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2LEAD CNRS UMR 5022, Univ. Bourgogne Franche-Comté, Dijon, France

ABSTRACT

This paper proposes a visuo-auditory substitution method
to assist visually impaired people in scene understanding. Our
approach focuses on person localisation in the user’s vicin-
ity in order to ease urban walking. Since a real-time and
low-latency is required in this context for user’s security, we
propose an embedded system. The processing is based on a
lightweight convolutional neural network to perform an effi-
cient 2D person localisation. This measurement is enhanced
with the corresponding person depth information, and is then
transcribed into a stereophonic signal via a head-related trans-
fer function. A GPU-based implementation is presented that
enables a real-time processing to be reached at 23 frames/s
on a 640x480 video stream. We show with an experiment
that this method allows for a real-time accurate audio-based
localization.

Index Terms— Auditory sensory substitution, people de-
tection, wearable assistive device, real-time processing

1. INTRODUCTION

A recent study estimates that, despite advances in preventive
treatments, the growth and aging of the population should
lead to an increase from 43 millions in 2020 to 61 millions
of blind people in 2050 [?].

For this people the lack of visual information leads to
multiple challenges and daily tasks such as walking in a non-
familiar environment without colliding an obstacle remains
challenging. The white cane and the trained dog are the clas-
sic methods used to remedy this problem. Although these
means are very widespread and effective for moving in an un-
familiar environment, they do not provide the user with all
the useful information to know his environment. The white
cane limits the perception to close objects and the trained dog
requires a long training and is relatively expensive.

Assistive technology systems have been the subject of re-
search since decades. Recent advances in image processing
methods and the performance of embedded modules in terms
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of computing power, consumption and miniaturization now
offer new possibilities. Among these devices, sensory sub-
stitution systems (or SSDs), is a category that uses the brain
ability to construct a representation of the world based on a
new sensory encoding. These SSDs convert information nor-
mally acquired through vision into a signal designed for an-
other sensory modality, mainly auditory or tactile.

For visuo-auditory SSD, this process is called sonifica-
tion [1]. In the vOICe [2], the pioneer system of visual sen-
sory substitution by sonification, the pixels of a 2D image are
sonified according to their positions and luminance.
New sonification protocols provide a stereophonic sound that
gives the ability to locate a static or moving object in 2D or 3D
scene [3] or to move [4]. The spatial position encoding into
a stereophonic sound is computed by Head-Related Trans-
fer Functions simulating the reflections of the sound on the
human body before entering the two cochlea. Vision-based
and sound generation processing in real-time induce signif-
icant latency that should be minimized. For instance setups
of some studies [5, 6] acquire data from a smartphone and
perform the processing on a laptop in a backpack . Deport-
ing the computing unit to a remote server reduces weight and
space requirements and increases autonomy. However, a re-
mote sensing system causes transmission delays and requires
a constant connection to operate.

Human-computer auditory interfaces have been designed
to localise person [5] based on artificial vision. These sys-
tems enable a single class, the obstacles, to be localised in
an 2D environment. Alternative methods [7] demonstrate
that semantic information could be used in such interfaces
as well to perform the environment’s perception. The re-
sulting systems enable each significant word to be replaced
by discriminant sounds (for instance using different musical
instruments). A specific short-sound dictionary has been de-
signed in order to preserve partially the richness of a verbal
language meanwhile with respect of the human’s physiologi-
cal reaction-time. Based on this approach, a recent study [1]
proposes a SSD using a similar sonification protocol where
each object (car, people,. . . ) is associated to a short one-
second sound. Nevertheless, a powerful PC platform does
not allow real-time to be performed as the algorithm’s com-
plexity requires high computational resources. Despite high



performances in terms of people localisation, the mobility
and usability of such a system is then reduced.

