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1  Introduction
The recent introduction of the millimeter band in the last versions of the prevailing wire-
less communication standards, namely 5G NR and IEEE 802.11ay, is considered as one 
major enabler for the enhancement of the capacity of wireless networks. Working with 
carrier frequencies of several tens of GHz is indeed highly attractive owing to the very 
large bandwidth available in this portion of the radio spectrum. However, millimeter 
waves suffer from much higher propagation losses compared to lower frequencies. In 
addition to the strong path loss given by the well-known Friis transmission equation, 
signals at millimeter wave penetrate less easily through buildings, solid materials or 
even human bodies [1–3]. A convenient way to combat such drawbacks is to establish 
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directional communications towards users or terminals by means of adaptive beam-
forming techniques.

Forming directional beams can for instance be easily implemented using a linear 
antenna array controlled by a linear phase excitation. The 3dB beam width obtained 
in this way has the remarkable property of being inversely proportional to the antenna 
array length while the maximum gain is proportional to 10 log10(M) dB where M denotes 
the number of antennas composing the array [4]. Although those properties are theoret-
ically beneficial in order to combat strong path-losses and increase the received power, 
beam misalignment may occur in practical scenarios, especially with large antenna 
arrays, thus leading to poor link quality [5]. On one other hand, very narrow beams are 
costly regarding beam scanning latency time and not well-suited for broadcast channels 
that have to be received by several users [6, 7]. Finally, in regard to the penetration prob-
lems of millimeter waves, it has been shown that less-directional beams can improve link 
resilience since the energy from non-line-of-sight paths is retrieved [8, 9]. As depicted 
throughout these scenarios, being able to adapt and increase the width of the formed 
beams becomes essential at various levels of the communication link management.

Beam broadening techniques have always been a subject of research for radar appli-
cations [10, 11] and has more recently become a topic of interest for mobile wireless 
communications as the community started looking at the millimeter band . Generally 
speaking, a broadened beam can be designed and controlled using adequate amplitude 
and phase excitations [12]. Such an approach is well suited to the fully digital beamform-
ing implementation which is however hardly applicable to the millimeter wave context 
[13, 14]. Pure analog or at least hybrid analog-digital beamforming architectures have 
rather to be considered for millimeter wave front-ends [13, 15]. This implies that beam 
direction and width have to be managed at the analog stage. On that basis, amplitude 
excitation may be achieved by controlling the gains of the power amplifiers while phase 
excitation may be obtained through phase shifters. For power efficiency reasons, it is 
however recommended for millimeter wave applications that power amplifiers operate 
at maximum power rather than tuning their gains [16, 17]. Consequently, phase-only 
element weights are preferable in practical millimeter wave beamformers. Finding the 
phase excitation that ensures a given beam width then becomes a nonlinear and non-
convex optimization problem [18].

Optimization of beam broadening techniques constrained to unit amplitude 
weights have already been studied in many papers [10, 18–20]. The obtained methods 
yield interesting results but lack of flexibility since the optimization process has to be 
done offline regarding particular predefined configurations. Contrary to these meth-
ods, authors in [17] provide a systematic approach for beam broadening. The idea 
consists in dividing the array into multiple logical subarrays, each being controlled by 
an independent linear phase excitation and being responsible for an elementary beam 
associated with a predefined direction. The resulting broadened beam is obtained by 
summation of the elementary ones. The major drawback of this method is that the 
number of broadened beams that can be formed is limited by the number of antenna 
elements comprised in the array. Indeed, each subarray has to be composed of the 
same number of antennas with the constraint that the number of subarrays should 
not exceed the number of antennas per subarray. For example, only three different 
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beams are configurable for a 128-element antenna array. Authors in [21] proposed 
a similar approach for which the steering directions of the elementary beams are 
refined through an optimization process. This solution appears to be more flexible 
but also more computationally expensive. Other beam broadening strategies can 
finally be found as in [22], where the broadened beam patterns are obtained through 
nonlinear parametric phase excitations. However, no other method than an exhaus-
tive search is suggested for tuning the phase law parameters regarding the desired 
beam width. Besides, such an approach can be quite tricky since different quadratic 
coefficients give the same beam width.

In this paper, we introduce a beam broadening control method that is based on a 
quadratic phase excitation and that involves two parameters. Our method requires 
neither an exhaustive search nor an iterative one to find the adequate control param-
eters. Throughout the article, we establish a bijective function linking these two 
parameters with the beam width and the steering angle of the power pattern pro-
duced by the phased array. To that purpose, an analysis of the far-field radiation pat-
tern of the array is first led to identify how the proposed quadratic phase law governs 
the beam shape. It is then demonstrated that the coefficients of the quadratic phase 
excitation can be expressed according to a new variable that has a near linear rela-
tionship with the beam width, for boresight and non-boresight directions. In this 
work, the beam width is characterized from the beam power efficiency. This choice 
has been made since the conventional half power beam width is not relevant in some 
configurations for which the ripples can exceed 3 dB. On that basis, we design our 
proposed beam broadening control method which can be implemented for various 
antenna array sizes, boresight and non-boresight directions.

The rest of the paper is organized as follows. In Sect. 2 some fundamental expres-
sions about line-source radiation are reminded and the far-field radiation pattern for 
a quadratic phase excitation is derived. In Sect. 3, a beam control method that relies 
on the Fresnel functions is derived for that type of excitation. The beam width def-
inition is then given in Sect.  4 and the relation between the Fresnel functions and 
the beam width is established for boresight and non-boresight directions. Finally, the 
accuracy of the proposed beam width control method is evaluated in Sect. 5 before 
concluding our work in Sect. 6.

2 � Far‑field beam pattern of line‑sources
In this section, the general principles yielding the far-field radiation of a continuous 
line source are reminded and specifically derived and analyzed in case of a quadratic 
phase excitation. The obtained expressions serve as basis to the beam width control 
method developed in the sequel of the paper.

