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1. Introduction
The drift and deformation of sea ice is a key aspect of the over-all state of the ice cover. Large-scale drift redistrib-
utes ice, affecting where it forms, melts, and is collected, while small scale deformation opens up leads and builds 
ridges, which influence virtually all interactions between the atmosphere, ocean, and ice in ice-covered areas. The 
pan-Arctic drift and thickness distribution are relatively well observed (e.g., Colony & Thorndike, 1984; Kwok 
et al., 2013; Kwok & Rothrock, 2009; Ricker et al., 2017; Rothrock et al., 2008), while lead and ridge formation 
can be both directly observed at high resolution and linked to the Linear Kinematic Features (LKFs) observed 
from satellite (Kwok et al., 1998).

The drift and deformation of ice in a sea-ice model is determined by the solution of the momentum equation. 
This equation has several terms, with one of the most important ones being the internal stress term (e.g., Steele 
et al., 1997). The relationship between the internal stress and resulting deformation is referred to as a rheology 

Abstract We present a new brittle rheology and an accompanying numerical framework for large-scale 
sea-ice modeling. This rheology is based on a Bingham-Maxwell constitutive model and the Maxwell-Elasto-
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MEB rheology is its ability to represent the scaling properties of simulated sea-ice deformation in space and 
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MEB rheology and numerical implementation we were unable to address previously: excessive thickening 
of the ice in model runs longer than about one winter and a relatively high computational cost. In the BBM 
rheology and numerical framework these shortcomings are addressed by demanding that the ice deforms 
under convergence in a purely elastic manner when internal stresses lie below a given compressive threshold. 
Numerical performance is improved by introducing an explicit scheme to solve the ice momentum equation. 
In this paper, we introduce the new rheology and numerical framework. Using an implementation of BBM in 
version two of the neXtSIM sea-ice model (neXtSIMv2), we show that it gives reasonable long term evolution 
of the Arctic sea-ice cover and very good deformation fields and statistics compared to satellite observations.

Plain Language Summary Sea ice movement is determined by the wind and ocean currents 
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Bingham-Maxwell (BBM) rheology, and a method for solving the equations on a computer. This new rheology 
extends the Maxwell-Elasto-Brittle (MEB) rheology we used in previous versions of our sea-ice model, 
neXtSIM. We used MEB in neXtSIM because this rheology gives a very good description of how the ice reacts 
to winds and currents, but we found two main faults with it we couldn't fix: the ice in the model would pile 
up to become unrealistically thick after several model years, and the model required too much computer time 
to run. In the BBM rheology we add an extra term to the MEB equations to prevent the excessive piling up of 
ice, and we also propose a more efficient way to solve the equations. Like its predecessor, the new rheology 
also allows our model to simulate very well the way the ice moves on daily basis, when compared to satellite 
observations.
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and virtually all continuum, geophysical-scale sea-ice models used currently employ the viscous-plastic rheol-
ogy (VP; Hibler, 1979) or the elastic-viscous-plastic rheology (EVP; Hunke & Dukowicz, 1997), which only 
addresses numerical issues with the VP. The VP rheology treats the ice as a continuum and assumes it deforms in 
a viscous manner with a high viscosity until the internal stress reaches a plastic threshold, determined by a yield 
curve which usually has an elliptic shape. Several important improvements have been made to the original VP 
rheology (such as Hunke & Dukowicz, 1997; Lemieux et al., 2010; Bouillon et al., 2013; Kimmritz et al., 2016), 
but the physical principles remain the same.

The VP rheology has enjoyed tremendous success and is used for time scales from days to centuries and spatial 
scales from tens of kilometres to basin scales. It is, however, not without its faults, both when it comes to the 
underlying assumptions (see in particular Coon et al., 2007) and the results produced by models that use it. There 
is generally a very large spread in key prognostic variables such as thickness, concentration, and drift in model 
inter-comparison studies—well beyond observed variability (Chevallier et al., 2016; Tandon et al., 2018). The 
sharp gradients in velocities, which are known as LKFs and are related to ridge and lead formation, are also 
poorly reproduced in any VP-based model running at a coarser resolution than about 2 km, a resolution that is an 
order of magnitude higher than the observational data (Hutter & Losch, 2020; Spreen et al., 2017). While it is not 
clear whether these shortcomings are due to the VP physics, numerics, or other factors (e.g., Bouchat et al., 2022; 
Hutter et al., 2022), modifying the model physics is a plausible avenue of investigation. Several authors have, 
therefore, suggested alternate approaches to the VP rheology, such as Tremblay and Mysak (1997); Wilchinsky 
and Feltham (2004); Schreyer et al. (2006); Girard et al. (2011); Dansereau et al. (2016).

The rheology presented here is the latest realisation of a branch of rheologies that traces its origin back to inves-
tigations of satellite observations obtained with the Radarsat Geophysical Processing System (RGPS, Kwok 
et  al., 1998) and buoys trajectories from the International Arctic Buoy Program (IABP). Both data sets have 
proven to be a particularly rich source of information on sea-ice dynamics. For the sake of the current discussion, 
the most important result of the investigations of the RGPS data set is the discovery of the existence of a spatial 
scale invariance in the way sea ice deforms and of its associated fractal properties (e.g., Hutchings et al., 2011; 
Marsan et al., 2004; Oikkonen et al., 2017; Rampal et al., 2008; Weiss & Marsan, 2004). These observations indi-
cate a possible way forward for the development of sea-ice rheological models: to be consistent with the observa-
tions the models must represent the propagation of fracturing and the associated spatial and temporal correlations 
in the sea-ice deformation field, and they must include a sub-grid-scale parameterization of the fracturing.

Sea-ice models using the VP rheology have been shown to capture the grid-scale propagation of fracturing 
for scales that are about an order of magnitude lager than the model resolution (Bouchat et al., 2022; Girard 
et al., 2011; Hutter & Losch, 2020; Spreen et al., 2017). This is witnessed by the fact that the models exhibit 
spatial scaling at these larger scales, albeit sometimes with the wrong power law exponent. The fact that they don't 
exhibit scaling at, or near the model resolution strongly indicates that they lack a good sub-grid-scale parameter-
ization of fracturing.

It is important to consider the sub-grid-scale behavior because the triggering of fracture formation will always 
occur at scales much smaller than the model scale (possibly as small as the meter scale). This unresolved process 
must, therefore, be properly parameterized in order for the model to be physically consistent at the grid scale and, 
as much as possible, not resolution dependant. Given the observed scale invariance of sea-ice deformation and 
related quantities (e.g., Marsan et al., 2004; Rampal et al., 2009, 2008; Ólason et al., 2021) we can also assume 
that correctly capturing the small scale behavior will affect what happens at a larger scale.

Following these ideas and the work of Marsan et al. (2004), Weiss and Marsan (2004), Schulson (2004), Schulson 
and Hibler (2004), and Weiss et al. (2007), Girard et al. (2011) suggested the elasto-brittle (EB) rheology. This 
is a damage propagation model where the fracture density or damage at the sub-grid scale is parameterized using 
a single scalar variable which value is altered whenever the local stress exceeds the Mohr-Coulomb failure crite-
rion. Girard et al. (2011) showed that the EB model could reproduce not only the observed spatial scaling, but also 
the localisation and other qualitative properties of the deformation field. Following this, Dansereau et al. (2016) 
then proposed a further development of the EB rheology in the form of the Maxwell-elasto-brittle (MEB) rheol-
ogy. The MEB is a viscous-elastic rheology which allows the model to simulate also the large—and permanent—
deformations occurring once the ice is fractured and fragmented. In parallel, Bouillon and Rampal  (2015), 
Rampal et al. (2016), and Rampal et al. (2019) implemented and used the EB and MEB rheologies in the neXt-
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SIM large-scale sea-ice model to evaluate these rheologies against observa-
tions over spatial and temporal scales spanning several orders of magnitudes.

Despite the very encouraging results of Dansereau et al. (2016), Dansereau 
et al. (2017), Rampal et al. (2019), and Ólason et al. (2021), the MEB rheol-
ogy as proposed by Dansereau et  al.  (2016) and implemented in Rampal 
et al.  (2019), leads to excessive convergence of highly damaged ice, caus-
ing it to pile up and become unrealistically thick, a problem not experienced 
by models using the VP rheology. Furthermore, in order to achieve accept-
able numerical performance for longer simulations, Rampal et  al.  (2019) 
used a much longer time step than Dansereau et al. (2016) and did not use 
a fixed-point iteration scheme like Dansereau et al. (2016). This causes the 
model not to converge to the correct solution, impacts the damage propaga-
tion, and ultimately leads to a substantial dependence of model behavior on 
the time step. In this paper we present a new physical and numerical frame-
work designed to address those issues, while retaining the main characteris-
tics and results already obtained using MEB.

In the following we will first present the revised rheology and proposed 
numerical framework, discussing both the use of the Bingham-Maxwell 
constitutive model in a damage-propagation framework and the use of an 
explicit solver to improve the code's efficiency. We then evaluate this rheol-
ogy and framework as implemented in the neXtSIM sea-ice model. We 
consider this a sufficiently substantial improvement of the model for it to now 

warrant the neXtSIMv2 moniker, which we will use hereafter to refer to neXtSIM with the Bingham-Maxwell 
rheology (BBM) rheology. In Section 3 we first evaluate model results against the RGPS observations, demon-
strating the model's abilities in reproducing certain observed large-scale properties of sea-ice deformation. There-
after, in Section 4, we demonstrate that this new framework gives very reasonable results in terms of large-scale 
drift and thickness distribution in a decade-long simulation of the Arctic ice cover. In Section 5 we then discuss 
the model's sensitivity to key parameters.

2. Model Description
2.1. Motivation

Before describing in detail the modeling framework we discuss the rationale behind the change suggested to 
the MEB rheology and the new numerical implementation. These are the addition of a threshold for permanent 
deformation in compression and the use of an explicit solver, respectively.

Our motivation behind amending the MEB rheology is that neither the EB nor the MEB rheologies provide 
sufficient resistance to ice compression. This is because once damaged, the ice compresses readily allowing 
prevailing winds and currents to pile up very thick ice without any substantial resistance. For simulations last-
ing more than about a year this results in the formation of unrealistic, thick ice patches (thicker than 5 m, see 
Figure 1) of which the number and thickness increase over time. Our approach in addressing this is to replace the 
Maxwell constitutive model used in MEB with a Bingham-Maxwell constitutive model (e.g., Bingham, 1922; 
Cheddadi et al., 2008; Irgens, 2008; Saramito, 2021). Using this constitutive model in the context of sea ice was 
originally suggested by Dansereau  (2016), although they suggested a different stress criterion. Schematically 
speaking, the Bingham-Maxwell constitutive model consists of a dashpot and a friction element in parallel, 
connected to a spring in series (Figure 2), with the friction element being the key distinguishing feature between 
MEB and BBM. The dashpot and spring still follow the same visco-elastic rheology coupled to a progressive 
damage mechanism as in Dansereau et al. (2016), while the condition we use for the friction element is that for 
−Pmax < σN < 0 we have elastic behavior without permanent deformations, while otherwise we have both elastic 
and stress-dissipative behavior. Here σN is the mean normal stress in the ice and Pmax is a compressive strength 
threshold. This setup is chosen to simulate ridging in high compression and a resistance to ridging when the 
compressive stress is below a threshold. Different formulations of the threshold are possible (including the one 
suggested by Dansereau, 2016, to represent friction between ice floes), but the one above is designed to treat 

Figure 1. Snapshot of simulated sea ice thickness distribution on 1 January 
1999, after 4 years of simulation using the MEB rheology in neXtSIM.
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compression and give the best results in both preventing excessive convergence and producing reasonable defor-
mation results as discussed in the following sections.