In this paper, we propose a human-computer auditory in-
terface system which enables 3D localisation of person based
on a RGB-D camera. We focus specifically on person local-
ization since it is one of the most frequently encountered sit-
uation during urban walking. Contrary to state-of-art other
approaches, the global processing is performed in real-time
on standard computational platforms as well as on process-
ing units dedicated to embedded system designs. Hence, a
new generation of human-computer auditory interface design
is clearly targeted to ease the daily life utilisation and to pro-
posed a mobile and compact system with lower-power con-
sumption, and therefore, higher autonomy. Considering the
problems related to a remote transmission, we integrate all
video and sound processing on the embedded system.

2. METHOD

In this section, we describe our method for localizing per-
son in a 3D environment and generating the associated stereo-
phonic sound. Two pipelined processing stages are performed
to extract the 3D person localisation.

At the first processing stage: a trained convolutional de-
tection network (CNN) estimates the positions of the persons
from the 2D scene. We chose a CNN model based on the ar-
chitecture You Only Look Once (YOLO) because it has the
best framerate [8] for a detection network that produces ro-
bust detection on multiple scales. A bounding box detected
around the visible part of the person is available as the output
of this first processing stage (Figure 1.a). The bounding box
size, the 2D positions of the corresponding centroid, and the
confidence score are then available for each detection.

The second image processing stage consists in the distance-
to-user estimation using the corresponding depth map. This
information is provided by the stereoscopic camera (Figure
1.b) which is associated to the rgb standard imaging system.

Finally the position of the centroid is extracted ((Figure
1.c) and sonified with a stereophonic signal generated ac-
cording to the 3D people localisation. Based on the sound
spatialization, the user is then able to localise the targeted
person in the 3D space.

Our method of sonification is based on the LibreAu-
dioView system [3] in which each visual object generates an
audio signal. In this study, the sonification of the localisation
of the target was done as follows: For each video frame the
pixel corresponding to the center of the bounding box was
extracted if a person has been detected. Given the visual field
of the camera, the coordinate of the pixel is mapped on spher-
ical coordinates on a sphere of 2 meter radius centered at the
camera. We then used the two meters HRIR data set recorded
in an anechoic chamber [9] to spatialize a brief (33ms) mono-
phonic 440 Hz sound with a 5ms cosine fade-in and fade out.

For each possible pixel position, we pre-calculated its HRIR
spatialization based on the Input responses of the correspond-
ing azimuthal position in the HRIR data set. The amplitude of
sound is modulated depending on the distance which separate
the target from the user using an inverse square law A = 1/d2

where A is the amplitude and d the distance between the user
and the target.

(a) Detection (b) Depth map

(c) Pixels to sonify

Fig. 1. Overview of the method: first a CNN estimates the
positions of the person from the color image (a); then the
distance-to-user is extracted from the depth map (b) to gen-
erate the pixels to sonify (c).

3. REAL-TIME IMPLEMENTATIONS

For our system, we have implemented a CNN trained on the
Microsoft Coco database [10]. This database labels 80 dif-
ferent object classes on the 328124 available images. There
are 250000 occurrences of person among the 1.5 million of
detected objects. Yolov5-small CNN has been selected for
implementation in order to propose in fine an embedded sys-
tem and respect the application constraints. The CNN has
been trained on 640×640 resolution images.
The video acquisition is performed using an Intel RealSense
D455 stereoscopic camera. Efficient acquisitions can be ob-
tained, equally in outdoor or indoor environments, with a
Field of View (FOV) of 87° × 58° and an ideal range of 0.6
to 6m. Both color and depth image were synchronously cap-
tured with a resolution of 640×480 pixels at 30 frames per
second. The color image is resized to respect the training
resolution of the CNN.

