k <K

then
k
k—K <k < 5
We compute
D(vp+2+ k) (v +2+ ko) TS o (v + 2 4 )20 (v + 2 + )
I'(k — K)I'(K) T (v + 2+ I (v + 2 + )
4247
= ™ <1
j=k—K+1 <yb+2+j + (K — k1)> -
since k1 < K. It follows that
Wy (k1w (Bs) Ty =1~ k)D(y = 1~ k) .

Wry (k= K)wyp, (K) " T(K +ay — (k= K))I'(ay)
For k = 2K, we have k; = ks = K and from (C.18):

Wy (K1) Wy (k2) Ty =1 - k)l(y =1 k) _ Iay)l(e)
Wy, (K = Ky, (K) ™ I(a))T(ay) (F(ay))?

We therefore assume
kE<2K -1

and
ko <K-1, k1 >k—-K+1
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Using (C.18):
Dy —1—Fk)T(y —1—k2)_F(a7+K—k1)F(a7+K—k2)< 1
D(K + oy — (k= K)T(ay) 2K + ay — k)T (ay) ~ I(ay)

(aﬁK ky— 1)‘17”( k=1 <a +K7k271)a“/+K7k271
e

<(a7+K—k1—1)(aV+K_k2_1)>é

X
(a7+2K—k—1>O"Y+2K_k_1 oy +2K —k—1
€
1

< c (ay + K —k1 —1)(oy + K — ko — 1) 2 e_q><w573€(k1)

— INay) ay+2K —k—1
where

®0) () = (ay + 2K — k — Dlog(ay + 2K — k — 1)

- (ay+K—2z—1)loglay+ K —z—1) — (y + K — (k— ) — 1)log(avy + K — (k —x) — 1).

satisfies

(o] ) = o Qﬁ?f{(x;—&

k —2x
— log(1 > 0.
°g< +a7—|—K—(k—x)—1>_

Moreover, for A > 0 and |y| < A:

B y Yy Y2
AlogA — (A+y)log(A+y) = AlogA — A [1 + Z} logA + 1 +0 (Z)

= _y [mgA Y140 (%)} (C.19)
Pick a large enough universal constant K, > 1. For
r=k—K+y, 1<y<K, (C.20)

we use (C.19) to estimate:
) () = (0 + 2K — k — Dlog(ay + 2K — k — 1)
(ay+2K —k—1—y)log(ay + 2K —k —1—y) — (ay — 1 + y)log(ey — 1+ )
= yllog(ay+2K —k—1)+0(1)] —(ay — 1+ y)log(ay — 1 +y)
> %Iog’y (C.21)
Similarly,

F(Vb + k?l + Q)F(Vb + k:g —+ 2)
Nk—-—K+uv+2)T(K+uv+2)

1
< < (v + k1) (vp + k2) >2 o @0 (k)
T \k-K+uy+1)(K+u+2)

where
‘I’(f,z)c(@ = (k=K +uvy+ Dlog(k — K +vp + 1) + (K + v, + 1)log(K 4 v, + 1)
— Ww+az+Dlog(vy+x+1)—(p+k—x+1)log(vy+k—x+1)
satisfies

©)71’ v+k—x+1 k—2x
0] =1 — | =1 1+ — >
[ %’f} (@) og[ vy +ax+1 i +Vb+:13+1 20
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Moreover

o©

Ah(@) = (k=K +wv,+1log(k — K 4+ vy +1) + (K + v + 1log(K + 1, + 1)

(v +x+ Dlogvp+2+1) — (v +k —x+ Dlog(vy + k —x+ 1)
= (k—K+uwv+1)logk—K+uvy,+1)+ (K + v+ 1)log(K + v, + 1)
(W+k—K+1+ylogvy+k—K+1+y)—(np+K+1-y)logy,+K+1-y)

Let
¢(z) = (z+vp+1Dlog(z +vp+1) — (1 + 2+ 1+ y)log(vp + 2+ 1+y)
then

+ 1 +1 Y
) =log 2T~ ) _pog(1—-—Y <o
¢(2) g(yb—i-z—i-l—l—y & wtztlty
so that ¢ is deceasing. Then, ¢(k — K) > ¢(K), which implies
(I)EYGI)C(I') > (K +uvy+ 1Dlog(K +vp+1) + (K +1v, + 1)log(K + v+ 1)
— W+ K+1+ylogvy+ K +1+y)— (vn+K+1-y)logvy,+K+1-y)

Thus, in the regime (C.20), recalling (C.19):

2
®) (1) > Etwtl N o
q)%k(x>—y[log(f(+ub+1 +O(K) O\k) (©-22)

Also, we have the bound

w%l’b(kl)w%l/b (k2)
Wry,v, (k - K)w%Vb (K)
1
c <(a7+K—k¢1—1)(O&y+K—k2—1) (Vb+k1)(ub—|—k2) >2
I'(oy) ay+2K —k—1 (k—K+uv+1)(K+uv+2)

— (@0 @+l @)

X

Pick a large enough universal constant K, > 1 and recall t =k — K + y.

Case y > K,,. Using the monotonicity of the Stirling phases and (C.21), (C.22) we
have the lower bound:

K,
20+ 28] (@) > [o0)+00)] (v = )= 1og

which implies, for K, universal large enough:

Z Wy, v (kl)w%l/b(kQ) <ec v <e
= 1% & = V-
k1+ko=Fk,y>K, ,0<ki <ks<K w%”b(k = K)wy, (K) 8
Case 1 <y < K,. We estimate:
(Otfy—FK—k‘l—l)(Oé,y—FK—kig—l) (I/b—|—k‘1)(1/b—|—]€2)
ay+2K —k—1 (k—K+uv+1)(K+uv+2)
(g F2K —k—y)ay+y—1) (n+ k- K+y)(nn+ K —y)
N ay+2K —k—1 (k— K +uvp+1)(K + v +2)

Cy

Qy

IN
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where we used 2K — k — 1 > 0. We then conclude, using the positivity of the total
Stirling phase, since there are finitely many terms:

Z Wey vy (K1) Wy, (K2) < v Cy <
= = > Gy
1 tha=k,y<K,0<k <ks <K Wry,v, (k — K)wv,ub (K) 047F<Oz'y) 1+ O@)
The collection of the above bounds yields (C.17). O

Appendix D. Uniform convolution bounds for b = 0 with v complex

This appendix is the extension of Appendix B to the case where v is complex.
We use the standard formulas

log(re'?) = log(r) + 6,

arg(ﬂf + ’Ly) = 2arctan <x2_|_yy2_|_x> lf xTr > 0 or y 7é 0

where we have chosen the principal branch of the logarithm, i.e., on C\ R™.

