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Abstract—Just Noticeable Difference (JND) and Satisfied User
Ratio (SUR) has been widely investigated for compressed image
and video to use the least resources (e.g., storage and bandwidth)
without damaging the Quality of Experience (QoE) for end users.
However, the current JND subjective test methodologies are
extremely time consuming due to the large range of encoding
parameters. Besides, the state-of-the-arts SUR/JND prediction
models get non-negligible prediction error due to the limited
masking effect features. To this end, we first proposed a pre-
processing method to reduce the JND subjective test time by
using dynamic range of encoding parameters and collected a
new Video-Wise JND (VW-JND) datasets for HD videos: HD-
VJND. Afterwards, based on the collected datasets, we proposed
a SUR prediction framework by extracting 3 types of features
1) masking effect features; 2) bitstreams features; 3) content
features. Feature selection is applied to extracted features before
regression. Besides, we also compared the direct and indirect
SUR value predictions methods. Experiment results shows that
our proposed optimization can reduce 7.14% of the subjective
experiment time compared to the widely used Robust Binary
Search (RBS). Furthermore, the proposed SUR and JND pre-
diction frameworks outperform the SOTA model in HD-VJND
datasets.

Index Terms—Video Quality Assessment, Just Noticeable Dif-
ference, Satisfied User Ratio, HD videos

I. INTRODUCTION

Human Visual System (HVS) cannot perceive detailed dif-
ferences between the pristine images/videos and their com-
pressed versions with small distortion. In the context of
image/video compression, Just Noticeable Difference (JND) is
the minimum distortion level from which human eye begins
to perceive difference between the reference image/video and
the compressed ones when increasing the level of compression.
Specifically, when the reference is the no-compression version,
e.g., sources (SRCs) video, the JND is called 1st JND, and
if we take the 1st JND as the new reference/anchor, the
next JND is then the 2nd JND, etc. The proxy of JND for
compressed image/video is usually the encoding parameters of
codec, e.g., quantization parameter (QP) in H.264. Acquisition
of JND has been widely investigated both subjectively [1]–[5]
and objectively [6]–[13] for image/video compression because
it helps save resources e.g., storage and bandwidth, without
damaging the quality for end-users.

It is well known that JND depends on 3 factors: (1)
visualization setting,(e.g., display, environment...) (2) subjects
and (3) image/video contents [14]. In this paper, the first two

factors are fixed and we will focus on the impact of difference
of contents on the 1st JND of High-Definition (HD) videos.

For the same content, the JND varies with observers because
of their various visual sensitivity. To tackle this variation,
Satisfied User Ratio (SUR) curve has been widely used [5]–
[7], [12], [13] to measure JNDs for a group of observers. SUR
curve is defined as the Complementary Cumulative Distribu-
tion Function (CCDF) of the distribution of JNDs for a group
of observers [14]. Therefore, SUR curve is monotonic non-
increasing, it indicates the relationship between the distortion
level d and the percentage of observers p% who are satisfied.
Specifically, for a given distortion level d, its corresponding
value p% in the SUR curve means that there are p% observers
in the group who do not perceive any difference between the
reference and distorted videos with distortion level smaller
than d. For a given threshold p, the corresponding distortion
level d in the SUR curve is defined as p%SUR. p%SUR is
denoted as p%JND in some previous works [5], [12], [13]. In
this work, we use p%SUR to avoid misunderstanding.

Subjective study: Subjective JND datasets are the base on
JND studies. Table I is the comparison of existing VW-JND.
One of the biggest challenges in JND subjective testing is that
the JND search process is extremely time consuming because
of the large range of encoding parameters, for example in
VideoSet [5], every SRC is encoded into 51 Processed Video
Sequences (PVSs) using H.264 with QP from 1 to 51. The
list of these PVSs is named as JND candidate playlist (JCP).
Instead of comparing the reference with each PVS from QP =
1 until JND is found, Wang et al. [5] proposed a Robust Binary
Search (RBS) procedure which is inspired by the widely
used binary search algorithm in computer science. During the
Classic Binary Search (CBS), the observer will be asked at the
first time if they can perceive the difference between the video
with QP = 0 (reference) and QP = 25 (middle of the original
interval of JCP). If ”YES”, the interval QP = [26, 51] will be
excluded in the next comparison; if ”NO”, the interval QP =
[0, 24] will be excluded. However, this will bring problems
when the observer makes unconfident decision for the previous
comparison. The RBS is a modified version of the CBS which
only eliminate one quarter of the original interval instead of
removing the half of it, e.g., interval QP = [39, 51] instead of
QP = [26, 51] in the previous example.