The justification for using an explicit solver lies in the necessity to capture the propagation of damage while 
optimizing simulation times. Dansereau et al.  (2016) introduced the concept of a characteristic time scale for 
damage evolution, td, as the time of propagation of (shear) elastic waves and used a semi-implicit scheme with a 
fixed-point (Picard) iteration scheme with a time step Δt ≥ td. Such a scheme is computationally demanding and 
Rampal et al. (2019) eventually used a semi-implicit solver, without a fixed-point iteration scheme, and Δt ≫ td, 
to reduce computational cost. As a result, their model results are dependent on the time-step length and the solu-
tion is most likely not fully converged. In opting for an explicit solver with a time-splitting scheme we update 
only rapidly changing variables (velocity, stress, and damage) at a short time step, while doing advection and 
thermodynamics at a longer time step. This is based on the fact that fracture formation happens at a speed similar 
to that of sound in the ice and is thus much faster than the sea ice drift speed. The use of an explicit solver is also 
inspired by the work of Hunke and Dukowicz (1997), who showed that in the case of the EVP model one can use 
a time step for the explicit solver determined by the elastic time scale and not the much shorter viscous time scale. 
This result also holds here (see Appendix A).

Using an explicit solver requires Δt < td to explicitly resolve the damage propagation. This time-step requirement 
is, however, not particularly imposing, as td ∝ Δx (see Appendix A) and there is considerable experience within 
the sea-ice modeling community in solving the sea-ice momentum equation explicitly in a computationally effi-
cient manner. This was in fact the main goal of Hunke and Dukowicz (1997) in choosing an explicit solver for 
the EVP rheology. Moreover, typical values of td are similar to, or even larger, than values typically used for the 
elastic time scale of the EVP rheology. It is, therefore, reasonable to assume that the same sub-time stepping 
approach can be used here as in the EVP rheology. It is important to note that elasticity in the EVP rheology is not 
intended to be physical, but is introduced for numerical expediency and elastic waves in EVP should, therefore, 
be damped (e.g., Bouillon et al., 2013). Elasticity in BBM is, however, physical so there is no need to damp any 
resulting elastic waves.

2.2. The Brittle Bingham-Maxwell Constitutive Model

The EB and MEB rheologies are centered around the idea of damaging and damage propagation, and the BBM 
also relies on this concept, using the same damaging mechanism as MEB. The key difference between these 
rheologies lies in the constitutive model, with the EB using a damaging spring, MEB using a damaging Maxwell 
model, and the BBM being a damaging Bingham-Maxwell model. The Maxwell model consists of a dashpot and 
a spring in parallel, while the Bingham-Maxwell model consists of a dashpot and a friction element in parallel, 
connected in series with a spring (Figure 2). The inclusion of a friction element is thus the key difference between 
MEB and BBM. Here we will derive the constitutive model resulting from the use of a Bingham-Maxwell consti-
tutive model with damage, link this to the damage mechanism, and then present the appropriate temporal discre-
tization of the system.

Figure 2. Panel (a) A schematic of the Bingham-Maxwell constitutive model showing a dashpot and a friction element 
connected in parallel, with both connected to a spring in series. Panel (b) The yield criterion in the stress invariant plane {σN, 
τ}, as well as the elastic limit Pmax, and the ridging (I), elastic (II), and diverging (III) regimes.
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2.2.1. Constitutive Model

The constitutive model used here is the Bingham-Maxwell model together with a dependence of elasticity and 
viscosity on damage. The Bingham-Maxwell model is a set up of a dashpot and friction element in parallel, 
connected in series with a spring (Figure 2). The condition we use for the friction element is defined in terms of 
the normal stress

𝜎𝜎𝑁𝑁 =
1

2
(𝜎𝜎11 + 𝜎𝜎22) , (1)

as we aim to prevent excessive thickening. In divergent conditions (σN > 0), the stress in the friction element is 0 
and only the dashpot is active. In this case the total stress is the same as the elastic stress and the viscous stress 
(σ = σE = σv) and the total displacement is the sum of the elastic and viscous displacements

𝜀𝜀 = 𝜀𝜀𝐸𝐸 + 𝜀𝜀𝑣𝑣. (2)

In the range −Pmax < σN < 0, the friction element is able to prevent any permanent deformation (ɛv = 0 and ɛ = ɛE) 
and we have a pure elastic behavior, with

𝜎𝜎𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐸𝐸. (3)

For σN < −Pmax, the friction element is no longer able to prevent permanent convergent deformation. We note that 
Pmax is the key quantity introduced in the BBM rheology, compared to the MEB.

In a one-dimensional Bingham-Maxwell constitutive model (as in Figure 2, panel b) the friction element stress is 
constant (at Pmax) and the viscous stress is related to the total stress by

𝜎𝜎 = 𝜎𝜎𝑣𝑣 − 𝑃𝑃max (4)

which may be rewritten as

𝜎𝜎𝑣𝑣 = 𝜎𝜎

(

1 +
𝑃𝑃max

𝜎𝜎

)

. (5)

In the two dimensional case we use the normal stress σN as threshold to get

𝜎𝜎𝑣𝑣 = 𝜎𝜎

(

1 +
𝑃𝑃max

𝜎𝜎𝑁𝑁

)

. (6)

This ensures that the simulated ice retains some resistance to compression, even in a highly damaged state. 
Recalling Figure 2, we generalize the relationship between σ and σv as

𝜎𝜎𝑣𝑣 =
(

1 + 𝑃𝑃
)

𝜎𝜎𝜎 (7a)

�̃ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�max

��
for �� < −�max,

−1 for − �max < �� < 0,

0 for �� > 0.

 (7b)

The threshold Pmax thus separates the elastic and visco-elastic, or reversible and permanent deformation phases of 
the Bingham-Maxwell constitutive model. We assume that there is a relationship between the threshold Pmax and 
ice thickness, which is related to the process of ridging, and so we have used the form

𝑃𝑃max = 𝑃𝑃

(

ℎ

ℎ0

)

3∕2

𝑒𝑒
−𝐶𝐶(1−𝐴𝐴)

, (8)

where h0 = 1 m is a constant reference thickness, P a constant to parameterize Pmax, following the results of 
Hopkins (1998), and C is a constant similar to the compaction parameter introduced by Hibler (1979). Different 
formulations for Pmax may be considered, as briefly discussed in Section 5.
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Brittle behavior is ensured by using a slightly modified version of the damaging mechanism of Dansereau 
et al. (2016). We write the elasticity E and viscosity η as a function of damage d and ice concentration A as

𝐸𝐸 = 𝐸𝐸0(1 − 𝑑𝑑)𝑒𝑒
−𝐶𝐶(1−𝐴𝐴) (9)

𝜂𝜂 = 𝜂𝜂0(1 − 𝑑𝑑)
𝛼𝛼
𝑒𝑒
−𝛼𝛼𝛼𝛼(1−𝐴𝐴)

, (10)

where E0 and η0 are the undamaged elasticity and viscosity, and α > 1 is a constant. Undamaged ice has d = 0, 
while highly damaged ice has d → 1 and d = 1 is never reached. We use a different dependence of η on A 
compared to Dansereau et al. (2016), using e −Cα(1−A), instead of e −C(1−A). This gives more realistic behavior at low 
and medium ice concentration, as discussed further in Section 5.

Following Dansereau et al. (2016), we can now apply the elastic stiffness tensor K to the time derivative of Equa-
tion 2 and multiply with the elasticity to get

𝐸𝐸𝐊𝐊 ∶ �̇�𝜀 = 𝐸𝐸𝐊𝐊 ∶ �̇�𝜀𝐸𝐸 + 𝐸𝐸𝐊𝐊 ∶ �̇�𝜀𝑣𝑣. (11)

We assume plane stress conditions, so the stiffness tensor operation 𝐴𝐴 𝐊𝐊 ∶ �̇�𝜀 is

⎛

⎜

⎜

⎜

⎜

⎝

(� ∶ �̇)11

(� ∶ �̇)22

(� ∶ �̇)12

⎞

⎟

⎟

⎟

⎟

⎠

= 1
1 − ν2

⎛

⎜

⎜

⎜

⎜

⎝

1 ν 0

ν 1 0

0 0 1 − ν

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

�̇11

�̇22

�̇12

⎞

⎟

⎟

⎟

⎟

⎠

 (12)

where ν is Poisson's ratio. As the elastic stress is, by definition of Equation 3

𝜎𝜎𝐸𝐸 = 𝐸𝐸𝐊𝐊 ∶ 𝜀𝜀𝐸𝐸, (13)

its time derivative is

�̇�𝜎𝐸𝐸 = �̇�𝐸𝐊𝐊 ∶ 𝜀𝜀𝐸𝐸 + 𝐸𝐸𝐊𝐊 ∶ �̇�𝜀𝐸𝐸 . (14)

Calculating 𝐴𝐴 �̇�𝐸 from Equation 9 we get

�̇�𝜎𝐸𝐸 = 𝐸𝐸𝐊𝐊 ∶ �̇�𝜀𝐸𝐸 −
�̇�𝑑

1 − 𝑑𝑑
𝜎𝜎𝐸𝐸, (15)

noting that changes in concentration, A, are much slower and can be ignored (see Appendix B for details).

The viscous stress then relates to the viscous displacement as

𝜎𝜎𝑣𝑣 = 𝜂𝜂𝐊𝐊 ∶ �̇�𝜀𝑣𝑣, (16)

and to the total stress by

𝜎𝜎𝑣𝑣 =
(

1 + 𝑃𝑃
)

𝜎𝜎𝜎 (17)

The elastic stress is related to the total stress as

𝜎𝜎𝐸𝐸 = 𝜎𝜎𝜎 (18)

since the stress in each serially connected element must be equal to the total stress. By using Equations 7, 15–18 
we can now rewrite Equation 11 as

𝐸𝐸𝐊𝐊 ∶ �̇�𝜀 = �̇�𝜎 +
�̇�𝑑

1 − 𝑑𝑑
𝜎𝜎 +

(

1 + 𝑃𝑃
) 𝐸𝐸

𝜂𝜂
𝜎𝜎𝜎 (19)

or

�̇�𝜎 = 𝐸𝐸𝐊𝐊 ∶ �̇�𝜀 −
𝜎𝜎

𝜆𝜆

(

1 + 𝑃𝑃 +
𝜆𝜆�̇�𝑑

1 − 𝑑𝑑

)

, (20)
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where λ = η/E = λ0(1 − d) α−1 is the viscous relaxation time, with λ0 the undamaged viscous relaxation time.