As previously mentioned, low-latency system is required
in regards to the application constraints. Therefore we have
proposed an optimization of the software solution. More



precisely, we aim to minimize the delay between an image
acquisition and the sound transmission to the user. The Li-
breAudioView sonification architecture has been optimized
in a previous paper [11]: the optimization of the sonification
software has reduced the required processing time by 86%
compared to the original version [3]. After the optimiza-
tion of the sound generation stage, the image processing part
represents 95% of the global processing time on a standard
PC platform (Intel Core i7-6700HQ processor : 4 Cores - 8
Threads, 2.60 GHz; 16 GB RAM). Therefore, we propose
GPU-based implementations to reduce the processing speed.
Indeed, the specific multi-core GPU architecture is particu-
larly adapted to regular tasks and to the intrinsic parallelism
of the selected algorithm. Finally, we propose a second
implementation based on a GPU target that is dedicated to
embedded system designs. The goal is to demonstrate that
low-latency solution can be designed around such a target to
propose a compacted and embedded system. Moreover, the
power consumption has been adjusted to increase the sys-
tem’s energy autonomy respecting the application’s perfor-
mance constraints. Different optimisations are then proposed,
as the adaptation of the data dynamic, to decrease the sys-
tem’s latency.

First, a comparison is proposed between a standard CPU-
based implementation and standard GPU one. As previ-
ously, the CPU implementation is based on an Intel Core
i7-6700HQ processor (4 Cores - 8 Threads, 2.60 GHz; 16
GB RAM); Meanwhile the GPU implementation is based on
a Nvidia GTX 1070 GPU (2048 CUDA Cores, 6.738 Tflops,
8GB VRAM). A laptop is integrating the two targets. The
neural network is implemented on both CPU and GPU tar-
gets with the Libtorch library (C++ version of Python). The
two-first columns of the Table 1 represent the comparison be-
tween the two targets and summarizes the performance of the
YOLOv5-small and its impact on the overall operation of the
sonification device. Please note that the comparison is real-
ized with sequences of images to avoid that the camera frame
rate limits the measurement. Considering these results, the
inference time of the YOLOv5-small network on a standard
computer processor does not enable real-time performances
with 640×640 images to be reached whereas on a GPU target
this can be achieved. Moreover, the inference time of the
CNN on GPU has been reduced by converting the model with
the TensorRT SDK. TensorRT is an inference optimizer on
Nvidia platforms. A significant gain of 53% between the
optimized and non-optimized model is obtained as depicted
in the third column of Table 1.

Considering the problems related to a remote transmis-
sion, we favour the development of an autonomous device.
The low-latency processing is a keystone to reach system’s
autonomy and hence providing system user’s security. A
GPU-based implementation represents an appropriate solu-
tion to accelerate the processing and therefore a pertinent

CPU GPU
LibTorch TensorRT

Yolov5-small (ms) 135 16.3 7.5
Global processing (ms) 142 23.6 15.3

Table 1. Processing time of the YOLOv5-small using a laptop
with the overall system (CNN implemented on three targets).

solution to develop in-fine a wearable device. Indeed, some
GPU targets are dedicated to embedded system design by of-
fering a high trade-off between high processing performances
and power consumption. Hence, an Nvidia Jetson TX2 (8GB
RAM, 256 CUDA Cores, 1.33 TFlops) embedded module has
been used. Moreover such target supports and benefits from
TensorRT optimization on CNNs. The number of Flops on the
embedded card is 5 times lower than on the previous Nvidia
GTX 1070 GPU board nevertheless other optimizations are
available. Indeed, Nvidia proposes through its Jetson mod-
ules and its latest graphics cards (RTX series), the possibility
to modify the dynamic range of the CNN’s weights. It can
be fixed to 16-bits floating format (FP16 : Half precision)
instead of 32-bits (FP32). The FP16 configuration decreases
significantly the inference time of the CNNs and the memory
requirements. On the COCO 2017 validation database, both
the configuration provide an accuracy of 55.4% for an over-
lapping of 50%. Moreover, the selected embedded module,
running on Jetpack 4.6 (Ubuntu 18.04, Cuda 10.2, TensorRT
8.0.1), can operate in two power modes: Max-Q of 7.5W
(5.5V) and Max-P of 15W. The system’s energy autonomy is
estimated with a 10 000 mAh - 12 Volts commercial battery.
The operating life of the system at full power (TX2 mod-
ule: 15 W & Realsense camera: 2.335W, the consumption of
headphones is ignored) is estimated at 6 hours 55 minutes.
The estimated battery life at low power (7.5W + 2.335W) is
12 hours 11 minutes.