However, the JND subjective experiment time is still non-
negligible even with the help of RBS. In this work, we



TABLE I
COMPARISON OF VW-JND DATASETS.

Name Number
of contents A/B1 Codec Encoding

parameter range Step size

MCL-JVC 26 50/120 H.264 QP (1˜51) 1
VideoSet 220 30/800 H.264 QP (1˜51) 1

HD-VJND (ours) 180 20/20 HEVC CRF (dynamic) 0.25
1 A: number of the observers for each content; B: number of observers during
the entire subjective test; when A is not equals to B, it means that different
contents are evaluated by different observer groups.

proposed a method to reduce the subjective test time and
collected a new VW-JND datasets named as HD-VJND for
HEVC with dynamic range of Constant Rate Factor (CRF).

Objective study: It is not practical and extremely time
consuming to conduct JND subjective tests for every new con-
tent. Therefore, it is important to develop objective JND/SUR
prediction models based on the subjective JND datasets. Wang
et al. [10] proposed a model using Support Vector Regression
(SVR) to predict SUR curve and accordingly 75%SUR based
on masking effect features [15], [16] extracted from SRCs
and quality degradation features computed from all PVSs on
VideoSet. By considering the spatial and temporal information
features via deep learning, Zhang et al. [13] improved the
SUR prediction accuracy using Video Wise Spatial-Temporal
SUR. Instead of using encoding parameter QP as proxy of
SUR curve, Zhang et al. [12] used bitrates as the proxy of
SUR curve and made predictions with Gaussian Processes
Regression (GPR) by extracting masking effect features, re-
compression features and basic attribute features.

However, all the above mentioned JND/SUR prediction
models are based on the assumption that the distribution of
individual JND for a group of observers follows Gaussian
distribution, which may not be the optimal mathematical mod-
eling. Furthermore, when predicting SUR curve, they predict
each point of the curve by using features from every PVSs,
which is not practical and has high computational complexity
because each video needs firstly to be compressed into many
PVSs. A previous work [14] investigated these problems by
firstly comparing several different mathematical modelings
of SUR curve and secondly computing the SUR curve by
predicting the modeling parameters only based on the features
of SRC. Nevertheless, the prediction errors of SUR curve
and 75%SUR are still non-negligible due to the limitation
of masking effect features. In this work, we propose a SUR
prediction framework (see Fig. 2) that extract many different
types of features followed by features selection and regression.

II. METHODOLOGY

A. HD-VJND datasets

We collected a new VW-JND datasets named as HD-VJND
datasets, as shown in the last row of Table I. 180 contents are
selected from 606 video clips provided by research partner
based on the content selection strategy proposed in [17] such
that the selected contents are with wide-range of difference.
The duration of each video is 10 seconds. 20 observers with
correct visual acuity involved in the subjective JND test.
The displays are 55-inch calibrated 4K TVs and the viewing
distance was set as 3H for HD contents as recommended in

ITU-R BT.2022 [18], where H is the height of the screened
video. As mentioned in Section I, the JND search procedure
is still time consuming with the RBS process. The JND
search time depends on the length of JCP (e.g., length of
JCP = 51 in VideoSet per content). Meanwhile, it is well
known that from a certain level of compression (e.g., QP
= 40), it is almost certain that anyone with correct visual
acuity can perceive difference between the reference and the
PVS. Therefore, we proposed a method to optimize the JND
subjective test time by reducing the length of JCP with the
help of a pre-processing using the mapping function from
VMAF to JND proposed in [19]. The mapping function for
HD videos is shown in Fig. 1. It can be observed that the
higher the VMAF difference (∆VMAF) between two videos
(same content, different encoding recipes), the more likely it
is for humans to perceive differences between them in terms
of quality.

The idea is to remove the low quality PVSs that human
eyes can perceive ”for sure” differences to reduce the numbers
of comparison before finding the JND. For a given threshold
thr%, the corresponding value of ∆VMAF in the mapping
function is denoted as Vthr%. The reference for the 1st JND
is SRC, therefore ∆VMAF = VMAF(SRC)−VMAF(PV S)
and VMAF(SRC) = 100. The PVS whose ∆VMAF is larger
than Vthr% will be removed from the JCP. Eq.(1) stipulates the
condition to eliminate the PVS to save subjective test time.