2.1 � Radiation pattern of a continuous line‑source

Following the conventional definition of the spherical coordinate system, the space 
factor SF(θ) for a continuous line-source of length L placed symmetrically along the 
z-axis is given by [12],
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where θ is the elevation angle, k0 = 2π
�

 represents the wave number with � the wave-
length, while I(z) and �(z) correspond, respectively, to the amplitude and phase distri-
butions along the source. Following the common assumption that the source operates 
at maximum power rate without any amplitude change at millimeter wave frequencies, 
a uniform amplitude distribution is considered, i.e. I(z) = I0

L  . It is then noticeable that 
Eq. (1) relates the far-field pattern of the source to its excitation distribution through the 
Fourier transform of a complex exponential function f(z) as,

with,

A classic excitation of the form ej�(z) is the linear phase distribution defined as,

with,

Such linear phase excitation has the interesting property of steering the maximum radia-
tion towards the direction θmax . One of the main drawbacks of this method is that the 
3dB beam width is not tunable for a given direction. Indeed, the half power beam width 
is inversely proportional to the source length L and to sin (θmax).

Since the far-field pattern is related to its excitation through the fourier transform (2), 
temporal waveforms of the form ej�(t) with easily tunable power spreading properties in 
the frequency domain are good candidates for beam widening. The linear chirp is one of 
them as a configurable bandwidth can be swept by introducing quadratic variations on 
the instantaneous phase [23]. We thus propose to conduct a deeper study on the influ-
ence of a quadratic phase excitation on the far-field radiation pattern.

2.2 � Radiation pattern with a quadratic phase excitation

Let us consider a quadratic phase distribution of the form,

in which B1 given by Eq. (5) is the coefficient that controls the linear phase shift between 
antenna elements, i.e the beam direction, while B2 adds a quadratic phase shift that is 
expected to generate a broadened beam owing to the known spectrum shape of chirp 
signals mentioned above. Note that no constant coefficient is considered in the quad-
ratic law since it would not affect the beam pattern. By integrating Eq. (6) into Eq. (1), we 
obtain,

(1)SF(θ) =
+L
2

−L
2

I(z)e(k0z cos θ+�(z))dz,

(2)SF(ξ) =
I0

L

∫ +L
2

−L
2

f (z)e2πξzdz,

(3)f (z) = e�(z), ξ = 1

�
cos θ .

(4)�(z) = B1z,

(5)B1 = −k0 cos (θmax).

(6)�(z) = B1z + B2z
2,
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with the vertex form of φ(z) being,

Substituting variable z by u =
√

2B2
π

(

z + B1+k0 cos(θ)
2B2

)

 , we get,

where,

Eq. (9) can be rewritten using the normalized cosine Fresnel integral 
C(u) =

∫ u
0 cos

(

π
2 t

2
)

dt and the normalized sine Fresnel integral S(u) =
∫ u
0 sin

(

π
2 t

2
)

dt 
as [24],

Finally, the radiated power of a continuous line-source for a quadratic phase excitation 
can readily be expressed as follows,

This expression gives insight on the fact that the radiated power is governed by the 
behavior of Fresnel functions evaluated on uθ and uθ , for θ ∈ [0, π ] . To intuitively under-
stand how the quadratic phase variation is responsible for the beam widening phenom-
enon, it is interesting to express the difference �uθ ,uθ between the integral bounds, or 
equivalenlty the Fresnel function evaluation points, that is,

This integration interval remarkably depends on coefficient B2 , i.e the quadratic phase 
variation, for a given length source L. �uθ ,uθ is depicted in Figs. 1 and 2, on which the 
left-hand plots correspond to the Fresnel functions, with a visualization of the interval 
range covered by variables uθ and uθ when θ goes from 0 to π . As observed when making 
the link with the right-hand figures, the beam shape results from the traveling of uθ and 
uθ points on the Fresnel functions. From Figs. 1 and 2, it is observed that �uθ ,uθ , i.e the 

(7)SF(θ) =
I0

L

∫ +L
2

−L
2

ejφ(z)dz,

φ(z) = B2

(

z +
B1 + k0 cos (θ)

2B2

)2

− (B1 + k0 cos (θ))
2

4B2
.

(8)SF(θ) =
I0

L

√

π

2B2
e
−

(B1+k0 cos (θ))2

4B2 I(θ),

(9)I(θ) =
∫ uθ

uθ

e
π
2 u

2
du,

(10)with,







uθ =
�

2B2
π

�

−L
2 + B1+k0 cos (θ)

2B2

�

uθ =
�

2B2
π

�

L
2 + B1+k0 cos (θ)

2B2

� .

(11)I(θ) =C(uθ )+ S(uθ )−
(

C(uθ )+ S(uθ )
)

.

(12)|SF(θ)|2 =
π I20
2B2L2

[

(

C(uθ )− C(uθ )
)2 +

(

S(uθ )− S(uθ )
)2
]

.

(13)�uθ ,uθ = uθ − uθ =
√

2B2

π
L.
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distance between uθ and uθ , drives the angular distance between the couple of Fresnel 
integrals (C(uθ ), S(uθ )) and (−C(uθ ),−S(uθ )) . Thus, the angular distance between the 
couple of Fresnel integrals can be tuned through B2for a given length source L. More 
precisely, the beam formation is triggered when uθ pass by the minima of the normal-
ized cosine Fresnel function and released when uθ pass by the maxima of the normalized 
cosine Fresnel function. As can be observed comparing Figs. 1 and 2, the larger �uθ ,uθ , 
the higher the angular distribution of the radiated power will be.