Lemma D.1 (Lower bound on the Stirling phase). Let v € C\ Z~. Pick a
large enough universal constant R > R, > 1. Then there exist ¢, > 1 and
k* = k*(v, R) > 1 such that for all k > k*, for all

1
ki1 = kx, koy=k(1—ux), nggi,

we have

Lk +v+2)0(k + v +2) ~k[80 ()]
< e/ k :
F(k—i—l/—i—Q) <c,\/1+ ke (Dl)

where the phase function satisfies*

3P (z) >0, (32 (x)>0.

R 1
Moreover, for 3 <z < 3,
~ 1
<I>,(€2) (x) > ix\logaﬂ. (D.2)

Proof of Lemma D.1. We assume k > k*(R, v) large enough, and consider two cases:

k1 +R(v) <0 and k; + R(v) > 0.

step 1 We consider first the case k1 + R(v) < 0. In this case, we have
k1 < R(v)

TR TR
Note that, since k > k*(R, v) is large enough, we have ko +R(v) > 0 and k+R(v) >
0. We may thus apply Stirling’s formula2®

D(z+1) = (1+ 05y 400(1)) (g) oz

R(v) <0.

251 the case where R(v) > 0, EI;S) is smooth. In the case R(v) <0, 5,(62) is smooth except at

: — _Rw
the point r = —=~

where it is only continuous, see Remark D.2. In particular, at that point,
(‘5;62))/(.T) > 0 means that the left and right derivative, although not equal, are both positive.

2611 what follows, we apply Stirling’s formula for z satisfying R(z) > 0. In particular, /z and
log(z) are both defined.
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to upper bound, using also 0 < k; < |v| and k1 +v+2€ C\Z",

L(k1+v+2)0 (ke + v+ 2)
I'k+v+2)

ko+v+1
()™ VR v
()M T

<, e—?)?[(k—&—u—&—l)log(k—l—u—l—l)— (k24v+1)log(ke+v+1)]

We compute:

(k+v+Dlogk+v+1)— (ke + v+ 1log(ks + v+ 1)

1 1
= k(l—i—yz >{logk+log<1+yz ﬂ

- k<(1—x)+”zl> {logk—i—log((l—w)-i—y—]:l)}

1 1
- kxlogk+k<1+”;'> 1og<1+”2 >

- k((l—:z)—klj:l)log((l—x)—kV_]L_1>.

Therefore,
RI(k+v+ Dlog(k +v+1) — (k2 + v+ Dlog(kz + v +1)] = k& (2)
which yields, using also that k1 > 0,
ki +v+2)T(ke+v+2) _k3® ()
<cV1+k ), D.
T(k+v+2) < e/ 1+ ke (D-3)

We have

=(2

o2 (0)=0
and

0,0 () = log(k) + 1 + R [log ((1 o)+ VZ 1)}

= log(k)+1+log (1—3:)+V+1‘
2 o~ 2
= log(k)+1+log \/(1_3;_'_%(”]){:_"1) +(J§:)>
= (D.4)

for z € [0,—R(v)/k]. We conclude, in the case k1 + R(v) < 0, that &5,(3)(36) is
a non-negative non-decreasing function of x € [0, —R(v)/k]. Also, note that for
k1 + R(v) < 0 and provided we choose R > R, large enough, we have kz = k1 <
|v] < R so that we do not have to prove (D.2) in that case. This concludes the
proof of the case k; + R(v) < 0.

step 2 From now on, we focus on the case k; + R(v) > 0. In this case, we have
e cither R(v) >0 and z € [0, 5],

e or R(v)<0and z € (—éﬁg’), 3.
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Since we also have ko + R(v) > 0 and k + R(v) > 0, we may thus apply Stirling’s
formula to upper bound

ki +v+2)T(ke+v+2)
I'k+v+2)
ki+v+1 ko+v+1
) (Bet)™ ’ Fr o1 (hatzet)” VR vl
~v k+v
() U

51/ ‘kl Y+ 1’67%[(k+1/+1)10g(k+1/+1)7(k1+l/+1)log(k1+l/+1)7(k2+u+1)10g(k2+11+1)}
We compute:

(k+v+1log(k+v+1)— (kg +v+ Dlog(ky + v+ 1) — (k2 + v + 1)log(ks + v + 1)

= k <1+V—]:1> [logk‘Jrlog <1+V—]:1>]

1 1
— k:(a:—i—y—l: ) [logkz—i—log <x+yz>]

- k<(1—x)+”k+1> [logk—i—log((l—x)-ﬁ-y—gl)}

1 1
= —(1/~|—1)10gk+k<1—|—y;:> log<1+y;: )

_ k:[<x+T)log(x—kyzl)—k«l—x)—kT)log((l—x)—kyzlﬂ.

