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In brief

Direct engagement of serotonergic axons
with cilia extending from pyramidal
neurons sets up a serotonin-responsive
signaling pathway that can influence
chromatin architecture.
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SUMMARY

Chemical synapses between axons and dendrites mediate neuronal intercellular communication. Here, we
describe a synapse between axons and primary cilia: the axo-ciliary synapse. Using enhanced focused ion
beam-scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered syn-
apses between brainstem serotonergic axons and the primary cilia of hippocampal CA1 pyramidal neurons.
Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, the 5-hydroxytryptamine re-
ceptor 6 (5-HTR6). Using a cilia-targeted serotonin sensor, we show that opto- and chemogenetic stimulation
of serotonergic axons releases serotonin onto cilia. Ciliary 5-HTR6 stimulation activates a non-canonical
G,q11-RhoA pathway, which modulates nuclear actin and increases histone acetylation and chromatin
accessibility. Ablation of this pathway reduces chromatin accessibility in CA1 pyramidal neurons. As a
signaling apparatus with proximity to the nucleus, axo-ciliary synapses short circuit neurotransmission to
alter the postsynaptic neuron’s epigenetic state.

INTRODUCTION

The primary cilium is a microtubule-based, membrane-bound
compartment that extends a few microns from the basal body
into the extracellular space (Anvarian et al., 2019). Ciliopathies,
genetic disorders caused by mutant proteins related to cilia
structure and function, range from embryonic and perinatal
death to situs inversus, polydactyly, kidney cyst formation,

3390 Cell 785, 3390-3407, September 1, 2022 © 2022 The Author(s). Published by Elsevier Inc.

obesity, and neurological deficits. Many of these phenotypes
can be attributed to abnormal embryonic development, since
the primary cilia house several key components in the Sonic
hedgehog (Shh) pathway (reviewed in Goetz and Ander-
son, 2010).

Less is known about the function of primary cilia in the mature
brain in which most neurons no longer divide or differentiate.
Although cilia are lost in most terminally differentiated adult

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. FIB-SEM reveals axo-ciliary synapses

(A) Two complete cilia (yellow and blue) arise from the basal bodies (mother centrioles: purple; centrosomes: bright green), which are surrounded by Golgi-related
vesicles and Golgi stacks (pink). The axonal varicosity (green) contains a mitochondrion (lavender-gray) and synaptic vesicles (white) and contacts cilia (arrow).
Yellow arrows: portions of the cilia that have identifiable microtubule doublets (2-3 um; colored in saturated yellow and blue, respectively).

(B) Primary cilia have a 9+0 microtubule configuration (2nd from bottom) and become 9+1 more distally (2nd from top). No identifiable microtubule doublets are
observed in the most distal (6-8 um) segments (average diameter 100 nm).

(C) Single EM sections of axo-ciliary synapses. Cilium: yellow, axon: cyan asterisk. Top left: a reconstructed oblique section showing the longitudinal cross-
section of the cilium. In some areas, the cilium and axonal membrane are in direct contact. Occasional vesicles can be seen within 10-20 nm of the axonal
membrane opposing the cilium (red arrow). Bottom left: enhanced contrast at the ciliary membrane next to the axon, resembling classic postsynaptic densities
(green arrow; cilia-to-axon distance ~20 nm). Top and bottom right: examples suggesting vesicular docking/fusion at the axonal plasma membrane apposing the
cilium (red arrows).

(legend continued on next page)
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skeletal and cardiac muscle, they persist in most mature neurons
and glia of the brain (Guemez-Gamboa et al., 2014). Importantly,
primary cilia in the adult brain are enriched in certain G-protein-
coupled receptors (GPCRs) for neurotransmitters, including
dopamine (DA), serotonin (5-HT), and somatostatin (Hilgendorf
et al., 2016). Indeed, removal of the ciliary-localized somato-
statin receptor 3 (SSTR3) results in novel-object-recognition
cognitive impairment without grossly affecting brain develop-
ment (Einstein et al., 2010). To gain insight into the potential func-
tions of neuronal primary cilia in the adult brain, we set out to
determine how ciliary signaling events are activated in vivo.