From this analysis, it turns out that �uθ ,uθ plays a central role in the adaptation of the 
beam width. However, its influence through the Fresnel functions and far-field radiation 
pattern is highly nonlinear, which prevents a straightforward usage of Eq. (13) as a way 
to adapt parameter B2 and tune the beam width. For example, although it is clear that 
the lowest B2 value is zero, leading to a pure linear phase excitation (coming back to Eq. 
(6)), the upper limit is harder to define since uθ and uθ depend both on the length source 
L and the steering angle θmax . Hence, a deeper analysis of the influence of parameter B2 
has to be led to properly control the broadening effect.

3 � Beam broadening control
From the previous section, it is understood that the beam shape obtained from a quad-
ratic excitation of a line-source depends on the evaluation intervals of the Fresnel integrals. 
Those intervals correspond to the ranges of uθ and uθ functions, both depending on the 

(a) Normalized Fresnel functions C(u) and S(u) as well as the
explored regions uθ and uθ

(b) Depiction of the Fresnel functions and of |I(θ)| according to
the elevation angle θ

Fig. 1  Continuous line-source of length L = 16� ( � = 0.01m ) with input parameters B1 = 0 and B2 = 600

(a) Normalized Fresnel functions C(u) and S(u) as well as the
explored regions uθ and uθ

(b) Depiction of the Fresnel functions and of |I(θ)| according to
the elevation angle θ

Fig. 2  Continuous line-source of length L = 16� ( � = 0.01m ) with input parameters B1 = 0 and B2 = 3000
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coefficients B1 and B2 . Our goal is now to establish a formal expression making the link 
between such coefficients and the beam width. Due to the complexity of the manipulation 
of the transcendent Fresnel integrals, a complete closed form derivation is intractable to 
find such an expression. Some convenient approximation is however possible by consider-
ing the localization of the cosine Fresnel functions maxima.

3.1 � Fresnel angular distance

As depicted in Fig. 3, the studied beam width is highly correlated to the spacing between 
the maxima of the cosine Fresnel functions C(uθ ) and −C(uθ ) . In contrast, the influence 
of the sine Fresnel functions seems to remain less significant. In the sequel, the spacing 
between the maxima of the cosine Fresnel functions C(uθ ) and −C(uθ ) is referred to as the 
Fresnel angular distance �F . The Fresnel angular distance is defined as,

where,

�F is expected to serve as a comprehensive dimensioning parameter, contrary to the 
function �uθ ,uθ previously introduced. As further illustrated in 4, one additional motiva-
tion for introducing �F comes from the near linear relationship between that variable 
and the beam width of the phased array exploiting a quadratic phase excitation.

As cosine Fresnel functions C(u) and −C(u) take their global maxima at u = 1 and 
u = −1 , the analytical derivation of �F can be obtained from the expression of variables uθ 
and uθ introduced in Eq. (10) by simply solving uθ = −1 and uθ = 1 . Equation (14) is then 
rewritten,

with, x0 = −B1/k0 = cos(θmax) and,

(14)�F = θmax − θmax,

(15)

{

θmax = Arg max
θ

C(uθ )

θmax = Arg max
θ

−C(uθ )
.

(16)�F = arccos (x0 +�x)− arccos (x0 −�x),

Fig. 3  Highlight of the match between the Fresnel angular distance and the beam width
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It appears that the Fresnel angular distance depends on both the targeted steering angle 
θmax , through parameter B1 , and the length variation �x as a function of the quad-
ratic parameter B2 . One may notice that interval �uθ ,uθ is involved in the control of the 
Fresnel angular distance. However, the beam width adaptation through �uθ ,uθ is not 
straightforward since this function is related to �F by a difference of nonlinear arccos 
functions. Hence, as already discussed in the previous section, adapting the beam width 
upon �uθ ,uθ only is not practical, whereas using �F is of better convenience.

As additional comments, it is noticeable that the beam shape is symmetrical with 
respect to the boresight direction ( θmax = 90◦ ) for B1 = 0 and �F expression reduces to 
�F = 2 arccos(�x)− π . In other configurations however, i.e. for B1  = 0 , the beam shape 
is no longer symmetrical about the steering angle θmax . Remarkably, �F = 0 for B2 = 2π

L2
 . 

This configuration corresponds to the situation for which the maxima of the Fresnel 
functions coincides. In that case, the beam width is limited, but not strictly equivalent to 
the nominal beam width obtained with a pure linear phase excitation. This latter case is 
rather obtained when B2 tends to 0. In that case, �F becomes negative, i.e. the maxima of 
the cosine Fresnel functions come in the opposite order than the one displayed in Fig. 3. 
To summarize, we have the following definition range of �F,

where the first interval is obtained for �x > 0 and the second for �x ≤ 0.
On one other hand, it is important to keep in mind that Eq. (16) assumes that the eval-

uated maxima in Eq. (15) correspond to the global maxima of the C(u) and −C(u) func-
tions, which amounts to saying that the variables uθ and uθ span a range of values such 
that ∃ θ ∈ [0, π ],uθ = −1 and uθ = 1 . These constraints are implicitly embedded in Eq. 
(16) by the definition range of the arccos functions that gives the range of values �F . 
Hence, for a given desired steering angle θmax , �x should be such that −1 ≤ x0 +�x ≤ 1 
and −1 ≤ x0 −�x ≤ 1 are both verified. After further analyzing how these inequali-
ties restrain the range of values for �F , it is determined that the maximum configurable 
value �max

F  is expressed as,

with,

Those two last equations may also be written as,

(17)�x = �

√

B2

2π

(

1−
�uθ ,uθ

2

)

.

(18)







�F < 0 for B2 ∈
�

0, 2π
L2

�

�F ≥ 0 for B2 ≥ 2π
L2

,

(19)|�F | ≤ �max
F = arccos(2 cosϑ − 1),

(20)
{

ϑ = θmax for θmax ∈
[

0, π2
]

ϑ = π − θmax for θmax ∈
[

π
2 ,π

] .

