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Abstract:
This paper proposes a methodology to analyze the long-term degradation of a wind turbine drive-
train using a gain-scheduling control strategy considering the variation in the wind conditions.
The degradation in the transmission is modeled through a simplified dynamical system based
on contact mechanics, employing the dissipated energy as an indicator of the degradation in
the shaft. In addition, a gain-scheduling control strategy is considered to assign a control gain
according to the wind flow conditions. The long-term simulation is based on the accelerated
degradation due to turbulent wind compared to the laminar flow. Numerical experiments were
considered to illustrate the proposed approach, assuming a 2 MW variable speed-fixed pitch
turbine with a horizontal axis and fixed gearbox.

Keywords: Deteriorating Modeling, Wind Turbine Control, Gain-Scheduling Control Strategy,
Wind Conditions.

1. INTRODUCTION

The global renewable electricity sector is expected to
develop 60% by 2026, where wind energy plays a critical
role. By 2030, the wind generation sector is expected
to cover 21% of the global electricity demand and will
continue growing until it reaches 35% for 2050. Today, the
efforts to increase the coverage of the wind turbine sector
continue expanding; just in the United States it grew at
a record pace in 2020, representing the largest source of
recent additions to the U.S. electric-generating capacity
with 17 MW(Lee and Zhao (2021); American Clean Power
Association (2021); Komusanac et al. (2021)).

However, the drive-train wind turbine is susceptible of
degradation and anticipated failure, affecting the efficiency
of this technology and improving the necessity of main-
tenance works. Numerous studies found that the cost of
operation in a wind turbine is approximately 35% of the
capital expenditure, where 80% is related to unscheduled
maintenance issues, and 17% of the failures are related to
some part of the shaft (Merainani et al. (2022); Tchakoua
et al. (2014)).

The variability in wind speed represents a factor decreas-
ing the lifetime of the components in the turbine trans-
mission due to the fatigue damage and vibrations in the
shaft (Romero et al. (2021); Bianchi et al. (2007); Ma et al.
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(2018)). Therefore, in Romero et al. (2022), a procedure to
adapt the control strategy to varying wind conditions was
proposed to mitigate the effect of random change in the
wind, based on a control gain switch depending on regime
flow for a short period of analysis.

On the other hand, the useful lifetime of a wind turbine
is designed to be approximately 20 years; for this reason,
in the industry, the maintenance strategies are designed
to evaluate the deterioration in the long term. However,
the system can be affected when the change in wind
intensity occurs in minutes. Consequently, it is necessary
to have a strategy to predict deterioration in the long term,
considering the wind changes in a short time.

This paper proposes a methodology to simulate deterio-
ration in the mechanical components of the drive-train in
a wind turbine for the extended term, when subjected to
control strategy adapted to follow the variations in the
wind conditions. The approach allows simulating degra-
dation by first learning an empirical relationship with
random effect between Dissipated Energy and Time, and
then generating new information using the learned re-
lation with the inferred probability law for the random
parameters. Furthermore, the methodology was tested for
different periods of the useful theoretical lifetime of a wind
turbine, considering the variation in the wind conditions
changing between laminar and turbulent flow, using a
sequence generated with a Markov Chain. Finally, the
results allow knowing the percentage of degradation that



can be reduced if a gain-scheduling control approach is
implemented, taking into account the wind conditions.

2. DRIVE-TRAIN DEGRADATION MODEL UNDER
AN GAIN-SCHEDULING CONTROL STRATEGY

2.1 Wind Turbine Dynamical Model

The dynamics of a drive-train in a Variable Speed-Fixed
Pitch (VS-FP) wind turbine can be modeled as two rigid
bodies connected by a flexible drive-train, as suggested in
Bianchi et al. (2007). The generator (low-speed mass) and
the rotor (high-speed mass) are linked by a flexible shaft
deformed with an angle θs when the generator speed (ωg)
and rotor speed (ωr) are different. In this type of system,
it is common to employ a simplified model to describe the
wind energy dynamics, considering the torsional loads and
resonance mode in the drive-train as follows:
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where Ir and Ig are the rotor and generator inertia
correspondingly, Bs the damping of the transmission and,
Ks the stiffness of the transmission.

