
1

Multi-map Saliency-driven Gaze Behavior for
Virtual Characters

Ific Goudé*, Alexandre Bruckert*, Anne-Hélène Olivier, Julien Pettré, Rémi Cozot, Kadi Bouatouch,
Marc Christie, and Ludovic Hoyet

✦

In this supplementary material, we provide additional
information regarding the framework in order to facilitate
replication. We also give more details regarding the VR-
based user study conducted to collect ground-truth gaze
activity for evaluating our model.

1 SALIENCY-DRIVEN GAZE ANIMATION MODEL

In this section, we provide additional technical details for
the reproduction of our model. The useful notations and
variables are presented in Table 1. As a reminder, our model
relies on a salicency model in charge of assessing which
elements in the character’s field of view are more likely to
attract its visual attention, a saccadic model that reproduces
natural oculomotor characteristics (e.g., duration of eye fix-
ations, orientations and amplitudes of eye saccades, etc.),
and a eye-head animation model that controls the eyes and
head motion, while ensuring the realism of the kinematic
variables. A full C++ implementation for Unreal Engine 5 is
also made available online for the community1.

1.1 Visual saliency model
The role of the visual saliency model is to assess which areas
of the character’s field of view are more likely to attract
attention, solely based on the content of the image, and
with no considerations of the human eye kinematics, or
memory (i.e. bottom-up approach). Given an image of the
scene Ir rendered from the character’s point of view, the
visual saliency model predicts a saliency value, describing the
visual attractiveness, for each pixel of the image. The output
of the model is a scalar field of the size of the input image
referred to as the saliency map Sy .

We use the deep saliency model MSINet [1], given its
excellent performances (see for instance the MIT-Tuebingen
benchmark of saliency models [2]), as well as its low number

• * both authors have contributed equally to the submission
• Ific Goudé, Anne-Hélène Olivier, Julien Pettré, Kadi Bouatouch, Marc

Christie and Ludovic Hoyet are with Inria, Univ Rennes, CNRS, IRISA.
E-mail: {name.surname}@inria.fr

• Alexandre Bruckert is with Nantes Université, École Centrale Nantes,
CNRS, LS2N, UMR 6004, F-44000 Nantes, France.
E-mail: alexandre.bruckert@univ-nantes.fr

• Rémi Cozot is with Littoral Opal Coast University

1. https://github.com/igoude/saliency-driven-gaze

Notations
Ir Image rendering of the scene: RGB 2D texture.
Sy Saliency map: single-channel 2D texture.
Sa Saccadic map: single-channel 2D texture.
Fmap Fixation map: single-channel 2D texture.
Fpoint Fixation point: 4D vector representing the position and

the duration of a fixation.

Animation Variables
Hangle The angle in degree between the head forward vector

and the vector from the centre of the character’s view-
point to the fixation point.

Th Time delay between a new fixation point and the head
movement with Th ∼ N (0.15, 0.1).

Xh A threshold angle that triggers the head acceleration
with Xh ∼ N (60, 10) ≤ 60.

Yh A threshold angle that triggers the head deceleration
with Yh ∼ N (15, 2).

Rblink The probability of blinking at each frame.
Tblink Time since last blink in seconds.

TABLE 1: Notations and variables used in our method.

of parameters, enabling the model to be very efficient in
terms of inference time. The choice of a deep learning
model is straightforward considering the huge gap in per-
formances between these data-oriented methods and more
traditional image processing techniques [3]. The model is
trained on the 10000 training images of the SALICON
dataset [4], and later fine-tuned on the MIT dataset [5].
Both are composed of natural images, with their associated
ground-truth saliency representations inferred from eye-
tracking or mouse-tracking experiments. The weights are
optimized using a combination of loss functions (CC, NSS
and KL-divergence, see [6]) that compares the saliency maps
of the prediction with the ground-truth. As an example,
the saliency map predicted by our visual saliency model is
illustrated in Figure 1b.

