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Abstract Vertex models describe biological tissues as

tilings of polygons. In standard vertex models, the tis-

sue dynamics results from a balance between isotro-

pic stresses, which are associated with the bulk of the

cells, and tensions associated with cell-cell interfaces.

However, in this framework it is less obvious how to

describe anisotropic stresses arising from the bulk of

cells. In epithelia, such bulk anisotropic stresses could

arise for instance through medial myosin fluctuations.

Two recent publications – Tlili et al., PNAS (2019) and

Comelles et al., eLife (2021) – have proposed differ-

ent schemes to implement bulk anisotropic stresses in

vertex models. Here we show that while both schemes

transform in the same way under affine deformations,

they lead to significantly different tissue dynamics. Our

results are consistent with the interpretation that the
Tlili et al. scheme describes bulk stresses that are uni-

form within each cell, while the Comelles et al. scheme

corresponds to non-uniform bulk stresses. Finally, we

wondered whether a standard vertex model can be fully

expressed in terms of bulk cellular stresses alone. We

find that, in general, neither scheme can mimic the ver-

tex forces created by cell-cell interface tensions.

Keywords Vertex model · Active stress · Batchelor
stress · Multi-scale modeling

1 Introduction

Biological cells convert stored or ambient free energy

into mechanical forces that can drive large-scale collec-

tive motion such as those observed during developmen-

tal processes or wound healing [1]. A central challenge
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when modeling such processes consists in linking the

dynamics across sub-cellular and tissue scales [2]. One

set of tools to tackle this challenge are cell-based com-

putational models, including the vertex model. Here,

we discuss how sub-cellular mechanical features can be

incorporated within the effective vertex model frame-

work, with a focus on isotropic and anisotropic stresses

generated by the cytoskeleton within the bulk of the

cell.

Vertex models have played a long-standing role in

studying the mechanics of living tissues [5,6,7,8,9]. In

these models, the dense cellular structure is represented

by a tiling of space into polygons. Tissue deformation

is described by the motion of polygon corners, called

vertices - here labeled by an index i. In common vertex

model implementations, the motion of vertex positions

ri is determined by the force balance between pressure

(arising from the cell bulk) and tension (arising from

the cell-cell interfaces). In practice, this is usually done

by expressing both pressure and interface tensions as

forces Fi on the vertices.

While several developmental processes have been

described in terms of an imbalance of cell pressures

and cell-cell interface tensions [10], experimental data

also suggest a crucial role for anisotropic stresses arising

from within the bulk of the cells. Such bulk anisotro-

pic stresses could be created for instance by polarized

medial myosin pulses as they occur during Drosophila

germ band extension [11] and dorsal closure [12].

While bulk isotropic stresses are readily implemen-

ted within the vertex model through cell area deriva-

tives [10], implementing bulk anisotropic stresses is less

straightforward. In this manuscript, we discuss how to

map a general symmetric bulk stress tensor σ(b) – with

both isotropic and anisotropic components – to corre-

sponding vertex forces F
(b)
i . For a cell with N ≥ 3
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Fig. 1 Sketch of the two schemes considered in this manuscript to define vertex forces based on a bulk cellular stress. (a)
Definition of the bulk stress σ(b) = λ1e1 ⊗ e1 + λ2e2 ⊗ e2, outward dark red double arrows indicate an extensile direction (i.e.
associated to λ1 > 0) and the inward magenta double arrows indicate a contractile direction (i.e. associated to λ2 < 0). (b) Tlili
et al. scheme [3], with blue arrows indicating the force applied on each interface as defined by Eq. (1). For the junction between
the vertices i to i + 1, we represent the projections of the forces along the extensile (red arrow) and contractile (magenta
arrow) directions. (c) Comelles et al. scheme [4], where forces are computed under the assumption of a uniform virtual cellular
strain (green ellipses). (d) Comparison of the vertex forces F (T ) and F (C), obtained through the Tlili et al. and Comelles et
al. schemes, respectively.

vertices, the vertex forces have in total 2 × N com-

ponents, while the symmetric stress tensor has only 3

independent components. Thus, this problem is gener-

ally under-determined, i.e. different sets of forces F
(b)
i

correspond to the same stress tensor σ(b). Hence, what

definition for the forces F
(b)
i should one choose?

In the recent literature, two different schemes have

been proposed to define the forces F
(b)
i based on a given

bulk stress σ(b). Each had its specific motivation: (i)

Tlili et al. [3] aimed at understanding the role of pat-

terned cell elongation shaping somites during early ze-

brafish development, while (ii) Comelles et al. [4] aimed

at understanding the experimentally observed anisotro-

pic spreading dynamics of Madin Darby Canine Kidney

(MDCK) epithelial monolayers. In this article, we dis-

cuss and compare the properties of both schemes.