VMAF(PV S) < 100− Vthr% (1)

As illustrated in Table II, we compared the maximum number

Fig. 1. Mapping function between ∆VMAF and Probability of perceive
difference between 2 videos with different encoding recipes for HD videos

of comparison. Estimated time of one comparison is 20
seconds, it includes the time for one observer to watch the
reference and distorted videos and to answer the question of
whether they can perceive differences. Mean of len(JCP )
is the average length of the JCP across the entire datasets.
With the decrease of the thr% in the mapping function, Vthr%

will reduce and the number of PVSs eliminated will increase
according to Eq.(1), thus the average length for JCP will
decrease. However, it is possible that the JND video will be
eliminated during this procedure. The last columns in Table
II indicate the number of videos whose JND are excluded
during the pre-processing. It can be observed that only when
the threshold is close to 1, we can ensure not to remove any
JND in VideoSet. For CBS, it is well known that the maximum



number of comparison is

log2 (len(JCP )) = log(1/2) (1/len(JCP )) , (2)

However, the interval to keep for RBS is 3/4 instead of 1/2
in each iteration, thus the maximum number of comparison
is calculated by log(3/4) (1/len(JCP )). It can be concluded
that our proposed method can reduce by 7.14% the subjective
test duration without removing any mandatory information.

TABLE II
BENCHMARK BETWEEN OUR SOLUTIONS AND CLASSIC RBS JND SEARCH

STRATEGIES IN TERMS OF TESTING TIME IN VIDEOSET (1080P)

JND search method Mean of
len(JCP)

Max
comparison Duration (s) JND excluded

baseline [5] 52 14 280 0

thr. =

99% 36.99 13 260 0
95% 29.54 12 240 45
85% 27.21 11 220 113
75% 24.85 11 220 159

Therefore, we used this pre-processing for HD-VJND collec-
tion. To our best knowledge, this is the first VW-JND datasets
using HEVC as codec and CRF as JND proxy.

B. SUR prediction framework

There are two steps (see Fig. 2) for the entire pipeline:
(1)Modeling; (2)Prediction. Modeling includes computing the
empirical SUR curve (SURemp) from the JND distribution of
the group-users and finding the best mathematics model to fit
the SURemp. The fitted SUR curve is denoted as SURanaly.
For more details about the modeling, we refer readers to [14].
After generating ground truth from modeling, we use SRC as
input to extract features, select features and make predictions.
The prediction framework is detailed as follows:

1) Feature extraction: Three types of features: (1) masking
effect features, (2) bitstream features and (3) content features
are extracted as illustrated in Fig. 2.

Masking effect Features measures randomness/regularity
temporally (temporal randomness (TR) [16]) and spatially
(spatial randomness (SR) [15]). When the randomness is high,
it will be difficult for human to perceive difference, it masks
the distortion for HVS. Masking effect features were used in
[10], [14] to predict JND.

As shown in Fig. 2, SRC is segmented into small video
patches both spatially and temporally to extract features from
the eye fixation level. The dimensions of video patches are
set the same as [10]. SR and TR are calculated on each small
video patche to obtain feature matrices FSR and FTR. The
statistic histogram (Eq. (3)) with number of bins equals to 20
is applied as pooling method to reduce the feature dimension.

−→
SR = Hist20(FSR),

−→
TR = Hist20(FTR) (3)

Bitstream Features are widely used for light-weight quality
estimation [20]. Before extracting bitstream features in Table
III, SRCs are first compressed into a near lossless PVS with
CRF = 5. The bitstream features are extracted using videoparse
[21] without decoding pixel information.

The temporal and spatial pooling function are defined as:

Ftime = {Mean, Std,Max, Skew,Kurt} (4)

Fspace = {Mean, Std} (5)

where Mean is the average value, Std indicates standard de-
viation, Max denotes maximum, Skew represents skewness,
and Kurt is the kurtosis. The dimension of features equals
to the product of the dimension of Ftime and Fspace (e.g.,
for motion features, we first compute the Mean and Std of
motions intra frame (spatially); afterwards, Mean, Std, Max,
Skew and Kurt are calculated based on the two previous-
computed spatial value (Mean and Std for each frame) inter
frame (temporally) respectively.)