Therefore,

e if R(v) > 0, then

R[(k+v+ Dlog(k+v+1) — (ke + v+ Dlog(ks + v+ 1)]
— R+ Dlog(v + 1)] + k& (),

with the choice
~ 1 1 1 1
$(z) = %{”Z 1og<”;r >+<1+”Z >1og<1+”2;' >
v+1 v+1 v+1 v+1
- | S 1—2)+——)log | (1-
[(m+ 5 )og(x—l— ’ >+<( x) + ? >og<( x) + ’ ﬂ },

o if R(v) <0, then

R[(k+v+Dlog(k+v+1) — (ke + v+ Dlog(ks + v + 1)]

gk R K_W/:H) log (—%(V)]jﬂ)] k32 ()

— —%[(—%(V) +v+1)log(—R(v) +v+ 1)} i k;ﬁg)(;c)
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with the choice

) = Bk (RO 1) (2B )
{2
[ ) (oo 002

Remark D.2. Note that the above choice for () < 0 is such that 553) (x), which

is defined in that case onz € (— éRg/) 3], and in Step 1 on z € [0, —ERS:)], is smooth
onzel0 ,2]\{ } and continuous atx——%.
The above choice for ;IVDIE?) (x) yields
‘I’(kl +v+2)[(ky + v+ 2) ‘ < cyme’k‘if)(x). (D.5)

I'(k+v+2)

Recall that we are in the case k1 + R(v) > 0, i.e. > —R(v)/k. We have

0,8 () = R [—log <a; n ”k“> 4 log <(1 ot VZ 1)}

- &E[log(W) = log |1 SJ:E;)

(- 20) (o + 261) ) (1 - 22) %) 2
= log —l-(x_‘_mykm)g_i_(%g/))z + (x+¥e(l;€m)2+k<g§€y))2
> 0

for z € [0, 3] if R(v)>0 and for z € (_gfe v, 3] if R(v) < 0. Also, we have (5;2)(0) =0

it R(v) > 0, and P (~2)y > o if R

v) < 0 in view of the continuity of &)f) at

and its positivity on z € [0, —w]

established in step 1. Together with step

1, we conclude that &)](62) (z) is a non-negative non-decreasing function of z € [0, 3.

step 3 Lower bound for small x. Assume

| &
N |



where R > R, > 1. We start with the case R(v) > 0 for which we have in view of
the definition of @,(CZ) in that case

~ 1 1 1 1
V() = R ”_/: 1 ( Z >+(1+V;:>log(1+y+>
+1 v+ v+1 +1
— <z+k>log x+k><(1x)+ k‘ )lg((l )+k>
_ %(V])f—i_ll ' 1‘ 0

k
~ alog +Zl‘_ (fl_ ) %(V])C%—l)l g‘(l—a:)Jr —;1‘+o<1>ggf)
where we used in the last inequality that [S(log(z))| < 7 for R(z) > 0 or 3(2) # 0
We ded
3@ = 2O W S S ég(;))Z)'
P )
+ xlg(\/<x+%(yl)€+1> (%g/) 2)
+((1—x>+%(yz)€+1> o (ﬂlﬁﬁ(v;jlf <%§€)> ) rom
R
+  |log(z) + log (\/(1 + W)Q - <%k(5)>2) o <32’)>
o (23 (29))
> %wllog:vl
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It remains to treat the case (r) < 0. Recall that since z > %, we are in the

case k1 + R(v) > 0. Then, in view of the definition of CT)](S) in that case, we have

e [ e ] |

_ _R@)logk 1 Rv)+v+1 R(v) + v+1
= A +k:10 ’ A + 11+ A log |1+
B (x—l—%(yl):_l)l +V—|—1’_<(1_ )+§R(V)+ )log (1_$)+V—I:1‘

S(v) —Rv)+v+1 v+1
? \slog<k + log 1+T
_log<x+yzl> —log <(1—az)—|—y_]:1>

=

vl vl
() ) 102
2]

log
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where we used in the last inequality that |3(log(z))| < 7 for R(z) > 0 or J(z) # 0.
We deduce

o) (z) = _%E:) ’bg <\/(kw +R() +1)2 + (g(y))2>‘ _

1
z

(120 (\/(HW)Z(%;”))Q)
+ x|log (\/<x+%(vl)€+1)2+ (%‘g/)y)

1V
| — |
|
|2
=
VS
=~
oy
+
=
=
_I_
—_
=
+
B
=
e
~—

k
lv| +1 v+ 1
> L
x|logx| {1 + 0, < R log R

> 71 |1 |
I|logxr
= 9 g

as desired. O

Lemma D.3 (Uniform convolution bound). Let v € C\ Z~. Then there exists
Cy > 0 such that for all k > 1, for all j > 2,

>

kitetkj=k

T_ (ki + v +2)

< . .
I'k+v+2) =G (D-6)

Proof. We argue by induction on j.

step 1 Case j = 2. We apply Lemma D.1 with some large enough R, > 1 and as-
sume, without loss of generality, k > k}, with £} a universal, large enough constant.
This leads to

F(k1+v+2)L(ka +v+2) 71{[6(2)(@}

<ec\/1+Ek k ,
‘ T(k+v+2) = VLt he

where © = ki /k. We may assume k; < ko so that x < 1/2. For x < %, we use the

lower bound &),(f) (x) > 0. For z > % the monotonicity of 6,&2) on [0,1/2] implies

5O (0) > 5 <Rv) ST . (i”)‘ > %logk

k 2 k

og (\/(m« +R(w)+1)2 + (%(y))2>|

(
1+ (S(»)?
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for R, < \/k}, from which

Z F(k1+V+2)F(k2+V+2)'
ity Ik+v+2)

< 14 > VIt ke 4 > V1+k

ki +ke=k,0<z< Br

4

3
51, 1—|—R3+kTV§,, 1,
since the second sum has k; = 2k < R, terms.

step 2 Induction. We assume j and prove j + 1:
1

keytetky 1=k P(k+v+2)
_ oy T(ky 4 v+ 2)0(m + v+ 2) 3 T (ki + v+ 2)
k1+m=k F(k Tyt 2) ko+-+kjp1=m F(m Tyt 2)
< ci Z I'(ky +; Z 2)F(m2+ v+2) < ciH
k1+m=k ( v+ )
and (D.6) is proved. O

Appendix E. Proof of Lemma 1.5

This Appendix is devoted to the proof of Lemma 1.5 which is a direct conse-
quence of analyticity. We study the function Sy (d, ¢) from (7.23) which arises from
the limiting problem (5.4). We recall that there are in fact two different limiting
problems which correspond to the parameters r = r,, 7" associated to the respective
ranges 0 < £ < d and £ > d. Each of the limiting problem gives rise to a collections
of coefficients: v, t4,c_,,cq, ... each of which is a function of £. In fact, each of
them is a different function of ¢ depending on the case 7, or ™, see Appendix F. Let
us associate superscript * to the former and + to the later. Since r4 corresponds to
the range ¢ > d, the coefficients v, ... are originally defined for the same range of
£ but, by the direct examination of Appendix F, can be extended through the same
formula to the interval ¢ € (0,d). In fact, they can be similarly extended as holo-
morphic functions to a small complex neighborhood of R* \ {d}. In the * case, the
function v%, is originally positive on the subset O} C (0,d). Again, by examining
the formulas in Appendix F, we can conclude that v, ... are holomorphic functions
of £ in a small complex neighborhood of O (we do not need to extend them to £ > d).