1.2 Saccadic model
Based on eye-tracking data on the one hand, and the
saliency map generated at the previous step on the other,
the objective is here to determine the next gaze fixation point
for the virtual character. Our saccadic model is designed to
reproduce the oculomotor biases exhibited by humans when
visually exploring scenes (e.g., duration of fixations, orienta-
tions and amplitudes of saccades). Our approach consists in
generating a saccadic map that represents the likelihood of



2

(a) Scene rendering Ir . (b) Saliency map Sy . (c) Saccadic map Sa. (d) Inhibition map IoR. (e) Fixation map Fmap.

Fig. 1: The character’s viewpoint overlaid with heatmaps where pixel values (from 0: blue to 1: red) correspond to the
probability of shifting the gaze in the direction of the pixel. Here, Fmap results from the blending of Sy , Sa, and IoR with
coefficient weights equal to 0.9, 0.85, and 0.75 respectively.

saccade orientations and amplitudes. Additionally, in order
to include memory and temporal information, the Inhibition
of Return (IoR) to observing objects in the scene is simulated
thanks to an inhibition map. Those maps are combined
with the saliency map to compute a fixation map, in turn
used to determine the position of the next fixation point
for the character. We will see in Section 1.2.4 that it is
possible to influence the likelihood of the position of this
fixation by other bias sources using customization maps,
such as attraction to a focus point in the scene (e.g., based
on semantics or events), or favoring an idle gaze behavior.

1.2.1 Saccadic map (Sa)
A saccadic map captures the joint probability distributions
of saccades orientations and amplitudes. As the human
oculomotor bias depends on the task performed and the
type of scene in which the task takes place, there should be
as many saccadic maps as there are character categories and
activities. However, exploring the effect of various saccadic
maps is outside the scope of this work as we are target-
ing the animation of characters’ gaze during free visual
exploration tasks (generalization to other tasks is however
discussed in Section 6).

A saccadic map is thus built in several steps. First, a
dedicated eye-tracking dataset is recorded. The visual task
performed by participants, as well as the type of scene in
which this task takes place should match what the character
is expected to do and its environment. Note that a number
of datasets exist and can be employed here, e.g., from visual
exploration of natural scenes [4], [5]. Saccade parameters,
i.e. orientation and amplitude, are then extracted from this
dataset. As orientation and amplitude are not independent,
they are aggregated together resulting in a joint distribution
of probability. The saccadic map Sa is then the result of
a Gaussian filter applied to the joint probability of saccades
amplitude and orientation, and corresponds to the probabil-
ity of producing a saccade in each point of the vision field
relative to the vision center, as illustrated in Figure 1c.

1.2.2 Fixation duration
To provide realistic saccade frequencies, the fixations du-
rations are also extracted from eye-tracking dataset to es-
tablish the distribution probability of fixation durations.
We found that a shifted gamma law Γ(α, θ, loc) accurately
captured this distribution in our situations (α = 1.2394,

θ = 0.1880, and loc = 0.08), and therefore use these
parameter values in the remaining of the paper.

1.2.3 Inhibition map (IoR)
As the saliency model does not include any temporal informa-
tion, there is a tendency for predicted fixations to repeatedly
go back to the same salient elements of the scene. However,
humans tend to explore their “visual environment by reduc-
ing the tendency to repeatedly sample a particular location”
[7], which we model using an inhibition map IoR. This
map is in charge of forcing the exploration by decreasing the
probability of looking at recently observed elements, and is
built by rendering a Gaussian of the size of the foveal vision
(2° of angle) at the position of the previous fixations [8]. An
inhibition point linearly decreases with time and completely
disappears after 20 times the duration of the fixation has
passed or after 15 new fixations. Note that a low value is
applied to inhibition points, contrarily to other maps, as
illustrated in Figure 1d.

1.2.4 Customization maps
As discussed previously, our model enables the user to
provide additional customization maps which contribute
to the final fixation map. The use of these maps can be
extremely valuable to synthesize specific gaze behaviors,
e.g., to account for specific tasks. We present examples of two
specific customization maps that we use for synthesizing
our results in the main paper.