(21)|�F | ≤ �max
F (θmax) = arccos(2|x0| − 1).
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This drives us to an important result that the Fresnel angular distance is limited to a 
maximum value directly depending on the desired steering angle θmax . More specifically, 
we can conclude that the maximum Fresnel angular distance decreases as the steering 
angle increases.

3.2 � B2 parameter adaptation

The objective is now to express the coefficient B2 according to the variable �F , in such 
a way that, in the end, B2 can be computed from the desired Fresnel angular distance 
directly. To that purpose, one may rewrite (16) using the arccosine difference property 
defined as [24, p. 80, Eq. (4.4.33)],

where Sign (x) denotes the sign function. This way, it is possible to express �x as a func-
tion of �F . After simple manipulations we obtain,

One may verify that the constraint on the maximum value of �F given in Eq. (21) ensures 
that the argument of the square root is always positive, i.e. �x always exists.

It is then straightforward to combine equations (13) and (17) to extract B2 from a given 
�x . Indeed, B2 merely consists in getting the roots of a quadratic form, which yields,

Through such formula, parameter B2 is obtained from a computed �x given by Eq. (22) 
for a desired �F , with again �F satisfying (21). These last equations represent the math-
ematical statements upon which the proposed beam broadening design method pre-
sented in the next section is built.

Before getting further, it is however important to pay attention to the fact that addi-
tional constraints apply on �x or equivalently on �F , to make Eq. (23) yield real values 
of B2 . Even if condition (21) is sufficient for �F ≥ 0 since �x ≤ 0 in that case, for �F < 0 
however, we have �x > 0 , and then we should impose,

After a complete derivation of such inequation involving Eq. (22), it is possible to iden-
tify the various conditions on �F < 0 for Eq. (23) to hold whatever the selected steer-
ing angle θmax . This is solved after classical though quite long mathematical derivations 
not detailed here. The results can be summarized as follows. Parameter B2 computed for 
negative �F is consistent if and only if,

such that,

arccos(α)− arccos(β) = Sign (β − α)×

arccos
(

αβ +
√

1− α2
√

1− β2
), ∀α, β ∈ [−1, 1].

(22)�x = − Sign (�F )

√

(1− cos�F )(−2x20 + 1+ cos�F )

2(1+ cos�F )
.

(23)B2 =
π

�L2

(

�− 2L�x +
√

�(�− 4L�x)

)

.

(24)�x ≤
�

4L
.

�min
F ≤ �F < 0,
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where θ0 = arccos(1− �

4L ) , and,

Interestingly, for a source of large dimension compared to the wavelength, i.e. L >> � , 
�

4L → 0 and θ0 → 0 . Consequently, we have �min
F = − arccos(c1c2 + c3), ∀θmax ∈ [0,π ] . 

Meanwhile, if L >> � , c2 → c1 , and hence one can easily find that c1c2 + c3 → 1 . This 
finally leads to �min

F → 0 . This analysis allows to anticipate and give insight to a later 
observation showing that for large antenna arrays, the beam broadening effect is essen-
tially achievable for positive �F.

4 � Practical beam broadening method for antenna arrays
From the previous developments, we have demonstrated that the B2 coefficient of a quad-
ratic phase excitation applied to a line source can be calculated according to the newly 
defined �F variable whatever the source length L and the steering angle θmax . We now 
intend to exploit such results to propose a simple way for controlling the beam width of 
discrete linear antenna arrays.

Remember that �F is not proven to be strictly equal to the beam width, but has rather 
been proposed as a practical and representative parameter of it. In this section then, our 
goal is to study in which extent some calibration or correction process may be elaborated to 
make �F be an actual tuning parameter of the beam width, and propose hereby a system-
atic method for beam broadening. In particular, as shown in the sequel, �F turns out to be 
almost linearly depending on the so-called beam efficiency used as a reference metrics to 
characterize the broadening of the steered beams.

4.1 � Discrete‑element array excitation

As a preliminary step, let us remind that the mathematical proofs derived in Sect. 3 about 
the Fresnel angular distance control through parameter B2 consider the radiation charac-
teristics of a continuous source as established in Sect.  2. In practical scenarios however, 
discrete-element arrays controlled by an integer number of phase shifters are rather used. 
Nevertheless, the radiation characteristics of a discrete-element array can be approximated 
by those of a continuous source, making the beam broadening phenomenom defined in the 
previous sections still valid in spite of the discretization [12, Chapter 7.2]. In the sequel, 
we consider a linear antenna array, placed along the z-axis, that is composed of M antenna 
elements and controlled by a quadratic phase excitation. The array factor AF(θ) , that is the 
twin of the space factor SF(θ) for discrete arrays, is then given by,

with

(25)�min
F =

{

−�max
F (θmax) θmax ∈ [0, θ0] ∪ [π − θ0,π ]

− arccos(c1c2 + c3) θmax ∈ [θ0,π − θ0]
,

(26)











c1 = x0 − �

4L

c2 = x0 + �

4L

c3 =
�

(c21 − 1)(c22 − 1)

.

(27)AF(θ) =
1√
M

M
∑

m=1

ej(k0zm cos (θ)+φm),
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being the quadratic phase excitation. The position of the mth antenna element is given 
by zm = (m− 1)d , d being the inter-element spacing. Without loss of generality, we will 
consider d = �

2 in the sequel.
As depicted in Fig. 4, the line-source discretization mainly induces higher sidelobes but 

the beam width is kept the same. The coefficient parameterization derived for line-sources 
is thus kept unchanged in the case of linear antenna arrays.