We now similarly define S* (d, ¢) and S1 (d, ), originally on their respective sets
O and £ > d, and then argue that S’ (d, /) is actually holomorphic in a neigh-
borhood of O, while for d = 2,3 SI(d,¢) is holomorphic in a small complex
neighborhood of R* \ {d}. More precisely,

Lemma E.1. We have

(1) if d > 4, each function S% (d,l) extends holomorphically in ¢ to a complex
netghborhood of O%,
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(2) if d > 4, each function S (d,¥) extends holomorphically in ¢ to a complex
neighborhood of (d, ),

(3) ifd=2,3, S (d, L) extends holomorphically in £ to a complex neighborhood
of {0 < ¢ < d},

(4) if d = 2,3, SE(d,?) extends holomorphically in ¢ to an open connected set
in C containing neighborhoods of {0 < £ < d} and {d < { < 4o0}.

We emphasize that the extensions above are not abstract but follow from extend-
ing the values of ¢ to the complex plane in explicit formulas.

Proof. Note from their definition that all the constants appearing in the definition
of the holomorphic functions pg, p; and vj, i.e.,

Te, 02, A—, i, C—y Ci, Cj, dij, €5, dij, €j, We, VYo,
Dija EZ]: a, UV,

are rational functions of ¢, v/¢ and ¢ i, and hence are holomorphic in £ for £ € C\R~
wherever the denominators do not vanish. These denominators are given by the
following list

E: €+\/ga 1+\/z7 1+(d+1)\/z+€7 Mty C4 — Cy >\—7 CZQO'

For real values of ¢, these denominators vanish at £ = 0, £ = d, as well as at certain
negative values of ¢ which explicitly depend on d. In particular, we deduce that all
the above constants are holomorphic in £ in a small neighborhood of R* \ {d}. This
applies both to the * and the + case and immediately implies that all the Taylor co-
efficients (145)%, (vj)r and (po)g of p4, vj and o are holomorphic in £ on the same set.

We now consider the set Q:{ obtained the intersection of the above small neigh-
borhood of R* \ {d} with the set (v£)™*(C\ Z~). Note that since by (F.15) the
function v, > 0 for all £ > 0, the set Q} contains R* \ {d}.

In the * case, we define the set {2} to be simply a small complex neighborhood of
O7. Note that since v, > 0 on O}, the condition that v € C\ Z~ is automatically
satisfied on €1}, provided the neighborhood is chosen to be sufficiently small.

Our goal is now is to show that S and SI are holomorphic respectively on
and ) and that RT \ {d} belongs to the same connected component of €2}. The
next argument applies to both, so will simply use the notations S, and €.

In view of the definitions of €y, in particular, for any k, v + k+3 € C\ Z~
and hence I'(v 4+ k + 3) is holomorphic in ¢ on 4. We deduce that all the Taylor
coefficients (1), (h;)x and (ho)y of hj, h; and hg are holomorphic in £ on 4. In
view of the definition of wg, we conclude that for any k, wg is holomorphic in ¢
on Qg. In particular, this is also true for (—1)*wy. As a result, for any k, S is
holomorphic in £ on €.

To conclude that S (d,¢) is holomorphic in ¢ on g, it suffices to prove that
Si(d, £) converges uniformly to S (d, f) on any compact of {23. Note that Lemma
5.4 implies that Sy (d, £) converges uniformly to S (d, £) on any compact of 0 < £ < d
in R, so it suffices to prove that the conclusion of Lemma. 5.4 still holds on €;. Now,
a quick inspection of the proof of Lemma 5.4 reveals that the only obstruction is
that the conclusions of Appendix B do not hold if v € C\ Z~. The fact that these
conclusions hold even if v € C\ Z~ has been checked in Appendix D. Thus S (d, ¢)
is holomorphic on Q.
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Finally, it remains to prove that, for d = 2,3, in the case r = r4, {0 < ¢ < d}
and {d < ¢ < 400} belong to the same connected component of Qz{. First, recall
from Lemma F.4 that, for d = 2,3, in the case r = r4, v > 0 on {0 < ¢ < d} and
{d < ¢ < 400} so that {0 < ¢ < d} and {d < ¢ < 400} belong to Q4. It thus
remains to prove that they belong to the same connected component of €24. To this
end, Q:{ being open, it suffices to exhibit a continuous curve in Q; with one end
on {0 < ¢ < d} and the other on {d < ¢ < +o00}. Now, from the explicit formula
(F.15), we have the following asymptotic as ¢ — d

I/o(d)
(¢ —d)?

We then choose the suitable curve in the complex plane as

(1 +ay(d)(C — d) + ax(d) (¢ — d)* + O((L — d)3)), vo(d) > 0.

Mei(%Jre) I <0<

>>1
1 .
r bl 2_ _27 0

Tro = d+
For ry large enough, =y, clearly has one end on {0 < ¢ < d} and the other on
{d < £ < +oo} and is also a curve in C\ ({d} UR™). So, in view of the definition

of Q(Jj, it suffices to prove that v ¢ Z~ for any ¢ € ~,, for a suitable choice of ry.
Now, in view of the above asymptotic for v, we have for rq sufficiently large

vld+ Mei(gw)
0

— 20 (ro +ia1(d \/1/07 \/T) — az(d)y (d)e%e + 0(7‘0_%)).