RESULTS

CA1 neuronal cilia have a preferred orientation
Anti-adenylyl cyclase 3 (ADCY3) antibodies were used to visu-
alize brain neuronal primary cilia in the hippocampus (Bishop
etal., 2007; Figure S1A). The preferred trajectory of hippocampal
pyramidal neuron’s primary cilia is along the basal-apical axis
(Figure S1B), most strikingly in the CA1 region. Similar preferred
orientations of primary cilia were observed in cortical neurons,
which aligned with apical dendrites (Kirschen et al., 2017). We
next asked if CA1 cilia preferentially project from the deep hippo-
campus (basal side of pyramidal neurons) to the superficial hip-
pocampus (apical side of pyramidal neurons) to examine a
possible morphogen gradient along the basal-apical axis. The
base of the cilium was labeled with an antibody against the ciliary
rootlet protein, rootletin (CROCC, Yang et al., 2002; Figure S1C).
Surprisingly, cilia trajectories were largely bidirectional, with
about half of cilia projecting to the more superficial stratum radi-
atum and the other half projecting to the deeper stratum oriens
(Figure S1D). We hypothesized that cilia trajectory is influenced
by special contacts between cilia and nearby structures in the
neuropil. To test this hypothesis in the mouse brain, we em-
ployed volume electron microscopy techniques to visualize
neuronal primary cilia and their immediate surroundings.

FIB-SEM reveals axo-ciliary synapses

Focused ion beam-scanning electron microscopy (FIB-SEM)
was used to reconstruct the microenvironment of CA1 neuronal
primary cilia. In a pilot dataset (6 x 6 x 20 nm® voxel size), we
reliably followed two CA1 cilia in a 20 x 20 x 15 um® volume
(Figure 1A). These cilia have variable numbers of microtubule
doublets along their length (Figure 1B). The most tantalizing
observation was that axonal varicosities often abutted CA1
pyramidal neuronal cilia. In Figure 1A, two cilia meet at an axonal
bouton containing synaptic vesicles and a mitochondrion, remi-
niscent of classical presynaptic axonal terminals. This raised the
question of whether pyramidal neuronal cilia are forming special-
ized contacts with axons and whether these are specialized sites
for neurotransmission. We collected 8 FIB-SEM datasets of
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mature mouse hippocampus at 5.5 x 5.5 x 15 nm® voxel size
(30 x 20-30 x 20-30-um?® volumes). We found that most cilia
have contact sites with axonal processes (80%, 25/31).

Ciliogenesis of pyramidal neurons starts around birth and con-
tinues to elongate, until finally shortening at 8-12 weeks (Arellano
etal., 2012). Also, since developing brains exhibit more extracel-
lular space than mature brains (Lehmenkuhler et al., 1993), we
hypothesized that axo-ciliary synapses might be more evident
in younger brains. Indeed, axo-ciliary synapses are evident in
FIB-SEM images of P14 mouse brain (Figures S2A and S2B,
83%, 10/12 cilia). In some cases, pyramidal neuronal cilia and
axons appear to travel together (Figure S2A). As in adults, mito-
chondria and the endoplasmic reticulum (with ER-plasma mem-
brane, or ER-PM, junctions) are in axonal processes contacting
primary cilia, resembling classic presynaptic boutons (Wu et al.,
2017; Figure S2B).