1.2.5 Maps Blending
The fixation map Fmap represents the probability of looking
in a direction at the end of a fixation, and results from the
combination of the saliency, the saccadic, the inhibition,
and the customization maps. Fmap is the result of the
product of all the maps weighted by coefficients that adjust
their respective contributions. For each pixel (x, y) of a map
M , which value M(x, y) is defined between 0 and 1, and
a weighting coefficient w ∈ [0, 1], the weighted map M̄ is
equal to:

M̄(x, y) = (w ×M(x, y)) + (1− w), (1)

where a weight w equal to 1 preserves the values of the
map, while a weight w equal to 0 should not influence the
product of probabilities, and then sets all the values of the



3

(a) Random points in
Fmap.

(b) Raycasting process.

Fig. 2: Fixation computation process: (a) 20 random points
(red dots) are distributed according to the probability distri-
bution of Fmap, the highest value (green dot) is selected. (b)
A raycasting (red arrow) is used to hit the position (green
cross) of the next fixation point Fpoint in the scene.

map to 1 (i.e. right part of Equation 1).
Finally, the combination of all maps is given by:

Fmap(x, y) =

N∏
i=0

M̄i(x, y), (2)

where, for all pixels (x, y), N is the number of weighted
maps M̄i, and Fmap the resulting fixation map. Figure 1
presents the principal maps presented before, while the
method is designed so that users can easily define their own
customization maps.

1.2.6 Fixation computation
Fmap is then used to compute the position of the next
fixation in the character’s field of view. To this end, P
pixels are randomly selected, according to the probability
distribution of Fmap, and the one with the highest value
(i.e., highest probability of fixation) is then selected to be the
next fixation point. In our results, P is set to 20, as illustrated
in Figure 2.

The 3D position (x, y, z) of the fixation in the virtual
scene is then identified by casting a ray originating from
the optical center of the camera rendering the scene (i.e., the
character’s viewpoint) and directed to the selected fixation
pixel (Figure 2b). Defining the fixation point in the 3D world
space, instead of keeping it in the 2D view, resolves issues
regarding object pursuit and movement coherency, as dis-
cussed by Peters et al. [9]. Finally, we set a fixation duration
d from the probability distribution function of the found
shifted gamma law presented in Section 1.2.2. The eyes
and head of the autonomous character are finally animated
to make it focus on the fixation point Fpoint(x, y, z, d), as
detailed below.

1.3 Eye-head animation model

Our eye-head animation model controls the eye and head
movements between the previous and the next fixation
points in a realistic way. Given the 3D position and the
duration of the next fixation point Fpoint(x, y, z, d), as well
as the position and orientation of the character’s eyes and
head, it guarantees that the angles formed by the body, head
and eyes are realistically distributed and that the kinematic
variables follow realistic courses. The model is also in charge

Algorithm 1 Eye-head animation algorithm

if new Fpoint then
Start moves eye
Wait Th seconds
if Hangle > Xh then

Start moves head
end if

end if
if Hangle < Yh then

Stop moves head
end if

of controlling the eyelid animation so as to generate realistic
flutters.

First, the animation of the eyes and head is controlled by
a set of kinematic variables (see Table 1) derived from the
study of Siden-mark and Gellersen [10] who measured eye,
head and torso coordination during gaze shifts in Virtual
Reality. Eyes and head movements are controlled according
to the method summarized in Algorithm 1. Once a new
fixation is computed, the animation model first initiates the
movement of the eyes towards the fixation point, which is
followed after Th seconds by a coordinated movement of the
head if Hangle is greater than a threshold Xh. The model
therefore updates the orientation of the eyes and head at
each frame, until a new fixation point is computed. Each
eye moves at a constant angular velocity of 100°/s in the
direction of the fixation point. The head moves with a linear
angular acceleration of 30°/s², and at a maximum angular
velocity of 40°/s in the direction of the fixation point, until
Hangle reaches a threshold Yh that triggers the deceleration
to zero speed. In addition, the motion range of the eyes is
limited to 50° in any direction while the motion range of
the head is limited to 80° horizontally and 60° vertically.
To account for eye contribution to be larger in downwards
direction than upwards, we oriented the forward vector of
the character’s head 10° downwards. Additionally, a sub-
sequent part of the gaze realism is ensured by blinks. Our
blink model is largely inspired by previous work [11], [12],
[13], and follows the method described in Algorithm 2. It is
also important to mention that the remaining of the body
animation is not affected by our method. In our examples
and experiments, body animations were therefore controlled
by Unreal Engine using animations from Mixamo.

