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In order to leverage colloidal swimmers in microfluidic and drug-delivery applications, it is crucial
to understand their interaction with obstacles. Previous studies have shown that this interaction
can result in the hydrodynamic trapping in orbits around cylindrical obstacles, where the trapping
strength heavily depends on the obstacle geometry and the flow field of the swimmer, and that
Brownian motion is needed to escape the trap. Here, we use both experiments and simulations
to investigate the interaction of driven microrollers with cylindrical obstacles. Microrollers have a
unique flow field and a prescribed propulsion direction; the flow field that drives their motion is
quite different than previously-studied swimmers. We observe curvature-dependent hydrodynamic
trapping of these microrollers in the wake of an obstacle, and show explicitly the mechanism for this
trapping. More interestingly, we find that these rollers need Brownian motion to both leave and
enter the trap. By tuning both the obstacle curvature and the Debye length of the roller suspension,
the trapping strength can be tuned over three orders of magnitude. Our findings suggest that the
trapping of fluid-pumping swimmers is generic and encourages the study of swimmers with other

flow fields and the interaction of these swimmers with obstacles.

I. INTRODUCTION

Colloidal-scale swimmers exhibit complex behaviors [1,
2], such as swarming [3], hydrodynamically stabilized
motile clusters [4], oscillatory dynamics [5], and perco-
lating network states [6]. These swimmers can be classi-
fied by the flow field they generate, which governs their
propulsion as well as their behavior in complex environ-
ments, e.g. structured landscapes [7-9]. There is a strong,
applications-based interest in microswimmers, as they
can be leveraged to advance both microfluidic applica-
tions (micromixing, local advective transport, etc.) and
drug delivery systems; it is critical to both of these ap-
plications to control swimmer transport in a structured
environment (e.g., junctions; the blood stream, porous
materials) [10, 11]. The motility of these swimmers is
coupled to the hydrodynamic flows they generate, and
these flows are strongly modified by obstacles, nearby
walls, and other structural features. Thus, in order to
learn how to manipulate and guide these microswimmers
through more realistic environments, where they will en-
counter non-trivial geometries, we must develop a frame-
work to understand how these structured environments
modify the transport and propulsion of these particles.
As a first step to build this understanding, it is impor-
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tant to study a model system: the interaction of a single
swimmer with an obstacle [7, 12-20].

It has been demonstrated that obstacles can be used
to guide swimmer trajectories, both deflecting them [18],
as well as trapping them in ‘bound’ orbits [13-15, 20, 21].
By manipulating the geometry of these obstacles, one can
gain control over both scattering and trapping. For ex-
ample, by using pillars of various sizes, approaching bac-
teria could be scattered at a particular angle [18], or for
larger pillars, trapped in an orbit [16, 20]. Similar trap-
ping has been observed in artificial swimmers [13, 14, 21],
and by using more complex geometries, more exotic be-
haviors, such as directional trapping can be achieved [15].

The mechanism behind this ensemble of geometry-
mediated behaviors is set by the flow field of the mi-
croswimmer; this is a hydrodynamic effect. Many mi-
croswimmers have a dipolar flow in the far-field, the di-
rection of the flow classifies them as either ‘pushers’ (E.
Coli) or ‘pullers’ (alga Chlamydomonas). The scattering
and orbital trapping of dipolar swimmers by spherical ob-
stacles was captured in simulations and a semi-analytical
far-field hydrodynamics model by Spagnolie et al. [12].
This work demonstrated that the trapping strength of
the obstacles was directly set by the swimmer flow field:
puller swimmers were trapped by much smaller obstacles
than pusher swimmers. Additionally, they demonstrated
that fluctuations were necessary for a trapped swimmer
to exit a bound orbit.

While swimmers inducing a dipolar flow field are com-
mon, there is another class of microswimmers which gen-



erate a quite different flow: microrollers, driven by rota-
tion near a boundary [4]. The flow field around a micro-
roller distinctly differs from the dipolar flow fields around
more common pusher or puller swimmers [7, 12, 22, 23]:
there is no fore-aft symmetry and the flow field is not
axisymmetric.

Additionally, in the microroller system, the orientation
of propulsion does not diffuse, but is prescribed by a ro-
tating field, and can therefore be externally controlled.
These rotating particles generate strong flows, which can
lead to a tunable and hydrodynamically-mediated attrac-
tion between adjacent microrollers [4, 24, 25]. Dense
suspensions of microrollers give rise to interesting collec-
tive effects [4, 26-28], such as the formation of hydrody-
namically stabilized motile clusters composed of micro-
rollers [4]. These emergent structures show great promise
in the transport of passive species using magnetic fields
for microfluidic devices and drug transport, as the mag-
netic fields used for external control and are non-invasive
to the human body [29].

Just as with other kinds of swimmers, to realize the
full potential of these systems requires building an un-
derstanding of how their transport is modified by a struc-
tured environment. As the interaction of a single dipo-
lar swimmer with obstacles is very sensitive to (the sign
of) its flow field [12], we can expect the microroller to
similarly exhibit unique interactions with obstacles due
to its particular flow field, as well as its prescribed di-
rection. Therefore, studying the interaction of a single
microroller with obstacles is needed for our understand-
ing of microroller transport, but will also increase our
knowledge of the generalized problem of hydrodynamics-
governed interaction of microswimmers with structured
environments.

Here, we study the interaction of a microroller with
a cylindrical obstacle in experiments and through nu-
merical simulations which include Brownian motion and
hydrodynamics [26, 30]. The microrollers we study are
rotating colloidal particles confined by gravity at an equi-
librium height above a bottom wall. The (asymmetric)
flow field created by the rotation of these microrollers
leads to their propulsion (see Figs. 1(a-b)). We note
that these particles do not roll on the chamber floor, but
are suspended at a finite height above it due to thermal
fluctuations [4]. This is what allows for such strong hy-
drodynamic effects in this system: unlike heavier rollers
which touch the floor [3, 31, 32], the velocity of the fluid
at the surface of these microrollers is orders of magnitude
higher than the self-induced velocity of the microrollers
themselves (see Figs. 1(a-b)). In experiments, the mi-
crorollers are realized by applying a rotating magnetic
field (where the axis of rotation is parallel to the bottom
wall) to suspended colloidal particles with a permanent
magnetic moment [4, 22, 26-28, 30, 33].