Next, we examined whether fixation artifacts or simply random
coincidence were responsible for close contacts. High-pressure
freezing-freeze substitution (HPF-FS) of live samples better pre-
serves ultrastructure and extracellular space (Korogod et al.,
2015). However, brain samples larger than 10 um form significant
numbers of ice crystals (Korogod et al., 2015). A hybrid protocol
of chemical perfusion fixation followed by HPF-FS (Sosinsky
et al., 2008) did not preserve the extracellular space and had
insufficient contrast for FIB-SEM (not shown). To better preserve
ultrastructure and the extracellular space while providing high
contrast for FIB-SEM imaging, we optimized perfusion fixation
and used imidazole and 3-amino,1,2,4 triazole in osmium-based
freeze-substitution staining (Figures S2C and S2D; STAR
Methods). We collected two 8-nm isotropic FIB-SEM datasets
of adult mouse CA1 samples prepared with the revised hybrid
protocol using enhanced FIB-SEM (35 x 35 x 40 pm® and
50 x 50 x 44 ums; Xu et al., 2020). In these two datasets, 18/
27 neuronal cilia (67%, Figures 1C-1E; Video S1) contained pu-
tative axo-ciliary synapses. 20-40-nm clefts between the axon
and the cilium were flanked by areas of immediate membrane
apposition between axons and cilia (Figure 1C). In axonal vari-
cosities, vesicles can be seen within 20 nm of the axonal plasma
membrane and occasionally appear to be docking or fusing with
the plasma membrane, suggestive of vesicular release (Fig-
ure 1C, red arrows). Axonal ER-PM junctions and mitochondria
in axonal varicosities were again observed (Figures 1D and 1E),
along with enhanced contrast at ciliary membranes (Figure 1C,
green arrow). These features resemble classical chemical
synapses.

Axo-ciliary synapses are serotonergic

Since the axons that form axo-ciliary synapses originate from
neurons outside the FIB-SEM datasets, we next determined
the identity of these axons. 5-hydroxytryptamine receptor 6
(5-HTR®6; gene, Htr6), a serotoninergic GPCR, is predominantly

(D) An axonal process (cyan) gives rise to a varicosity (white box) that makes synaptic contact with a pyramidal neuron primary cilium (yellow; white box magnified

at right).

(E) A pyramidal neuronal primary cilium (yellow) originates from the left and contacts an axonal varicosity (blue). Area (white arrow) magnified in the right panel.
Synaptic vesicles are rendered as 40 nm white spheres to facilitate visualization. Note the axonal ensheathment of the cilium and the axonal vesicle’s proximity to

the primary cilium’s membrane.

(D and E) Synaptic vesicles: white, endoplasmic reticulum: red, and mitochondrion: green. From 3-month-old C57BL/6J mice.
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located in neuronal primary cilia (Brodsky et al., 2017). First, we
characterized the location of 5-HTR6 in CA1 pyramidal neurons
using an endogenous Htr6-EGFP (enhanced green fluorescent
protein) knockin mouse line (Nadim et al., 2016). As the expres-
sion of endogenous Htr6 in CA1 pyramidal neurons is low, we
amplified EGFP signals with an anti-GFP antibody and a second-
ary antibody conjugated to a fluorescent dye that has a relatively
long fluorescence lifetime (CF633, ~4 ns fluorescence lifetime in
phosphate-buffered saline [PBS] and ~2.3 ns in glycerol-based
mounting medium as antibody conjugates). This enabled us to
use fluorescence lifetimes (FLIM) to separate the 5-HTR6 signals
from autofluorescence species (centered around 0.3 ns, Fig-
ure S3A; see also Jones et al., 2008), greatly improving the
signal-to-background ratio. Co-labeling CA1 pyramidal neuronal
cilia with ADCY3 antibody revealed that 94% of the 5-HTR6
signal from the entire cell was ciliary (STAR Methods; Figure 2A).
The remaining 6% exists in small puncta, which may be recep-
tors in recycling endosomes or non-specific antibody staining
background (Figure S3A). Processing the data with adaptive de-
convolution (resolution 120 nm lateral, 200 nm axial) showed that
5-HTRG6 receptors are not evenly distributed along the length of
cilia but are enriched in segments that are distinct from ADCY3
(Figure 2B).