TABLE III
BITSTREAM FEATURES SUMMARY

Features dimension
Average framerate 1

Bitrate 1
Ratio(non− I) =

Nb(non−I frame)
Nb(all frame)

1
Max(Framerate) 1

Ftime(non - I frame size) 5
Ftime {Fspace(horizontal motion)} 5*2 = 10
Ftime {Fspace(vertical motion)} 5*2 = 10

Ftime {Fspace(motion)} 5*2 = 10
Ftime(Temporal Complexity [21] per frame) 5
Ftime(Spatial Complexity [21] per frame) 5

1 Nb: number;
2 Ftime and Fspace are the temporal (Eq. (4)) and spatial (Eq. (5)) pooling
function.

Content Features include 7 types of features: Spatial Infor-
mation(SI) [22], Temporal Information (TI) [22], Chrominance
Information (CI) [23], Contrast Information(CTI) [23], Spatial
Perceptual Information (SPI) [23], Colorfulness (CF) [24] and
Grey Level Co-occurrence Matrix(GLCM) [25]. As illustrated
in Fig. 2, they are extracted directly from the pixel level of the
SRC [17]. The temporal pooling function for content features
is the same with bitstream features (Eq. (4)), and the spatial
pooling function is defind as:

Fspace = {Mean, Std,Max, Skew,Kurt}. (6)

The co-occurrence matrix (CM) is computed based on image
patches. For each small patche, we calculated 6 features as
shown in Eq. (7):

Fpatch = {contrast, dissimilarity, homogeneity,
ASM, energy, correlation}, (7)

where contrast =
∑l−1

i,j=0 CMi,j(i− j)
2, the dissim-

ilarity diss =
∑l−1

i,j=0 CMi,j |i− j|, the homogeneigy
homo =

∑l−1
i,j=0

CMi,j

1+(i−j)2
, Angular Second Moment: ASM =∑l−1

i,j=0 CM2
i,j , energy =

√
ASM and correlation =∑l−1

i,j=0 CMi,j

[
(i−µi)(j−µj)√

σ2
i σ

2
j

]
, in which l is the level of lu-

minance of original image patch (l=255 for 8 bit image), i, j
are the horizontal and vertical index of CM respectively; µ, σ
are the mean and variance of CM.

2) Features selection: As shown in Fig. 2, all the extracted
features are concatenated into one vector. The exhibited vector
has dimension of 399. We then used Forward-Sequential
Feature Selection (F-SFS) [26]. It is a greedy procedure. More
specifically, we initially find the feature that maximizes a
cross-validated score when an estimator is trained on this
single feature. Once that first feature is selected, we repeat the



Fig. 2. Illustration of the pipeline of SUR and JND (1) modeling and (2) prediction framework

TABLE IV
CONTENT FEATURES SUMMARY.

Features dimension
SI+ = Ftime {Fspace {Sobel [Yn(i, j)]}} 5*5 =25
TI+ = Ftime {Fspace [Mn(i, j)]}
where Mn(i, j) = Yn(i, j)− Yn−1(i, j) 5*5 =25
CICb = Ftime {Fspace [Cbn(i, j)]}
CICr = Ftime {WR × Fspace [Crn(i, j)]}
where WR = 1.5 5*5+5*5=50
CTI = Ftime {Fspace [Yn(i, j)]} 5*5 = 25
SPISI13 = Ftime {Fspace [Rn(i, j)]}
where Rn(i, j) =

√
Hn(i, j)

2 + Vn(i, j)
2,

SPIHV 13 = Ftime

{
mean[HV (i,j)]

mean[HV (i,j)]

}
,

rg = Rn(i, j)−Gn(i, j),
yb = 1

2
(Rn(i, j) +Gn(i, j))−Bn(i, j) 5*5+5 = 30

CF = Ftime {CFn}
where CFn = σrgyb + 0.3µrgyb

σrgyb =
√

σ2
rg + σ2

yb, µrgyb =
√

µ2
rg + µ2

yb 5

GLCM = Ftime

{
Fspace

[
Fpatch(CM

]}
where CM is the co-occurrence matrix1 5*(5*6)=150

1 https://scikit-image.org/docs/0.7.0/api/skimage.feature.texture.html
2 Ftime and Fspace are the temporal (Eq. (4)) and spatial (Eq. (6)) pooling
function; Fpatch is the functions to compute the texture features of the spatial
patch with size n = 64 ∗ 64.
3 Y , Cr and Cb are the luminance and two chroma components; R, G and
B are the red, green and blue channels.

procedure by adding the new feature that maximizes the cross-
validated score to the set of selected features. The procedure
stops when the desired number N of selected features is
reached. Grid search was adapted to determine N .