The Table 2 summarizes the impact of the CNN on the
embedded target using the two different power modes and
considering the two proposed dynamic ranges. An inference
of the YOLOv5-small network is lower to the camera frame-
rate on a Nvidia TX2 with a resolution of 640×640 in input.

However the experimental system, with half-precision
and maximum power, provides an audio perception equiva-
lent to real-time. The use of this low-power mode generates a
larger latency but still enables performances compatible with
the application’s constrains to be obtained. Hence, this choice
of mode is pertinent considering the significant gain in term
of operating life.

4. EXPERIMENT

We measured the capabilities offered by such an auditory sen-
sory substitution device in a task consisting in localising hu-
man bodies that are in close vicinity. Based on the spatial



FP32 FP32 FP16 FP16
15W 7.5W 15W 7.5W

Yolov5-small (ms) 55 71 35 47
Global Processing (ms) 62 80 43 56

Table 2. Processing time of the YOLOv5-small on the em-
bedded target in comparison with the overall system. Two
power modes and two dynamic ranges are proposed.

information extracted from the 3D video stream, the position
of a standing person was transmitted using the spatialized au-
dio encoding described in the section 2.

For this purpose, we used an experimental setup based on
an HTC Vive system to track the position of the sensory sub-
stitution user’s head during a localisation task under two con-
ditions. In the auditory condition, ten blindfolded participants
sitting on a 360° revolving chair were placed at the center of
a 4m×4m area. A sensory substitution system and a HTC
position tracker were fixed on the participant’s forehead. The
target to localise was a person wearing a second HTC tracker
on his sternum, standing at random places 2 meters away from
the revolving axis of the chair, on 8 equally spaced positions
with a fixed angle gap of 45° as presented in the figure 2.

Fig. 2. Experimental setup used to measure the localiza-
tion abilities. The participant sits at the center of the experi-
ment area on a revolving chair. A standing person randomly
changes its standing position among 8 marked places [1...8]
equally spaced on a two meters radius circle. We measured
the azimuth angle error ε.

Each trial was first composed of 10 seconds of white noise
loud enough to cover the sound that might be produced by the
target person changing its standing position. After these ten
seconds the participant had to rotate on the chair in order to
find the target and place it in front of him based solely on the
auditory indications provided by the substitution system. The

validation was given by pressing on a joystick button. Two
trials were performed for each position. In the visual condi-
tion, the 10 participants were not blindfolded and the same
task was reproduced only with vision, i.e. pointing the head
towards the standing person solely using visual feedback.

Results presented in the figure 3 show mean azimuth an-
gular error for each target position in the auditory condition.
In this condition, mean azimuth angular error was 6.72◦ ±
5.82. As expected, mean azimuth angular error in the visual
condition was approximately 2 times smaller (2.85◦ ± 1.99).
Despite this difference, these results show that participants
could localise a person with high accuracy using our auditory
sensory substitution device.

Fig. 3. Azimuth of each target (black dot) with the associated
mean value of the azimuth angular error (vertical bar) in the
auditory condition.

5. CONCLUSION

In the context of visually impaired people assistance, there are
strong constraints in terms of latency, autonomy and portabil-
ity of the system. In this paper we introduced a new system
where the 3D position of person detected by a CNN is sonified
into a stereophonic sound. First, tests on laptop have shown
that real-time performances with 640×640 images have been
achieved on a GPU target. In a wearable device, our system
provides an audio perception equivalent or close to real-time.
Two power modes and two dynamic ranges allow a compro-
mise between latency and operating life to be adjusted accord-
ing to the user’s preferences. Finally the capacity of a user
wearing our device to perceive a person’s position has been
evaluated and demonstrated experimentally. Future work will
extend this protocol to new classes to sonify and enrich the
audio signal by a verbal expression of specific events.
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