Taking the imaginary part, we see that the above expression crosses R~ for 6 = 6
with 0y satisfying

1

7o sin(20p) — a1 (d)/vo(d) cos(fo)y/ro = O(ry ?)

and hence
d d _3
sin(fp) = a(d)rold 2) TI;O( ) O(rg?)-

Plugging back in the above expression, we infer at 6 = 6

vo(d) i(5-+60)
7o

d+

1

= —rgcos(26p) — ai(d) I/o(d) sin(0o)y/ro + az(d)vo(d) + O(ry ?)

= —ro+ ag(d) (d) + O(TO )
Thus, choosing

1
T()(k) = k+a2(d)V0(d)—§, keN, kE>1,
we obtain
() i(z+o0m)) _ ;.. L -1
V<d+ ro(k:)e 2 = k—l—2+0(k: 2)

and hence v ¢ Z~ for any £ € ~,,(x) provided k € N is chosen large enough. O
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Appendix F. Slopes and eigenvalues at P, near the critical value

In this appendix we collect the values of the parameters which appear in the
computations near P for r < re close to re.

F.1. Values of the parameters. For 1 < r < r (d,¥):

c1 = 311)% —2(T+ 1)11)2 ‘I-T—dog

2 = FRwa(l+d—1) = (L +d+br—7)]
c3 = —2dosws + 2{(r — 1)o7

Cq = *20%

dyo = 3wz — (r +1)

dll = _2d0'2 (Fl)
doo = U(r — 1) — dwo

620 = %

€11 = 2w2(é+d_1)z(é+d+£7’—'r)

eo2 = —302

€21 = MT*I.

Moreover,

d20 = (cpe0 — doo)c® + (crer; — di1)e— + cyepn — do2

d11 = 2c_ C+(C+€20 — d20) (C + C+)(C+611 — d11) + 2(C+€02 — dog)

doz = (C+620 — dgo)c% + (cyerr — dir)es + crepr — do2

dg(]:—( - —dC_)+C+ (K—HZ 1 2_—1)

dy = —(3c_ct —de_ —2dey) + ey (”d L(2c_cy +c%)—3) (F.2)
diz = —(3c_c2 — de_ — 2dcy) + ey (F9-1(2c_cy +2) - 3) .
€90 = (dgo — 0_620)62, + (du — 6_611>C_ + dgo — c_epa

€11 = 26_6+(d20 —c_ey) + (C_ +cq)(dyy — 6_611) + 2(d02 — 6_602)

€02 = (dao — c_e29)c + (di1 — c—e11)ey + doa — c_epa

éx1 = (3ckcy —2de_ —dey) — o (F9=L(2 +2c_cy) — 3).

F.2. Slopes and eigenvalues at P, for r = r*(d,¢). We compute the slopes and
eigenvalues at Py for the critical speed r = r*(d, £), 0 < £ < d.

Lemma F.1 (Critical values of the slopes at P»). Let

d+ ¢
0<t<d, r=r*(d{)= ,
(,6) (4+d
then at Py:
poo _ Vi
R (A S
o d(d—Vd)+2d+L(d+Vd
AT = (t+/d)> <0
AT =0
o (Vd=1)(d—¢)
It d(VA—1)+6(\/d+1)
=1 (F.3)
o0 — _ Vd(d(Vd-D+U(Vd+1)
L (L+Vd)?
o — _ Vd[d(vVd—1)+£(v/d+1)]
2 o ((e+/d)?
5= (t+Vd)?
X = — 2d
4 ((+Vd)2"
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Moreover,
4d
A+ dE VA2 10
Proof of Lemma F.1. The proof of (F.3) follows from (2.17), (2.32) which ensure
0% < 05° =05° = r(d,0)Vd = Vd :
d+ ¢ (++/d
Plugging this into (2.41) yields (F.3) via a direct computation. The computation

of (F.4) can also be done analytically but is more involved and has been computed
with Mathematica. O

pE(r) = =0 Ay (r") = < 0. (F.4)

Observe that r = r*(d, £) for 0 < ¢ < d corresponds to parallel slopes at Pey:
o Cgo CZO (F 5)
= == )
- 1 5’
We observe the formulas

- —20\/d
C

o _ F.6
d(Vd—1)+¢(/d+1) (£6)

and the algebraic relation at r*(d, ¢):
2(05°)%0 = ¢®(2(05°)* + A-). (F.7)

F.3. Signs of doo, €30 and v at r*. We compute explicitly the sign of the coeffi-
cients dgg, €39 and v at r*(£).

Lemma F.2. Foralld > 2 and 0 < ¢ < d, we have
dss <0, &5 >0. (F.8)
Also recalling (1.20) p =1+ %, (5.2):

d=2, 0<f<?2
d=3, 0</l<3
d=5 p<10
Voo(d,£) >0 for | d=6, p<6 (F.9)
d=17, p<4
d=8, p<3
d=9, p<3.

Proof. step 1 Quadratic terms. We compute the values at r*(¢) from (F.1):

doo — —Vd—(d=0)
207 4 vd
o _ _ 2dVd
L= 1vd
0o _ —dVd+(d—0)Vd
02 — +vd
020 — (2d—1)Vd—(d—0)Vd
20 — £(6+V/d)
00 — —2dVd+(1+Vd)(d—0)
1= L(6+V/d)
eX — —3Vd
027 Vdte
Also, recall that we have
- - —20/d o d(d—Vd)+2d+((d+Vd)
=1L, &= AP = — ,

T dWd-1)+eWd+1) T (0 + V)2
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step 2 Computation of d33, €55 and v4. Recall (F.2) which together with (F.3),
(F.6) yields at r*(¢):

40d(v/d — 1)(d — €)(d + )
(04 V) (d(Vd — 1) + (1 + Vd))?
(VA — DVA(L + Va) (£ + d) (62(\/3 —1) = 20v/d(1 + V)2 + d2 (2 + 5V/d — 3d))

o
dQO__

oo
€ =

(€ +Vd)(d(Vd— 1) + (1 + Vd))?
We now compute from (5.2), (G.1), (4.22):

Voo = —7b(D11+ D3y — Fny)
1 [~ = = . 3
= ———|éxdi + (c+ —c-)|A_|d3o — 611!d20|}
(d20)?