We labeled pyramidal neuronal cilia with ADCY3 antibody and
serotonergic axons with anti-serotonin transporter (SERT,
SLC6A4) antibody. This showed that 35% (426/1,209) of cilia
are in close apposition to serotonergic axons (Figure 2C; STAR
Methods), accounting for ~50% of the axo-ciliary synapses de-
tected in FIB-SEM. In addition, all axonal sites apposing cilia
were synaptophysin positive, suggesting that these are seroto-
nin-release sites (Figures 2C and S3B; Belmer et al., 2017). To
confirm that the SERT+ synaptophysin puncta arise from seroto-
nergic axons and not from other nearby axons, we co-injected a
Cre-dependent synaptophysin-fused EGFP adeno-associated
virus (AAV) and tryptophan hydroxylase 2 promoter (Benzekh-
roufa et al., 2009)-driven-Cre (Tph2-Cre) AAV into B8 nuclei of
the median raphe, which project to the hippocampus (Muzerelle
et al., 2016). Neuronal cilia directly apposed synaptophysin-
EGFP puncta or serotonergic presynaptic terminals (Figure 2D).
Next, we directly visualized the endogenous 5-HTR6 and seroto-
nergic axons with confocal microscopy with adaptive deconvo-
lution to find that 5-HTR6 was enriched in the subregions of cilia
apposing serotonergic axons (Figure 2E).

Since axon-cilia apposition distance could be subject to anti-
body accessibility and optical chromatic aberrations, we exam-
ined the distribution of the shortest distance to the central axes
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of serotonergic axons (skeletonized axons) among all cilia cen-
tral axes (skeletonized cilia). The skewed distribution toward
short distances (Figure S3C) suggests that ciliary trajectories
are biased toward serotonergic axons. Since ligand stimulation
is known to result in ciliary remodeling, including ciliary ectocy-
tosis, decapitation, withdrawal, or shedding (Mirvis et al., 2019;
Nager et al., 2017), a single snapshot in time may underestimate
the frequency of axo-ciliary synapses. Finally, although we found
that axon-contacting cilia are slightly longer than non-contacting
cilia (Figure S3D; median length 7.0 versus 6.4 um), we failed to
detect any significant correlation between cilia length and the
shortest distance to serotonergic axons (Figure S3C), suggest-
ing that simply increasing ciliary length would not result in an
increased likelihood of contact with serotonergic axons.

Activation of serotonergic axons releases serotonin
onto cilia
To summarize to this point, CA1 pyramidal neuronal cilia receive
serotonergic innervation from the raphe nuclei, and ultrastruc-
tural analyses provide anatomical evidence of axo-ciliary
synapses. However, does activation of serotonergic axons
release serotonin onto cilia? To answer this question, we engi-
neered a ciliary-targeted serotonin sensor based on the
GPCR-activation-based (GRAB) strategy using the 5-HTR6 re-
ceptor as the scaffold (GRAB-HTR6-PM; Figures 3A and 3B;
Feng et al., 2019). We first expressed this sensor in HEK293T
cells, which trafficked well to membranes with an ~150% fluo-
rescence increase in response to saturating [5-HT] (Figures 3C
and 3D; ton = 0.19 s, 7os = 8.46 s, Figure 3F). The sensor’s
ECso to serotonin was 84 nM (Figure 3D; human HTR6 receptor
Kp = 37 nM; Monsma et al., 1993), with negligible responses to
other common neurotransmitters or tryptophan (Figure 3E) and
thus could detect ciliary serotonin changes at physiologically
relevant levels. To target the sensor to cilia, we removed the
exogenous IgK leader sequence in GRAB-HTR6-PM and added
a C-terminal HaloTag to better visualize cilia with bright Janelia
Fluor dyes (Figure 3G; Grimm et al., 2015; Zheng et al., 2019).
This resulted in robust cilia targeting in immortalized human
retinal pigment epithelial cells (RPE-1 cells) and neurons, as
when HTR®6 is expressed (Figure 3G and 4). The ECsq for the
cilia-targeted HTR6-GRAB-cilia sensor was 28 nM, with up to
40% fluorescence increase per cilium in response to saturating
doses of 5-HT (Figure 3H).

We first attempted to image ciliary serotonin dynamics in
adult acute hippocampal slices using an AAV sensor construct
injected into mice. However, signal-to-noise ratios in deeper

Figure 2. 5-HTR6-primary cilia are in contact with serotonergic axonal varicosities
(A) HTR® (labeled by CF633, green in merged panel) is highly enriched in CA1 neuronal primary cilia (ADCY3, magenta in the merged panel: 20 um MIP).
(B) Magnified images from (A). 5-HTR6s are not evenly distributed along the length of cilia and can be enriched at areas with low ADCY3 labeling (arrow).