The article is organized as follows. In Sec. 2, we re-

view the rationales of both schemes. In Sec. 3, we ana-

lytically show that both schemes transform in the same

way with respect to affine deformations. In Sec. 4, we

numerically study how the scheme choice impacts the

vertex model dynamics. In Sec. 5, we show that the Tlili

et al. scheme can be derived using a similar approach as

the Comelles et al. scheme, by just dropping a uniform-

strain projection. In our eyes, this means that the Tlili

scheme is a more natural choice to describe a bulk stress

σ(b) that is uniform within each cell (but can differ be-

tween cells). We conclude in Sec. 6 by demonstrating

that neither scheme is able to express the standard set

of vertex model forces of Ref. [6] in terms of isotropic

and anisotropic cellular bulk stresses alone.

2 Scheme definitions

2.1 The Tlili et al. (T) scheme

The Tlili et al. scheme relies on Cauchy’s stress def-

inition to introduce vertex forces corresponding to a

cellular stress σ(b) (Fig. 1a). We briefly recall the key

ideas of the Tili et al. scheme by considering a single cell

with vertices at positions ri, with indices i = 1, . . . , N

ordered in counter-clockwise sense (Fig. 1b).

A homogeneous stress σ(b) throughout the cell area

corresponds to a force Fi,i+1 exerted by the cell on the

interface i → i + 1, which is given by Cauchy’s stress

theorem as:

Fi,i+1 = −li,i+1ni,i+1 · σ(b), (1)

where li,i+1 = |ri+1 − ri| is the length of the interface

i → i+1, ni,i+1 is the unit vector normal to that inter-

face pointing outside of the cell, and the dot · symbol

denotes the inner product. A geometric construction of

the force in Eq. 1 is provided in Fig. 1b.

Equation (1) can be transformed into:

Fi,i+1 = −
[
(ri+1 − ri)× ẑ

]
· σ(b), (2)

where ẑ is the unit vector normal to the cell plane.

Tlili et al. propose to define the resulting force F
(T )
i

exerted on a given vertex i as the average of the forces

exerted on the neighboring interfaces:

F
(T )
i =

1

2
(Fi,i+1 + Fi−1,i). (3)

We obtain with Eq. (2):

F
(T )
i (σ(b)) = −R

(T )
i · σ(b), (4)

where we define

R
(T )
i =

1

2
(ri+1 − ri−1)× ẑ. (5)

This is the force definition according to the Tlili et al.

scheme.
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2.2 The Comelles et al. (C) scheme

The Comelles et al. scheme [4] is based on a virtual

work principle. The key idea is that the virtual work δW

that the cell exerts via virtual vertex displacements δri
through the cellular bulk stress σ(b) can be expressed

in two different ways.

The first way is through the vertex displacements:

δW =
∑
i∈cell

F
(C)
i · δri, (6)

where F
(C)
i are the vertex forces that correspond to the

cellular stress σ(b).

The second way to express the virtual work δW re-

lies on the effective assumption that the virtual vertex

displacements δri correspond to an affine transforma-

tion, i.e. the cell deforms by a uniform virtual strain δε.

In this case, the virtual work can also be written as:

δW = −Aσ(b) : δε, (7)

where A is the cell area, and the expression σ(b) : δε

corresponds to the trace of σ(b)·δεT with T denoting the

transpose operator. Note that here we define the virtual

strain tensor δε as a displacement gradient, which does

not need to be symmetric.

The forces F
(C)
i can be obtained by equating the

virtual work expressions Eqs. (6) and (7). However, the

virtual strain δε first needs to be expressed in terms

of δri before the forces F
(C)
i can be deduced by com-

parison of the coefficients in front of the virtual vertex

displacements δri.

To express δε in terms of δri, Comelles et al. intro-

duce the relative vertex position vectors

ρi = ri − rC (8)

with respect to the cell center rC =
∑

k rk/N .

The Comelles et al. scheme then relies on the as-

sumption of uniform virtual strain δε (Fig. 1c), which

corresponds to

δρi = ρi · δε. (9)

We need to extract δε with its 4 degrees of freedom from

the 2(N − 1) independent equations in Eq. (9). When-

ever the number of verticesN of the cell is strictly larger

than 3, this system of equations is over-determined, and

thus it has in general no solutions.

Comelles et al. propose to obtain the virtual strain

tensor δε that best matches Eq. (9) through a projec-

tion, i.e. a least-squares minimization procedure, which

results in:

δε = M−1 ·
∑
i∈cell

ρi ⊗ δρi, (10)

with

M =
∑
i

ρi ⊗ ρi. (11)

Here, the symbol ⊗ denotes the outer (i.e. dyadic) prod-

uct. Because
∑

i ρi = 0, Eq. (10) can be transformed

into:

δε = M−1 ·
∑
i∈cell

ρi ⊗ δri. (12)

Note that the N×2 elements of M−1 ·ρi correspond to

the Moore-Penrose pseudo-inverse of the 2×N matrix

ρi [13].