The forces created on a wind turbine shaft by an airflow
are referred to as aerodynamic torque (τr), and can be
calculated as:

τr =
1

2
ρπR3Cp(λ, β)

λ
V 2 (2)

With ρ the air density, R the rotor radius, and V is the
wind speed. Concerning the power coefficient (Cp(λ, β)),
it is an efficiency measure that relates the wind speed with
the actual electric power produced by the system. There
exists different methods for estimating Cp(λ, β); however,
this work considers the numerical approximation proposed
in Saint-Drenan et al. (2020) that takes into account the
pitch angle β and the tip speed ratio λ.

In order to reach the maximum energy produced, ωr must
be adjusted in relation to the V to maintain the optimal
tip speed-ratio (λ = λ0),which is achived when Cp(λ, β) is
in the maximum point (Cpmax) and β ≈ 0 (Bianchi et al.
(2007)). The generated energy during the time t is defined
as:

Eg =

∫ t

0

Pgdt (3)

with Pg defined as the product of τcωr, where τc is the
generator torque, which is given as a function of the ωr

and the optimal feedback control gain Kc (see for instance
Johnson et al. (2006)):

τc = Kc(ωr)
2 (4)

The control objective is to maximize the energy captured
by operating the turbine at Cpmax and λ0. For variable
speed turbine, the theoretical control gain Knom

c is defined

as in equation (5), with A as the rotor swept area (Johnson
et al. (2006)).

Knom
c =

1

2
AR3Cpmax

λ0
3 (5)

2.2 Degradation Model

The deterioration phenomena can be estimated using the
dissipated energy (Ed) as an image of the degradation
mechanical components on the shaft following a model
presented in Romero et al. (2021).

The model considers a system of two rigid bodies (gen-
erator and rotor) connected by a spring (flexible shaft).
Considering a mechanical contact principle (Hunt and
Crossley (1975)), the damping in the transmission (Bs) is
modeled as a non-linear function of the torsion angle (θs),
also taking into account the stiffness of the transmission
(Ks) and a parameter that depends on the material (α)
(Romero et al. (2021)):

Bs(θs) =
3

2
θsαKs (6)

Besides, the dissipated energy (Ed) is defined as a function
of Bs(θs) and the square of the rotational speed difference
as follows:

Ed =

∫ t

0

Bs(θs)(ωg − ωr)
2 dt (7)

2.3 Gain-Scheduling Control Strategy

The degradation of a wind turbine is significantly affected
when the control system is adjusted without consider-
ing the wind flow conditions. The analysis presented by
Romero et al. (2021) demonstrated an accelerated degra-
dation when the control gain is different from the nominal
gain (Knom

c ). Besides, the changes in the wind flow lead
to an increment of dissipated energy.

Nevertheless, Romero et al. (2022) presented a gain-
scheduling control strategy that allows optimizing the life-
time of the mechanical transmission components using a
trade-off between generated energy and dissipated energy
while the turbine is exposed to variations in the wind flow.

The strategy proposes to consider two scenarios of wind
conditions (laminar and turbulent), and to use two pos-
sible suitable control gains (Klaminar

c and Kturbulent
c ) to
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Fig. 1. Dissipated Energy for different control feedback
gains Kc. (Romero et al. (2022)).



Fig. 2. Diagram for the simulation of long term deteriora-
tion analysis.

obtain a reduction in Ed. For the case of Klaminar
c , the

optimal control gain can take values 11% above Knom
c ,

and for the turbulent case 15% below Knom
c .

In addition, various scenarios were considered for the
validation of the strategy: in three scenarios, the control
gain was set in a constant value (Knom

c , Klaminar
c , and

Kturbulent
c ), and in an other scenario a suitable gain-

scheduled control gain was established according to the
wind conditions.

The results from Fig.1 show the behavior of Ed for the dif-
ferent cases in simulations of 12 hours. The figure demon-
strates that turbulent wind leads to accelerated degrada-
tion. However, it is possible to observe that implementing
a gain-scheduling control strategy can decrease the energy
dissipated.