(C) Left panel: cilia (magenta) co-labeled with serotonergic axons (green). 20-um maximum intensity projection (MIP). Middle panel: cilia in the left panel color
coded by the shortest distance to a serotonergic axon. Right panel: cilia from left panel color coded with the shortest distance to a serotonergic axon-associated
synaptophysin punctum.

(D) Floxed synaptophysin-EGFP driven by Tph2-Cre showed ADCY3-labeled cilia (magenta in the merged panel) in contact with serotonergic presynaptic ter-
minals (amplified by anti-GFP and Alexa 488, green in the merged panel).

(E) 5-HTR®6 (green in the merged panel) are enriched on the cilia at the axonal contact sites (SERT, cyan in the merged panel). Two cilia are in contact with a single
serotonergic axonal varicosity. ADCY3 (magenta in the merged panel) can extend beyond the contact site that has few 5-HTR6 (arrow).

(A), (B), and (E) are deconvolved confocal images with photon counting detection (Leica). (C) and (D) are Airyscan images (Zeiss). Data from 3- to 4-month-old
male C57BL/6J mice.
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Figure 3. Engineering a 5-HTR6 receptor cilia-targeted sensor

(A) A circularly permutated EGFP (cpEGFP) was inserted into the 3rd intracytoplasmic loop of 5-HTR6. Upon ligand binding, a conformational change of the re-
ceptor increases EGFP fluorescence.

(B) Schematic diagrams of GRAB-HTR6-PM (top) and GRAB-HTR6-cilia (bottom).

(C) Representative images show the expression of the GRAB-HTR6-PM sensor (left, no 5-HT; middle, 10 uM 5-HT) and the response (right).
(D) Dose-response curve of the GRAB-HTR6-PM sensor.

(E) Summary of AF/Fo measured in GRAB-HTR6-PM-expressing HEK293T cells in response to 10 uM 5-HT, 5-HT with 5-HTR6 antagonist SB 258585 (SB258), or
SB 271046 (SB271). ACh, acetylcholine; Ado, adenosine; ATP, adenosine 5'-triphosphate; DA, dopamine; GABA, gamma-aminobutyric acid; Glu, glutamate; Gly,

(legend continued on next page)
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areas (>20 pum) were inadequate. Fortunately, hippocampal
neuronal primary cilia readily form contacts with serotonergic
axons when we co-cultured hippocampal neurons and seroto-
nergic neurons from the raphe nuclei (Figure S4). We expressed
the cilia-serotonin sensor GRAB-HTRG6-cilia and ChrimsonR, a
red-shifted channelrhodopsin (Klapoetke et al., 2014) in hippo-
campal and serotonergic neurons, respectively. Using Airyscan
with 1 Hz photostimulation, we detected serotonin release onto
cilia that were in synaptic contact with serotonergic axons
(Figures 4A and 4D), an increase that was significantly less in
non-channelrhodopsin controls (Figures 4B and 4D). Also,
measured serotonin responses were negligible on cilia distant
from serotonergic axons (Figures 4C and 4D).

To increase stimulation efficiency, we replaced ChrimsonR in
serotonergic neurons with an excitatory muscarinic type 3 re-
ceptor DREADD (hM3Dq) (Armbruster et al., 2007; Figure 4E).
Application of 10 nM hM3Dq DREADD agonist deschlorocloza-
pine (DCZ, Nagai et al., 2020) reliably increased ciliary seroto-
nin levels with peak AF/F up to 0.3 (Figures 4E and 4H). This
increase was diminished in non-hM3Dq controls (Figures 4F
and 4H). As in the channelrhodopsin experiments, serotonin
release was attenuated in cilia distant from serotonergic axons
(Figures 4G and 4H). Together, these data suggest that
firing serotonergic axons release serotonin onto hippocampal
neuronal cilia.