4.2 � Beam width characterization

To go further, we need an appropriate metrics to measure the width of the beam produced 
by the antenna array. As mentioned in the introduction, ripples can exceed 3 dB when using 
a pure phase excitation. Thus, relying on the conventional 3 dB beam width definition is not 
convenient in our case. We then propose to characterize the beam width from the so-called 
beam efficiency of the array [12, Chapter 2.10]. The beam efficiency of an antenna may be 
defined as,

It represents the ratio of the power radiated within a solid angle �b around a main direc-
tion θb to the total power radiated. Strictly speaking, the radiated power should be meas-
ured around the barycenter of the power pattern, i.e at the angular value that splits the 
power pattern in such a way that 50% percent of the power is radiated on each angular 
sector. Hence, the actual steering direction θb to consider is such that,

(28)φm = B2

(

zm −
z1 + zM

2

)2

+ B1zm,

(29)
ηB =

∫ θb+
�b
2

θb−
�b
2

|AF(θ)|2 sin(θ)dθ
∫ π

0 |AF(θ)|2 sin(θ)dθ
.

(30)
∫ θb

0
|AF(θ)|2 sin(θ)dθ =

∫ π

θb

|AF(θ)|2 sin(θ)dθ .

Fig. 4  Comparison of space factor ( L = 32� ) and array factor ( M = 64 ) for the same quadratic phase 
excitation
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The barycenter is an essential metrics for ensuring that the radiated power is focused in 
the right direction, which may be slightly different from the initial steering angle θmax as 
discussed later on.

From these considerations, it is then possible to define the beam width �X
b  of the array 

for a target beam efficiency of X% , that is,

It simply represents the angular range around θb within which X% of the total power 
is radiated. Hence, the beam width has not a unique value, but rather depends on the 
targeted beam efficiency. Note that it is convenient to choose a high value of X since the 
width of the main lobe is close to the targeted beam efficiency �X

b  for such a configura-
tion. In the following sections, we consider that X = 80 but the described method could 
be repeated for other X values.

In the next sections, further details are provided regarding θb and the relationship 
between �F and �X

b  for boresight and non-boresight directions.

4.3 � Beam width control for boresight direction

For the boresight direction, i.e θmax = π/2 , the first thing to notice is that θb = π/2 
regardless of the �F value. Indeed, since θmax = π/2 , B1 is null and φn is an even function 
resulting in a symmetrical power pattern whose barycenter coincides with the steering 
angle θmax.

As already discussed, �F is a practical parameter strongly linked to the width of the 
beam but is not formally expressed as a function of it. Therefore, we propose to investi-
gate about the possible relationship between �F and the previously defined beam width 
�X

b  for an antenna array composed of M antennas. The following procedure was used : 

(1)	 Set the variation range of �F for M antennas from Eqs. (21) and (25) as, 

(2)	 Compute B2 coefficient using Eq. (23) for each �F.
(3)	 Compute the phase law φm from Eq. (28) for each �F.
(4)	 Compute the array factor AF(θ) for each phase law using Eq. (27).
(5)	 Find �X

b  by solving Eq. (29) numerically for each AF(θ) obtained from each �F.

In Fig. 5, we plot �F (�
80
b ,M) as a function of the obtained beam width �80

b  for various 
array sizes M. An almost linear relationship is observed between the two parameters, 
at least until a maximum value �80

max(M) of the beam width above which �F (�
80
b ,M) 

rapidly goes to π rad. Interestingly, the larger the antenna array, the more linear the rela-
tionship. More precisely, we can state that,

meaning that �F asymptotically matches the beam width.

(31)�X
b = arg�b

ηB = X%.

�F ∈
[

− arccos

(

1−
1

2M2

)

,π

[

.

(32)lim
M→∞

�F (�
100
b ,M) = �100

b ,
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Indeed the I(θ) function tends to be rectangular as M grows due to the compression of 
the Fresnel functions C(uθ ) and −C(uθ ) [25]. Consequently, for large M values, θmax and 
θmax perfectly coincide with the edge of a rectangle which width directly corresponds to 
the beam width �100

b .
Moreover, �min

F  tends to zero (recall discussion after Eq. (26)) as it is depicted in Fig. 5 
where the range of values for �F (�

80
b ,M) progressively becomes strictly positive when 

M grows.
As we may apply our approach for millimeter transmission scenario, we are interested 

in the situation where M is not too high. It is hence important to study the beam width 
control for �F (�

X
b ,M) ≥ 0 as well as �F (�

X
b ,M) < 0 . As the relationship is asymptoti-

cally linear, we suggest to approximate it by a linear polynomial even at small M. As may 
be noticed from Fig. 5, the average slope of the function is slightly different for positive 
and negative values of �F (�

80
b ,M) . Hence, each linear approximation may be studied 

individually as follows.

4.3.1 � Linear approximation for �F(�
X

b
,M) < 0

In this case we have �F ∈ [�min
F (M), 0[ , with �min

F (M) = − arccos
(

1− 1
2M2

)

 . Accord-

ingly, let �X
0 (M) and �X

min(M) denote the beam width values, respectively, associated 
with �F = 0 and �F = �min

F (M) . The linear relationship then writes,

It follows that if �X
0 (M) and �X

min(M) are known ∀M , then Eq. (33) directly gives the ade-
quate �F for a targeted beam width �X

b  and a given array size M. A numerical study of 
the variation of �80

0  and �80
min versus M yields the curves depicted in Fig. 6. It is observed 

that both functions may be approached by the multiplicative inverse of a linear polyno-
mial, that is,

(33)

�̃F (�
X
b ,M) ≈ �F (�

X
b ,M)

= �min
F (M)×

(

�X
0 (M)−�X

b

�X
0 (M)−�X

min(M)

)

,

�X
b ∈

[

�X
min(M),�X

0 (M)

[

.