For the time rate of change of damage, 𝐴𝐴 �̇�𝑑 we have 𝐴𝐴 �̇�𝑑 𝑑 0 only when damaging occurs, otherwise 𝐴𝐴 �̇�𝑑 = 0 . We will, 
therefore, link the 𝐴𝐴 − 𝜎𝜎�̇�𝑑∕(1 − 𝑑𝑑) term of Equation 20 to the damaging process below, noting that this term of 
the equation is zero when the stress is inside the failure envelope. Note also, that for 𝐴𝐴 �̇�𝑑 = 0 and 𝐴𝐴 𝑃𝑃 = 0 the MEB 
constitutive law is recovered (Equation 4 of Dansereau et al., 2016).

2.2.2. Damaging and Healing

Damaging occurs in the BBM rheology whenever the simulated stress in a grid cell or element is outside the 
failure envelope, or yield curve. The failure envelope of the BBM rheology is the Mohr-Coulomb criterion:

𝜏𝜏 = 𝜇𝜇𝜇𝜇𝑁𝑁 + 𝑐𝑐𝑐 (21)

where τ and σN are the stress invariants (shear and mean normal stress, respectively), μ is the internal friction 
coefficient and c is the cohesion (see Figure 2). Following Bouillon and Rampal (2015), we let the cohesion scale 
with model resolution, as

𝑐𝑐 ∼ 𝑐𝑐ref

√

𝑙𝑙ref

Δ𝑥𝑥
, (22)

where c is the model cohesion, Δx is the distance between model node points, and cref is the cohesion at the refer-
ence length scale, lref. We here use the lab scale, lref = 10 cm as the reference length scale, where we know the 
cohesion to be of the order of 1 MPa (e.g., Schulson et al., 2006). In addition to the Mohr-Coulomb criterion we 
cap the yield curve at high compressive normal stress, as discussed below.

Stress states outside the failure envelope are not physical and so whenever the modeled stress states fall outside 
the criterion, the damage, d, is modified in order to bring the stresses back inside the yield curve. We note that 
Equation 20 can be written as

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
=

𝜕𝜕𝑑𝑑

𝜕𝜕𝑑𝑑
+

𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑
+

𝜕𝜕𝑑𝑑

𝜕𝜕𝑑𝑑

𝜕𝜕𝑑𝑑

𝜕𝜕𝑑𝑑
, (23)

with the last term being

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

−𝜕𝜕

1 − 𝜕𝜕
�̇�𝜕𝑑 (24)

We now consider the case of damaging changing the stress from a stress state outside the yield curve, σ′, to a 
stress state on the failure envelope, σ, over a time td. We then have

𝜎𝜎

𝜎𝜎′

= 𝑑𝑑crit (25)

and

𝜎𝜎 − 𝜎𝜎′

𝑡𝑡𝑑𝑑
= −𝜎𝜎

′
1 − 𝑑𝑑crit

𝑡𝑡𝑑𝑑
. (26)

Assuming that the damaging process is uniform over time td, we can write this as

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝜕𝜕

1 − 𝜕𝜕crit

𝜕𝜕𝜕𝜕
. (27)

Combining Equations 24 and 27 we get

�̇�𝑑 =

1 − 𝑑𝑑crit

𝑡𝑡𝑑𝑑
(1 − 𝑑𝑑). (28)
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We can assume that for stresses inside the yield curve dcrit = 0 at all times. Following Dansereau et al. (2016), we 
set the characteristic time scale of the propagation of damage to be

�� = Δ�
��

= Δ�
√

2(1 + ν)�
�

, (29)

with cE being the propagation speed of an elastic shear wave, ν being Poisson's ratio, ρ the ice density, and E the 
elasticity as before. We note that Equation 27 gives an equation for the change in stress due to damaging which 
allows us to simplify the time stepping described below.

The variable dcrit is the distance between the simulated stress and the yield curve. Here we use the formulation of 
Plante et al. (2020), but limiting on the compressive stress following (Bouillon & Rampal, 2015). This upper limit 
is there to counteract instabilities that set in at very high σN (as pointed out by Plante et al., 2020). This limit is a 
numerical construct and is chosen high enough so that it does not influence the results. We scale the limit using 
the same scaling relationship as for the cohesion, as the onset of instability at high compression is related to the 
value of cohesion. The resulting equation for the limit is

𝑁𝑁 = 𝑁𝑁ref

√

𝑙𝑙ref∕Δ𝑥𝑥𝑥 (30)

where Nref is the limit at the reference length scale lref. The resulting equation for dcrit then reads

�crit =

{

−�∕��, if �� < −�
�∕(� + ��� )

. (31)

Using this formulation, stress states outside the yield curve have 0 < dcrit < 1. Since the elasticity and viscosity 
of the rheology depends on the damage, the damaging process as described above ensures that the stresses are 
always relaxed to within the yield curve over the time scale td.

Damaged ice must heal with time and this is done via a simple restoring term as originally introduced by Bouillon 
and Rampal (2015) and used in Rampal et al. (2016).

�̇�𝑑 = −
1

𝑡𝑡ℎ
= −

Δ𝑇𝑇

𝑘𝑘𝑡𝑡ℎ

. (32)

Here th is the characteristic time scale of healing, which we chose to depend on the temperature difference 
between the base of the ice and of the snow-ice interface, that is, th = kth/ΔT, where kth is a constant and ΔT is 
the temperature difference. This formulation is somewhat ad hoc, but it prevents melting ice from healing which 
improves thickness and concentration distribution in summer and has very limited effect in winter. The time scale 
of healing is much larger than that of damaging (th ≫ td), and so Equations 28 and 32 can be solved separately.

2.2.3. Temporal Discretization

The temporal discretization of Equation 20, using an implicit scheme, is relatively straightforward and very simi-
lar to that of Dansereau et al. (2016). Assuming no damage occurs, 𝐴𝐴 �̇�𝑑 = 0 and we write 𝐴𝐴 𝐴𝐴𝐴 in terms of the previous 
time step and the current estimate, σ n and σ′ respectively, giving

𝜎𝜎′
− 𝜎𝜎𝑛𝑛

Δ𝑡𝑡
= 𝐸𝐸𝐊𝐊 ∶ �̇�𝜀 −

𝜎𝜎′

𝜆𝜆

(

1 + 𝑃𝑃
)

 (33)

where all variables are from the previous time step (n), and Δt is the time-step length. Rearranging gives

𝜎𝜎
′

=

𝜆𝜆 (Δ𝑡𝑡𝑡𝑡𝐊𝐊 ∶ �̇�𝜀 + 𝜎𝜎𝑛𝑛
)

𝜆𝜆 + Δ𝑡𝑡
(

1 + 𝑃𝑃
) . (34)

If the stress σ′ is inside the failure envelope we set σ n+1 = σ′ and continue. If the stress is outside the envelope, 
however, damaging occurs. In this case, damage is updated using the damage evolution in Equation 28, which 
should be discretized explicitly as
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𝑑𝑑𝑛𝑛+1
− 𝑑𝑑𝑛𝑛

Δ𝑡𝑡
=

1 − 𝑑𝑑crit

𝑡𝑡𝑑𝑑
(1 − 𝑑𝑑

𝑛𝑛
) . (35)

This can be rearranged as

𝑑𝑑
𝑛𝑛+1

= 𝑑𝑑
𝑛𝑛
+ (1 − 𝑑𝑑crit) (1 − 𝑑𝑑

𝑛𝑛
)
Δ𝑡𝑡

𝑡𝑡𝑑𝑑
. (36)

The super-critical stress resulting from Equation 34 is then relaxed assuming a discretization of Equation 27 of 
the form

𝜎𝜎𝑛𝑛+1
− 𝜎𝜎′

Δ𝑡𝑡
=

𝜕𝜕𝜎𝜎

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝑡𝑡
= −𝜎𝜎

1 − 𝜕𝜕crit

𝑡𝑡𝜕𝜕
, (37)

which can be rewritten as

𝜎𝜎
𝑛𝑛+1

= 𝜎𝜎
′

− (1 − 𝑑𝑑crit) 𝜎𝜎
′
Δ𝑡𝑡

𝑡𝑡𝑑𝑑
. (38)

This relaxation may also be replaced by a recalculation of the stress using the full Equation 20 and d n+1, but using 
Equation 38 is substantially more cost-efficient and the results are virtually identical.

2.3. An Explicit Solver for the Momentum Equation

The use of an explicit solver for the sea-ice momentum equation is well known within the sea-ice modeling 
community, and the current implementation follows very closely that of Hunke and Dukowicz (1997) and Danilov 
et al. (2015). There have been various improvements made to the EVP rheology of Hunke and Dukowicz (1997) 
in the last years (Bouillon et al., 2013; Kimmritz et al., 2016; Lemieux et al., 2012), attempting to find the best 
way of using a sub-time stepping scheme to converge the EVP solution to the implicit VP solution. In our case 
it is more appropriate to think not of sub-time stepping, but rather time-splitting, where the dynamic processes 
changing velocity and internal stress are resolved at a much shorter time step than advection and thermodynamic 
processes. Such time-splitting is well known in ocean models (e.g., Hallberg, 1997; Killworth et al., 1991) and 
the original EVP of Hunke and Dukowicz (1997) can also be considered as a time-splitting approach. We base 
our solver very closely on that of Hunke and Dukowicz (1997), it being a good fit for our purpose, and a widely 
adopted and well-understood method.