Finally, after the specified fixation duration, the entire
gaze simulation process starts again, beginning with the
rendering of the maps affected by the character’s viewpoint
as explained next.

1.4 Maps rendering

Given the 3D position of the character’s head and the
direction of its gaze, the maps rendering process initiates
our gaze simulation by providing to the saliency model the
rendered image of the scene from the character’s point of
view. The maps rendering also provides the spatial informa-
tion necessary for the computation of the inhibition and the
customization maps.

When a new fixation is required, a virtual camera posi-
tioned at the character’s head location and oriented toward



4

Algorithm 2 Eye blink animation algorithm

if new Fpoint then
Rblink = 0.05

else
if Tblink < 2 then

Rblink = Tblink

2 × 0.0009 + 0.0001
else if Tblink < 3 then

Rblink = (Tblink − 2)× 0.009 + 0.001
else

Rblink = 0.01
end if

end if
if Rblink > R then ▷ with R = [0, 1]

Blink during S ms ▷ with S = [100, 400]
end if

the character’s eye direction renders the scene. The camera
field of view is set to 70° of angle to cover most of recorded
saccades amplitude. The format of the image given to the
saliency model must fit with the input of the MSINet which
is an 8bit 256×256 RGB image. As it has been trained on
natural images, the quality of the scene rendering directly
impacts the saliency prediction of the network. This point is
also discussed in Section 6 of the main paper.

2 EYE-GAZE DATA COLLECTION

For objectively evaluating our method in terms of similarity
between simulated and real gaze behavior, we conducted
a user study to collect ground-truth eye-gaze activity by
immersing participants in virtual scenes using a Head
Mounted Display embedded with an eye-tracker. This sec-
tion provides additional details about the user study.

2.1 Materials & Methods
2.1.1 Apparatus
In this study, participants were immersed in an virtual
environment using an HTC Vive Pro Eye (specifications: 90
Hz, 110° fov, 2880 × 1600 resolution). It is equipped with
a built-in eye-tracker (120 Hz, 110° fov, 0.5°–1.1° accuracy),
which can function as an assessment tool of saccadic eye
movement [14]. The experiment was designed with Unreal
Engine 5, using MetaHuman characters to populate the
scenes when necessary, as well as the SRanipal SDK to
capture participants’ eye-tracking data. The experiment ran
on a HP Z VR G2 backpack (specifications: NVidia RTX
2080, Intel Core i7-8850H processor, 32GB RAM).

2.1.2 Protocol
Upon arrival, participants were asked to fill in a consent
form, during which they were presented the task to perform.
They were then invited to sit on a chair and to wear the HTC
Vive Pro Eye HMD. Through the experiment, participants
were immersed in the virtual scenes presented in Figure 3
in the main paper (i.e. the lobby, the waiting room, the bar,
and the poker table).

We first performed the eye-tracking calibration, after
which participants were immersed in the lobby, which acted
as an introduction scene, so that they could familiarize

themselves with the virtual environment and VR. In this
scene, we checked the eye-tracking accuracy by asking
participants to focus on colored cubes positioned in front
of them, which turned black after a short fixation time (500
ms). In case participants were not able to focus on all the
squares, we performed a calibration again until obtaining
the required eye-tracking accuracy. The other scenes (waiting
room, bar, and poker table) were used for collecting ground-
truth data. For each of the three scenes, we also included
combinations of the two following situations:

1) Populated: the scene either included virtual charac-
ters or not. Our objective was to account for dif-
ferences in gaze behaviors in the presence of other
characters, as faces are known to have a high level
of attraction.