(a) ∆F ∈ [−20◦, 180◦] (b) ∆F ∈ [−5◦, 40◦]

Fig. 5  �F versus �80
b  for M ∈ {12, 24, 48, 128}
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with α and β some real scalar values, depending on X. Through a least square fitting to 
such model for X = 80% for instance, we get the following approximations,

The tightness of the proposed model is validated in Fig. 6 where we observe that the 
beam width values �̃80

min/0(M) generated by Eq. (35) are perfectly matching the actual 
ones obtained by simulations. We then conclude that �F (�

80
b ,M) can accurately be 

approximated using Eq. (33) by substituting �X
0 (M) and �X

min(M) by the approached val-
ues given by Eq. (35). This methodology may be repeated for an other �X

b  , e.g. X = 75% 
or X = 90%.

4.3.2 � Linear approximation for �F(�
X

b
,M) ≥ 0

For �F (�
X
b ,M) ≥ 0 , we assume that �X

F ∈ [�X
0 (M), �X

max] with �X
0 (M) already given by 

Eq. (35) and �X
max chosen equal to 90◦ . As observed in Fig. 5, the latter corresponds to a 

reasonable maximum value that enables the configuration of a large beam width while 
still ensuring a near linear relationship between �F (�

80
b ,M) and �80

b  whatever M. We 
may choose a higher value of �X

max , possibly reaching a sector of 120◦ , for arrays of sev-
eral hundreds of antenna elements. On this basis, we may approximate �F (�

X
b ,M) as a 

linear function as,

where pX (M) is the slope of the linear polynomial for a given array size M. pX (M) is 
determined numerically by means of linear regression analysis and is depicted in Fig. 7 
for M ∈ [12, 128] . This function may be approximated by p̃80(M) which is expressed as,

(34)�̃X (M) = 1

αM + β
(rad),

(35)

{

�̃80
min(M) = 1

0.4548×M+2.05×10−2 (rad)

�̃80
0 (M) = 1

0.2610×M+3.67×10−2 (rad)
,M ∈ [12, 128].

(36)
�̃F (�

X
b ,M) ≈ �F (�

X
b ,M)

= pX (M)×
(

�X
b −�X

0 (M)
)

,�X
b ∈

[

�X
0 (M),�X

max

]

,

Fig. 6  �80
min/0(M) and �̃80

min/0(M) for M ∈ [12, 128]



Page 15 of 22Fonteneau et al. J Wireless Com Network         (2022) 2022:91 	

To summarize, the beam width �X
b  ranges from �X

min(M) to �X
max = 90◦ and is related 

to �F (�
X
b ,M) through the function �̃F (�

X
b ,M) by means of two linear approxima-

tions given by Eq. (33) and (36). Interestingly, the terms composing Eq. (33) and (36), 
i.e �X

min(M) , �X
0 (M) and pX (M) can be accurately approximated by Eq. (35) and (37) 

for M ∈ [12, 128] and X = 80% . Therefore, a systematic relation connect the beam width 
�80

b  to the Fresnel angular distance �F . As a final step, the quadratic phase law can be 
computed systematically according to the desired �80

b  since the quadratic coefficient B2 
is related to �F , recalling Eqs. (22) and (23). As for �F (�

X
b ,M) < 0 , this methodology 

may be repeated for an other �X
b  . Note that the near linear relationship between �X

b  and 
�F is obtained for a larger range of �F values when X is large, e.g X = 70% or X = 80% . 
Therefore, a high value of X is advised as the operating range of the proposed beam 
broadening method is larger for such a configuration.

4.4 � Non‑boresight directions

For non-boresight directions, i.e θmax  = π/2 , φm is no longer an even function since B1 
introduces a linear phase shift. The resulting power pattern is asymmetric and the bar-
ycenter θb depends on the �F . As previously discussed, the barycenter is an essential 
aspect so it is important to ensure that the drift between the desired steering angle θmax 
and the effective one, i.e the barycenter θb , is not too high.

For simplification purposes, we consider an antenna array comprising M = 32 
antenna elements. In addition, we assume that θmax ranges from 40◦ to 140◦ with an 
angular resolution of 5 ◦ . Considering those parameters, the barycenter θb(θmax,�F ) is 
evaluated numerically for �F ∈

[

�min
F (θmax),�

max
F (θmax)

]

 , recalling Eq. (21) and (25). As 
depicted in Fig.  8, the drift between θmax and θb(θmax,�F ) increases with �F . Conse-
quently, a trade-off exists between the maximum desired drift θlim and the maximum 
configurable beam width �X

max(θmax) . In order to ensure that the maximum effective 
drift doesn’t exceed θlim , we determine numerically the maximum Fresnel angular dis-
tance �max

F (θmax, θlim) which ensures that,

(37)p̃80(M) = 32
√
0.2317×M − 1.9761, M ∈ [12, 128].

Fig. 7  p80(M) and p̃80(M) for M ∈ [12, 128]



Page 16 of 22Fonteneau et al. J Wireless Com Network         (2022) 2022:91 

In the suggested implementation, a maximum drift θlim of 2.5◦ is chosen owing to the 5 ◦ 
angular resolution of θmax . The values taken by �max

F (θmax, θlim = 2.5◦) for M = 32 are 
illustrated in Fig. 8 and given in Table 1.

In order to determine the relationship between �F (�
X
b , θmax, θlim ) and �X

b  for non-
boresight directions, the 5-step procedure presented in Sect.  4.3 is applied, with 
respect to �F ∈

[

�min
F (θmax),�

max
F (θmax, θlim = 2.5◦)

]

 . In a similar manner, the rela-
tion between �F (�

X
b , θmax, θlim) and �X

b  is approximated by means of two linear 
approximations.