In this system, we observe trapping of the micro-
roller by the obstacle, and demonstrate that this trap-
ping emerges from hydrodynamics alone. We find that
the trapping strength is sensitive to the curvature of the

FIG. 1. Magnetic field driven microrollers. Velocities and
stream lines of the fluid flow field around a spherical particle
rotating perpendicular to a nearby wall in the x — z (a) and
x —y plane (b). Fluid velocities are normalized with the bulk
velocity of the microroller. (c) Scanning electron microscopy
image of TPM spheres with an embedded hematite cube and
an overlay of a schematic of the particles. The scale bar is 2
pm. (d) Schematic of a suspended microroller with magnetic
moment m confined above a glass wall by gravity g and driven
by a magnetic field B rotating perpendicular to the glass wall.
(e) Side view and (f) perspective view of a microroller (cyan)
with a hydrodynamic radius r, = 1 pm, constructed as a rigid
multiblob, approaching a cylindrical obstacle (magenta) with
a hydrodynamic radius R;, composed of similar sized blobs.
The roller is subject to an applied torque in the x—z plane and
Brownian motion, whereas the obstacle is frozen into place.

obstacle, but also depends on the electrostatic repulsion
between the obstacle and the microroller; these two con-
trol parameters offer unique possibilities for more exotic
trapping behaviors. To understand the mechanism of this
trapping, we characterize the velocity field of the roller
around the obstacle and find stagnation points (points
of zero velocity) up- and downstream of the obstacle,
which are connected by a separatrix encircling the ob-
stacle. Near the upstream stagnation point the roller is
repelled from the obstacle, whereas downstream the roller
is drawn towards the obstacle, causing it to get trapped.
The trapping mechanism we find is quite unique: to en-
ter the basin of attraction of the obstacle, the particle
must cross a seperatrix in the flow. Thus, in contrast
with dipolar swimmers, Brownian motion is necessary
not only to leave the trap, but to enter it as well.



I1II. RESULTS

A. Observation of microroller trapping in
experiments

We study the interaction of microrollers with cylin-
drical obstacles in an experimental system similar to
Ref. [27], but with the addition of a 3D-printed
cylindrical obstacle. The microrollers are TPM (3-
(trimethoxysilyl)propyl methacrylate) spheres with a di-
ameter of 2.1 pm with an embedded magnetic hematite
cube [35] (see Figs. 1(c-d)) suspended in water. To
control the Debye length b, lithium chloride (LiCl) was
dissolved in the water. The obstacles were printed us-
ing a photopolymer resist (IP-Dip) on microscope cover
slips using a Nanoscribe Professional GT two-photon
printer [36, 37]. The auto-fluorescent obstacles were

printed as open cylinders with height H = 20 pm, where
the wall thickness was 2.5-2.8 pm, in a periodic array
with a square lattice, with a lattice constant of 100 pm.
A sample chamber (~120 pm x 2 cm X 2 cm) was
constructed from the cover slip with the printed pillars,

— I

FIG. 2. The interaction of microrollers with cylindrical ob-
stacles in experiments and simulations. (a-b) Temporal pro-
jections of a fluorescence microscopy image sequence of mi-
crorollers interacting with cylindrical obstacles (H = 20 pm,
R = 14.4 ym), where the microroller is trapped and eventu-
ally released (a), or passes the obstacle (b). (c-d) Temporal
projections of simulations of microrollers approaching cylin-
drical obstacles (R, = 10 pm) where also the microrollers
gets trapped and eventually released (c), or passes the obsta-
cle (d). Videos of the trapping in experiments and simulations
are provided in the Supplementary Material [34]. The arrows
denote the direction of propagation of the microrollers. The
scale bars are 10 pm.

two spacers and a microscope slide [27], which was filled
with the microroller suspension and sealed using UV glue
(Norland Adhesives, no. 68). We imaged the microrollers
and obstacles using a bright field or fluorescence micro-
scope (see Fig. S1 of the Supplementary Material [34])
while applying a rotating magnetic field (40 G, 9 Hz, see
Fig. 1(d)) using the setup described in Ref. [27].

In Figs. 2 (a-b) the interaction of a microroller with
the printed obstacle is shown (see also Vids. S1-2 of the
Supplementary Material [34]). We observe the trapping
and an eventual release of the microroller on the side
of the roller (see Fig. 2(a), Video S1), but another mi-
croroller passes the obstacle without being trapped (see
Fig. 2(b), Vid. S2). As the electrostatic interaction be-
tween the microrollers and the 3D printed obstacles is
purely repulsive as both are negatively charged [38, 39],
the trapping of the microroller likely originates from hy-
drodynamics.

B. Microroller trapping in simulations

To further study the trapping of microrollers and un-
derstand its underlying mechanism, we perform Brown-
ian dynamics simulations. The dynamics of a microroller
satisfy the overdamped Langevin equations [26]

% = MF + \/2kgTMY?W + kgTd,-M (1)
where g = {x, 8} is the vector collecting the roller posi-
tion & and orientation 6 (here a quaternion). The first
term in the RHS of (1) is the deterministic velocity of
the microroller due to the external forces f (here gravity
and electrostatic repulsion) and torques T (from the ro-
tating magnetic field in experiments) applied on it, where
F = {f,7}. The mobility matrix M (q(t)) relates the ve-
locity V' and rotation rate w to the forces and torques
applied on the microroller through its hydrodynamic in-
teractions with the wall and the obstacle. The second
term is the velocity increment due to Brownian motion,
which involves a vector of independent white noise pro-
cesses W(t) and the square root of the mobility matrix
M?'/2. The last term is the stochastic drift involving the
divergence of the mobility matrix with respect to the par-
ticle positions and orientations, it arises when taking the
overdamped limit of the Langevin equations [40]. More
details on the methods used to compute those stochastic
terms are found in [26].