2) Event: the scene either included a particular event or
not. The event was specific to each scene: the door of
the waiting room suddenly opening, a red exit light
suddenly flashing in the bar, chips falling from the
slot machine in the poker room. Our objective was to
account for sudden gaze behaviors when an event
occurs, and to demonstrate the adaptability of our
model in such situations.

Participants therefore performed 12 trials (3 Scenes × 2
Populated × 2 Events) in random order, which they were
instructed to freely explored for 30 seconds each. Between
trials, participants went back into the lobby to verify the eye-
tracking calibration.

Participants also completed a number of questionnaires.
Prior to the experiment, they provided demographic infor-
mation (age and gender), as well as their experience in video
games (from 0: never played, to 5: regular player) and VR
(from 0: never tried, to 5: regular user). To avoid any effect
of motion sickness on our recorded data (even though the
risks were very limited), we asked participants to fill in a
Simulator Sickness Questionnaire (SSQ) [15] before and after
the experiment. Potential motion sickness was also assessed
twice through the experiment by asking them a verbal rating
(FMS) [16] of their physical state (from 0: no symptoms,
to 20: frankly sick). Finally, we measured Presence using
the Slater-Usoh-Steed (SUS) questionnaire [17] which was
completed at the end of the experiment.

2.1.3 Participants
Fifty unpaid participants, recruited via internal mailing lists
among students and staff, volunteered for the experiment
(25F, 25M; age: avg=28±6, min=20, max=55). They were
all naive to the purpose of the experiment, had normal or
corrected-to-normal vision, and gave written and informed
consent. The study conformed to the declaration of Helsinki,
and was approved by the local ethical committee (COERLE).

2.2 Collected Data
2.2.1 Eye-tracking data
During the experiment, gaze samples were recorded at 90
Hz. For each frame, we collected: the participant’s head
(HMD) position and rotation in the virtual space, the gaze
direction vector (i.e., the combined direction of head and eye
in the virtual space) and the eye openness (from 0: closed



5

(a) Scene 1: The waiting room. (b) Scene 2: The bar. (c) Scene 3: The poker table.

Fig. 3: Examples of our saliency maps on static scenes.

to 1: opened). We used raycasting along the gaze direction
vector to record the exact 3D position of the point gazed at
in the scene, as well as the unique ID of the corresponding
object. Over all participants, we recorded a total of 1,469,643
gaze samples, which were then processed according to the
following two steps.

First, we discarded gaze samples where tracking errors
were raised by the SDK, usually occurring right after a
blink (27,196 samples, ∼1.85%). We also discarded samples
corresponding to blinks, which we defined as gaze samples
where eye openness was below a threshold of 0.2 (31,673
points, ∼2.15%). Before the experiments, we also defined
that the whole recordings of a specific scene for an observer
would be discarded if more than 10% of the gaze sam-
ples were flagged as untracked or blink, which would be
representative of eye-tracking issues for this specific scene.
Two scene records over the 600 available were thus also
discarded (7,264 points, ∼0.49%).

Then, we computed eye fixations from the remaining
raw gaze samples, using a velocity-based algorithm [18].
First, the gaze vector coordinates are transformed into
latitude and longitude on a unit sphere centered on the
head position. Then, we compute the velocity between two
successive gaze points by dividing the haversine distance
∆σ by the timestamp difference between the two recordings
using Equation 3:

∆σ = 2arcsin

√
sin2

(
∆ϕ

2

)
+ cosϕ1 · cosϕ2 · sin2

(
∆λ

2

)
(3)

where ∆σ is the distance between the two points on the
sphere, ∆ϕ is the difference in longitude, ∆λ the difference
in latitude and ϕ1 and ϕ2 are the respective longitudes of the
two points. The resulting velocities are then smoothed using
a Savitzky-Golay filter of order 2 with a window length of
3.

