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Abstract: We study modulational instability in fibers where group velocity dispersion
alternates between two different signs over random lengths. We apply both semi-analytical
and numerical calculations to estimate predict large instability gains. © 2022 The Au-
thor(s)

1. Introduction

Dispersive nonlinear systems may exhibit modulational instability (MI). This effect has been known for decades
in nonlinear optical fibers if light propagates in anomalous group velocity dispersion (GVD). The nonlinear
Schrödinger equation (NLSE) well captures its main features. If other physical effects are taken into account,
MI can appear also in normal dispersion. A typical condition is the (periodic or random) oscillation of GVD along
the propagation direction [1]. Dispersion management (DM), i.e., using an alternation of fiber segments of oppo-
site GVD, was proposed as an effective way to compensate pulse distortion in long-haul transmission links. The
study of MI in DM systems showed that a threshold exist for the period of alternation below which no MI is ob-
served [3]. The propagation of Gaussian pulses in DM system featuring a random variation of the interval length
has been considered by means of variational techniques [5]. Large random fluctuations of GVD were studied in
Ref. [4], in the form of localised abrupt changes (kicks) around an average normal GVD. We apply the method de-
veloped in our previous work to compute the MI gain in a DM system where the length of each segment fluctuates
randomly with a certain probability distribution.

2. Model and results

We write the NLSE as
i∂zU−

1
2

β2(z)∂ttU + γ|U |2U = 0, (1)

with U the complex envelope of the optical field, (t,z) the physical time and propagation distance in a frame
moving at the group velocity of the fiber mode, γ the (constant) nonlinear coefficient, and β2(z)=±β 0

2 is the GVD,
which takes only two values. The sign changes occur at z1,z2, . . ., where zn = zn−1 +∆Ln, n = 1,2, . . . and z0 = 0.
The lengths ∆Ln are independent identically distributed random variables with uniform probability distribution
function in [L̄(1− ε), L̄(1+ ε)], where L̄ is the average span length and ε the amplitude of its fluctuation.

Following [2, 4], Eq. (1) is linearized around the continuous wave solution U0(z) =
√

Pexp(iγPz) and the
resulting system for sideband phase-quadrature variables (x1,x2) is written as a product of random matrices,
depending on the random variables ∆Ln. It can be shown that the Lyapunov exponent of this random linear map
is related to the MI gain. As common in random dynamical systems, the gain, denoted as G1(ω) (resp. G2(ω))
with ω the frequency detuning from the carrier, estimated from the first (resp. second) moments of the dependent
variables, are in general different. Recall that for a deterministic dispersion profile G1 = G2. In the periodic case
ε = 0, for γP = 1, the threshold for MI is L̄ ≈ 1.07 [3], and the MI sidebands appear around a frequency which
depends on β 0

2 .
By letting M± the matrices governing to the evolution of the power of the perturbations (x2

1,x
2
2,x1x2) for GVD

values ±β 0
2 (respectively, a rotation and a dilation matrix), we obtain, by averaging over ∆Ln, the following

expression for the MI gain:

G2(ω) =
1

4L̄
log |λ |,with λ the maximum magnitude eigenvalue of 〈M+M−〉, (2)

the angle brackets denoting the expectation operation.



The MI equations are also directly solved numerically, by taking a fixed number, 2N = 100, of fiber segments,
and averaging the output sideband power over Niter = 5×105 segment distributions.

In Fig. 1 we show two examples obtained for β 0
2 = γP = 1. In Fig. 1(a), we consider L̄ < 1.07, so the MI is

Fig. 1. Comparison of numerical growth rate with G2 estimated from the eigenvalues of the averaged
matrix (a) L̄ = 1, ε = 0.3; (b) L̄ = 1.1, ε = 0.45. In (b) the MI gain G1 = G2 for the periodic case is
also included.

of purely stochastic origin. The MI sidebands are close to the carrier and exhibit a relatively large gain (1/4 of
the conventional value observed in a uniform anomalous GVD fiber). Eq. (2) matches almost perfectly with the
numerical resutls. In Fig. 1(b), we consider instead L̄ = 1.1 > 1.07. For a sufficiently small value of ε , only the
conventional parametric MI appears and G1 ≈ G2 (not shown). For ε > 0.4, a broad MI sidelobe is observed,
resembling the shape of Fig. 1(a), but with a larger maximum value (40% of the conventional MI). In Fig. 1(b),
the parametric MI is also included: importantly, contrary to the effect of white noise [1], which spreads the MI
sideband and diminishes the maximum gain, here the random fluctuations of periodicity greatly enhance the MI
gain. This effect persists also for larger L̄ < 3. Above this value the parametric MI dominates again. We found
that Eq. (2) provides a satisfactory estimate of the numerically computed mean gain in all the simulation we have
performed.

3. Conclusions

We studied the modulational instability in a dispersion-managed fiber with randomly fluctuating interval lengths.
The instability gain is computed numerically and estimated by a simple yet accurate analytical method. An insta-
bility gain much broader and larger than its deterministic counterpart is predicted. This sheds light on the effect of
large random fluctuations and the effective methods to analyze them in nonlinear optics.
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