The momentum equation of sea ice is (e.g., Bouillon & Rampal, 2015; Connolley et al., 2004; Danilov et al., 2015)

���⃗
��

= � ⋅ (�ℎ) + �
(

�⃗� + �⃗�
)

+ �⃗� + ���⃗ × �⃗ − ��∇⃗�, (39)

where m = Aρh is the ice mass per unit area, 𝐴𝐴 𝐴𝐴𝐴 is the ice velocity, σ is the internal stress tensor, h is the ice slab 
thickness (not volume per unit area), ρ the ice density, 𝐴𝐴 𝐴𝐴𝐴𝑎𝑎 and 𝐴𝐴 𝐴𝐴𝐴𝑤𝑤 are the atmosphere and ocean stress terms, 
respectively, 𝐴𝐴 𝐴𝐴𝐴𝑏𝑏 = −𝐶𝐶𝑏𝑏𝐴𝑢𝑢 is the basal stress term introduced in Lemieux et al. (2015), 𝐴𝐴 𝐴𝐴𝐴𝐴�⃗�𝑘 × 𝑢𝑢 is the Coriolis term, 
with vertical unit vector 𝐴𝐴 �⃗�𝑘 , and 𝐴𝐴 𝐴𝐴𝐴𝐴∇⃗𝜂𝜂 is the ocean-tilt term. We write explicitly the integrated internal stress as 
σh following Sulsky et al. (2007) and Bouillon and Rampal (2015). On staggered grids, the tracers m, A, and h 
are generally collocated and not collocated with the velocities, so we prefer to divide Equation 39 with A to get

�ℎ��⃗
��

= � ⋅ (�ℎ) + �⃗� + �⃗� + �⃗� + �ℎ��⃗ × �⃗ − �ℎ�∇⃗�, (40)

ignoring a factor of 1/A in front of the internal and basal stress terms. Those terms disappear very quickly with 
decreasing concentration, so the error incurred is very small (of the order of 0.1%). The correct dependence of 
these terms on A is also very uncertain.

The atmosphere and ocean stress terms are assumed to be quadratic, having the forms
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�⃗� = ����|�⃗�|
(

�⃗� cos �� + �⃗ × �⃗� sin ��
)

 (41)

and

𝜏𝜏𝑤𝑤 = 𝜌𝜌𝑤𝑤𝐶𝐶𝑤𝑤|𝑢𝑢𝑤𝑤 − 𝑢𝑢|

[

(

𝑢𝑢𝑤𝑤 − 𝑢𝑢
)

cos 𝜃𝜃𝑤𝑤 + �⃗�𝑘 ×

(

𝑢𝑢𝑤𝑤 − 𝑢𝑢
)

sin 𝜃𝜃𝑤𝑤

]

, (42)

respectively, where ρa and ρw are the atmosphere and ocean densities, Ca and Cw atmosphere and ocean drag 
coefficients, θa and θw the atmosphere and ocean turning angles, and 𝐴𝐴 𝐴𝐴𝐴𝑤𝑤 is the ocean velocity.

The momentum equation, together with the drag terms, is then discretized in time (using Cartesian coordinates 
with i, j = 1, 2 implying x and y direction) as (Hunke & Dukowicz, 1997)

�ℎ
Δ�

(

��+1� − ���
)

=
∑

�

���+1
�� ℎ
���

+ ��� + �′
[(

��� − ��+1�

)

cos �� − ���3
(

��� − ��+1�

)

sin ��
]

−����+1� + ���3�ℎ��+1� − �ℎ�
��
���

,
 (43)

where ɛijk is here the Levi-Civita symbol and 𝐴𝐴 𝐴𝐴′ = 𝜌𝜌𝑤𝑤𝐶𝐶𝑤𝑤|𝑢𝑢𝑤𝑤 − 𝑢𝑢𝑘𝑘| . This then gives a set of equations that can be 
solved for the velocity components to give

(

𝛼𝛼2
+ 𝛽𝛽2

)

𝑢𝑢
𝑘𝑘+1

1
= 𝛼𝛼𝑢𝑢𝑘𝑘

1
+ 𝛽𝛽𝑢𝑢𝑘𝑘

2
+

Δ𝑡𝑡

𝜌𝜌𝜌

[

𝛼𝛼

(

∑

𝑗𝑗

𝜕𝜕𝜕𝜕
𝑘𝑘+1

1𝑗𝑗
𝜌

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝜏𝜏1

)

+ 𝛽𝛽

(

∑

𝑗𝑗

𝜕𝜕𝜕𝜕
𝑘𝑘+1

2𝑗𝑗
𝜌

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝜏𝜏2

)]

 (44)

(

𝛼𝛼2
+ 𝛽𝛽2

)

𝑢𝑢
𝑘𝑘+1

2
= 𝛼𝛼𝑢𝑢𝑘𝑘

2
− 𝛽𝛽𝑢𝑢𝑘𝑘

1
+

Δ𝑡𝑡

𝜌𝜌𝜌

[

𝛼𝛼

(

∑

𝑗𝑗

𝜕𝜕𝜕𝜕
𝑘𝑘+1

2𝑗𝑗
𝜌

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝜏𝜏2

)

+ 𝛽𝛽

(

∑

𝑗𝑗

𝜕𝜕𝜕𝜕
𝑘𝑘+1

1𝑗𝑗
𝜌

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝜏𝜏1

)]

, (45)

with

� = 1 + Δ�
�ℎ

(

�′ cos �� + ��
)

 (46)

� = Δ�
(

� + �′ sin ��
�ℎ

)

 (47)

�1 = ��� + �′ (�1,� cos �� − �2,� sin ��) − �ℎ�
��
��1

 (48)

�2 = ��� + �′(�2,� cos �� + �1,� sin ��) − �ℎ�
��
�� (49)

𝑐𝑐
′

= 𝜌𝜌𝑤𝑤𝐶𝐶𝑤𝑤|𝑢𝑢𝑤𝑤 − 𝑢𝑢
𝑘𝑘
|. (50)

Given a form for σ k+1 and a spatial discretization, Equations 44 and 45 are easily solved to give the velocity 
components at each grid point or mesh node.

In this approach σ k+1 depends on σ k and 𝐴𝐴 (𝑢𝑢1, 𝑢𝑢2)
𝑘𝑘 , through 𝐴𝐴 𝐴𝐴𝐴𝑘𝑘 in Equation 34. A more correct temporal discretiza-

tion of Equation 20 would use 𝐴𝐴 𝐴𝐴𝐴𝑘𝑘+1 , but this is only available when solving the momentum equation implicitly. 
Using 𝐴𝐴 𝐴𝐴𝐴𝑘𝑘 and not 𝐴𝐴 𝐴𝐴𝐴𝑘𝑘+1 will result in an error in the estimate of σ k+1, which in turn may lead to excessive damaging 
as well. We have not investigated the extent to which this affects the results, but a way to do so is to iterate over 
the equations for σ k+1 and (44) and (45) until the velocity used to calculate σ k+1 have converged to 𝐴𝐴 (𝑢𝑢1, 𝑢𝑢2)

𝑘𝑘+1 .

The spatial discretization of Equations  44 and  45 using finite differences was discussed by Hunke and 
Dukowicz (1997) for an Arakawa B-grid and by Bouillon et al. (2009) for both the Arakawa B and C-grids. As we 
have chosen to implement the new rheology in the finite element model neXtSIMv2, we have followed Danilov 
et al. (2015) for a discretization using the finite elements method, but there are no apparent impediments for a 
finite difference implementation of the new rheology.
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In their implementation of the Finite Element sea-ice model, FESIM (version 2), Danilov et al. (2015) use nodal 
quadratures in all terms that do not involve spatial derivatives, in order to save computational time by not comput-
ing (unnecessary) mass matrices. The authors derive a weak formulation of the momentum Equation  40 by 
multiplying it with test functions, integrating over the domain, and integrating the internal stress term by parts to 
get a weak formulation. As the resulting lumped mass matrix 𝐴𝐴

(

𝑀𝑀𝐿𝐿

𝑙𝑙𝑙𝑙

)

 is diagonal, its diagonal entries are simply 
one third of the sums of areas of triangles containing the vertex considered, Ac/3. Equations 44 and 45 can then 
be used directly, but with

∑

𝑚𝑚

𝜕𝜕𝜕𝜕1𝑗𝑗ℎ

𝜕𝜕𝜕𝜕𝑚𝑚

= −
1

1

3

∑

𝑐𝑐(𝑙𝑙)
𝐴𝐴𝑐𝑐

∑

𝑐𝑐(𝑙𝑙)

𝐴𝐴𝑐𝑐ℎ

(

(𝜕𝜕11)𝑐𝑐

𝜕𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕1

+ (𝜕𝜕12)𝑐𝑐

𝜕𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕2

)

 (51)

∑

𝑚𝑚

𝜕𝜕𝜕𝜕2𝑗𝑗ℎ

𝜕𝜕𝜕𝜕𝑚𝑚

= −
1

1

3

∑

𝑐𝑐(𝑙𝑙)
𝐴𝐴𝑐𝑐

∑
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+ (𝜕𝜕11)𝑐𝑐

𝜕𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕2

)

 (52)

and

𝜕𝜕𝜕𝜕
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=
1

1
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𝑐𝑐(𝑙𝑙)
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∑

𝑐𝑐(𝑙𝑙)

∑

𝑗𝑗(𝑐𝑐)

𝜕𝜕𝑚𝑚
𝜕𝜕𝜕𝜕𝑚𝑚

𝜕𝜕𝜕𝜕1
 (53)

𝜕𝜕𝜕𝜕
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=
1

1
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∑

𝑐𝑐(𝑙𝑙)
𝐴𝐴𝑐𝑐

∑

𝑐𝑐(𝑙𝑙)

∑

𝑗𝑗(𝑐𝑐)

𝜕𝜕𝑚𝑚
𝜕𝜕𝜕𝜕𝑚𝑚

𝜕𝜕𝜕𝜕2

, (54)

where ∑c(l) denotes the sum over all the elements adjacent to node l and ∑m(c) denotes the sum over all the nodes 
belonging to element c. Note that in neXtSIMv2 the momentum equation is solved on the polar-stereographic 
plane and we do not include the metric factors as present in Danilov et al. (2015).

2.4. Implementation

The implementation of BBM into neXtSIMv2 that is used hereafter uses a time-splitting method wherein all 
equations except those related to the velocity, stress, and damage updates are solved using a long, main time 
step, Δtm. This includes damage healing, according to Equation 32, thermodynamics, and advection. The veloc-
ity, stress, and damage fields (except for healing) are then updated at a higher frequency. The higher frequency 
time stepping simply consists of splitting the long time step into Nsub short dynamical time steps, Δt. The long 
time  step is limited by the stability of the advection scheme, while the dynamical time step is limited by the stabil-
ity of the BBM rheology. In neXtSIMv2, a single dynamical time step consists of the following: (Algorithm 1)

Algorithm 1. A Single Dynamical Time Step in the Implementation of BBM Into neXtSIMv2

1. Calculate σN and Pmax according to Equations 1 and 8, respectively
2. Calculate σ′ according to Equation 34
3. Calculate dcrit according to Equation 31
4. if dcrit < 1 then
5.    Update damage according to Equation 36
6.    Update σ n+1 according to Equation 38
7. else
8.    Set σ n+1 = σ′
9. end if
10. Calculate u1 and u2 using Equations 44 and 45
11. Update u1 and u2 on ghost-nodes of the parallelization sub-domains
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In addition to the dynamical solver described here, thermodynamic growth is calculated using the approach of 
Winton (2000) and advection is done using the Lagrangian scheme of Samaké et al.  (2017). We also use the 
two-class approach of Hibler (1979) for calculating ice growth in open water.