Serotonin stimulation activates a neuronal ciliary HTR6-
G,q/11-Trio-RhoA pathway

Plasma-membrane-targeted 5-HTR6 is a G,s-coupled GPCR,
activating adenylyl cyclase and increasing cAMP in dividing
HEK cells (Boess et al., 1997). However, 5-HTR6 activation does
not increase ciliary cAMP when it is localized in cultured cell pri-
mary cilia (Jiang et al., 2019). GPCR-G protein coupling differs in
some ciliated versus non-ciliated cells (Masyuk et al., 2013), and
the same GPCR might be coupled to different Ge-subunits on
the plasma membrane versus the cilia (Hilgendorf et al., 2019).
The G,1¢-subunit (GNA11) was previously identified as a binding
partner of the endogenous 5-HTRG6 in the brain through affinity pu-
rification and mass spectrometry (Nadim et al., 2016). G,q/11 can
also activate the Trio-RhoA pathway in C. elegans and in G,q/11-
constitutively active mutant uveal melanoma cells (Feng et al.,
2014; Williams et al., 2007). Trio is identified in the HTR6-ciliome
(Kohli et al., 2017) and is detected in cilia in HTR6-HaloTag RPE-
1 cells and in WT-cultured hippocampal neurons (Figure S5A).
Indeed, serotonin activates RhoA in HTR6-overexpressing HEK
cellsandin neurons in which the receptor is distributed throughout
the plasma membrane and neuronal processes (Rahman et al.,
2017), raising the question of whether HTR6 may signal through
the G,q/11-Trio-RhoA pathway.

Cell

To measure ciliary RhoA activity, we targeted a FRET-based
RhoA sensor (Bindels et al., 2017) to the cilia by fusing it to
HTR6 and expressed it in RPE-1 cells (Figure S5C). To better
recapitulate the serotonin release at the axo-ciliary synapses,
we synthesized a photoactivatable caged serotonin molecule
that can be cleaved by 405-nm laser light (Figure S5B). Caged-se-
rotonin stimulation (0.5 Hz) immediately adjacent to the cilium
elicited a pulsatile increase in RhoA activity, returning to near
baseline upon cessation (Figures S5D and S5E). However, un-
caging suffered from a high failure rate, and the FRET ratio could
be significantly affected by just a few pixels due to the small size of
cilium. To minimize the effect from donor bleaching and better ac-
count for the difference in sensor levels, we used FLIM measure-
ments with FRET (FLIM/FRET). As cilia often span multiple
Z-levels, we first tested whether FLIM with optical sectioning
across the z axis can be achieved using a fast FLIM system equip-
ped with a pulsed white light laser (Harkes et al., 2021). We were
able to reconstruct whole HEK293A cells with HTR6-RhoA sensor
expression through FLIM imaging (Figure 5A). In this measure-
ment, we expect FRET to decrease the donor lifetime. The
Arl13b-RhoA sensor was functional in cilia since stimulation by
a RhoA activator (Flatau et al., 1997; Schmidt et al., 1997)
decreased the fluorescence lifetime of the donor significantly
(Figures 5B and 5C). HTR6-RhoA cilia have higher RhoA activity
than Arl13b-RhoA cilia, suggesting that overexpression of HTR6
results in constitutive activity (Figures 5D and 5E), as commonly
seen in GPCR signaling (Seifert and Wenzel-Seifert, 2002).

Since cultured hippocampal neurons have ciliary 5-HTR®6, sero-
tonin-dependent RhoA activity was then tested in neuronal cilia
(Figure 5F). We used a low concentration of 5-HT (10 nM; rat re-
ceptor Kp ~ 15 nM; Boess et al., 1997) to minimize receptor
desensitization and better recapitulate the pulsed nature of sero-
tonin release by axonal firing. 10 nM 5-HT stimulation reliably
increased RhoA activity in neuronal cilia in 5-15 min (Figures 5G
and 5H). Adding the 5-HTR6 blocker SB258585 (100 nM, Hirst
et al., 2000) or a G,q/11 inhibitor YM-254890 (1 pM; Nishimura
et al., 2010; Takasaki et al., 2004) 5 min before 10-nM 5HT appli-
cation largely abolished this effect (Figure 5H). In addition, G,q/11
knockout (KO) HEK293A cells had significantly lower ciliary
RhoA activity (Figures 5D and 5E). Finally, pre-treatment with
YM-254890 abolished ciliary RhoA spikes in RPE-1 cells
(Figures S5D and S5E). Together, these data suggest that seroto-
nin stimulation results in G,q/11-dependent RhoA activationin cilia.