Using Eq. (12) together with the virtual work prin-

ciple, Eqs. (6) and (7), one obtains

F
(C)
i (σ(b)) = −R

(C)
i · σ(b) (13)

with the definition

R
(C)
i = Aρi ·M−1. (14)

This corresponds to the expression provided in [4]. Note

that in [4], this approach is only discussed for anisotro-

pic (traceless) bulk stress σ(b).

2.3 Consistency checks

We first checked that for symmetric bulk stress σ(b),

both schemes create neither any net force nor any net

torque on a cell (Appendix B.1).

Moreover, we checked that for any given (input)

bulk stress σ(b), both schemes yield identical (output)

cell stresses as defined through the Batchelor formula

[14,15,16]

σB [Fi] = − 1

A

∑
i∈cell

ri ⊗ Fi. (15)

In Appendix B.2, we show that indeed:

σB

[
F

(T )
i (σ(b))

]
= σB

[
F

(C)
i (σ(b))

]
= σ(b). (16)

Hence, even though both schemes define different forces,

they correspond to the same Batchelor stress.
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Fig. 2 Behavior of a cell sheet with periodic boundary conditions in the presence of (top row; a-c) uniform isotropic bulk
stress σ(b) = βI (bottom row; d-f) uniform anisotropic bulk stress σ(b) = β (ex ⊗ ex − ey ⊗ ey), which is contractile in the x

and extensile in the y direction. (a,d) Geometry and bulk stress orientation. (b,e) Snapshots of typical tissue configurations
obtained through (top row) the Comelles scheme and (bottom row) the Tlili scheme for increasing values of the imposed bulk
stress (b: β = 0, 0.5, 1.0; e: β = 0.1, 0.3, 0.5). Shown are initial (gray) and final (blue) stationary states. In panel b, changes in
the configuration are highlighted by red ellipses. (c, f) Relative cell aspect ratio (AR) change εcell as a function of the bulk
stress β. The aspect ratio change is defined based on the cell shape tensor M defined in Eq. (11) (see Appendix A). Simulation
parameters are provided in Table 1.

3 Both schemes transform in the same way

under affine cell deformations

Here we show that both schemes transform in the same

way under an affine transformation G applied to the

cell shape. To this end, we first define the deformed cell

shape, where we map each vertex ri of a cell to r′i with:

r′i = G · ri. (17)

To study the effect of this transformation, we insert

it in the definitions of the vectors R
(T )
i and R

(C)
i –

which define the Tlili and Comelles et al. schemes in
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Fig. 3 Vertex model simulations of a cell aggregate with
free boundary conditions in the presence of a uniform bulk
anisotropic stress σ(b) = β (ex ⊗ ex − ey ⊗ ey). (a) Sketch of
the anisotropic bulk stress. (b) Comparison of the final tissue
morphology using the Comelles et al. (top row) and the Tlili
et al. (bottom row) schemes for increasing bulk stresses β =
0, 0.1, 0.2. (c, d) Relative changes of tissue aspect ratio (AR)
εtissue (c) and of cell aspect ratio εcell (d) as a function of the
bulk stress β. Both εtissue and εcell are defined based on the
cell shape tensor M in Eq. (11) (see Appendix A). Simulation
parameters are provided in Table 1.

(5) and (14), respectively – to obtain their transformed

versions, R
(T )
i

′
and R

(C)
i

′
.

We obtain the following Tlili et al. vectors for the

transformed cell:

R
(T )
i,γ

′
=

1

2
Gαβ (ri+1,β − ri−1,β) εαzγ ,

= R
(T )
i,α CM(GT)αγ .

(18)

Here, ε is the Levi-Civita symbol and CM(GT), and

the cofactor matrix of GT (transpose of G) is defined

as

CM(GT) =

(
Gyy −Gxy

−Gyx Gxx

)
. (19)

In deriving Eq. (18), we used the identity Gαβεαzγ =

εβzα CM(GT)αγ , which can be verified component–wise.

We obtain the following Comelles et al. vectors for

the transformed cell:

R
(C)
i

′
= det(G)Aρi ·GT ·GT−1 ·M−1 ·G−1,

= R
(C)
i ·CM(GT).

(20)

Here, we used in the first step that the mapped area

and relative vertex positions are A′ = det(G)A and

ρ′
i = G · ρi, and in the second step we used G−1 =

CM(GT)/det(G).

Eqs. (18) and (20) show that both Tlili et al. and

Comelles et al. vectors transform according to the very

same rule under any affine transformation applied to

a given cell. Moreover, we show in Appendix C.1 that

both the Tlili and Comelles et al. schemes coincide for

regular polygons. As a consequence, the Tlili et al. and

Comelles et al. forces will coincide for any cell shape

that results from an affine transformation of a regular

polygon – independently of the bulk stress tensor σ(b).