3. Evaluation of Simulated Deformation
Here we present a simplified evaluation of the simulated deformation. This evaluation was performed by qualita-
tive visual analysis of deformation maps (see Figures 3 and 4), probability density functions, quantitative metrics 
including bias and root mean square error of deformation time series, and spatial scaling analysis. The goal of 
applying these metrics on the two model runs is to illustrate the sensitivity of the metrics to obviously different 
spatial patterns of deformation, rather than a comprehensive evaluation of the different rheologies.

As explained in subsections below the metrics were computed for sea ice deformation from three sources of ice 
drift:

•  SAR-based observations of ice drift from the RADARSAT Geophysical Processor System (RGPS, Kwok 
et al., 1998);

Figure 3. Maps of sea ice divergence (day −1) for 2 February 2007 as observed by radarsat geophysical processing system and 
simulated by neXtSIMv2 using the brittle Bingham-Maxwell and mEVP rheologies.

Figure 4. Maps of sea ice shear (day −1) for 2 February 2007 as observed by radarsat geophysical processing system and 
simulated by neXtSIMv2 using the brittle Bingham-Maxwell and mEVP rheologies.
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•  neXtSIMv2 with the new BBM rheology (BBM);
•  neXtSIMv2 with the mEVP rheology (Bouillon et al., 2009);

The main goal here is to compare BBM against observations. We include the mEVP simulations as a reference 
for the commonly used (E)VP models and we choose not to compare to results obtained with MEB, since we have 
already established that it is not suitable for longer simulations.

The model setup is similar to that in Rampal et al. (2019), except that here we use the BBM where they used 
MEB. In the two runs (BBM, mEVP) neXtSIMv2 is initialized on 15 November 2006 and runs until 30 April 
2007. Atmospheric forcing is derived from the ERA5 reanalysis (Hersbach et al., 2020) and oceanic forcing from 
the TOPAZ4 reanalysis (Sakov et al., 2012). Initial sea ice thickness and concentration are set from a combination 
of data from OSISAF (Tonboe et al., 2016), TOPAZ4, and ICESAT (available at: https://icdc.cen.uni-hamburg.
de/seaicethickness-satobs-arc.html, last access: August 2020), as described in Rampal et al. (2019). Initial sea ice 
damage is set to zero. In all three runs the explicit solver is used and the time step and spatial resolution are the 
same. The difference is in the rheological part of the model: BBM uses equations from Section 2.2 as they are, in 
mEVP we follow the implementation of Danilov et al. (2015) with minor changes discussed in Appendix C. We 
use model time steps of Δtm = 900 s and Δt = 7.5 s, which is equivalent to 120 sub-iterations, for both BBM and 
mEVP. For the mEVP we set the αmEVP and βmEVP parameters to 500 following Koldunov et al. (2019). We also 
tested running the mEVP with 500 and 1,000 sub-iterations, but the differences in results are minor (see Appen-
dix D). Table 1 lists the main model parameters and the values used here.

3.1. Details on Computation of Sea Ice Deformation Rates

Sea-ice drift is computed from the RGPS data the same way as in Stern and Lindsay (2009), with “snapshots” 
of the sea-ice drift created from the Lagrangian displacement data. For a given target time the snapshot contains 
all observations of drift that start before this time, end after it and are separated by 3 days. Sea-ice drift from the 
model is computed similar to Rampal et al. (2019), with drifters in the model seeded at the location of the RGPS 
snapshot points, and these drifters then advected together with the model elements for the same duration as in the 
RGPS snapshot. Unlike in Rampal et al. (2019), the simulated trajectories are re-initialized every 3 days to exactly 

Parameter Symbol Value

Ice–atmosphere drag coefficient Ca 2.0 × 10 −3

Ice–ocean drag coefficient Cw 5.5 × 10 −3

Undamaged elasticity E0 5.96 × 10 8 Pa

Undamaged viscous relaxation time λ0 1 × 10 7 s

Damage parameter α 5

Scaling parameter for the riding threshold P 10 kPa

Cohesion at the reference scale cref 2 MPa

Poisson ratio ν 1/3

Ice density ρ 917 kg/m 3

Maximum compressive stress at the reference scale Nref 10 GPa

Temperature dependent healing time scale kth 15 days/20 K

Main model time step Δtm 900 s

Dynamical time step Δt 7.5 s

Mean resolution Δx 10 km

mEVP convergence parameters αmEVP, βmEVP 500

mEVP ellipse aspect ratio e 2

mEVP ice strength P* 27.5 kN/m 2

mEVP ice tensile strength T* 0 kN/m 2

Table 1 
Key Model Parameters and the Values Used in the Experiments Presented Here

https://icdc.cen.uni-hamburg.de/seaicethickness-satobs-arc.html
https://icdc.cen.uni-hamburg.de/seaicethickness-satobs-arc.html
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match the RGPS snapshots. The sea ice deformation components divergence (ɛdiv) and shear (ɛshear) formulation 
are exactly the same as in Rampal et al. (2019):

𝜀𝜀𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑢𝑢𝑥𝑥 + 𝑑𝑑𝑦𝑦 (55)

𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =

√

(𝑢𝑢𝑥𝑥 − 𝑣𝑣𝑦𝑦)
2

+ (𝑢𝑢𝑦𝑦 + 𝑣𝑣𝑥𝑥)
2

, (56)

where ux, uy, vx and vy are components of the ice drift velocity gradient.

Maps of divergence and shear rate computed from an example snapshot of RGPS-data based sea-ice drift for 2 
February 2007 are compared against modeled results in Figures 3 and 4. Similar to maps in Rampal et al. (2019) 
and Marsan et al. (2004) the RGPS maps clearly show presence of narrow and long fractures in sea ice in the 
central Arctic, while the deformation field closer to the coast is more homogeneous. Visually the BBM maps 
appear quite realistic—length, width and orientation of fractures, as well as magnitude of deformation rates is 
similar to the RGPS observations. The mEVP maps, on the other hand, show very smooth fields of deformation 
with few obvious ice cracks.

3.2. Sea Ice Deformation Probability Distribution

Probability density functions (PDFs) were computed from all snapshots of sea ice deformation components for 
RGPS, BBM and mEVP and plotted in Figure 5. Comparison of PDFs shows that for both divergence and shear 
BBM fits very well with observations, yet slightly underestimating the highest shear values. High values of 
convergence (above 0.1 day −1) (defined as negative values of divergence with opposite sign) are underestimated. 
mEVP, on the other hand overestimates very small deformations and significantly underestimates the main 
portion of the spectrum.

3.3. Sea-Ice Deformation Time Series

We have seen that both the spatial field and the PDFs are characterized by a small number of high deformation 
values. This is exemplified by the LKFs (Figures 3 and 4) and the long tail of the PDFs (Figure 5). To better 
analyze this, a metric sensitive to these high values should be used. The 90th percentile (denoted as P90) was 
selected as such a metric. P90 is the value of deformation below which 90% of deformation values in the frequency 
distribution fall. For evaluation of the temporal evolution of the deformation, P90 was computed from each snap-
shot of deformation in 2007. Values of P90 from RGPS and neXtSIMv2 were plotted and inter-compared using 
bias (b) and root mean square error (RMSE, e):

𝑏𝑏 = ⟨𝜖𝜖𝑁𝑁 − 𝜖𝜖𝑅𝑅⟩, (57)

𝑒𝑒 = ⟨(𝜖𝜖𝑁𝑁 − 𝜖𝜖𝑅𝑅 − 𝑏𝑏)
2

⟩

0.5 (58)

Figure 5. Probability density functions of three sea ice deformation components computed from all snapshots in 2007. Colors denote radarsat geophysical processing 
system observations (blue) and nextSIMv2 runs: brittle Bingham-Maxwell (orange) and mEVP (green) rheologies.
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where ϵN and ϵR are ice shear P90 values from neXtSIMv2 and RGPS and 〈〉 denotes averaging. The P90 time 
series (see Figure 6) show that while neither rheology can capture the highest peaks in deformation rates, the BBM 
results are clearly closer to RGPS, with a lower bias (bBBM = 0.014, bmEVP = 0.028) and RMSE (eBBM = 0.012, 
emEVP = 0.016).

It is noteworthy that the BBM rheology is able to instantaneously react to stronger forcing with rapidly increased 
deformation, and the timing of these periods of high deformation matches well with peaks in the observations. 
However, in the mEVP rheology deformation is lower, increases slower, and lags behind the observed rates. We 
expect both the P90 time series and the tail of the PDF presented in the following sub-section to be influenced by 
how well the atmospheric model represents extreme storms. This aspect is not investigated here.

3.4. Spatial Scaling Analysis

The spatial scaling analysis of the RGPS, BBM, and mEVP deformation distributions was performed similar to 
(Marsan et al., 2004). To form a distribution of the total deformation rate (ɛtot) at the nominal spatial scale of 
10 km the triangular elements from RGPS and corresponding elements from BBM or mEVP runes were selected 
with the area between 40 and 60 km 2 (corresponding to initial RGPS triangles with sides 10 × 10 × 14 km). The 
shear and divergence components were computed on these triangles as described above and total deformation was 
computed as their geometric mean. On larger spatial scales (namely at 20, 40, 80, 160, 320, 640 and 1,000 km) the 
following procedure was used: the Arctic ocean was split by a grid with size equal to the analyzed spatial scale; 
area-weighted average of velocity gradients (ux, uy, vx, vy) from elements falling in each grid cell was computed; 
shear, divergence and total deformation rates were computed from the averaged velocity gradients. This proce-
dure was repeated for 3-day fields of deformations acquired between 10 December 2006 and 10 May 2007.

The moments of distributions at each spatial scale were computed as 𝐴𝐴 ⟨𝜀𝜀
𝑞𝑞

𝑡𝑡𝑡𝑡𝑡𝑡
⟩ with order q = 1, 2 and 3. A power-law 

scaling function 𝐴𝐴 ⟨𝜀𝜀
𝑞𝑞

𝑡𝑡𝑡𝑡𝑡𝑡
⟩ = 𝐿𝐿−𝛽𝛽(𝑞𝑞) was fitted for each moment using the least squares method. Moments, power-law 

functions and structure functions β(q) are plotted on Figure 7, where β indicates the exponent of the power-law  fits 
and q is the moment order. The filled area indicate standard deviation from averaging moments through Decem-
ber 2006 - May 20.07.

4. Evaluation of Simulated Thickness
One of the main motivation of the development of the BBM rheology was to be able to run long-term simulation 
without encountering the problem of excessive thickening that occurs with the MEB rheology as implemented by 
Rampal et al. (2019). In this section, we evaluate sea ice thickness in long-term simulations to ensure that BBM 

Figure 6. Time series sea ice shear P90 for 2007 as observed by radarsat geophysical processing system (blue) and simulated 
by neXtSIMv2 using the brittle Bingham-Maxwell (orange) and mEVP (green) rheologies.
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leads to reasonable values of the sea ice thickness, just like models using viscous-plastic based rheologies do 
(e.g., Zampieri et al., 2021, using mEVP).