=~ Va) 2V~ D)+ dyd(d—0?)
X {e‘*(\/E —1)% — d(1 + Vd)? — 462d(1 — Vd + 2d — d2 + d?)
(4 — 12V/d + 3d + 2d3 — d?) + (Vd — 1)d3(d — 4)}. (F.10)

step 3 Sign of Jgg, €5g and vo. The sign Jgﬁ < 0 follows from its formula. Con-
cerning €5g, we see from its formula that —eSg has the same sign as

£ = LC(Nd—1)—20Vd(1+ Vd)? +d2 (—2+5Vd — 3d).

Now, we have

‘on V(1 + Vd)?
g = 2(%&-1)(4— N )

and since for d > 2 we have

V(1 + Vd)?

Vd—1

we infer for £ < d that &£y is decreasing and hence for 0 < /¢ < d,

> d,

E20(0) < Exg(0) = —d3 (2 — 5v/d + 3d) = —3d3 (Vd — 1) <\/3 _ 3) “0

so that €99 > 0 for all d > 2 and 0 < ¢ < d.
Concerning v, we see from its formula that v has the opposite sign to

Ny = (AWd—1)2—3d(1+Vd)? — 4021 — Vi +2d — d2 + d?)
A2 (4 — 12Vd + 3d + 2d2 — d2) + (Vd — 1)2d3(d — 4).
We then check the sign of Ny numerically and confirm that v > 0 for the above

claimed range. O

F.4. Slopes and eigenvalues at P, for r = r(d, /).

Lemma F.3 (Critical values of the slopes at P»). Let
d—1

O>d r=r(df)=1+—""2_
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then at Py:
oo __ 1
g2 = 14:[6
o0 __ 0
W=
oo — _ 2V(d+V0)
= Tgvie
oo — _ 2V(d+V0)
3 (1J2rx/2)3 (F.11)
‘T T Ve
> =-1
o _ Vd+VD)
T 1Ve
AP =
N — _2[£+(d+1)\/2+1}
- (1+ve)3
Moreover,
2vd—1({ —d)

< 0. (F.12)

HE = (BA)o=o = = 1+ VO (14 (d+ D)V +0)

Proof. This follows from a direct computation. (F.12) has been computed with
Mathematica. O

F.5. Signs of doo, €30 and v at r4+. We compute explicitly the sign of the coeffi-
cients dgg, €39 and v at 7*({).
Lemma F.4. For alld > 2 and { > d, we have

dsg <0, €35 >0, ve >0. (F.13)
Proof. We collect the values

4 — =Vi—d—1
20 7 (1+v0)2
co __ _—2d
=4V

40 — —t=dvt
02 (1+/2)2

eX — {+d—1 (F14)
20 L(14+2)

e = =2
Y]

eX — _ 3
02 1++/2

e° — l+d—1
21 IS

We compute directly
joo — _ (d=1)({=d)
90 = v

coo _ (d=1)(¢41)

€20 = oo
and
A+ 2) + d2(02 + 202 — 20+ 2V — 2) + d(205 + 502 + 405 + 70+ 2V + 1)

2
e T - —dp

FO(2 4202 + 0420+ 1)| >0 (F.15)

and the claim is proved. We note here that this function v, is positive for every
value of £ > 0. O
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In this Appendix we collect all the formulas for all the terms appearing in (4.15).

We recall z = bu.

D;;, E;j coefficients

JQO'[I]@

D _ E _ €20 W
207 Juglles—e) 207 (er—e )N [d=
a d11 Ve Ve E — €11 We
D= mije,=o 1 e i
> do2¢ps e By = 02l
Doz = 11 Ter =) 02 e
~ dso Flag — 30WZ
_ 0 e 30 =
D3 \u-tl(c;s-*g—) (C+~_Ci)2‘>‘f|¢®
s d1 e 02 B a®l
Do = e = T e
- dio02 02 o Gzieul
Dia = i lles ) Bz = (e+—c_)A-]
~ d 2 - €03Po W
Doy = o=t Eos = e —n ]
l+](cq—c-) +Te)IA-

(G.1)

Remark G.1. Note that the coefficients D; E have a well defined limit D EOO

as b — 0 from (4.16).

Polynomials Hy, Ho

Hy(b,u) = 350 b Hyj(x)
Ha(b,u) = Y0 b Ho i (a)
with
Hip(x) = (Ell + E30) (E02 + E21)CU — Epa? + Fosa?
Hyq(z) = (EQQ + Egl) Epox + Egza?
Hia(z) = —Eis + Egzz
Hy 3(z) = Eos,
HQ,U(x) (Dll + DSO)x — (Dog + D21)JU + D121' — Doggj
Hy(x) = (D02 + D21):C + Dlgx — Do3a:
Hys(x) = Digx — Doz
Hy3 = —Dosx
Polynomials G, G
Gy (b7 u) E11.’L‘ - (2E02 + EQl)fL' + 2E12$ — 3E()3$
Ga(b,u) = _Dlll‘ + (2D02 + Dzl)x — 2D12x + 3D03x
Nonlinear terms
NL; = 57_ b/NLy;
NL; = 322 W/NLy,

with

NLjg = —2 My W2 + 22 Mo 03

N\EH = MH\IIQ - 2:BM12\I/3

77

M1 = —Egzx + E12$2 — 3E03$3

__ My = Foza?
NLip = Mio0? 12 03
N\igo = —.’L‘Mgl\IJQ + .TQMQQ‘I/?’
NLg; = My U? — 20 Moy U3 ,
NLgg = Moo W3

M21 = DOQQZ — Dlgl‘ + 3D031‘
My = Doza?.

1] 7

(G.2)

(G.3)
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Appendix H. Proof of (9.31) and (9.32)

This section is devoted to the derivation of the estimates (9.31) and (9.32) by
computing both the P» — Po separatrix ®g and the root ®, in the variables of the
renormalization (4.14).

H.1. Computation of ®g.