Nevertheless, as we will see in the following section,
both schemes lead to different vertex model dynamics.

4 Numerical results: both schemes lead to

different dynamics

In this section, we study the dynamics of a vertex model

where we combine standard vertex model forces [7,17],

denoted F
(svm)
i , with forces induced by a bulk stress

σ(b), denoted F
(x)
i (σ(b)), into the following expression

for the total force exerted on a vertex i:

F
(total)
i = F

(svm)
i + F

(x)
i (σ(b)). (21)

Here, x ∈ {C, T}, i.e. F (x)
i (σ(b)) is defined either ac-

cording to the Tlili or the Comelles scheme.

The standard vertex model forces F
(svm)
i in the first

term are defined using the effective work function [7]:

U =
1

2
KA(A−A0)

2
+

1

2
KP

(
P − P0

)2
. (22)
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Here, A,P are cell area and perimeter, A0, P0 are pa-

rameters corresponding to preferred cell area and perime-

ter, and KA,KP are the associated moduli. Parameter

values used are listed in Table 1. The corresponding

standard vertex model force applied on any given ver-

tex i is F
(svm)
i = −∂U/∂ri.

We use friction-based dynamics [10] with a uniform

friction coefficient γ:

γ
dri
dt

= F
(total)
i . (23)

We initialize our system with a Voronoi tessellation

of N = 100 cell centroids at random locations either

(i) within a square of side length
√
NA0 with periodic

boundary conditions [18], or (ii) within a circle of radius√
NA0. For (i) we keep the system size fixed during the

simulation, while for (ii) we use free boundary condi-

tions. In both cases, we run the system with σ(b) = 0

until there is no significant change in the vertex posi-

tions (i.e. maximal vertex speed < 10−4). Afterwards,

we set the same value σ(b) ̸= 0 in all cells and let the

system relax again until there is again no significant

change in the vertex positions.

Isotropic σ(b). We first consider the case where the

bulk cellular stress is isotropic (Fig. 2a):

σ(b) = βI = β(ex ⊗ ex + ey ⊗ ey), (24)

where I is the unit tensor in two dimensions.

For periodic boundary conditions, no vertex dis-

placements are observed between initial and final states

when using the Tlili et al. scheme. In contrast, using the

Comelles et al. scheme results in small changes of the

cell aspect ratios, see Fig. 2b-c.

Anisotropic σ(b). We now consider an anisotropic bulk

cellular stress of the form (Fig. 2d)

σ(b) = β (ex ⊗ ex − ey ⊗ ey) . (25)

For β > 0, the latter definition corresponds to a con-

tractile stress in the x direction combined with an ex-

tensile stress in the y direction.

For periodic boundary conditions, no vertex dis-

placements are observed when using the Tlili et al.

scheme. In contrast, using the Comelles et al. scheme

results in a net elongation of cells, see Fig. 2e-f and

Movie 1. These results are in line with those obtained

for isotropic σ(b) (Fig. 2b-c).

These results suggest that only the Tlili et al. scheme

is consistent with the expectation that, in a periodic do-

main, the application of a spatially homogeneous bulk

stress σ(b) (i.e. same bulk stress in all cells and uniform

bulk stress within each cell) should not result in any

net vertex force. Indeed, if all cells surrounding a given

vertex i have equal bulk stress, then the corresponding

Tlili forces on the vertex i sum up to zero as a direct

consequence of the Tlili force definition Eq. (4). Con-

versely, the initially force-balanced state changes when

turning on the Comelles forces, which indicates that

there are additional net forces on individual vertices,

even though σ(b) is the same for all cells. In this sense,

the Comelles scheme can be interpreted as correspond-

ing to a non-uniform intra-cellular bulk stress.

Finally, we also studied a free standing cell aggre-

gate with free boundary conditions under the effect of

the same bulk anisotropic stress as before, Eq. (25).

We observe an overall tissue elongation along the y axis

for both schemes (Fig. 3b,c and Movies 2,3). However,

while the average cell aspect ratio is similar for both

schemes (Fig. 3d), the overall tissue elongation is sig-

nificantly larger for the Tlili et al. scheme (Fig. 3c).

Indeed, compared to the Comelles scheme, the Tlili et

al. scheme favors cell-cell rearrangements through T1

transitions.

Taken together, we find that the choice of the scheme

to translate bulk cellular stresses into vertex forces can

have a strong impact on the vertex model dynamics.

Given that both schemes behave the same for cell shapes

that are affinely deformed regular polygons, these dif-

ferences must arise from non-affinities in the cell shape.

This is also exemplified in Appendix C.2.