4.1. Model Setup

We use a neXtSIMv2 setup very similar as the one used in Section 3, but with different initialization and simu-
lation length. The model domain has been extended to encompass a larger part of the Eastern Greenland coast as 
well as the Barents and Kara seas (see Figure 8). Two simulations are run, one with the BBM rheology and one 
with the mEVP rheology. In the following, we refer to these two simulations as BBM and mEVP, respectively. 
The sea-ice rheology is the only difference between these two simulations. They are initialized on 1 January 1995 
with ice conditions provided by PIOMAS (Schweiger et al., 2011) and are run over 20 years. Atmospheric forc-
ings are provided by the hourly data set from the ERA5 reanalysis (Hersbach et al., 2020).

We also run 4 additional experiments using the BBM rheology to investigate the impact of the parameters P 
and the exponent of the thickness dependency of Pmax in Equation 8. These experiments are initialized from the 
reference BBM simulation on 1 January 2000 and run for 5 years. The first two of them are similar to the BBM 
reference simulation with the exception of the value of P, set to 6 and 14 kPa. The third and fourth experiment use 
an exponent for the dependency of Pmax on h equal to 1 and 2 respectively, instead of 3/2 in the reference simu-
lation. The values of P in these two simulation have been adjusted to obtain the same value of Pmax for h = 2 m.

4.2. Sea Ice Thickness Evaluation

For our evaluation, we compare the sea-ice thickness from the BBM and mEVP simulations to version 2.2 of the 
merged CS2-SMOS estimated sea thickness product (Ricker et al., 2017) (available at ftp://ftp.awi.de/sea_ice/
product/cryosat2_smos/v202/nh/, last access March 2021). This product provides a 7 day averaged estimate of 
the pan-Arctic sea-ice thickness distribution. It is available daily during the freezing season, from mid-October to 
early April, starting from November 2010.

The evolution of the domain-averaged sea-ice thickness over the whole run for the two simulations is presented 
in Figure 8a. We used a 7 day running mean to be consistent with the CS2-SMOS estimated thickness when it 
is available. Here we can see that there is no spurious thickening of the sea ice in the BBM simulation, hence 
confirming it can be used for more than year-long simulations. The two simulations furthermore show very 

Figure 7. Spatial scaling analysis of total deformation fields derived from the radarsat geophysical processing system 
(blue) and neXtSIMv2 runs using the brittle Bingham-Maxwell (orange) and mEVP (green) rheologies. (a) Moments of the 
distributions of the total deformation rate ɛtot calculated at a temporal scale of 3 days and space scales varying from 10 to 
1,000 km. (b) Structure functions, where β indicates the exponent of the power-law fits and q is the moment order.

ftp://ftp.awi.de/sea_ice/product/cryosat2_smos/v202/nh/
ftp://ftp.awi.de/sea_ice/product/cryosat2_smos/v202/nh/
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similar trend and inter-annual variability. The only difference is that ice is generally thicker in the BBM simu-
lation, resulting in a positive offset of its associated curve compared to the mEVP one. The comparison with 
CS2-SMOS estimated thickness after 15 years of simulations show a reasonable agreement for the BBM simu-
lation, despite a small negative bias. This negative bias is slightly larger for the mEVP simulation but can be 
reduced for either of these two simulations with an appropriate tuning of thermodynamical parameters.

We also check the sea ice thickness spatial distribution (Figures 8b–8d) for the overlapping period covered by 
the CS2-SMOS product and our simulations. In general, both simulations show distribution patterns similar to 
the observations, even though they underestimate the ice thickness. The extent of thick ice (represented by the 
1.5 m contour in Figures 8b–8d) in the BBM simulation is however larger than in the mEVP simulation, showing 
a better agreement with the thick ice distribution in the CS2SMOS data set. This underestimation is particularly 
visible in places where ice is thicker than 2 m in the CS2-SMOS product. The underestimation of the sea ice 
thickness for thick ice and the overestimation of sea ice thickness for thin ice are a known problem of sea ice 
models (Schweiger et al., 2011). Note however that the BBM simulation seems to better reproduce the decreasing 
gradient of ice thickness from the northern coast of Greenland toward the North Pole than the mEVP one, in 
which thick ice is only found in a narrow band along the Greenland coast.

Our results show that the BBM rheology yields a reasonable sea-ice thickness magnitude and distribution when 
compared to observations in a way that is very similar to the results obtained with mEVP. Further studies should 
focus on the sea ice mass balance of a model using the BBM rheology to better understand how sea ice dynamics 
interact with thermodynamics.

Figure 8. (a) Evolution of the 7 day running mean sea ice thickness over the domain for the mEVP and brittle 
Bingham-Maxwell rheology (BBM) simulations. Available data from the CS2-SMOS v2.2 product are also shown 
for comparison with their associated uncertainty in the shaded area. The corresponding spatial distribution for all the 
period covered by the CS2-SMOS v2.2 product between 2010 and 2016 is also presented for the mEVP (b) and BBM (c) 
simulations, as well as for the CS2-SMOS v2.2 product (d). The black solid line in (b, c, d) represents the 1.5 m sea ice 
thickness contour in each data set and the dashed contour line represents the borders of the model domain.
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5. Discussion
Given the role of spatial scaling analysis in the development of the EB and MEB models we have done a spatial 
scaling analysis of the BBM results as well. This shows that BBM closely follows the RGPS observations, both 
in terms of scaling and structure function. For P = 0 kPa we recover the MEB equations, as stated previously, and 
using this to run MEB within the new numerical framework shows only minor differences between the two in 
terms of scaling (not shown). This is consistent with previously published MEB results (e.g., Figure 3 in Rampal 
et al., 2019). The mEVP significantly underestimates all three moments indicating that the density distribution 
of deformations remain almost normal up to very small spatial scales, even if the model is run on a Lagrangian 
mesh. We note also that mEVP scaling results diverge significantly from the fit at the smallest scales. These 
results are consistent with the scaling analysis of approximately 10 km resolution (Eulerian) models performed 
by Bouchat et al. (2022). This shows that the source of the heterogeneity we see in the BBM runs is the model 
physics and not the Lagrangian advection scheme—although the advection scheme may help preserving this 
heterogeneity once formed.

The BBM adds to the MEB by introducing a new parameterization, which is that of the maximum pressure, 
Pmax (see Equation 8). Here Pmax is a threshold between the regimes of reversible and permanent deformations, 
which we interpret as the maximum pressure the ice can withstand before ridging. In Equation 8 we have chosen 
to use P ∝ h 3/2, leaving the constant of proportionality, P as a tunable parameter and the main new parameter of 
the rheology. The model results are reasonably sensitive to the value of this parameter. This is true for both the 
deformation patterns and the large-scale thickness distribution, both of which show a qualitatively continuous and 
monotonous response to changes in P for P > 0 kPa.

We explored manually the parameter space for P, and Figure 9 shows maps of shear rate for a given day and a range 
of values for P ∈ [0, 18] kPa, demonstrating the effect of P on the deformation patterns. Using P = 0 kPa we see 
that using BBM gives a qualitative improvement of the deformation patterns, compared to MEB. For P > 0 kPa 
there are also clear variations in the quality of the deformation patterns depending on P. For 0 < P ≲ 6 kPa the 
features are not as straight as expected, while for P ≳ 14 kPa they start to become too localized and intense with 
not enough deformation occurring between them. Modifying the cohesion (cref) also affects the deformation 
patterns; using a small value giving a large number of small, less intense features, while larger values give a 
smaller number of large, more intense features (not shown). A reasonable range for cref appears to be within 1 and 
3 MPa. These comparisons are at the moment very qualitative, but we find that using the current tools we have 
at our disposal (such as scaling analysis and LKF detection) give either inconclusive results or require further 
development to be used to tune this new rheology against observed deformation.

Using different values of P also affects the large-scale thickness distribution in the Arctic. Figure 10 shows how 
using P = 6 kPa and P = 14 kPa modifies the long term averaged thickness field, compared to P = 10 kPa. In it, 
we see a clear thickening by about 20 cm and thinning by about 10 cm for P = 6 kPa and P = 14 kPa, respectively. 
This is to be expected, as a lower P value allows the ice to ridge more readily and so the observed difference in 
thickness is due to an increase or decrease in ridging. We also don't expect the response to be symmetric around 
an optimal P value because Pmax ∝ h 3/2 and not Pmax ∝ h.

In addition to the sensitivity to the value of P we note that the formulation of Pmax is not immediately obvious. 
Here we have chosen to relate the maximum pressure to ice thickness following Hopkins (1998). Other possi-
ble choices we explored were to use a constant, to use Pmax ∝ h (similar to Hibler, 1979) and Pmax ∝ h 2 (as per 
Rothrock, 1975). A dependence on the ice thickness is likely to be more complicated in reality, and other ice state 
parameters may have to be taken into account. Different formulations, such as relating Pmax to the level of damage, 
are also possible, but were not explored here.

Using the different formulations of Pmax listed above does not have a notable effect on the deformation patterns, 
but it does affect the large-scale thickness distribution. Figure  11 shows how using Pmax  ∝  h and Pmax  ∝  h 2 
compares to the reference implementation with Pmax ∝ h 3/2. In these experiments we chose the constant of propor-
tionality such that Pmax is the same in all three cases for 2 m thick ice. The figure shows a clear pattern of pivoting 
in the thickness anomalies between the different cases. For Pmax ∝ h the ice that is thicker than 2 m in the refer-
ence experiment becomes even thicker, while for Pmax ∝ h 2 it is thinner. The change in thickness is of the order 
of 20 cm. This behavior is expected, based on the model response to simply changing P in the reference imple-
mentation. Even though the difference between the different formulations is clear we still cannot conclusively 
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Figure 9. Maps of sea ice shear for 2 February 2007 as simulated by neXtSIMv2 with the brittle Bingham-Maxwell rheology and P = 0, 2, 6, 10, 14, 18 kPa, in panels 
a, b, c, d, e, and f, respectively.

Figure 10. (a) January to March sea ice thickness climatology from 2000 to 2004 for the reference brittle Bingham-Maxwell rheology (BBM) simulation (P = 10 kPa 
and Pmax ∝ h 3/2). Panels (b) and (c) show the difference for this same quantity between simulations using with P = 6 kPa (b) and P = 14 kPa (c) and the reference BBM 
simulation.
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determine which one gives the best results because uncertainties in observed ice thickness and unrelated model 
parameters are most likely larger than the signal we see here.