In this work we compute the mobility matrix M by
solving the first-kind integral formulation of the Stokes
equations with a coarse-grained model called the rigid
multiblob model [30], where the continuous single layer
potential is replaced by a discrete set of blobs, i.e. mark-
ers with a finite size, on the surface of the microroller
and of the cylinder. These blobs are constrained to sat-
isfy the rigid body motion on the obstacle and microroller
surface through a set of Lagrange multipliers. Hydrody-
namic interactions between the blobs are given by a reg-



FIG. 3. Microrollers interacting with cylindrical obstacles.
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(a-d) 2D histograms (log-scale) of the [z,y] coordinates of a

microroller interacting with a cylindrical obstacle in experiments (a) and simulations (b-d), for different relative curvatures:
rn/Rn = 0.07 (a), rn/Rn = 0.1 (b) and r,/Rr = 0.33 (c-d). In the simulations, the stochastic (b-c) or deterministic (d)
methods were used. The roller is driven in the x direction. In panel (a) the brown dotted circle is drawn as a guide to the eye
to clearly show the upstream repulsion and downstream attraction near the obstacle. In panel (b-d), the solid magenta circle
denotes the obstacle, the white dashed line the position of the roller at contact with the obstacle. (e) 2D histogram (log-scale)
of the [z,y] coordinates of multiple runs where a microroller escapes the hydrodynamic trap of an obstacle (ry/R; = 0.33)
from the starting point at [x = Rp + 74,y = 0] (white arrow) until the escape when = > Ry, + 5rp, (red line). Video S5 of the
Supplementary Material [34] shows a single escape run. (f) Log-log plot of the mean escape time t* as a function of relative
curvature rp, /Ry, in simulations (b/r;, = 0.1 (A) and b/r;, = 0.4 (V)) and experiments (no salt, b/r, ~ 0.3 (O) and added salt,

b/rr = 0.025 (d)), where the error bars denote the standard error.

ularization of the Green’s function of Stokes equations in
the presence of a no-slip wall, called the wall-corrected
Rotne-Prager-Yamakawa (RPY) tensor [41]. The cylin-
der is constrained at a fixed position on the floor in order
to satisfy the no-slip boundary condition for the fluid ve-
locity w = 0 on its surface.

We model the microrollers with a hydrodynamic radius
rp, = 1 pm [42] confined by gravity to a no-slip bottom
wall, while a constant torque is applied in the z-z-plane
(see Figs. 1 (e-f)) [26, 30, 43]. The microrollers are con-
structed of 12 blobs with radii r, = 0.416 pm, while we
vary the hydrodynamics radius Ry, of the cylindrical ob-
stacles, which are constructed of blobs with an equal size
as the rollers and have a height H = 5.5 pm. A smaller
height was chosen in simulations to reduce the run-time
of the simulations and its (minimal) effects on the results
will be discussed in Section III. The blobs in the roller

and pillar interact through a Yukawa potential

Y el if
U(T):{e 7;b ifr<l )

if r >1,

where € = 0.03 pNum ~ 7.3 kT is the repulsion strength
at contact, r the center-to-center distance between the
blobs, I twice the blob radius r, and b/r;, = 0.1 the Debye
length. For the interaction between a blob and the bot-
tom wall we use the same potential, but with [ equal to
the radius of a single blob 7, and r the distance from the
wall to the center of the blob [33]. We use the stochastic
Trapezoidal Slip method [26] to integrate (1) with a time
step At/Tserr = 2.25 x 1073, where 741 r = (6mnr3) /KT,
the time the roller takes to diffuse over its own radius in
the absence of a driving field [44]. The parameters used
in the simulations are listed in Tab. S1 [34] and are cho-
sen similar to the experimental parameters and the work



reported in Ref. [27].

Similarly to the experiments, we observe hydrody-
namic trapping of the roller by the obstacle in our
stochastic simulations (see Fig. 2 (c¢) and Vid. S3 [34]).
As in the experiments, the trapping does not always oc-
cur, as some rollers pass the obstacles without being
trapped (see Fig. 2 (d) and Vid. S4 of the Supplementary
Material [34]).

C. Microroller interaction with cylindrical
obstacles

To study the interaction of microrollers with obsta-
cles in more detail, we measured heat maps (or 2D his-
tograms) of the positions of the microroller around the
obstacle, in both experiments (Fig. 3 (a)) and stochastic
simulations (Figs. 3 (b-c)). In the experiments, we drove
microrollers at low area fractions through an array of
printed pillars (rp /Ry, = 0.07) and imaged them by fluo-
rescence microscopy. Using particle tracking [45, 46] we
assigned the positions of the microrollers to the nearby
obstacles and combined this data in a 2D histogram
shown in Fig. 3(a). Upstream (z < 0) a semicircle of
low count is observed close to the pillar, indicating a re-
pulsion from the obstacle. Downstream (z > 0), however,
two high count regions are found at about one and five
o’clock close to the pillar, indicating an attraction to the
obstacle where the roller gets trapped. Furthermore, the
hydrodynamic trapping of the particles also results in a
low-count zone further downstream of the obstacle. Up-
stream there is also a lower count around y = 0, which is
caused by the depletion of rollers due the adjacent pillars
in the printed array (see Fig. SI of the Supplementary
Material [34]).

In the stochastic simulations 200 runs were performed
with the roller at starting positions [x = —20r,,y =
{=10rp, 10ry}], where Ay = 0.1r,. The 2D histograms
for r, /Ry = 0.1 and 0.33 are shown in Figs. 3 (b-c), re-
spectively. We simulated smaller obstacles than used in
the experiments, as the large pillar size used would have
led to long run times due to the number of blobs needed
to construct the obstacle in simulations. Upstream re-
pulsion and downstream attraction are observed, similar
to the experiments. For rp/R, = 0.1 (see Fig. 3 (b)),
two high count regions are observed, but more down-
stream than in experiments. For r,/R; = 0.33 (see
Fig. 3(c)), the two high count regions are merged into
a single high count region around y = 0. Similar to the
experiments, a depletion zone is found in the wake of
the pillar. Furthermore, the width of this depletion zone
decreases with increasing relative curvature /Ry (see
Figs. 3 (b-c)). Interestingly, when the simulations are re-
peated without Brownian motion, using the deterministic
Adams-Bashforth method [33], no trapping is observed
(see Fig. 3(d)). Instead, the particles are repelled from
a low-count zone downstream of the obstacle. This indi-
cates that Brownian motion is needed for the microroller

to enter the hydrodynamic trap.