Lemma H.1 (Computation the separatrix ®g in u). Let

a=~b= [A-]
sl
©g = —Ey1 — F3 — 2
— _(ex—c)py
ap = T 2 i
__ 11 diié 5 (cy—c_) i
2= iy (et ) ()
— aiéso _ €204+
91 = (cr—c)A— 7 A_dy
0 = @ o+ (8 - i) o]
then
s = c- —bl(cy —c)giu (H.2)

+ 0 {—(cs — )92+ 9190)u + [(cs — 20100 — (cy — =) gi] u?} + O(b?)
where the O(b) is uniform in 0 < b < b* < 1 small enough and u € [0,1].

Proof of Lemma H.1. step 1 Unfolding the change of variables. Recall:

W = —b b=2 =10
Y=0F ' | 0=1eu ’
and ~ ~
Wo_p| W e o W _|eWHey
b)) )Y 1 1 Y W+ 3.
Then,
W = —bib = —bileu W = —c_bliou + i bPiietpoud (11.3)
3 =026 = D2etoud = | L= —bleu + b?ie e ud '
which yields
o W _ —cbimut c+b2u~):91;®u¢ e - bc_i_lﬁegb'
For 0 < u < 1, recalling (7.87), (6.29), (6.1), (4.14), (6.2), (6.10):
p=u+(1—u)V =u+bMyu(l—u)© (H.4)
My =1+ O(b) '

such that for the separatrix
|Og| < ¢(d, )

uniformly as b — 0 from (7.87). Therefore, th=¢ is bounded on [0, 1] uniformly as
b — 0, and we may thus expand in b uniformly for u € [0,1], to obtain for the
separatrix curve:
e —beytpe ~ ~ ~
¢ = W = (c- —beyved)(1 + bipe g + b*Y2 0% + O(b%))

= . —bfe(cy —c)p— b2 (cy — ) + O(H). (H.5)
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step 2 Computation of 9. Recall (4.13):

7 _pler—c)py 2
We = —b ” + O(b%)

= EaoW2
Yo = _7(@2_067»7 +0(b%)
and
g, = <C+ — C_))\+W + d~20V~V2 + CZHWS + &0222 + J30W3 + 652117[/22 + d"'12W22 + 620323
= —Al + C+A2,
Go = (cp —c )N+ EooW?2 + &1 WE + 0232 + E30W3 + 801 W2E + 612WE2 + 69353
= Al — C,AQ.

This yields
Sol(er — e )N 4 E11Wa] = —é0W2 — 303 + O(b*)
L g —eW2 W2 + O
(cy —c)A_+eénWs
1 5.2 5. T3 4 éllW@ 2
. 3 1— = ow
Ry (620102 + e W2 + O] ( e T O®)
Ep0 W2
(cy —co)A_
Ea0W2 [ (530 €11 ) % 2 ]
SR V1A T Y (U S— Ao 1
(c4 —c)A= €20 (cy —co)Ao ()

1+ O 4 0(52)] (1 - (cjl_liv_}_ + O(b2)>

€20

and
(c4 — )b+ dopoWe + d113e + dsogW2 +O(%) =0
- 1

= We = —= [(C+ — C_)/,L+b — 6211
d20

a0 W2
(cy —co)A_
d’ ~ B . 2
_ 1 [(C+ e b4 <_11620)\ +d30> <b(C+C>M+>

dao (cy —co) doo

_ (_(C+ —~C)M+> b— ~1 _ dy1E20 + dsg ((C+ —~C)M+>2b2 +O(b3)
dao doo (cy —c)A- doo

= a1b (14 ab+ O(b%))
with (a1, ag) given by (H.1). This yields

> = ——=— = — 1+ =——F7——— | Wa+0O(b
1!} bW® bW® (C+ - C*)Af €20 (C+ — Cf))\f ( )

- EooWe €30 €11 x 2
= e | (R ) e o)

a1 9 €30 €11 9
S (| I (U N P SO 1(

(cy =)Ao (1-+a:b+0() [ " <é20 (e — C—V\—) a1b+O( )]
= g1+ bgs + O(b?)

+ 6730‘7[/3)

+0(b?)

+O0(b?)

with (g1, g2) given by (H.1).
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step 3 Computation of ®g. We have for 0 < u < 1 recalling (H.1), (H.4):
bs = u + bu(l — u)MyOg(u) = u + bu(l — u)Oy + O(ub?)
and hence from (H.5):
Dg = c_ — bipe (e — c_)ps — V2PZU2 (cy — =) + O(b°)
= c_—blcy —c) [gl + bgo + O(b2)] {u + bu(l —u)Og + O(ub2)}
— VU (cp —c ) giu® +O(?)
= c_—blcy —c_)u {g1 +b(g92+9100(1 —u)) + O(bz)} —? (cy —c) g%u2 + O(b3)
e = bl(er —e)gru] + 67 [~(cr — e)[(g2 + 9100)u — 1Ogu’] — (cy — c-) giu®] + O(b?)
= ¢ =blley —c)gru] + 0 {—(cr — ) (g2 + 9100)u + [(cy — c)g100 — (¢4 — ¢-) g7 u?}
+ O(b*)
and (H.2) is proved. O

H.2. Computation of ®,. We now use the separatrix curve ®g(u) to parametrize
>} in the eye and compute the root @, .