Note that the case with Klaminar
c always leads to a

major degradation than with Kturbulent
c due a greater Kc

always leads to a major amount of dissipated energy, as
is mentioned in Romero et al. (2021). Nevertheless, the
behavior can be approximated to the hypothetical control
case using a suitable control gain.

3. PROPOSED METHODOLOGY FOR LONG TERM
DETERIORATION SIMULATION

A wind turbine is designed to operate for approximately
20 years, and in most cases, it hardly achieves a useful life
of 7 years without replacing a transmission part. Besides,
analyzing degradation in the long-term usually does not
reflect the effects of variations in the wind conditions as
in an analysis second-wise during a short period, (Jantara
et al. (2020)).

However, the gain-scheduling control strategy proposed in
Romero et al. (2022) can allow extrapolated analysis of
deterioration in the drive-train for a long-term simulation
considering the variations in the wind. For example, in Fig.
1, it is possible to observe that the slope of the curve is
more pronounced in the periods when the wind is turbulent
than in the laminar case.

This paper presents an approach to evaluate the deteriora-
tion in the long-term of a drive-train in a wind turbine by
learning the curve of Dissipated energy vs. Time for differ-
ent wind conditions and using a Markov chain to estimate
the transition between each case of wind conditions.

The process for the simulation of deterioration in the long
term is illustrated in Fig.2, and comprises the following
steps:

Steps (1) to (5) have to be made for each wind condition
separately. This work will consider two wind conditions
(laminar and turbulent).

(1) Acquisition of Wind Speed Data: To get the wind
speed data, consider utilizing the information of each
wind condition.

(2) Simulation of the dissipated energy in the drive-train
implementing the gain-schedule control strategy, us-
ing the deterioration model presented in Section.
2.2 for simulating the dissipated energy. Moreover,
use a suitable control gain depending on the wind
conditions (in this work, Klaminar

c and Kturbulent
c ,

depending on the wind conditions).

(3) Define ∆t for the discretization: Define a constant
or discrete interval ∆t to analyze the information
of dissipated energy with a sampling period of one
second. e.g., for one day of simulation (86.400s),
it is possible to use a discretization of 10 minutes
(∆t = 600s).

(4) Calculate the slope in the Dissipated Energy VS time
curve: Estimate the slope of the Dissipated Energy
VS time curve for each ∆t period. e.g., for the case of
∆t = 600s and one day of simulation (86.400s), this
leads to 144 data of slopes.

(5) Fit a probability distribution function to slopes data:
Find an appropriate probability distribution and es-
timate the respective parameters that fit the data of
the slopes in each case of interest.

(6) Simulation of a Markov Chain to establish the transi-
tion between turbulent to laminar: To simulate long-
term wind conditions, it is necessary to establish a
sequence of changes between laminar and turbulent
wind; using a Markov chain allows modelling the
transition probability between laminar and turbulent
and the probability of sojourn in each flow regimen.
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Fig. 3. Considered wind speed conditions: (a) laminar and
(b) turbulent



(7) Generate new slopes data: Considering a Markov
Chain sequence, generate new slope data using the
fitted probability distribution function.

(8) Save the information for the analysis.

The procedure can be done with as many repetitions as
desired to improve the exactitude of the analysis, as well as
different wind conditions (e.g., considering different levels
of turbulence).

4. SIMULATION SETTING

In this work, a VS-FP wind turbine was simulated with a
power of 2 MW, 100 m of rotor diameter, fixed gearbox,
and horizontal axis. Furthermore, a simplified represen-
tation was considered to analyze the transmission system,
where the rotor and generator are represented by two rigid
bodies connected by a flexible shaft (drive-train).

This section presents the process of acquiring wind data
and implementing the deterioration model to obtain the
information necessary for estimating the dissipated energy
in the long term considering the gain-scheduling control
strategy. All the simulation presented in this work, were
made in Matlab Sofware.

4.1 Wind Speed Generation

In this paper, different wind conditions are taken into
account to simulate the deterioration under a realistic
scenario:

• For the simulation of the laminar flow, real wind data
is used to feed the model.