To investigate the strength of the hydrodynamic trap,
we ran stochastic simulations where the particles are
placed in the attractive region behind the obstacle at
contact [t = Rj, +rp,y = 0] and the escape time (or first
passage time) from the trap is measured (see Fig. 3 (e))
[47]. The escape time is defined as the time it takes
the roller to pass = Ry, + 51, [48] (see the red line in
Fig. 3 (e)). The rollers are found to explore the trap by
thermal fluctuations and eventually escape (see Vid. S5
in the Supplementary Material [34]). The distribution
of escape times have a long tail towards longer escape
times, as plotted in Fig. S2 of the Supplementary Ma-
terial [34]. As there is no model describing this process
yet, we will resort to using the mean of the distributions
to characterize them in further analysis.

The mean escape time measured in simulations (cor-
rected for the escape time without an obstacle present)
t* = (tege) — (t72,°0stacle) [49] as a function of relative cur-
vature rp /Ry, is shown in Fig. 3 (f). We ran simulations
for two different Debye lengths of the repulsive Yukawa
potential (2): b/r, = 0.1 (A) and b/rp, = 04 (V). We
find that the escape time strongly depends on the relative
curvature of the obstacle, where low relative curvatures
lead to long escape times, and therefore high trapping
strengths. Furthermore, the escape time decreases with
an increase in the Debye length and therefore the range of
the repulsive electrostatic interaction between the roller
and the obstacle.

To verify these findings, we measured the trapping
strength of cylindrical obstacles in experiments. As we
could not place the particles in the wake of the obsta-
cles, we analyzed image sequences of microrollers inter-
acting with cylindrical obstacles and measured the time
between a microroller arriving behind the obstacle and
it subsequently leaving the trap. Fig. 3 (f) shows the
mean escape time t* versus relative curvature ry, /Ry, data
from the experiments for rollers suspended in pure wa-
ter (b/ry, = 0.3 [50], O) and in a 0.14 mM LiCl solution
(b/rr, = 0.025 [27], O).

In the experiments a strong dependence of the mean
escape time on the relative curvature is found, similar to
the simulations. Moreover, the slopes of the data from
the experiments and simulations are very similar. In ad-
dition, as in the simulations, an increase in Debye length
results in a decrease of the mean escape time. While
the escape time versus relative curvature data sets from
the simulations and experiments overlap, they do so for
different Debye lengths (see Fig. 3 (f)). Fig. 3 (f) demon-
strates that the trapping strength can easily be tuned
over multiple orders of magnitude in experiments by ad-
justing both the curvature of the obstacle and the De-
bye length of the microroller suspension. Both of these
control parameters are easily accessible experiments by
changing the printed obstacle size and/or tuning the salt
concentration of the roller suspension.
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FIG. 4. Identifying the basin of attraction. Deterministic microroller velocity fields in the xy plane calculated around cylindrical
obstacles with relative curvatures of (a) /R, = 1.00 and (b) 7,/R, = 0.33. The instantaneous microroller velocities in the
plots are normalized to the average velocity of the microroller in the absence of obstacles Vj. The filled magenta circles denote
the obstacle, the white dashed circles the position of the roller at contact with the obstacle. The filled black circle of radius
Ry, + 7 + d, where d = 0.8, is drawn to block out the region where the electrostatic repulsion dominates the dynamics of the
roller. Two stagnation points (V/Vy = 0, red dots) can be identified upstream and downstream from the obstacle, which differ
in their surrounding flow field (white and black arrows): the flow between the point upstream and the obstacle repels the roller
from the obstacle, while the point downstream attracts the rollers to the pillar. (c) The distance of the stagnation point to
the obstacle surface & (see Eq. 3) as a function of the relative curvature r, /Ry, where r, /R, = 0 is a wall of height 5.5 pm.
(d) 2D projection of the trajectories of a roller with different initial positions interacting with a cylindrical obstacle (magenta,
rn/Rr = 1.00) calculated using the deterministic Adams-Bashford method. An interactive 3D plot of this panel can be found
in File S1 of the Supplementary Material [34]. The initial positions at x4+ y? = 9r, are indicated by ® and the trajectories are
colored according to the initial roller height z/r, = 0.9675 (—), 1.29 (—), 2.58 (—) and 3.225 (—). The grey circle denotes
the area where the electrostatic repulsion dominates the dynamics of the roller. The pink area, the basin of attraction, denotes
the initial zy positions of rollers with z = 1.29 that are bound to converge into a single point (®) downstream of the obstacle.
This point of convergence is located on the edge of the grey circle (or black circles drawn in (a) and (b)). The fate of the roller
(trapping or passing) is independent of the initial height of the roller. Only the rollers with an initial position outside of the
basin of attraction undergo a strong enough hydrodynamic and electrostatic repulsion to push the roller around the basin of
attraction and past the obstacle.

D. Basin of attraction curvatures r, /Ry = 1.00 and r, /R, = 0.33 are shown
in Figs. 4 (a-b). We only plot the roller velocities for
22492 > (R +714 +d)?, where d = 0.87, [51], as the mi-
croroller velocity too close to the obstacle is dominated
by the electrostatic repulsion between the roller and the

obstacle.