3) Regression: The selected features will be fed into a SVR
for prediction. As shown in Fig. 2, there are two ways to
predict p%SUR: (A) indirect p%SUR prediction through SUR
modeling, (B) direct p%SUR prediction without modeling.
For the indirect mode, analytical SUR curve (SURanaly)
and its parameters are determined by fitting the empirical
SUR curve (SURemp). We first obtain the SURpred curve by

predicting the fitted parameters from the features. p%SUR can
be computed from the SURpred curve. If one is only interested
in the value of p%SUR (e.g., the demand of a streaming
service provider is to satisfy 75% clients), but not the SUR
curve, the direct prediction without modeling can be adapted
as illustrated in the dotted box in Fig. 2.

III. EXPERIMENTS AND RESULTS

The logistic function showed best prediction performance
in [14], hence it is employed in the indirect prediction model.
Before feeding the extracted features to the SVR, all the
features are normalized by applying z-score transformation.
The estimator for F-SFS is the SVR and the metric of features
selection is the Mean Square Error (MSE). The optimal
number of selected features is 55, detailed in Table V. It
can be observed that bitstream features has highest selection
rate, which means the bitstream features such as motions are
significant for SUR value prediction.

TABLE V
NUMBER OF FEATURES SELECTED PER CATEGORY

Features type Selected/original Ratio of selection
Masking effect 9/40 0.2250

Bitstream 15/49 0.3061
Content features 31/310 0.1000

Each model is evaluated in HD-VJND datasets with 5-
fold cross validation with random split (fixed random state).
Hyper parameters of SVR are determined by grid search (ker-
nel=’rbf’, C=0.1, epsilon=0.0001, gamma=’scale’). Difference
between Predicted and Analytical SUR curve (∆SUR|P−A|) is
the Mean Average Error (MAE) between them. ∆SUR|P−A|
indicates the error between the fitted analytical SUR curve and
the predicted one. Difference between Predicted and Empirical
SUR curve (∆SUR|P−E|) is evaluated as well. ∆75%SUR
is evaluated in the same way. The results are shown in
Table VI. For the model who predict directly the p%SUR



(Direct mode), the ∆SUR|P−A| and ∆SUR|P−E| don’t exist.
Similarly, we cannot compute ∆75%SUR|P−A| because the
SURanaly doesn’t exist without modeling.

Experiment results show that our proposed models (both di-
rect and indirect mode) outperforms (reduced ∆SUR|P−E| by
40%) the baseline model [14]. The direct p%SUR prediction
mode without modeling has the smallest prediction error in
terms of ∆75%SUR. However, the indirect model provides
us more information (the SUR curve and the 75%SUR value)
compared to the direct model that outputs only the 75%SUR
value. Furthermore, it could be observed in Table VI that
the indirect model has smaller standard deviation than direct
p%SUR prediction model which indicates that the indirect
model helps stabilize the variation of the prediction error.

TABLE VI
BENCHMARK OF AVERAGE AND VARIANCE OF PREDICTION ERROR IN

HD-VJND DATASETS

Model ∆SUR ∆75%SUR
|P−A| |P− E| |P−A| |P− E|

Baseline [14]
mean

0.1121 0.1146 1.3251 1.2559
Indirect 0.0916 0.0789 0.8285 0.8575
Direct 0.7489

Baseline [14]
Var.

0.0513 0.0671 1.1921 1.1635
Indirect 0.0298 0.0406 0.7689 0.8382
Direct 0.9222

IV. CONCLUSION

In this paper, we proposed a pre-processing method for JND
subjective test by using the mapping function between VMAF
and JND. This method helps us to determine the dynamic
range of encoding parameters which helps to reduce 7.14% of
subjective test time. Furthermore, we proposed a SUR/JND
prediction framework including feature extraction/selection
and regression through 3 types of features. Experiment results
show that our proposed framework outperforms the SOTA both
in SUR curve and 75%SUR value prediction.
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