All gaze samples with a velocity under 80°/sec were
flagged as being part of a fixation. The last step was then to
aggregate the successive gaze samples flagged as fixations
into a single fixation point, which gaze direction vector is set
as the average of all the direction vectors of the gaze sam-
ples within that fixation. Finally, we removed fixations that
lasted less than 80ms, as it is considered to be the minimum
amount of time required to process visual information and
plan a new saccade [19]. We also removed saccades lasting
more than 1.4s, i.e. over 4 SDs away from the mean fixation
duration. A total of 35,984 fixations over the whole dataset
were thus extracted.

2.2.2 Scene saliency map
To perform an objective evaluation of the model, we need
to rely on ground-truth visual saliency maps created from
the collected eye-tracking data. Since the participants were
seated, and mostly static, we could rely on the 360° saliency
maps described for instance by David et al. [20]. However,
this approach requires considering the scene as an omnidi-
rectional image, and does not account for multiple points
of view. Thus, we propose a more general way of defining
visual saliency for a virtual scene that is independent of the
viewpoint.

For each fixation, we trace a ray from the average head
position recorded during the fixation and following the
gaze direction vector to get the coordinates in the scene of
the fixation point. A 3D isotropic Gaussian kernel is then
applied to those points, with sigma (standard deviation) sets
to 2° of visual angle to account to the whole foveal area.

We finally define the saliency value at any point of the
scene S(x, y, z) as the sum of all the Gaussian kernels at this
location:

S(x, y, z) =
∑
i∈F

exp

(
−(x− xi)

2 − (y − yi)
2 − (z − zi)

2

2σ2
i

)
(4)

where F is the set of all fixation points, (xi, yi, zi) are
the 3D-coordinates of the i-th fixation point, and σi its
associated sigma computed to represent 2° of visual angle.

A saliency map is then defined by taking sample loca-
tions in the virtual scene and evaluating the saliency value
at these points. The question of which fixations to consider
strongly depends on the considered scene, its dynamics and
the evaluation method. For instance, to evaluate the global
attention in a static scene, we consider all fixations to get a
single saliency map, while for a dynamic scene, it would
be necessary to define a sliding time window, and only
consider fixations within this time frame.

To get sampling points of the scene, since participants
are static in our case, we sample a first point by tracing
a ray following the vertical (1, 0, 0) vector starting from
the average position of the participants heads, and iterate
each half degree in latitude and longitude. Examples of
such scene saliency maps, represented as heat-maps [21],
are displayed in Figure 3.

2.3 Questionnaire Analysis

To quantify a potential influence of scene realism on our
eye-tracking dataset, we computed average SSQ (Simulator



6

Sickness Questionnaire) and Presence scores. Regarding the
effect of motion sickness, we performed a one-way ANOVA
on the SSQ scores before and after the experiment. The
results suggests that our experiment did not have any
significant impact on motion sickness (p > 0.05), which
scores were very low on average (0.35 ± 0.64). Similarly, the
maximum of both FMS scores was also very low on average
(1.3 ± 2.2 on a 0 to 20 scale). Overall, these results suggest
that our experiment did not cause any significant discomfort
to participants. Presence scores collected at the end of the
experiment were above average (4.7 ± 1.7), and were in the
range of what is commonly found in VR experiments.

REFERENCES

[1] A. Kroner, M. Senden, K. Driessens, and R. Goebel, “Contextual
encoder–decoder network for visual saliency prediction,” Neural
Networks, vol. 129, pp. 261–270, 2020.

[2] M. Kümmerer, T. S. A. Wallis, and M. Bethge, “Saliency
benchmarking made easy: Separating models, maps and metrics,”
in Computer Vision – ECCV 2018. Springer International
Publishing, 2018, pp. 798–814. [Online]. Available: https:
//saliency.tuebingen.ai/

[3] A. Borji, “Saliency prediction in the deep learning era: Successes
and limitations,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 43, no. 2, pp. 679–700, 2021.

[4] M. Jiang, S. Huang, J. Duan, and Q. Zhao, “Salicon: Saliency
in context,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 1072–1080.

[5] T. Judd, K. Ehinger, F. Durand, and A. Torralba, “Learning to
predict where humans look,” in IEEE International Conference on
Computer Vision (ICCV), 2009.