5 The Tlili scheme can be derived like the

Comelles scheme without a uniform-strain

projection

Here we use the virtual work principle as in Sec. 2.2

to demonstrate that the Tlili et al. scheme can be de-

rived like the Comelles et al. scheme, but without the

uniform-strain projection.

We focus on a single cell with virtual vertex dis-

placements δri. In analogy to Eq. (6), we express the

virtual work δW carried out by the cell through the

cellular stress σ(b) as

δW =
∑
i∈cell

F
(X)
i · δri. (26)

The label (X) indicates that F
(X)
i can be different from

the F
(C)
i set of forces, since we will modify the Comelles

et al. derivation to avoid the need for the uniform-strain

projection.

As in Comelles et al., we equate the virtual work

expression Eq. (26) with an expression combining the

stress σ(b) and the virtual strain δε. However, in con-

trast to Comelles et al. we allow for a spatially varying
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strain field

δW = −
∫
A

σ(b) : δε dA = −σ(b) :

(∫
A

δε dA

)
, (27)

where the integral is over the whole cell area A.

Using a version of Gauss divergence theorem dis-

cussed e.g. in Ref [19], the area integral of the virtual

strain in Eq. (27) can be expressed as a contour integral

around the cell outline∫
A

δε dA =

∮
∂A

n⊗ δr dℓ

=
∑
i∈cell

ni,i+1 ⊗
∫ ri+1

ri

δr dℓ.
(28)

Here the cell outline ∂A is parametrized in terms of

the curvilinear coordinate ℓ, n is the local normal unit

vector pointing outward from the cell interior, and δr

is the local virtual displacement of the cell outline. In

the second step in Eq. (28), we used that cell outlines

are polygons with linear interfaces between vertices.

To carry out the integral over a cell polygon side

i → i + 1 in Eq. (28), we make the choice to linearly

interpolate the virtual displacement δr along each poly-

gon side. In other words, at any point r(λ) = (1−λ)ri+

λri+1, we choose the virtual displacement to be

δr = (1− λ)δri + λδri+1, (29)

where 0 ≤ λ ≤ 1. Note that other choices for δr(λ)

are possible as long as δr(0) = δri, δr(1) = δri+1, and

the polygon side remains straight. In particular, any

tangential (i.e. parallel to the polygon side) component

could in principle be added to δr(λ).

Insertion of Eq. (29) into the integral in Eq. (28)

yields:∫ ri+1

ri

δr dℓ =
1

2
li,i+1(δri + δri+1). (30)

Using li,i+1ni,i+1 = (ri+1 − ri) × ẑ, Eq. (28) can thus

be expressed as∫
A

δε dA =
1

2

∑
i∈cell

[
(ri+1 − ri−1)× ẑ

]
⊗ δri. (31)

Combining this identity with Eqs. (26) and (27), and

comparing the coefficients in front of the virtual dis-

placements δri, we finally obtain:

F
(X)
i = −1

2

[
(ri+1 − ri−1)× ẑ

]
· σ(b). (32)

This result corresponds to the Tlili scheme: F
(X)
i ≡

F
(T )
i , see Eq. (4). Hence, the Tlili et al. scheme can be

obtained like the Comelles et al. scheme yet without

the uniform-virtual-strain projection of Eq. (7).

In Eq. (29), we made a choice for the virtual dis-

placements on the polygon sides. Other choices are pos-

sible as well and will generally lead to a different force

formula. Also note that for given virtual vertex dis-

placements δri, Eq. (29) can always be fulfilled for all

polygon sides simultaneously. Meanwhile, the condition

of a uniform virtual strain on the cell area may gener-

ally not be fulfilled for general displacements δri.

6 Neither of the two schemes recapitulates the

standard vertex model forces

We wondered whether it would be possible to express

the standard vertex model forces F
(svm)
i (cf. Eq. (22))

exclusively in terms of a cellular bulk stress σ(b).

More generally one could ask whether any set of

vertex forces Fi created by a cell can be expressed in

terms of a cellular bulk stress σ(b). However, because

any arbitrary set of vertex forces with vanishing net

force and net torque correspond to (2×N−2) degrees of

freedom while σ(b) contains only 3 degrees of freedom,

this is in general not possible.

We thus focus on the specific question whether one

of the two schemes could produce the standard vertex

model forces F
(svm)
i for some bulk stress σ(b). In other

words, we ask whether there is a σ(b) such that for a

scheme x ∈ {T,C}:

F
(x)
i (σ(b)) = F

(svm)
i . (33)

Since both schemes reproduce the correct Batchelor

stress (Sec. 2.3), if there was a stress σ(b) that could

produce the standard vertex model forces F
(svm)
i , it

needs to be the Batchelor stress of F
(svm)
i . Formally,

this can be shown by inserting Eq. (33) into Eq. (16):

σ(b) = σB

[
F

(x)
i (σ(b))

]
= σB

[
F

(svm)
i

]
. (34)

To compute this stress, we first explicitly compute the

forces F
(svm)
i :

F
(svm)
i =− 1

2
KA (A−A0)

[
(ri+1 − ri−1)× ẑ

]
+KP (P − P0) (ti,i+1 − ti−1,i) , (35)

where ti,i+1 = (ri+1 − ri)/li,i+1 is the unit vector point-

ing from vertex i to vertex i+ 1.