Using the chosen set of parameters for the BBM, we see only minor differences between the thickness distribu-
tion and evolution of BBM and mEVP (Figure 8). This indicates a very strong influence of the atmospheric and 
oceanic forcing on the ice state—as is to be expected. We note, however, that the mean ice thickness using the 
BBM is slightly higher, and that this behavior can be reproduced with the mEVP by increasing the h0 parameter 
of the Hibler (1979) two-category ice formation scheme. This shows that more ice is produced in leads using the 
BBM—which is also to be expected as that model clearly produces more openings (Figure 3). A plausible mecha-
nism for this is that more ice is produced in a lead that opens, refreezes, and then closes mechanically, than would 
have been produced under level ice. A lead can only open if ice is either being ridged or exported down-stream, so 
this will also act to increase the mean ice thickness, except in the vicinity of export gates, such as the Fram Strait.

The difference between BBM and mEVP is much greater if we use the ice thickness scheme of Rampal 
et al. (2019), who added a dynamically inert thin, or young ice class (not shown). The role of ice formation in 
leads is, therefore, most likely underestimated using only the two categories of Hibler (1979) in this context, but 
further investigation of this is outside the scope of this paper.

In addition to proposing a new constitutive model, we here also propose a new relationship between the viscosity 
and sea-ice concentration in Equation 10. We introduced this change because with the original formulation of 
Dansereau et al. (2016) low-concentration ice behaved in a more rigid-like manner than what is readily observed. 
This was particularly evident in the Fram Strait and along the East Greenland coast where we saw arching during 
summer in the Fram Strait and the ice in the East Greenland Current was too loose and did not flow as close to 
the coast as can be seen in observations.

The original viscosity formulation of Dansereau et al. (2016) (who use e −C(1−A), instead of e −Cα(1−A)) is only an 
educated first guess when it comes to the relationship between viscosity and concentration (as they themselves 
point out). Our reformulation is motivated by the fact that the original formulation gives too viscous ice at 
low concentration, as well as the idea that there should be a relationship between damage and concentration, 
as for instance waves are more likely to break the ice into small floes where ice concentration is low (Boutin 
et al., 2021; Williams et al., 2017). Our equation for η can be re-written as 𝐴𝐴 𝐴𝐴 = 𝐴𝐴0

[

(1 − 𝑑𝑑)𝑒𝑒−𝐶𝐶(1−𝐴𝐴)
]𝛼𝛼 to underline 

this connection.

Although our formulation gives reasonably good results, the connection between damage, floe-size distribution, 
and concentration should be investigated in substantially more detail still. One reason for further investigation 
is that the theoretical basis for the current formulation is probably weak and an in-depth study of the transition 

Figure 11. (a) Similar to Figure 10a. Panels (b) and (c) are also similar to Figures 10b and 10c but this time for two simulations with different dependencies of 
Pmax on (h) (b) Pmax ∝ h and (c) Pmax ∝ h 2. Values of P in each simulation have been adjusted to obtain the same value of Pmax for h = 2 m as in the reference brittle 
Bingham-Maxwell rheology (BBM) simulation. The solid black line in each panel delimits the 2 m sea ice thickness contour in the BBM reference simulation.
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between the collisional and continuum regimes should yield a much better justified formulation. Another reason 
is that we have seen that the formulation of the relationship between viscosity and concentration affects the PDF 
of convergence (Figure 5), and the convergence PDF is still not as well reproduced by our model as the shear 
and divergence PDFs. There is, therefore, clearly room for improvement here, from both a theoretical and prac-
tical point of view. A possible way forwards here is to build on the work of Hibler (1977); Shen et al. (1986); 
Feltham (2005) who derive equations for the flow of ice in the marginal ice zone that resemble those of a viscous 
fluid. This could lead to a more realistic formulation of Equation 10 for the limits d → 0 and A → 0.

A final point to make is that of the numerical performance of the proposed system. In practical terms then the 
neXtSIMv2 implementation of mEVP and BBM differs only in the calculation of σ. The BBM routine to calculate 
σ is longer and more complex than the mEVP routine (about 65 lines vs. about 45 lines, with more loops) and 
takes about 4 times the time to execute. In the neXtSIMv2 implementation this means that solving the momentum 
equation using BBM takes about 25% longer than it takes using mEVP, when both use 120 sub-cycling steps in 
our 10 km resolution setup with a model time step of 900 s.

One way to speed up the BBM execution is to reduce the undamaged elasticity, E0, which allows for a longer time 
step, or fewer sub-cycling steps (as per Equation A8). Reducing E0 to quarter of the value used so far allows us to 
double the dynamical time step, or halve the number of sub-cycling steps. This makes the BBM 20% faster than 
mEVP. Reducing E0 even further reduces the stability of the system, but we did not attempt to pinpoint the numer-
ically optimum value for E0 further. Reducing E0 this way does not reduce the quality of the results presented in 
here, but we have yet to fully explore the effect of reducing E0.

6. Summary and Conclusions
In this paper we present a new rheology and an accompanying numerical framework for large-scale sea-ice mode-
ling. We refer to this rheology and framework as the brittle BBM. The BBM is a further development of the 
elasto-brittle (EB) and Maxwell-elasto-brittle (MEB) rheologies that have been used to simulate sea ice previously 
in large-scale models. The main motivation behind this new development is twofold: First, to address the missing 
physics in the MEB rheology related to the convergence mode of deformation, and that was responsible for allow-
ing both unrealistic local (ridges) and basin-scale thickening of the sea ice cover over time. Second, to reduce the 
high numerical cost associated with the semi-implicit solver used for MEB in the neXtSIM model so far.

Following the work presented in this paper we can conclude the following:

•  The BBM rheology provides a good distribution of deformation magnitude and temporal variability of the 
highest deformation rates. The maps of deformation rates are very realistic with sharp, well localized (down 
to the model grid scale) features.

•  Using the BBM rheology we can simulate a realistic spatial ice thickness distribution and temporal evolution.
•  Using an explicit solver to solve the underlying equations delivers numerical performance similar to that of 

the (m)EVP rheology.

Appendix A: Stability Analysis
We perform a von-Neumann stability analysis for the 1D case. We presume the motion and spatial variation only 
to happen in the x-direction, the coefficients to be constants and all forcing to be represented by τ. In 1D, the 
contribution of the elastic-stiffness tensor reduces to 𝐴𝐴 𝐊𝐊 ∶ �̇�𝜀𝑛𝑛 = 𝜕𝜕𝑥𝑥𝑢𝑢

𝑛𝑛−1 . Abbreviating σ = σ11 and 𝐴𝐴 𝐴𝐴−1
= �̇�𝑑∕(1 − 𝑑𝑑) , 

and assuming h to be constant, the discretized equations (Equation 33 including the damage term as in 20, and the 
sea-ice momentum Equations 44 and 45) in 1D read

𝑢𝑢
𝑛𝑛+1

= 𝑢𝑢
𝑛𝑛
+

Δ𝑡𝑡

𝜌𝜌

𝜕𝜕𝜕𝜕𝑛𝑛+1

𝜕𝜕𝜕𝜕
+

Δ𝑡𝑡𝑡𝑡

𝜌𝜌𝜌
, (A1)

1

𝜒𝜒Δ𝑡𝑡
𝜎𝜎
𝑛𝑛+1

=
1

Δ𝑡𝑡
𝜎𝜎
𝑛𝑛
+ 𝐸𝐸

𝜕𝜕𝜕𝜕𝑛𝑛

𝜕𝜕𝜕𝜕
 (A2)
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with 𝐴𝐴 𝐴𝐴∶=

(

1 +
Δ𝑡𝑡

𝜆𝜆

(

1 + 𝑃𝑃
)

+
Δ𝑡𝑡

𝐷𝐷

)

−1

 . Given that 𝐴𝐴 − 1 ≤ 𝑃𝑃 ≤ 0 (see Equation 7b), we always have χ ∈ (0, 1].

Assuming χ to be constant in x-direction, we eliminate σ from Equation A1–A2. Therefore, we first take the 
spatial derivative of Equation A2 to get an explicit representation of ∂σ n+1/∂x:

𝜕𝜕𝜕𝜕𝑛𝑛+1

𝜕𝜕𝜕𝜕
= 𝜒𝜒

(

Δ𝑡𝑡𝑡𝑡
𝜕𝜕2𝑢𝑢𝑛𝑛

𝜕𝜕𝜕𝜕2

+
𝜕𝜕𝜕𝜕𝑛𝑛

𝜕𝜕𝜕𝜕

)

, (A3)

replace this expression in Equation A1 and use Equation A1 at the previous time step to derive at

𝑢𝑢
𝑛𝑛+1

− 𝑢𝑢
𝑛𝑛
(

1 + 𝜒𝜒 − 𝜒𝜒𝜒𝜒
2

)

+ 𝑢𝑢
𝑛𝑛−1

𝜒𝜒 = (1 − 𝜒𝜒)
Δ𝑡𝑡

ℎ𝜌𝜌
𝜏𝜏𝜏 (A4)

with � ∶= �Δ�
√

�∕� ∈ (0, �] and −k 2 being the eigenvalue of 𝐴𝐴 𝐴𝐴2𝑥𝑥𝑥𝑥 with k 2 ≤ π 2/Δx 2. With the elastic wave speed 

�� ∶=
√

�∕� and the elastic timescale, which is equal to the damage propagation time td  ≔  Δx/cE, we have 
ψ = (Δxk)Δt/td.

To derive a formal stability condition, we study the amplification factor ξ = u n+1/u n. The homogeneous Equa-
tion A4, where the forcing 𝐴𝐴

𝜏𝜏Δ𝑡𝑡

ℎ𝜌𝜌
(1 − 𝜒𝜒) is ignored, can be reformulated as:

𝜉𝜉
2

− 𝜉𝜉
(

1 + 𝜒𝜒 − 𝜒𝜒𝜒𝜒
2

)

+ 𝜒𝜒 = 0 (A5)

which has the solutions

𝜉𝜉1,2 =
1

2

(

1 + 𝜒𝜒 − 𝜒𝜒𝜒𝜒
2

)

±

√

(1 + 𝜒𝜒 − 𝜒𝜒𝜒𝜒2
)
2

∕4 − 𝜒𝜒𝜒 (A6)

The formal stability constraint reads |ξ| ≤ 1, but bearing in mind that the underlying set of equations is highly 
nonlinear and in order to have a stable algorithm, the stronger constraint |ξ| < 1 should hold. The angle, ω, of 
ξ = |ξ| exp(iω) should also be sufficiently small to resolve oscillations that may occur during the time-stepping 
process (see also Kimmritz et al., 2015). For instance, ω = π/2 would provoke a change in sign in every second 
time step. Thus ω should ideally satisfy ω ≪ π/2. Figure A1 shows both, the maximum magnitude, max |ξ1,2|, and 
the maximum angle, max(ω1,2), in the χ, ψ space for the limits k = Δx −1.