Next, we tested ciliary RhoA activity upon chemogenetic acti-
vation of serotonergic axons in the hippocampal neuron-raphe
neuron co-culture system. We expressed the Arl13b-RhoA
sensor and hM3Dgq in hippocampal neurons and raphe neurons,
respectively. Application of DREADD agonist DCZ (10 nM)
increased RhoA activity in cilia that apposed serotonergic axons

glycine; HA, histamine; MT, melatonin; NE, norepinephrine; OA, octopamine; TA, tyramine; Trp, tryptophan. AF/Fy was normalized to the averaged peak response

measured in 5-HT. Two-tailed Student’s t tests, **p < 0.01.

(F) Kinetics of the GRAB-HTR6-PM sensor. Left: a local perfusion system with high-speed line scanning measuring the fluorescence response. Middle: traces of
GRAB-HTR6-PM fluorescence in response to 100 uM 5-HT (top) or 100 uM SB 271046 in the continued presence of 1 uM 5-HT (bottom). Right: on- and off-kinetic

group data.

(G) RPE-1 cells stably expressing a Tet-inducible HTR6-GRAB-cilia-HaloTag. 100-nM application results in increased GFP fluorescence. HaloTag: JF552 was

used to reliably identify cilia.

(H) Titration curve of the sensor. n = 3 wells, 300-500 cells/well for (D) and (E).
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Figure 4. Serotonergic axon activation releases serotonin onto cilia

(A-C) Top: a cilium expressing the HTR6-GRAB-cilia sensor in contact with a ChrimsonR-tdTomato-serotonergic axon (ChR, A), in contact with a SNAP:JF552-
labeled serotonergic axon (non-ChR control, B), and a cilium distant from a ChrimsonR-tdTomato-serotonergic axon (non-contact, C). Bottom: color maps
showing AF/F after 25 pulses at 1 Hz optogenetic stimulation, corresponding to the 3 examples in the top row. Arrow in (A) shows the site of contact.

(D) Cumming estimation plots of ciliary serotonin levels with optogenetic stimulation of serotonergic axons. ChR mean peak AF/F = 0.15. Mean difference
between ChR and non-ChR by estimation statistics = —0.10, 95% Cl = —0.14 to —0.70, permutation test p value = 0.0002, two-tailed Mann-Whitney test p value =
0.0009. Mean difference between contact and non-contact by estimation statistics = —0.09, 95% Cl = —0.14 to —0.05, permutation test p value = 0.005, two-
tailed Mann-Whitney test p value = 0.008.

(E-G) Top: a cilium expressing the HTR6-GRAB-cilia sensor in contact with an hM3Dg-mCherry-serotonergic axon (E), in contact with a SNAP:JF552-labeled
serotonergic axon (nonchemogenetic control, F), and a cilium distant from a hM3Dg-mCherry-serotonergic axon (G). Middle: color maps showing AF/F during

(legend continued on next page)

Cell 185, 3390-3407, September 1, 2022 3397




¢ CellPress

OPEN ACCESS

within 5 min (Figures 51-5K). In some cases, we observed ciliary
retraction or receptor retrieval from the cilia. In contrast, there
was no detectable increase in RhoA activity in non-contacting
cilia (Figure 5K). This suggests that the ciliary RhoA activation
is under spatial and temporal control of the activity of seroto-
nergic axons.