Substituting Eq. (35) into the Batchelor stress ex-

pression Eq. (15) leads to

σB

[
F

(svm)
i

]
=KA (A−A0) I +

KPP (P − P0)

A
S,

(36)
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where S is a symmetric cell shape tensor defined as:

S =
1

P

∑
i∈cell

li,i+1ti,i+1 ⊗ ti,i+1. (37)

For isotropic cells, S = I/2.

Finally, we can use the stress expression in Eq. (36)

to test whether one of the schemes is able to produce

the standard vertex model forces.

Tlili et al. scheme. To compute the vertex forces re-

sulting from the stress in Eq. (36), we insert it into the

Tlili scheme, Eq. (4):

F
(T)
i =− 1

2
KA (A−A0) [(ri+1 − ri−1)× ẑ]

− KPP (P − P0)

2A
[(ri+1 − ri−1)× ẑ] · S. (38)

While the area-related term is the same as in Eq. (35),

the perimeter-related terms are in general different. In-

deed, while for a given vertex i the perimeter part with-

out the factor (P −P0) in Eq. (35) depends only on the

vertex positions ri−1, ri, ri+1, the same part in Eq. (38)

depends via S on all vertex positions of the cell. Thus,

the Tlili scheme only reproduces the area-related part

of the standard vertex model forces.

Comelles et al. scheme. We analogously compute the

vertex forces resulting from the stress in Eq. (36) via

the Comelles scheme, Eq. (13):

F
(C)
i =−KA (A−A0)Aρi ·M−1

−KPP (P − P0)ρi ·M−1 · S. (39)

The latter expression differs from the standard vertex

model forces Eq. (35) with respect to both area- and

perimeter-related terms. Without the prefactors (A −
A0) and (P−P0), both terms depend only on the vertex

positions ri−1, ri, ri+1 in Eq. (35). However in Eq. (39)

both terms generally depend on all vertex positions of

the cell.

Taken together, neither of the two schemes allows

to represent standard vertex model forces in terms of

cellular bulk stresses alone (shown numerically in Ap-

pendix C.2). However, the Tlili scheme allows to at least

correctly represent the (isotropic) area-related part. In

the specific case of a regular polygonal cell, the forces

according to both schemes coincide with the standard

vertex model forces: F
(T )
i = F

(C)
i = F

(svm)
i (Appendix

C.1).

7 Discussion

The vertex model describes tissue mechanics based on

vertex motion and vertex forces, raising the question

of how cellular bulk stresses can be described in this

model. Here we compare two different schemes to trans-

form bulk isotropic and anisotropic stresses into vertex

forces: the Tlili et al. scheme proposed in [3] and the

Comelles et al. scheme proposed in [4].

We first show analytically that both schemes trans-

form similarly with respect to affine transformations of

the cell shape. We then show numerically that never-

theless both schemes lead to different predictions of the

vertex model dynamics (Section 4). These differences

thus arise from different behaviors of both schemes with

respect to non-affine deformations of the cell shape.

Moreover, we show analytically that the Tlili et al.

scheme can be derived similarly to the Comelles et

al. scheme – yet without the affine-virtual-deformation

projection that appears in the derivation of the Comel-

les et al. scheme. Finally, we show that neither scheme

allows to fully express standard vertex model forces [17]

in terms of bulk cellular stresses alone.

Taken together, our results suggest that both Tlili et

al. and Comelles et al. schemes are reasonable choices,

as they transform in the same way with respect to

affine deformations. As evidenced by the absence (Tlili

scheme) or appearance (Comelles scheme) of net forces

on vertices for periodic boundary conditions in Sec-

tion 4, the Tlili scheme describes uniform bulk stresses

within each cell, while the Comelles scheme can be in-

terpreted as describing non-uniform stress on the cell

area. Nevertheless, as the vertex model is an effective

cell-scale description of complex cellular mechanics, both

schemes are of interest to model anisotropic cellular

bulk stresses in biological tissues.