To understand the mechanism by which the micro-
rollers are trapped by the obstacles, we calculated the
deterministic velocity field of the microroller around the
obstacles in simulations, allowing us to identify the basin

of attraction. This was done by placing the particle
on a grid and measuring its instantaneous velocity in
the x — y plane at that point, where the roller was
placed at a height z/r, = 1.29, close to its bulk equi-
librium height. The roller velocity fields for relative

Two stagnation points (points of zero velocity) are
identified up- and downstream of the obstacles, as indi-
cated by the red dots in Figs. 4 (a-b). Although the two
stagnation points are symmetric with respect to the ob-
stacle, they are tilted slightly with respect to the z-axis.
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FIG. 5. Effect of relative curvature on the roller velocity field. The radial velocity V. (a-b) and tangent velocity Vy (c-d) fields
of a roller around obstacles with relative curvature r,/Rn = 1.0 (a,c) and r, /Ry, = 0.1 (b,d). The filled magenta circles denote
the obstacle, the white dashed circles the position of the roller at contact with the obstacle. The filled black circle of radius
Ry + rn + d, where d = 0.8, is drawn to block out the region where the electrostatic repulsion dominates the dynamics of the
roller. The red dots (e) denote the stagnation point of the roller velocity fields as in Fig. 4 (a-b). (e) The radial (top) and
tangent (bottom) roller velocities along the black dotted semi-circles in (a-d) as a function of relative curvature r,/Rp = 1.0
(e), 0.33 (a) and 0.1 (v). The magenta lines correspond to V;./Vp = —0.52cos 6 (top) and Vi/Vo = —0.61sin6 (bottom). The
fluctuations of the curves for r, /R, = 0.1 (v) are due to a relative coarse resolution of the mesh used to calculate the roller

velocity fields. All velocities are normalized with the bulk roller velocity.

This is a non-physical effect induced by the finite resolu-
tion of our simulations and the discretized nature of the
roller and the obstacle. Although the magnitude of the
velocities at the up- and downstream stagnation points
are identical, the directions of the velocities are different
(as indicated by the black and white arrows in Figs. 4 (a-
b)): while the microroller is pushed from the obstacle
between the obstacle and the upstream (z < 0) stag-
nation point, it is pulled into the obstacle downstream
(x > 0). This explains the regions of low and high count,
respectively, up- and downstream of the roller in the 2D
histograms in Figs. 3 (a-c).

At a given height, the up- and downstream stagnation
points lie on a seperatrix forming a circle around the
obstacle, where for z < 0 the flow direction converges at
the separatrix, while for z > 0 the flow diverges (see Fig.
S3(b) in the Supplementary Material [35]). This is why
in the deterministic simulations of the rollers interacting
with the obstacle (see Fig. 3 (d)) no trapping is observed:
as the microroller approaches the obstacle, it is kept from
crossing the separatrix, and will never be able to cross the
separatrix behind the pillar to reach the attractive flow
field or basin of attraction. Thus, Brownian motion of
the microroller is necessary to cross the separatrix, enter
the basin of attraction, and thus be hydrodynamically
trapped by the obstacle.

We define the distance between the stagnation point
and the surface of the obstacle as Z:

|zs| — R
Th

(3)

where x4 is the z-position of the stagnation point. In
Fig. 4 (c) z is plotted as a function of relative curvature
ry/ Ry, where 1, / Ry, = 0 corresponds to a wall (R, — oo,
5.5 pm high, 10 pm long) where the stagnation point be-
comes a line parallel to the wall and |z| is the distance
between this stagnation line and the center of mass of the
wall (see Fig. S3(c) in the Supplementary Material [34]).
Z is found to increase for lower curvature. This increase
widens the basin of attraction, the area where the micro-
roller is attracted to the obstacle (see Figs. 4 (a-b)), and
results in an increase in trapping strength, as observed
by measuring the escape times (see Fig. 3 (f)). As the
basin of attraction grows, the thermal fluctuations due
to Brownian motion are less likely to kick the roller out
of the trap, resulting in longer escape times. We should
note that the stagnation point distances Z in Fig. 4 (c)
are smaller than the escape criterion (x > Ry, +57,) used
in the escape time measurements (see Fig. 3 (e)). There-
fore, the rollers pass the stagnation point in their escape
for all relative curvatures.

In order to calculate the basin of attraction, we ran
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deterministic simulations for different initial positions
around the obstacle and determined whether the mi-
croroller got trapped or was able to pass the obstacle.
In Fig. 4(d) the basin of attraction (pink area) around
an obstacle (r, /Ry, = 1.00) is plotted. In addition, we
plot the trajectories of rollers with initial positions at
22+ 9% = 9r;, and different heights, just outside the grey
area where the electrostatic repulsion dominates the dy-
namics of the microroller (see Fig. 4 (d) and the inter-
active 3D plot in File S1 of the Supplementary Mate-
rial [34]. For the majority of initial positions, the roller
cannot cross the separatrix and ends up into a conver-
gence point (as denoted by the black dot in Fig. 4 (d)).
We find that the roller converges to this point irre-
spective of its initial height. Only for initial positions
ly| < 0.8,z < 0, which lies outside of the basin of at-
traction, the hydrodynamic and electrostatic repulsion
acting on the roller are enough to cross the separatrix
and the roller is able to pass the obstacle.

The convergence point is located on the edge of the
area where the roller-pillar interaction is dominated by
electrostatic repulsion, as indicated by the black circle
in Figs. 4 (a-b) and the grey circle in Fig. 4(d). At this
point, which is the attractor in this system, the hydrody-
namic attraction and electrostatic repulsion acting on the
roller are balanced. We can therefore conclude there are
three points of zero velocity in this system: two stagna-
tion (saddle) points (up- and downstream, see Figs. 4 (a-
b)) and one attractor (sink) or convergence point (down-
stream, see Fig. 4 (d)). The two stagnation points result
from the balance between the hydrodynamic interaction
(repulsive or attractive) between the roller and the pil-
lar, and the self-induced velocity (or propulsion) of the
roller. The convergence point, however, is a result of the
balance between the self-induced velocity of the roller,
the hydrodynamic interaction and the electrostatic re-
pulsion between the roller and the pillar.

When the Debye length is increased, the electric re-
pulsion between the roller and the pillar will increase,
resulting in a shift of the convergence point towards the
stagnation point. The reduced distance between the con-
vergence and stagnation point, and therefore the reduced
size of the basin of attraction, will increase the probabil-
ity of the roller leaving the trap due to thermal fluctua-
tions. This agrees with the observed decrease in the mea-
sured escape times upon an increase in the Debye length
in both experiments and simulations (see Fig. 3 (f)).