Figure A1. Stability regions of the simplified 1D case in the {χ, ψ}-plane. Contour lines show the maximum angle ω of ξ1,2 
between 0 and π/2 and for π. The coloring depicts max |ξ1,2|, with max |ξ1,2| > 1 shaded gray. The dotted cyan lines are the 
functions 𝐴𝐴 𝐴𝐴 =

√

𝜒𝜒−1
− 1 (where max(ω1,2) = 0) and 𝐴𝐴 𝐴𝐴 =

√

𝜒𝜒−1
+ 1 (where max(ω1,2) = π/2).
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The values for max |ξ1,2| and max(ω1,2) fall into three main regions (see Figure A1):

The first region (gray area) collects unstable solutions where max |ξ1,2| > 1. Solutions in this area occur, when a 
too large time step Δt fails to properly resolve the stress redistribution of undamaged or slightly damaged ice, or 
ice in or very near the elastic regime 𝐴𝐴

(

𝑃𝑃 ≈ −1

)

 .

The second region (yellow lower left area) contains stable solutions with |ξ1,2| close to 1 and no phase ω1,2 = 0. 
It is characterized by 𝐴𝐴 𝐴𝐴 𝐴

√

𝜒𝜒−1
− 1 (lower dotted cyan curve in Figure A1). In this case, the time step is small 

enough to resolve the stress redistribution without any phase changes in ξ, but error damping remains very small.

Solutions in the third region, lying between these two other regions in the {χ, ψ} plane, are stable and show faster 
damping of the error compared to solutions located in the lower left corner. They are, however, oscillatory as 
ω1,2 > 0. Here the angles ω1,2 are arranged in conjugate pairs (As in the EVP case, see Kimmritz et al., 2015), and 
so solutions in this third region have the real component 𝐴𝐴 𝐴𝐴𝐴𝐴 (𝜉𝜉1,2) =

1

2

(

1 + 𝜒𝜒 − 𝜒𝜒𝜒𝜒2

)

 and the imaginary compo-

nents 𝐴𝐴 𝐴𝐴𝐴𝐴 (𝜉𝜉1,2) = ±

√

𝜒𝜒 − (1 + 𝜒𝜒 − 𝜒𝜒𝜒𝜒2
)
2

∕4 , resulting in max |ξ1,2| being of the order of 𝐴𝐴
√

1∕2

(

1 + 𝜒𝜒 − 𝜒𝜒𝜒𝜒2

)

 as 
a conservative estimate. To ensure a stable solution we need ω < π/2, which means that ψ should be smaller than 

𝐴𝐴
√

𝜒𝜒−1
+ 1 (upper dotted cyan curve in Figure A1). This condition is the most constraining when χ = 1, resulting in

𝜓𝜓 =
𝑘𝑘Δ𝑥𝑥Δ𝑡𝑡

𝑡𝑡𝑑𝑑
≤

𝜋𝜋Δ𝑡𝑡

𝑡𝑡𝑑𝑑
<

√

2. (A7)

This gives a global constraint on the time step Δt

Δ𝑡𝑡 𝑡

√

2

𝜋𝜋
𝑡𝑡𝑑𝑑 =

√

2

𝜋𝜋

Δ𝑥𝑥

𝑐𝑐𝐸𝐸
. (A8)

From Equation A8 we can immediately see that the stability of the BBM framework is determined by the horizon-
tal resolution of the model and the propagation speed of damage. For practical purposes it is important to note that 
the time step scales with the horizontal resolution, that is, Δt ∝ Δx, and not the resolution squared, as one would 
expect from a purely viscous fluid. Second, the time step scales with the propagation time of damage, which in 
turn scales with the undamaged elasticity as 𝐴𝐴 𝐴𝐴𝑑𝑑 ∝ 1∕

√

𝐸𝐸 . This means that one can increase the time step of the 
model if the elasticity is reduced, as noted in the discussion (Section 5).

Appendix B: Relevance of Changes in Concentration to the Constitutive Equation
In Section 2.2.1 we derive the constitutive equations for the BBM rheology assuming that changes in concentra-
tion, A, are slow and can be ignored. This assumption can be justified by considering the full temporal derivative 
of E, derived from Equation 9:

�̇�𝐸 = 𝐸𝐸𝐸𝐸�̇�𝐴 − 𝐸𝐸
�̇�𝑑

1 − 𝑑𝑑
, (B1)

to derive the time derivative of σE as

�̇�𝜎𝐸𝐸 = 𝐸𝐸𝐊𝐊 ∶ �̇�𝜀𝐸𝐸 +

(

𝐶𝐶�̇�𝐴 −
�̇�𝑑

1 − 𝑑𝑑

)

𝜎𝜎𝐸𝐸. (B2)

Now using Equation B2, together with 7 and 16, 17–18, we can derive the analogue of Equation 20 as

�̇�𝜎 = 𝐸𝐸𝐊𝐊 ∶ �̇�𝜀 −
𝜎𝜎

𝜆𝜆

(

1 + 𝑃𝑃 − 𝜆𝜆𝜆𝜆�̇�𝐴 +
�̇�𝑑

1 − 𝑑𝑑

)

. (B3)

If we assume the ice is not damaging, that is, 𝐴𝐴 �̇�𝑑 = 0 , we see that for 𝐴𝐴 �̇�𝐴 to be negligible we must have

𝜆𝜆𝜆𝜆�̇�𝐴 𝐴 1. (B4)
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The largest values for divergence observed in the Arctic at 10 km resolution are about 10%/day, so for the inequal-
ity to hold for highly deforming ice (and with C = 20) we have

𝜆𝜆 𝜆
1

𝐶𝐶�̇�𝐴
≈ 4 × 10

4

s. (B5)

With λ = η/E and following Equations 9 and 10, the condition above holds for d ≳ 0.7 when A = 1 and A ≲ 0.7 
when d = 0.

Comparing model fields of λ and divergence shows that the condition above also holds in general, in particular 
because damage must become quite high (≳ 0.7) before any deformation will occur. We have also implemented 
Equation B2, using 𝐴𝐴 �̇�𝐴 = −∇ ⋅

(

𝑣𝑣𝐴𝐴
)

 in neXtSIMv2 and this gives results that are not significantly different from 
the ones we present in the paper's main text.

Appendix C: The mEVP Implementation
We choose to re-arrange slightly the mEVP equations in the neXtSIMv2 implementation, in order to have a more 
general code which requires only small changes to switch between mEVP, EVP, and MEB. In mEVP the momen-
tum equation is generally written as (e.g., Danilov et al., 2015)

�
(

�⃗�+1 − �⃗�
)

= �⃗0 − �⃗�+1 − Δ�� �⃗ × �⃗�+1

+ Δ�
�

[

�⃗ �+1 + ��⃗ + �����
(

�⃗� − �⃗�+1
)

|�⃗� − �⃗�+1| − �ℎ�∇⃗�
] (C1)

or

�ℎ
Δ�

(

�
[

�⃗�+1 − �⃗
]

+ �⃗�+1 − �⃗0
)

=

�⃗ �+1 + ��⃗ + �����
(

�⃗� − �⃗�+1
)

|�⃗� − �⃗�+1| − �ℎ��⃗ × �⃗�+1 − �ℎ�∇⃗�.
 (C2)

Here β is the mEVP damping parameter, n denotes the sub-time step number, u 0 is the velocity before entering 
the sub-cycling, Fj = ∂σij/∂xi is the internal stress terms, and other terms are as before.

The right hand side of Equation C2 can be written as

𝜌𝜌𝜌

Δ𝑡𝑡

(

𝑢𝑢
𝑛𝑛+1

[𝛽𝛽 + 1] − 𝛽𝛽𝑢𝑢
𝑛𝑛
− 𝑢𝑢

0

)

=
𝑚𝑚

Δ𝑡𝑡

(

[𝛽𝛽 + 1]

[

𝑢𝑢
𝑛𝑛+1

− 𝑢𝑢
𝑛𝑛
]

−

[

𝑢𝑢
0

− 𝑢𝑢
𝑛𝑛
])

. (C3)

With b ≔ β + 1, we now have

�ℎ�
Δ�

(

�⃗�+1 − �⃗�
)

= �
Δ�

(

�⃗0 − �⃗�
)

+

�⃗ �+1 + ��⃗ − �ℎ��⃗ × �⃗� + 1 + �����
(

�⃗� − �⃗� + 1
)

|�⃗� − �⃗�+1| − �ℎ�∇⃗�.
 (C4)

This is equivalent to using a modified time step

(Δ𝑡𝑡)
′

= Δ𝑡𝑡∕𝑏𝑏 (C5)

and an extra term in the equation of

𝑚𝑚

(Δ𝑡𝑡)
′

𝑢𝑢0 − 𝑢𝑢𝑛𝑛

𝑏𝑏
. (C6)

With this, Equations 44 and 45 become (now using β from Hunke & Dukowicz, 1997)

(

�2 + �2
)

��+11 = ���1 + ���2 +
�01 − ��1

�

+
(Δ�)′

�ℎ

[

�

(

∑

�

���+1
1� ℎ

���
+ ��

)

+ �

(

∑

�

���+1
2� ℎ

���
+ ��

)] (C7)
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(

�2 + �2
)

��+12 = ���2 − ���1 +
�02 − ��2

�

+
(Δ�)′

�ℎ

[

�

(

∑

�

���+1
2� ℎ

���
+ ��

)

+ �

(

∑

�

���+1
1� ℎ

���
+ ��

)]

,
 (C8)

with α, β, τx, τy, and c′ as before. In the code it is trivial to switch between the normal and modified time steps and 
to include or not the additional term to efficiently switch between the mEVP and EVP time stepping.

Appendix D: The Effect of Using a Large Number of Sub-Iterations With mEVP
In addition to using 120 sub-iterations we also tested running the mEVP with 500 and 1,000 sub-iterations. 
The main impact is that with higher number of sub-iterations the deformation field becomes more localized 
(Figure  D1), but since the number of features is very small, then the P90 value is lowered (Figure  D2 and 
Section 3.3) and the magnitude of the three moments of the spatial scaling analysis is reduced (Figure D3 and 
Section 3.4). The effect of using a large number of sub-iterations on the PDFs is barely noticeable (not shown).

Figure D1. Maps of sea ice shear (day −1) for 2 February 2007 as simulated by neXtSIMv2 with the mEVP rheology and 120, 500 and 1,000 sub-iteration steps (panels 
a, b, and c, respectively).
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Figure D2. Time series sea ice shear P90 for 2007 as simulated by neXtSIMv2 with the mEVP rheology and 120, 500 and 
1,000 sub-iteration steps (N).

Figure D3. Spatial scaling analysis of total deformation fields as simulated by neXtSIMv2 with the mEVP rheology and 
120, 500 and 1,000 sub-iteration steps (N). (a) Moments of the distributions of the total deformation rate ɛtot calculated at 
a temporal scale of 3 days and space scales varying from 10 to 1,000 km. (b) Structure functions, where β indicates the 
exponent of the power-law fits and q is the moment order.
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Data Availability Statement
The main model results used in this paper are available for download on Zenodo with a https://doi.org/10.5281/
zenodo.6816983.
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