8 Perspectives

In recent vertex model work, collective cellular migra-

tion was most often studied by including a polar vari-

able for each cell that controls cellular self-propulsion

[20,21,18,22]. The approaches discussed here allow for

another way to include cellular motion into the vertex

model, for instance through cellular nematic variables

controlling bulk anisotropic stresses. In our numerical

studies we have focused on the case of homogeneous

bulk stress. However, one may consider spatial varia-

tions in the bulk stress amplitude or orientation, which

result in forces that can drive tissue flows. Such an im-

plementation of cellular motility is also consistent with

recent hydrodynamic descriptions of cell monolayer dy-
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namics [23,24,25], in which active anisotropic stresses

are controlled by a nematic cell shape field.

Motility can also arise from heterogeneous stresses

within cells. For instance, intra-cellular contractility fluc-

tuations have been shown to be correlated to the mi-

gratory behavior[26]. It will be interesting to extend

our framework to account for such non-uniform bulk

stresses at the sub-cellular level. This would allow to

explore what types of tissue-scale flow arise from the

generic models of cell migration proposed in [26].

Supplementary Movies

Supplementary Movies 1-3 are available as ancillary

files.
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Appendix A: Cell and tissue aspect ratio

change

In Figs. 2 and 3, we have quantified the relative cell as-

pect ratio change as εcell = ARfinal/ARinitial− 1, where

ARinitial (ARfinal) is the aspect ratio of the cell in the

initial (final) state. AR is defined as AR =
√

I1/I2,

where I1 and I2 (I1 > I2) are the two eigenvalues of

the matrix M defined in Eq. (11).

Similarly, for free boundary conditions, we analo-

gously define the relative tissue aspect ratio change

εtissue. In this case however, the tensor M is defined

via Eq. (11) using all margin vertices of the tissue.

Appendix B: Consistency checks

Appendix B.1: Zero net force and torque across each

cell

Zero net force We check that the net force on all ver-

tices of a cell satisfies the relation

FG =
∑
i∈cell

F
(T,C)
i = 0, (B.1)

in both schemes. Indeed, substituting the Tlili et al.

forces Eq. (4) into Eq. (B.1), we find that

FG =
1

2

[
ẑ ×

∑
i∈cell

(ri+1 − ri−1)

]
· σ(b) = 0, (B.2)

Table 1 List of parameter values used in vertex model sim-
ulation.

Parameter Description Value

√
A0 Length scale 1.0

γ/(KAA0) Time scale 1.0

KAA0 Stress scale 1.0

KA Cell area elasticity 1.0

A0 Cell target area 1.0

KP Cell perimeter elasticity 0.02

P0 Preferred perimeter -2.5

∆T1 Length threshold for T1 transition 0.01

∆t Simulation time step 0.01

Likewise, substitution of the Comelles et al. definitions

Eq. (13) into Eq. (B.1) leads to

∑
i∈cell

F
(C)
i = −A

(∑
i∈cell

ρi

)
·M−1 · σ(b) = 0. (B.3)

Zero net torque We also check that the overall torque

acting on a given cell satisfies the relation

T =
∑
i∈cell

ri × F
(T,C)
i = 0 (B.4)

in both schemes. Substituting the Tlili et al. scheme

definition Eq. (4) into Eq. (B.4), and adopting Einstein

notation with Greek dimension indices, we obtain:

Tα = −1

2

∑
i∈cell

εαβγri,βεηzµ(ri+1,η − ri−1,η)σ
(b)
µγ . (B.5)

To further simplify this expression, we note that:∑
i∈cell

ri,βεηzµ(ri+1,η − ri−1,η) = 2Aδβµ. (B.6)

This relation can be verified by testing each dimension

index combination for the pair (β, µ). Using Eq. (B.6)

in Eq. (B.5), we find that

Tα = −Aεαβγσ
(b)
βγ . (B.7)

For symmetric bulk stress tensors σ(b), we thus obtain

T = 0.



11

Substitution of the Comelles et al. force definition

Eq. (13) into Eq. (B.4), adopting index notation, yields

Tα = −AεαβγM
−1
ηµ σ(b)

µγ

∑
i∈cell

ri,βρi,η,

= −AεαβγM
−1
ηµ σ(b)

µγ

∑
i∈cell

ρi,βρi,η,

= −AεαβγMβηM
−1
ηµ σ(b)

µγ ,

= −Aεαβγσ
(b)
βγ . (B.8)

Hence, again, for symmetric σ(b), the overall torque is

zero: T = 0.

Appendix B.2: Self-consistency: the input bulk stress

equals the output Batchelor stress

Here we show that in both schemes, the Batchelor stress

Eq. (15) is identical to the input bulk cell-stress σ(b),

i.e. that: σB

[
F

(T,C)
i

]
= σ(b).

Substituting the Tlili et al. force expression Eq. (4)

into Eq. (15) we immediately obtain:

σB

[
F

(T )
i

]
=

1

2A

∑
i∈cell

ri ⊗ [(ri+1 − ri−1)× ẑ] · σ(b)

= σ(b), (B.9)

where in the second step, we have applied Eq. (B.6).