Surprisingly, although we find a single attractor in
our system, we observe the formation of two high count
regions for low relative curvature (see Figs. 3(a-b)),
whereas for high relative curvature (see Fig. 3(c)) a sin-
gle high count region is found, coinciding with the point
of convergence (see Fig. 4(d)). To explain this, we plot
the radial and tangent velocity roller velocity fields for
relative curvatures rp /R, = 1.0 and 0.1 (see Figs. 5 (a-
d)). In addition, we plot the radial and tangent velocities
along the semi-circles in Figs. 5 (a-d), for relative curva-
tures rp /Ry, = 1.0, 0.33, and 0.1 (see Fig. 5(e)). The

semi-circles are placed downstream of the pillars, but ex-
actly in between the stagnation point and the point of
convergence. The radial velocity plot (Fig. 5(e), top)
shows that for decreasing curvature the roller is drawn
stronger towards the pillar than for higher curvature.
This supports the increasing escape time with decreas-
ing curvature (see Fig. 3 (f)). Interestingly, the radial
and tangent velocities seem to depend on the cosine and
sine, respectively, of the angle between the roller-pillar
vector and the direction of propulsion (see black dashed
lines in Fig. 5 (e)).

We can now explain the difference in the number of
high count regions for different curvatures when a roller
is passing an obstacle (see Figs. 3 (a-c)). For lower cur-
vatures, the roller is more likely to enter and stay in the
basin of attraction close to |#/m| = 0.5 for two reasons:
(1) a higher radial attraction (see Fig. 5 (e), top) and (2)
smaller Brownian kicks due to a reduced mobility near a
wall with low curvature. Next, the time it takes the roller
to reach the point of convergence increases for, again, two
reasons: (1) the distance to the point of convergence in-
creases linearly with the diameter of the obstacle and (2)
the tangent attraction towards the point of convergence
decreases with lower curvature (see Fig. 5 (e), bottom).
This increased travel time will thus make it more likely
that before reaching the point of convergence, the roller
is kicked out of the trap by Brownian motion. This is
why for low curvature, two high count regions are ob-
served, whereas for high curvature, a single high count
region coincides with the point of convergence.

E. Mechanism of microroller trapping

The existence of the stagnation points has a purely
hydrodynamic origin. At the typical equilibrium height
measured in simulations, the flow induced by the micro-
roller is one to two orders of magnitude greater than the
self-induced velocity Vj: on the roller surface the fluid
velocity reaches u =~ 30V and u = 5V} a few radii away
along the z-axis (see Fig. 1(a)). As a result, when the
obstacle is separated from the microroller at a given dis-
tance d, along the z-axis, it needs to cancel strong hor-
izontal (Fig. 6 (a)) and vertical (Fig. 6 (b)) flows on its
surface in order to satisfy the no-slip condition u = 0
for the fluid velocity. To do so, it exerts a surface force
distribution (called traction forces) that generates a ve-
locity field opposite to the one induced by the microroller
(see Figs. 6 (c-f)). Owing to the high magnitude of the
surface velocities and to their slow decay at low Reynolds
number, the cylinder hydrodynamic response is able to
overcome the translation of the microroller at speed Vj.
This explains why the rollers are attracted to the obstacle
at the rear and, by symmetry, repelled at the front. The
stagnation points therefore correspond to the separation
distances at which the cylinder-induced velocity on the
microroller exactly balances Vj.

Since the area of the cylinder surface exposed to strong
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FIG. 6. Fluid velocity field induced by an isolated roller at an equilibrium height h = 1.297, in the  — y plane (a) and = — z
plane (b). The shaded areas represent the position of an obstacle with relative curvature r, /Ry, = 1 and r,/Rp = 0.1 separated
by a horizontal distance d, = 27,. Streamlines are colored in white and the colorbar represents the magnitude of the flow
parallel to the plane and is normalized with the self-induced velocity of a free roller V5. The magnitude of the x — z velocity
is shown in log-scale due to the high velocity contrast between the rigid body motion on the roller surface (u ~ 30V4) and the
vanishing velocity on the bottom wall (u = 0). (c)-(f) Fluid velocity field induced by the traction forces on the surface of the
cylinder for two relative curvatures r, /R, = 1 and r,/R, = 0.1 in the z — y plane (c,e) and z — z plane (d,f). Solid orange

line: iso-contour u, = —Vj.

flows increases with the cylinder radius R}, (see Figs. 6 (a-
b)) the reflected flow gets stronger when 7,/ R}, decreases
and the stagnation points move away from the cylinder
(see Fig. 4(c)). This phenomenon is visualized with the
iso-contour w, = —Vj, where the horizontal cylinder-
induced fluid velocity balances the microroller velocity,
in the z — y and z — z plane (see Figs. 6 (c-f)). For a
fixed horizontal separation distance d, = 2r},, the area of
this iso-contour around the microroller increases with Ry,
leading to an enhanced hydrodynamic attraction. This is
further quantified by measuring the volume V enclosed by
the iso-surface u, = —Vj behind the obstacle: a three-
fold increase of V is observed between r,/R, = 2 and
rp/Rp = 0.1 (see Fig. S4 in the Supplementary Mate-
rial [34]).

As shown in Figs. 4 (a-b), the cylinder with /Ry =
0.33 is able to attract the microroller, i.e. induce a nega-
tive microroller velocity along the z-axis, over a wider