4.4.1 � Linear approximation for �F(�
X

b
, θmax, θlim) < 0

Following the same approach as the one described in Sect.  4.3 for �F (�
X
b ,M) < 0 

estimate, �F (�
X
b , θmax, θlim) may be approximated by,

(38)
|θb(θmax,�F )− θmax| ≤ θlim,

�F ∈
[

�min
F (θmax),�

max
F (θmax, θlim)

]

.

Fig. 8  θb(θmax,�F ) for an antenna array composed of M = 32 antenna elements and a maximum drift 
θlim = 2.5◦

Table 1  Coefficient values for M = 32 and θlim = 2.5◦

θmax �max
F

(θmax, θlim) (rad) �80
max(θmax, θlim) (rad)

85◦ / 95◦ 1.6947 1.7035

80◦ / 100◦ 1.4457 1.4905

75◦ / 105◦ 1.2620 1.3285

70◦ / 110◦ 1.0958 1.1885

65◦ / 115◦ 1.0120 1.1185

60◦ / 120◦ 0.8545 0.9885

55◦ / 125◦ 0.7130 0.8705

50◦ / 130◦ 0.6600 0.8445

45◦ / 135◦ 0.5808 0.7845

40◦ / 140◦ 0.3722 0.6025
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A numerical study of the variation of �80
0  and �80

min versus θmax yields the curves depicted 
in Fig. 9. It is observed that both functions may be approached by quadratic functions, 
that is,

with α , β and γ some real scalar values, depending on X. Through a least square fitting to 
such model for X = 80% for instance, we get the following approximations,

The tightness of the proposed model is validated in Fig.  9 where we observe that the 
beam width values �̃80

min/0(θmax) generated by Eq. (41) match the ones obtained by sim-
ulations with fair accuracy. We then conclude that �F (�

80
b , θmax, θlim) can be approxi-

mated using Eq. (39) by substituting �X
0 (θmax) and �X

min(θmax) by the approached values 
given by Eq. (41). This methodology may be repeated for an other �X

b  , e.g. X = 75% or 
X = 90%.

4.4.2 � Linear approximation for �F(�
X

b
, θmax, θlim) ≥ 0

The general idea described in Sect. 4.3 for �F (�
X
b ,M) ≥ 0 is followed. The main dif-

ference is that the maximum beam width �X
max(θmax, θlim) depends on the steering 

angle θmax and on the maximum desired drift θlim , while �X
max is constant (M-invari-

ant) in Sect. 4.3. Hence, �F (�
X
b , θmax, θlim) may be approximated by,

(39)

�̃F (�
X
b , θmax) ≈ �F (�

X
b , θmax, θlim)

= �min
F (θmax)×

(

�X
0 (θmax)−�X

b

�X
0 (θmax)−�X

min(θmax)

)

,

�X
b ∈

[

�X
min(θmax),�

X
0 (θmax)

[

.

(40)�̃X (θmax) = α × θ2max + β × θmax + γ (rad),

(41)

{

�̃80
min(θmax) = 0.0496× θ2max − 0.1557× θmax + 0.1893

�̃80
0 (θmax) = 0.0844 × θ2max − 0.2653× θmax + 0.3252

,

θmax ∈ [40◦, 140◦].

Fig. 9  �80
min/0(θmax) and �̃80

min/0(θmax) for θmax ∈ [40, 140] and M = 32
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where pX (θmax, θlim) is the slope of the linear polynomial for a given steering angle θmax 
and a desired maximum drift θlim . In contrast with the method described in Sect. 4.3, 
pX (θmax, θlim) is not approximated by means of a linear regression analysis. Indeed, the 
following estimate,

is more appropriate to ensure that �̃F (�
X
b , θmax, θlim) doesn’t exceed �max

F (θmax, θlim) and 
thus respect the expected maximum drift θlim . Note that �80

max(θmax, θlim = 2.5◦) values 
have been estimated numerically for M = 32 and are given in Table 1.

To summarize, the beam width �X
b  ranges from �X

min(θmax) to �X
max(θmax, θlim) and is 

related to �F (�
X
b , θmax, θlim) through the function �̃F (�

X
b , θmax, θlim) by means of two 

linear approximations given by Eq. 39 and 42. The maximum Fresnel angular distance 
�max

F (θmax, θlim) in Eq.  43 limits the maximum drift to θlim and has to be determined 
numerically in conjunction with �X

max(θmax, θlim) for the steering angles θmax of interest. 
Remarkably, the terms �X

min(θmax) and �X
0 (θmax) can be approximated with fair accuracy 

by Eq. 41 for θmax ∈ [40◦, 140◦] and X = 80% , considering an antenna array composed 
of M = 32 antenna elements. Therefore, a systematic relation connect the beam width 
�80

b  to the Fresnel angular distance �F for a given steering angle θmax and desired maxi-
mum drift θlim . As a final step, the quadratic phase law can be computed systematically 
according to the desired �80

b  since the quadratic coefficient B2 is related to �F by means 
of Eq.22 and 23.

5 � Results and discussion
In the last section, a 5-step procedure that enables to determine the relation between �F 
and �X

b  has been described for boresight and non-boresight directions. From this pro-
cedure, the functions �F (�

X
b ,M) and �F (�

X
b , θmax, θlim) have been determined numeri-

cally and approximated by �̃F (�
X
b ,M) and �̃F (�

X
b , θmax, θlim) in a systematic manner for 

X = 80% . Consequently, the quadratic phase law φm can be determined systematically 
too for an aimed beam width �80

b  and steering angle θmax . The proposed beam broaden-
ing method has the advantage of being lowly complex compared to existing solutions 
since neither the computation of the array factor nor any iterative process is needed to 
obtain the coefficients that drive the quadratic phase law φm . In this section, the accu-
racy of the proposed systematic beam broadening method is assessed by comparing 
the aimed beam width �80

b  with the effective one. This evaluation actually measures 
the accuracy of the approximation �̃F . The precision of the suggested beam broaden-
ing method is evaluated regarding the antenna array size M for the boresight direction 
and regarding the steering angle θmax for non-boresight directions. In the latter case, 
the maximum drift between the desired steering angle θmax and the barycenter θb is also 
measured.