Lemma H.2 (Computation of ®,). Let ®, be given by (9.28). Let

foo=—=Ap(1+c)
for = =209 — epz — doa + (—402 — e11 — di1)c— + (=202 — e — dag)c?
foo = (d—1)e— + (1 —eg)c2

H.6
Fio = (2 + 1) o
fi1 = (=403 — e11 — du1) + 2c_(—202 — ez0 — dao)
Ja1 = =202 — ez — dao
then, uniformyl for 0 < b < b* < 1 small enough and 0 < u <1 for re =r*:
§, - _Jo_ <f°1a1> bu+ O(F?) (H.7)
J10 J10
and for re =ry:
Dy (H.8)
_@ — (‘fOlal) bu + |:_fO1ala2u_|_ ('f()lfn_Qfozfloa% + fbl@lgl) u2:| b2 4+ O(b3)
fio f1o 10 fio f1o

Proof of Lemma H.2. We recall the formulas using the notation (H.6)

Fo = foo + fo1Z + fooX?
Fi = fio+ fuuZ + O(2?)
Fy = fu13 + O(2?)

and

§, - A+ VEL(E)? — 4R (35)[Fo(3)
2|F3(3)] '
The difference between the case re = r* and re = r4 is that foo = O(b) in the
first case while foo = O(b?) in the second case. The case re = 7* being similar and
simpler is left to the reader. From now on, we focus the case r~ = ry for which we
need to prove (H.8).
We compute explicitely

foo = O(b?)
fio=1c5° +c°|+0(b) >0
Ja1 = —205° — ey —d35 <0
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Then, remembering > < 0 and for 0 < b < b* small enough, yields F» > 0, F} <0
for v € [0,1].

step 1 Taylor expansion. We compute using foo = O(b?):
Fi(2)? = AF(2)Fy(8) = (fio + fuZ + O(5%)? = 4(fa1 S + O(E?)) (foo + for = + O(£?))

= flo+2fifus+00%) = fi {1 + <2J£101> E+O(52)]

Fi(2) + VFL(2)2 = 4F(2)Fo(2) = fio + ful + O + fio [1 + ( inlol) S+ O(bg)]

= fio+ S+ 00 + fuo (1 ﬁ; ) +0(b°) = 2f10 + 2fu T + O(p?)
= 2fwo < + &E + O(b2)> :
f10
We conclude
5, — - 2Fy(2) _ —2(foo + for ¥ + fo2?)
2)+ VEO2E - 4B (D) 2/, [1 +fug oy 0(b2)]
_ _fi) [foo + for 5 + fooX?] {1 - ﬁlz + 0(52)]
S [foo + fo X + ( Jorfs + fo ) IS 0(63)}
fio fio
oo foug, foufun — foafio g 3
o Fro X+ —f120 X4+ 0().

step 2 Expression in terms of u. We recall from (H.3):
Y = —bloots + B Woothootu) = Wiots — bW thaotich
= a1b (1 + azb+ O(b?)) u — b*arg1u® + O(b?)
= [aju]b+ [alagu — alglu2] b 4+ 0(b*)

and hence
o, = —;(1)2 - ;(1)(1] {[ar1u]b + [arazu — algluQ} b2} + fOlfllflOfoIO a2b?u?® + O(b%)

—i;[l)g — (;?(1) > bu + {fOlfllfmeQflO 1U2 — j;(l)l(alagu —aigiu ):| b2 + 0(1)3)
__Joo (o _foaay T forfu — forfio o So ] } 2 3
o <f10 )b +{ f10 [ o R R o

and (H.8) is proved. O

H.3. The positivity condition and proof of (9.31) and (9.32). Again, the case
re = r* being similar and simpler is left to the reader, we focus on the case re = r4
for which we need to prove (9.32). We study the positivity condition

(I)S>(b+
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in the zone 0 < u < 1 which becomes
—b[(cy —c)gru] +b* {—(cy — ) (g2 + :1O0)u + [(cy —c-)9100 — (¢t —c_) gi] v’}

foo <f01 ) b+ {_f01a1a2u+ [f(nfn - f02f10a% n f()lalgl] uz} B2+ 0(H)

—aQa
fio fio f1o 12 fio
& Ag+bAju+ b (Asu+ Au®) + O(b®) >0
with
Ag = fo

Ar=—(cy —c)g1 + %CH

As = %am = (e —c-)(92 + 9100)

Ay = _%0191 + f02f10f}0f01f11 % _ (C+ _ C_)g% + (C+ _ C—)gl@o

We compute

foo Al +co) 1+c_
Ag=—— = = Op4
f10 —(c1 +c2) c1+c
and
Jo1 <é20M+> Jo1 ( (c+ — C)M+>
A= —(cp —c_)g1 + =—a1 = (e, — c_ = +—=(-—
! ( * )gl flO ! ( * ) )\_dQ(] flO d20
N e ) [620 _ fOI]
d20 A flO
We therefore divide by |4+ | = —p4 and obtain the condition
By + bBiu + b*(Bsu + Byu?) + O(b%) > 0 (H.9)
with (1)
BO == cl+07 P
_ Cr—Cc— | _éxn Joi
h="g, [ T fw] (H.10)
B3 = Az
Il,fﬂl
Bu=pin

this is (9.32).

Appendix I. Numerical computation of specific values of S, (d, ()

Let 1o, 1 and v, for j =1,2,3,4 the holomorphic functions introduced in (5.7)
and

(ho)r. = 7y (o)
h

M = T e
h

_ a
kT T+rt3) Yk
introduced in (5.20). Let (wg)r>0 be the sequence defined by

1
W1 + Wg = E(ho)k—i-l
4 j+1
a I T (v + ki + 3)
+ Z Z Py Wiy -+ - Why 1y =
(k+v+3)(k+v+2) PP F'(k—1+v+3)
2 4 J+2
a > 10 F(V—Fki-i-?))
h; coowg - (ks . i=1
+ H?:1(k +u +]) lek . kz o ]klwkg wk‘]-‘rl( j+2wk1+2) 1—1(/{: _9 YU+ 3)
=1 ki+..kjya=k—
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and let
1
Sy = —(=1)Fwy.
k —(=1) wy,
Then, according to Lemma 5.4, S converges to a limit as k — oo which is
1
Soo(d,£) = — lim (—1)Fwy.
OO( ’ ) (Ik—l>r-ir—100( ) Wk

We check numerically that So.(d, ¢) # 0 in the following cases:

cases ¢ < d.

£ =0.1, Sy = 0.1236.

£ =0.1, Sy = 0.0948.
p=29, So = —0.0098.

p =10, Soo = —0.0119.

For d =6, p =15, Sso = 0.0012.

p=4, So = —0.0006.
p=3, Seo = 6.1871 x 1076,
p =3, S, = —0.00024.

cases ¢ > d.

(1) For d =2, £ = 0.1, Soo = 3.0557 x 1078.
(2) Ford=3,¢=0.1, So, = 2.8518 x 1074
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