Similarly, substitution of the Comelles et al. force

definition Eq. (13) into Eq. (15) leads to

σB

[
F

(C)
i

]
= − 1

A

∑
i∈cell

ri ⊗
[
−Aρi ·M−1 · σ(b)

]
=

(∑
i∈cell

ri ⊗ ρi

)
·M−1 · σ(b),

=

(∑
i∈cell

ρi ⊗ ρi

)
·M−1 · σ(b)

= σ(b). (B.10)

with the matrix M defined in Eq. (11).

Appendix C: Capacity of both schemes to

reproduce standard vertex model forces

Appendix C.1: Identity of forces for regular polygonal

cells

Here we consider a regular polygonal cell composed of

N vertices {ri}i=1,...,N with ri = rei, with r > 0, ei =

(cos θi, sin θi), and the vertex angles θi = 2 (i− 1)π/N .

Area and perimeter of such a cell are:

A =
1

2
Nr2 sin

(
2π

N

)
, (C.11)

P = 2Nr sin
( π

N

)
. (C.12)

To simplify the standard vertex model forces Eq. (35),

we use the relations

(ri+1 − ri−1)× ẑ = 2r sin

(
2π

N

)
ei (C.13)

ti,i+1 − ti−1,i = −2 sin
( π

N

)
ei (C.14)

and obtain:

F
(svm)
i =−KA (A−A0) r sin

(
2π

N

)
ei

− 2KP (P − P0) sin
( π

N

)
ei. (C.15)

The Tlili et al. vertex forces in Eq. (38) simplify

since we consider regular hexagons and thus S = I/2.

Inserting Eqs. (C.11), (C.12) and (C.13) in Eq. (36),

we recover indeed an expression identical to the one in

Eq. (C.15).

To compute the Comelles et al. forces, we fist evalu-

ate each component of theM tensor defined in Eq. (11).

We find for N ≥ 3:

Mxx = r2
N∑
i=1

cos2θi =
1

2
r2

N∑
i=1

(1 + cos 2θi) =
N

2
r2,

Myy = r2
N∑
i=1

sin2θi =
1

2
r2

N∑
i=1

(1− cos 2θi) =
N

2
r2,

while

Mxy = r2
N∑
i=1

cos θi sin θi =
1

2
r2

N∑
i=1

sin 2θi = 0,

which leads to M = Nr2/2 I. Therefore, the vertex

forces given by the Comelles et al. scheme are

F
(C)
i =− r sin

(
2π

N

)
ei · σB

[
F

(svm)
i

]
. (C.16)

Injecting the stress expression Eq. (36) into Eq. (C.16),

we find that the Comelles et al. expression is identical

to Eq. (C.15); thus F
(T)
i = F

(C)
i = F

(svm)
i for regular

polygonal cells.
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Fig. 4 Differences between the forces according to both
schemes and the standard vertex model forces for irregular
cell shapes. Vertex positions correspond to a randomly per-
turbed hexagonal cell according to Eq. (C.17). (a) The Tlili et

al. forces F (T)
i (green arrows), the Comelles et al. forces F (C)

i

(blue arrows), and the standard vertex model forces F
(svm)
i

(red arrows) at each cell vertex for an example configuration.
(b) Dependence of the relative force deviations ζT and ζC
defined in Eq. (C.18) on the amplitude η of the deviation of
the cell shape from a regular hexagonal shape. Vertex model
parameters are provided in Table 1.

Appendix C.2: Numerical comparison of forces for

irregular hexagons

We numerically compare the Tlili et al. and Comelles

et al. forces with the standard vertex model forces for

non-regular hexagonal cells. We define the corners of

the hexagonal cell as ri = (xi, yi) with i = 1, 2, · · · , 6
and:

xi = cos
iπ

3
+ ηϑix, yi = sin

iπ

3
+ ηϑiy. (C.17)

Here, ϑix and ϑiy are independent, zero-mean, unit-

variance Gaussian random variables, and η is a param-

eter tuning the deviation of the cell shape from that of
a regular hexagon.

Discrepancies between the two schemes and the stan-

dard vertex model forces are quantified in terms of

ζX =
〈∣∣∣F (X)

i − F
(svm)
i

∣∣∣ / ∣∣∣F (svm)
i

∣∣∣〉 , (C.18)

where X ∈ {T,C}, indicating Tlili and Comelles et al.

schemes, respectively. The average ⟨·⟩ is over all cell

vertices and over 1, 000 realizations for the set of the

Gaussian random variables ϑix and ϑiy.

We find that the deviations of both Tlili et al. and

Comelles et al. forces from the standard vertex model

forces increase with increasing cell shape deviation from

a regular hexagonal shape, see Fig. 4b. However, the

Tlili et al. forces deviated less from the standard vertex

model forces than the Comelles et al. forces did.
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