• To reproduce the different levels of turbulence, a
stochastic model with two levels of Markov Chain was
used as proposed by Ma et al. (2018). The stochastic
equation (8) allows to change the intensity of the
variation in the wind, using a drift (â(V (t), t)) and

diffusion (b̂(V (t), t)) terms, as well as dW for the
standard Wiener process. The possibles values for the
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Fig. 4. Dissipated Energy with Knom
c : (a) Laminar wind

and (b) Turbulent wind

parameters of equation (8) is given for a two-level
Markov chain presented in Ma et al. (2018).

dV (t) = −â(V (t)− û)dt+ b̂ dW (t) (8)

The resulting laminar and turbulent wind are shown Fig.
3a and Fig. 3b respectively. In both scenarios, wind speed
data is register in second by second during 10.000 seconds.

4.2 Gain-Scheduling Control Strategy Setting

Let assume that the turbine under analysis has Cpmax
=

0.4615 at λ0 = 6.4 and considering the equation (5),
Knom

c = 9.5065e5. A gain-scheduling control strategy is
implemented to determine a suitable control gain for each
wind condition (Klaminar

c and Kturbulent
c ). The dissipated

energy was investigated under the following cases:

• Laminar wind with Klaminar
c

• Laminar wind with Knom
c

• Turbulent wind with Kturbulent
c

• Turbulent wind with Knom
c

The values of Klaminar
c and Kturbulent

c were defined con-
sidering the results in Romero et al. (2022):

• For laminar wind:Klaminar
c can take values up to 11%

above of Knom
c

• For turbulent wind: Kturbulent
c can take values down

to 15% below of Knom
c

4.3 Simulation of Long Term Deterioration

In this work, the discretization of the curve Dissipated
Energy vs. Time was made assuming that ∆t = 600s,
due to the fact the transition between wind conditions is
not instantaneous and the record time in some systems is
usually 10 minutes (e.g., SCADA).

Probability distribution functions were fitted of slopes
data in each case using the Distribution Fitter app (Matlab
Sofware). The results shows that the better fit for each case
are:

0.5 1 1.5 2

Time(s) 10
4

337.48

337.485

337.49

D
is

si
p

at
ed

 E
n

er
g

y
 (

W
h

)

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time(s) 10
4

4150

4200

4250

4300

D
is

si
p

at
ed

 E
n

er
g

y
 (

W
h

)

(b)

Fig. 5. Dissipated Energy with: (a) Laminar wind with
Klaminar

c and (b) Turbulent wind with Kturbulent
c
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• Slopes data from dissipated energy curve in laminar
case: Beta distribution

• Slopes data from dissipated energy curve in turbulent
case: Gamma distribution

Markov Chain Setting AMarkov Chain with a transition
matrix T was established for the simulation of the tran-
sition between laminar and turbulent flow. In this work,
the transition probability matrix controlling the change
between turbulent and laminar is given as follows:

T =

(
0.7 0.3
0.3 0.7

)
(9)

meaning that at each time step of 600 s, there is a 70
% chance of staying in turbulent flow, 30 % chance of
changing from turbulent to laminar flow.

5. RESULTS AND DISCUSSIONS

The degradation in the drive-train of the considered tur-
bine was simulated using the dynamic system presented
in equation(1). In addition, the variability in the wind
between laminar and turbulent flow was taken into ac-
count to know the deterioration behavior under realistic
conditions.

The wind profile that was used during the validation
of the approach is presented in Fig.3. In the case of
laminar wind, real measured data was implemented, and
in the case of turbulent flow, data was simulated through
a stochastic model with a Markov Chain, allowing to
generate different levels of turbulence. In both scenarios,
it was considered that the conditions were constant during
5.5 hours (20.000s)

Fig. 7. Dissipated Energy in one year of simulation using
a suitable control gain and theoretical control gain
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c .

The simulation of the dissipated energy for each case
of interest can be analyzed with the Fig. 4 and 5. The
energy dissipation with laminar flow with Knom

c (Fig. 4a)
is lower during the period of the analysis than the case with
Klaminar

c (Fig. 5a). However, for the turbulent scenario a
greater degradation is reached with Knom

c (Fig. 4b) than
with the optimum Kc.