(42)

�̃F (�
X
b , θmax, θlim) ≈ �F (�

X
b , θmax, θlim)

= pX (θmax, θlim)×
(

�X
b −�X

0 (θmax)
)

,

�X
b ∈

[

�X
0 (θmax),�

X
max(θmax, θlim)

]

,

(43)pX (θmax, θlim) =
�max

F (θmax, θlim)

�X
max(θmax, θlim)−�X

0 (θmax)
,
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5.1 � Boresight direction

The mean relative error and the mean absolute error between the aimed beam width 
�80

b  and the effective one are the metrics chosen for assessing the accuracy of the 
proposed systematic beam broadening method. The simulations are performed for 
�80

b ∈
[

�80
min(M),�80

max = 90◦
]

 and the obtained functions �F (�
80
b ,M) and �̃F (�

80
b ,M) 

are depicted in Fig. 10 for M ∈ {12, 16, 32, 64, 128} . It is observed that those two func-
tions are close to each other whatever the array size M, which is confirmed by the 
results obtained for the mean relative error and the mean absolute error (Fig. 11). The 
approximations suggested in Sect. 4.3 shouldn’t lead to a mean relative/absolute error 
that exceeds 2.5%/0.8◦ for an antenna array size M ∈ [12, 128] . Note that the mean 
absolute error is higher for small M values since the relation between �F (�

X
b ,M) and 

�X
b  is not strictly linear as observed in Fig. 10.

5.2 � Non‑boresight directions

The mean relative error between the aimed beam width �80
b  and the effective one 

is the metrics chosen for assessing the accuracy of the proposed systematic beam 
broadening method for non-boresight directions, considering an antenna array 

(a) ∆F ∈ [−5◦, 100◦] (b) ∆F ∈ [−5◦, 40◦]

Fig. 10  �F and �̃F versus �80
b  for M ∈ {12, 16, 32, 64, 128}

Fig. 11  Mean relative and absolute error for �80
b ∈

[

�80
min(M),�80

max

]

 and M ∈ [12, 128]
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composed of M = 32 antenna elements. In addition, the maximum drift between the 
desired steering angle θmax and the barycenter θb is calculated numerically to check 
that the θlim constraint introduced in Sect.  4.4 is verified. The simulations are per-
formed for �80

b ∈
[

�80
min(θmax),�

80
max(θmax, θlim = 2.5◦)

]

 and θmax ∈ [95◦, 140◦] with an 
angular resolution of 5 ◦ . As the array factors obtained for a steering angle θmax = θ0 
and θmax = π − θ0 are symmetrical about θ = 90◦ , the interval θmax ∈ [40◦, 85◦] 
is not evaluated since the performance would be exactly the same than the one 
obtained for θmax ∈ [95◦, 140◦] . The obtained functions �F (�

80
b , θmax, θlim = 2.5◦) and 

�̃F (�
80
b , θmax, θlim = 2.5◦) are depicted in Fig. 12 for θmax ∈ {95◦, 110◦, 125◦, 140◦} . As 

expected, it is observed that the width of �80
b  range decreases as θmax increases so as 

to limit the maximum drift to θlim = 2.5◦ . The red curve depicted in Fig. 13 validates 
the approach described in Sect.  4.4 since the maximum drift between the desired 
steering angle θmax and the barycenter θb equals θlim whatever θmax . In addition, the 
mean relative error between the aimed beam width �80

b  and the effective one doesn’t 
go beyond 3%, which seems fairly accurate. Note that the lower precision of the sug-
gested method for steering angles close to the boresight directions is attributable to 
the greater width of �80

b  range.

(a) ∆F ∈ [−20◦, 100◦] (b) ∆F ∈ [−5◦, 25◦]

Fig. 12  �F and �̃F versus �80
b  for M = 32 , θlim = 2.5◦ and θmax ∈ {95◦ , 110◦ , 125◦ , 140◦}

Fig. 13  Mean relative error and maximum absolute drift for �80
b ∈

[

�80
min(θmax),�

80
max(θmax, θlim = 2.5◦)

]

 and 
θmax ∈ [95◦ , 140◦]
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6 � Conclusion
In this paper, the far-field radiation pattern produced by a continuous line-source for a 
quadratic phase excitation has been derived. An intuitive explanation of the beam broad-
ening phenomenon, that involves the Fresnel functions, has also been provided for a better 
understanding of the quite complex expression that characterized the space factor for that 
type of excitation. It has also been shown that the quadratic coefficient of the phase law can 
be expressed as a function of the angular distance between the cosine Fresnel functions. As 
discussed in the paper, this angular distance precisely lead the beam width for very large 
antenna arrays but not for common size ones. Consequently, a procedure that enables to 
tune systematically the quadratic coefficient according to the desired beam width has been 
designed for boresight and non-boresight directions. In addition to being systematic, the 
proposed solution provides an accurate beam width control as shown by the simulation 
results. From the perspective of authors, the solution detailed in this paper has the ben-
efit of being easily implementable considering both complexity aspect and hardware con-
straints, making it well-suited for mobile wireless communications in the millimeter band.

Further improvements could still be envisioned. Indeed, the current procedure enable 
to determine the quadratic coefficient whatever the array size for the boresight direction 
and whatever the steering angle for non-boresight directions. The next step would be 
to generalize the approach whatever the array size and the steering angle for non-bore-
sight directions. Moreover, it would be interesting to extend the concept to planar arrays 
as 3D-beamforming is a key concept for the new generation of mobile communication 
systems.
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