range of lateral positions (between y =~ —2.25r, and
y ~ 2.25ry) than for r, /Ry = 1 (between y ~ —1.257,
and y &~ 1.257;,). Such an increase in the attractive area
with r, /Ry reduces the escape probability from Brow-
nian motion and thus results in longer trapping times.
This increase can again be explained by looking at the
hydrodynamic response of the cylinder surface when it
is laterally shifted from the microroller. As shown in
Fig. 7(a), for a given lateral shift d, = d, = 2ry, the
magnitude of the flow induced by the microroller at the
position of the cylinder surface increases with Rj: the
larger the cylinder radius, the closer its surface is to the
microroller and to the maximal velocity located along
the z-axis. The cylinder response for dy = d, = 2rp,
shown in Figs. 7(b-c), is therefore much stronger for
rp/Rp = 0.1 than for r, /Ry, = 1: the area of the iso-
contour u, = —Vj does not enclose the microroller any-
more for r, /Ry, = 1, which allows it to escape, while the
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FIG. 7. (a) Fluid velocity field induced by an isolated roller at an equilibrium height h = 1.29r}, in the zy-plane. The shaded
areas represent the position of an obstacle with relative curvature r,/Rr = 1 and 7 /Rh = 0.1 separated by a horizontal
distance d, = 2r, and lateral distance dy, = 2rj. Streamlines are colored in white and the colorbar represents the magnitude
of the flow parallel to the plane and is normalized with the self-induced velocity of a free roller V. (b)-(c) Fluid velocity field
induced by the traction forces on the surface of the cylinder for two relative curvatures rn/R, = 1 and r,/Rp = 0.1 in the
xy-plane. Solid orange line: iso-contour u; = —Vj. Insets: iso-contour u, = —Vj in the zz-plane going through the center of

the microroller at y = 0.

attractive flow of the largest cylinder is still able to sur-
round and trap the microroller. In the limit r, /R, — 0,
where the cylinder is an infinite wall, the system is trans-
lationally invariant along the y-axis, the obstacle reflects
the microroller flow independently of d, and the stagna-
tion point becomes an infinite line (see Fig. S3(c) in the
Supplementary Material [34]).

III. DISCUSSION

We observed that the escape time versus relative cur-
vature data sets from the simulations and experiments
overlap, but for different values of the Debye length (see
Fig. 3 (f)). To match the escape times measured in the
experiments, we need to overestimate the Debye length in
the simulations. In other words: in simulations a higher
trapping strength is measured than in experiments for the
same Debye length. We carefully matched the parame-
ters in the simulations, such as the buoyant force, viscos-
ity, and microroller-wall interactions, to the experiments
in previous work on dense layers of microrollers [27].
As the previous work was in the absence of obstacles,
the simulation parameters concerning the introduced ob-
stacle could very well be the reason of the mismatch.
Next, we will discuss the effect of the resolution in our
coarse-grained simulations, the height of the pillar and
the roller-to-obstacle interaction potential.

In our simulations the number of blobs per roller of the
rigid multiblob model [30] is kept constant at N = 12.
This ensures that the run time of the simulations, where
also the obstacles composed of similar sized blobs are

present, remains acceptable. It is known, however, that
a low resolution in the simulation of a microrollers, leads
to an overestimate of its self-induced velocity [4]. There-
fore, we also ran simulations with a higher number of
blobs per roller (N = 42) to measure the escape time
of the roller for different relative curvatures r,/R), (see
Fig. S3a in the Supplementary Material [34]). We find
that the escape time of the high resolution roller is in-
creased with respect to the low resolution roller. Instead
of narrowing the gap between the measured escape times
in the simulations and experiments, this further increases
the mismatch.

The height of the pillar H in the experiments was 20
pm, while in the simulations we introduced obstacles with
H = 5.5 pm; this value was chosen to significantly reduce
the run-time of the simulations. To study the influence
of the pillar height in the simulations, we measured the
escape time for different pillar heights with r, /R, = 1
(see Fig. S3(d) in the Supplementary Material [34]). Al-
though the trapping strength is reduced with a smaller
pillar height, at H = 5 pm the escape time is reduced by
only ~15%. As the limited pillar heights in the simula-
tions lead to a reduction in the escape times, this cannot
explain the larger trapping strength measured in the sim-
ulations.

We have used the same potential at contact e for the
microroller-to-wall (blob-to-wall, €p,,) and microroller-to-
obstacle (blob-blob, €) in the simulations. Although
we know that the obstacle is negatively charged [39],
just as the glass wall, we do not know the magnitude
of the charge and therefore the correct value of €. To
investigate its influence on the measured escape times,



we ran simulations while varying €, and keeping €,
constant. In Fig. S5(a) the mean escape times t* are
plotted for different €, simulated with relative curva-
ture r, /R, = 1 and Debye length (bry)~! = 0.1. We
have also plotted the corresponding interaction poten-
tials in Fig. S5(b). The potential at contact e, in this
work was 0.03, which corresponds to the red point and
line in Figs. S5(a-b). Clearly, an increase in e, leads to
a strong reduction of the escape time. This reduction
can be explained as the screening of the basin of attrac-
tion as plotted in Fig. 4(d), effectively expanding the
black circle and making it more probable that the mi-
croroller can leave the basin of attraction by Brownian
motion. Therefore, the larger measured escape times in
the simulations could very well be explained by an un-
derestimate of the microroller-pillar potential at contact
epp- One possible way to measure this potential would
be by using optical tweezers [52]. Alternatively, the in-
teraction potential can be estimated from zeta potential
measurements of colloids fabricated by 3D-printing using
the same resin [39, 53, 54].

Finally, another possible contribution to the offset in
the measured escape times in experiments and simula-
tions could be the different initial conditions in the es-
cape time measurements. Where in the simulations the
escape times are measured after placing the roller in the
trap in the wake of the obstacle, in the experiments this
is not possible and instead the escape times are measured
after a roller enters the trap (most often on the side of
the obstacle). As pointed out before, placing the roller
in the trap in the simulations is done to reduce their run
times. Although this might contribute to the offset in
the measured escape times, it is unlikely this will change
the trend in the escape times as a function of curvature
as we observe.

The trapping of active particles has been studied in
experiments [13-16, 21] and simulations [12, 55], for
bacteria [16, 20] and spherical [12-14, 21, 55] and rod-
shaped [12, 13, 15] artificial microswimmers. The hydro-
dynamic trapping as reported in these studies is man-
ifested in the orbit of the swimmers around round ob-
stacles and along ridges above a critical relative curva-
ture. The escape time of Brownian dipolar swimmers
was found to depend on the curvature of the obstacle,
as was also put to use in the elegant experiments by
Davies-Wykes et al. [15]. In all of these studies, it was
found that Brownian motion only contributes to the es-
cape of the swimmers from these orbital traps. The mi-
crorollers studied in our work differ from the swimmers
in these studies (pushers and pullers) by both their flow
field [8, 22] (see Figs. 1 (a-b)) and their restricted orienta-
tion as imposed by the plane of rotation of the magnetic
field. This restriction in the direction of propulsion makes
that the trapped microrollers do not orbit the cylindri-
cal obstacle, but rather converge to a single point: the
attractor. Moreover, Brownian motion is needed in or-
der for the microrollers to enter the basin of attraction,
contrary to dipole swimmers, where thermal fluctuations
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only contribute to the release of the swimmer.