For learning the behavior of the curve, the slopes were
calculated every 10 minutes (∆t = 600s), and each set
of data was fit with a probability distribution function as
follows:

• Laminar Flow: The data in the case of Knom
c and

Kturbulent
c was fit with a Beta distribution. Fig. 6

shows the graphic of density function for the data-
set of slopes calculated from the curve of Dissipated
Energy vs. Time with Laminar flow and Klaminar

c .
Similar results were obtained for the nominal case.

• Turbulent Flow: In the case of the turbulent flow,
the Gamma distribution shows a better fitting to the
data of slopes calculated from the curve of Dissipated
Energy vs. Time with turbulent flow and Kturbulent

c
(Fig. 8).

With fitted probability laws, it is possible to generate new
slopes data. Nevertheless, this work aims to reproduce
wind alternating between the laminar and turbulent flow.
The sequences of changes between both flow regimes were
selected through a Markov chain and were implemented
using the transition matrix in equation(9).

The analysis was performed for different periods to obtain
an image of the degradation during the useful lifetime
of the wind turbine and considering 100 replicates in
each case, providing a big picture under varied sequences
of changes between the laminar and turbulent flow. For
example, Fig.7 shows the dissipated energy after one year
of simulation, with 100 replicates.

Besides, the process was made for different periods
(1,5,10,15 and 20 years). The analysis considered the av-
erage energy dissipated for the case with Knom

c and used
the optimum gain of laminar and turbulent (Kopt

c ). Also,
the analysis yields the percentage of the difference between
the optimized case and the nominal one after the period
under evaluation, as shown in Table 1.

The results indicate a significantly greater energy dissi-
pation when the Kc is not switched when necessary and
suitable to the wind conditions; in all the periods under



Table 1. Comparison of dissipated energy in
different periods

Number
of
years

Diss.
Energy
Kopt

c

(Wh)

Diss.
Energy
Knom

c

(Wh)

Difference
(%)

Average
time
(sec)

1 1.446e5 1.570e5 9.307 8.271
5 7.152e5 7.906e5 9.535 8.816
10 1.419e6 1.572e6 9.694 9.913
15 2.139e6 2.369e6 9.702 11.216
20 2.843e6 3.150e6 9.743 11.956

evaluation, the difference is more than 9%, which indicates
a significant increase in the deterioration when no suitable
mechanism of the control gain is implemented. Besides, in
table 1 appears the average time for run the simulation
during the different periods, demonstrating the short time
necessary to obtain an image of deterioration for long term
periods.

A t-Test was performed to ensure the variability in the
samples; in all the cases, the test rejected the hypothesis
that the means of the replicate-wise dissipated energy are
equal for both simulated scenarios (static vs suitable gain),
and the p − value ≈: 0 indicates there is robust evidence
in favor of the alternative hypothesis.

6. CONCLUSIONS

This paper proposes a methodology to analyze the long-
term degradation of a drive-train wind turbine using
a gain-scheduling control strategy and considering the
variation in the wind conditions.

Real measurements of laminar wind were implemented; be-
sides, the turbulent flow was simulated using a stochastic
model based on a Markov chain. Moreover, the dissipated
energy was estimated employing a dynamic model based
on contacts mechanics for the case of laminar and turbu-
lent flow, considering the theoretical control gain and an
optimized control gain depending on the win conditions.

The dissipated energy rate for turbulent flow is more
accelerated than in the laminar case. As a result, the slope
is more pronounced in the Dissipated Energy VS. Time
curve. It is possible to learn the slope of the curve to use
this behavior in extrapolation and keep the effect of the
wind in a second-wise simulation.

Different probabilistic distribution functions were em-
ployed to generate new slope data using the function
parameters, and a Markov Chain was simulated to know
the sequences of the transitions between the laminar and
turbulent flow.

The proposed methodology was tested under different
periods to know the degradation behavior during the
useful life of the wind turbine with an extrapolation of the
Dissipated Energy vs. Time curve. The results show that
using the gain-scheduling control strategy, it is possible
to reduce by more than 9% the energy dissipation in the
drive-train compared with the nominal theoretical case.
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