[6] A. Bruckert, H. R. Tavakoli, Z. Liu, M. Christie, and O. Le Meur,
“Deep saliency models : The quest for the loss function,” Neuro-
computing, vol. 453, pp. 693–704, 2021.

[7] A. G. Samuel and D. Kat, “Inhibition of return: A graphical meta-
analysis of its time course and an empirical test of its temporal and
spatial properties,” Psychonomic bulletin & review, vol. 10, no. 4, pp.
897–906, 2003.

[8] O. Le Meur and Z. Liu, “Saccadic model of eye movements for
free-viewing condition,” Vision Research, vol. 116, pp. 152–164,
2015.

[9] C. Peters, G. Castellano, M. Rehm, E. André, A. Raouzaiou, K. Ra-
pantzikos, K. Karpouzis, G. Volpe, A. Camurri, and A. Vasalou,
“Fundamentals of agent perception and attention modelling,” in
Emotion-Oriented Systems. Berlin, Heidelberg: Springer, 2011, pp.
293–319.

[10] L. Sidenmark and H. Gellersen, “Eye, head and torso coordina-
tion during gaze shifts in virtual reality,” ACM Transactions on
Computer-Human Interaction (TOCHI), vol. 27, no. 1, pp. 1–40, 2019.

[11] L. Itti, N. Dhavale, and F. Pighin, “Realistic avatar eye and head
animation using a neurobiological model of visual attention,” in
Applications and Science of Neural Networks, Fuzzy Systems, and
Evolutionary Computation VI, vol. 5200, International Society for
Optics and Photonics. SPIE, 2003, pp. 64–78.

[12] C. Peters and A. Qureshi, “A head movement propensity model
for animating gaze shifts and blinks of virtual characters,” Com-
puters & Graphics, vol. 34, no. 6, pp. 677–687, 2010.

[13] W. Steptoe, O. Oyekoya, and A. Steed, “Eyelid kinematics for
virtual characters,” Computer animation and virtual worlds, vol. 21,
no. 3-4, pp. 161–171, 2010.

[14] Y. Imaoka, A. Flury, and E. D. de Bruin, “Assessing saccadic eye
movements with head-mounted display virtual reality technol-
ogy,” Frontiers in Psychiatry, vol. 11, p. 922, 2020.

[15] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilien-
thal, “Simulator sickness questionnaire: An enhanced method for
quantifying simulator sickness,” The international journal of aviation
psychology, vol. 3, no. 3, pp. 203–220, 1993.

[16] B. Keshavarz and H. Hecht, “Validating an efficient method to
quantify motion sickness,” Human factors, vol. 53, no. 4, pp. 415–
426, 2011.

[17] M. Usoh, E. Catena, S. Arman, and M. Slater, “Using presence
questionnaires in reality,” Presence, vol. 9, no. 5, pp. 497–503, 2000.

[18] D. D. Salvucci and J. H. Goldberg, “Identifying fixations and
saccades in eye-tracking protocols,” in Proceedings of the 2000
Symposium on Eye Tracking Research & Applications, ser. ETRA ’00,
2000, p. 71–78.

[19] B. R. Manor and E. Gordon, “Defining the temporal threshold
for ocular fixation in free-viewing visuocognitive tasks,” Journal
of Neuroscience Methods, vol. 128, no. 1, pp. 85–93, 2003.

[20] E. J. David, J. Gutiérrez, A. Coutrot, M. P. Da Silva, and P. L.
Callet, “A dataset of head and eye movements for 360° videos,”
in Proceedings of the 9th ACM Multimedia Systems Conference, ser.
MMSys ’18, 2018, p. 432–437.

[21] S. Stellmach, L. Nacke, and R. Dachselt, “Advanced gaze
visualizations for three-dimensional virtual environments,” in
Proceedings of the 2010 Symposium on Eye-Tracking Research &
Applications, ser. ETRA ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 109–112. [Online]. Available:
https://doi.org/10.1145/1743666.1743693