IV. CONCLUSIONS

We studied the interaction of microrollers with cylin-
drical obstacles using experiments and simulations in-
cluding Brownian motion and hydrodynamic interac-
tions. We found hydrodynamic trapping of the rollers
downstream to the obstacle, where the trapping strength
increases sharply for lower relative curvature. The trap-
ping originates from the emergence of a basin of attrac-
tion with an attractor behind the obstacle which draws
the roller towards the obstacle, which increases with in-
creasing obstacle radius. We found three points of zero
roller velocity: two stagnation points (up- and down-
stream) and one convergence point or attractor (down-
stream). Where the stagnation points originate from a
balance of the self-induced velocity of the roller and the
hydrodynamic interaction with the obstacle, the attrac-
tor adds the electrostatic repulsion between the obstacle
and the roller to the balance. Brownian motion plays
a double role in the trapping of the microroller: it is
needed for the roller to cross a separatrix to enter the
trap, but it also kicks the roller out of the trap. We
found an offset in the escape times in simulations and
experiments, which we attribute to an underestimate of
the obstacle-microroller potential at contact. Finally, we
note that the trapping is easily tunable over orders of
magnitude in the laboratory by controlling the curvature
of the obstacle and the Debye length of the microroller
suspension.

In this work we were limited by the computation time
to access higher resolution simulations or larger obstacles
(rn/Rp < 1), which could be explored in future work, as
well as the incorporation of lubrication effects [27]. Fur-
thermore, a careful characterization of the microroller-
obstacle electrostatic interaction could potentially close
the gap in the trapping strength in the experiments and
simulations.

Dense suspensions of microrollers exhibit interesting
behavior such as the formation of hydrodynamically sta-
bilized motile clusters [4]. It will be of interest to ex-
plore how these motile clusters interact with obstacles,
as they are promising for the directed transport of pas-
sive cargo [4]. This would be a first step to understand
their interaction with a complex environment.

Obstacles with more complex shapes can lead to other
interesting hydrodynamic interactions. As shown by
Davies Wykes et al. [15], obstacles with a variable curva-
ture (such a teardrops) can lead to controlled release of
the swimmer from the obstacle. In the case of the micro-
rollers, this release can then be instigated by a change in
the external magnetic field, resulting in switchable and
externally controlled trapping. Furthermore, as the trap-
ping strength depends on the relative curvature, it can
potentially be used to sort microrollers by their size. Fi-
nally, it is worthwhile to study the interaction of the mi-



crorollers with 3D obstacles where the obstacles distort
the flow field above the microrollers. It will be interesting
to extend this to the interaction of microrollers exploring
a 3D environment, for instance porous architectures.
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Parameter Value Units
Blob radius r, (N=12) 0.416 pm
Blob radius r, (N=42) 0.244 pm
Roller geometric radius ry 0.7921 pm
Roller hydrodynamic radius 7y 1.0 pm
Buoyant force on roller mg 0.0372 pN
Viscosity n 0.96 x 107 3| Pa-s
Temperature T' 22 °C
Torque 7~ 1.36 x 10 ] N.m
Solver tolerance 10°°

Potential at contact € 0.03 pN: pm
Debye length b 0.1 pm

TABLE 1. Parameters used in simulations. *Equivalent to a driving frequency of 9 Hz in the absence of boundaries.

FIG. S1. Fluorescence microscopy image of an array of printed pillars and microrollers. The scale bar is 50 pm.
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FIG. S2. Histograms of the escape times t.s. of a roller placed in the wake of an obstacle ([x = Rj + 74,y = 0]) for different

curvatures of the obstacle and Debye length b/r, = 0.1.
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FIG. S3. (a) Log-log plot of the mean escape time ¢* as a function of relative curvature rp /Ry for different multiblob

resolutions: 12 blobs (O) and 42 blobs (O) per microroller. Errors bars denote the standard error of the mean. (b) Flow field
of a microroller at z/r, = 1.29 around a pillar (r,/Rr = 1) showing two stagnation points (purple) and a separatrix encircling
the pillar (green dashed line). On the separatrix the flow converges for £ < 0 and diverges for > 0. The stagnation points
are slightly shifted from y = 0 due to the finite resolution of the pillar in the simulations. (c) Microroller velocity field in the
zy plane calculated downstream of a wall (r,/R, = 0, H = 5.5 pm, 10 pm long). The microroller velocities are normalized
to the microroller velocity in bulk V5. The magenta line indicated the wall position, the white line denotes the position where
the roller is in hard contact with the wall. The black area is drawn where the electrostatic repulsion dominates the dynamics
of the roller. The red line indicates the stagnation line. (d) The mean escape time t* as a function of pillar height H. Errors
bars denote the standard error of the mean.



@ 120 0
100 - ]

80 - o =

V/(ra)?

60 - o ]

40 | O
0 1 2

rn/ Rh - =

FIG. S4. (a) Volume V enclosed by the iso-surface u, = —Vj of the flow induced by the traction forces on the obstacle surface,
when the microroller is at a separation distance d, = 27y, as a function of the relative curvature r, /Rp. The volume is restricted
to the region ahead of the obstacle > zops + Rp (b) 3D representation of V (red transparent contour) for rn/Rr = 0.1 (top)
and rp /Ry, = 1 (bottom).
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FIG. S5. Influence of the microroller-to-obstacle interaction strength e, on the trapping strength. (a) Mean escape time ¢* as
a function of the potential of contact ey, with the error bar as the standard error of the mean, for r,/Rs = 1 and (bry) ™" = 0.1.
(b) The blob-blob interaction potentials with different potentials at contact ey, with colors matching the data points in (a).
The grey vertical dashed line denotes contact of the blobs.