5-HTRG6 signaling modulates nuclear actin and histone
acetylation

RhoA activation can phosphorylate adducin through Rho-associ-
ated kinase and increase its affinity toward F-actin (Fukata et al.,
1999). Actin-related lattices in neuronal cell somata revealed by
dSTORM imaging assemble on adducin (Han et al., 2017), resem-
bling the classic lattices seen in red blood cells (Bennett and Gilli-
gan, 1993). Consistent with Han et al. (2017), we detected adducin
plasma membrane labeling in neuronal cell somata (Figure S6A).
When we treated cultured hippocampal neurons with the
5-HTR6 antagonist SB-742457 (Upton et al., 2008), we did not
see significant changes in plasma membrane adducin although
nuclear adducin was enriched in a small subset of neurons (Fig-
ure S6B). This change is reminiscent of nuclear translocation of
adducin reported in cultured epithelial cells (Chen et al., 2011;
Liu et al., 2017). We next examined adducin staining patterns in
the native hippocampal environment. Surprisingly, we did not
detect plasma membrane adducin staining in the neuronal cell
somata in the hippocampus, but pyramidal neurons exhibited var-
iable numbers of clear nuclear adducin puncta (Figure S6C). In
Htr6 knockout (KO) mouse pyramidal neurons, the density of nu-
clear adducin puncta increased significantly (Figures S6C and
S6D), consistent with our 5-HTR6 antagonist experiments. As
Htr6 transcripts in the hippocampus are not detectable until
~P14 (Thompson et al., 2014), this altered pattern most likely oc-
curs in the late postnatal period or early adulthood. This suggests
that ciliary 5-HTR6 signaling is linked to nuclear actin in post-
mitotic, post-migration pyramidal neurons.

Alterations in nuclear actin modify global chromatin (Plessner
and Grosse, 2019; Zhao et al., 1998). Nuclear actin directly binds
and modulates the activity of histone acetyltransferase KAT14
(cysteine-rich protein 2-binding protein or CSR2B; Viita et al.,
2019), a subunit of the histone-modifying human Ada-two-A-
containing complex (hATAC). CSR2B significantly acetylates
histone H4 lysine 5 (H4K5) in vitro and in cells and is modulated
by actin monomers (Viita et al., 2019). Therefore, we hypothe-
sized that stimulation of the 5-HTR6 receptor may modulate
H4K5 acetylation (H4K5ac) in the hippocampus. Importantly,
Park et al. (2013) found H4K5ac to be ubiquitous across the
genome and was associated with fear memory. We calculated
the H4K5ac to Hoechst ratio on a per voxel basis on Airyscan
confocal stacks collected on fixed mouse brain sections, with
~10° voxels after downsampling to isotropic voxels per stack
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(Figure 6A; STAR Methods). 30 min after injection of the
5-HTR6 agonist WAY-181187 (3 mg/kg, Cole et al., 2007), there
was a significant increase in the H4K5ac/Hoechst ratio (Fig-
ure 6C). WAY181187 given to Htr6 KO mice evoked a slight
decrease in H4K5ac (Figure 6F), suggesting that the observed in-
crease in H4K5ac is predominantly through 5-HTR6. To further
determine whether H4K5ac changes were indeed ciliary RhoA-
dependent, we expressed a cilia-targeted TrioRhoGEF inhibitor
peptide (Bouquier et al., 2009) under a tetracycline-inducible
promoter. In doxycycline-treated adult mice, nuclei were irreg-
ular and small with a loss of H4K5ac (Figure 6E), suggesting
that ciliary RhoA activity modulates H4K5ac. These changes
were also recapitulated using a pan-H4 acetylation antibody
(Figure S7). Interestingly, we did not see a significant change in
histone H3 lysine 27 acetylation levels (H3K27ac, associated
with neuronal activity in the classic Pavlovian contextual fear
condition; Marco et al., 2020) with WAY181187 agonist injection
(Figures 6B and 6D). This suggests that axo-ciliary signaling may
trigger epigenetic programming that is distinct from that of
classic neuronal signaling alone.

5-HTR6 signaling modulates chromatin accessibility
Histone acetylation is associated with increased chromatin
accessibility (Marco et al., 2020). ATAC-see is a technique that
utilizes a hyperactive transposase mutant with fluorescently
labeled oligonucleotides (Chen et al., 2016) to label accessible
chromatin in plated monolayers of cells. To apply the technique
to tissues, we incorporated the modifications in Omni-ATAC-seq
(Corces et al., 2017) and molecular crowding reagents (Picelli
et al., 2014) to significantly increase tagmentation efficiency.
We were able to achieve reliable ATAC-see labeling in fixed
mouse brain sections (Figure 7A). Injection of WAY 181187 signif-
icantly increased chromatin accessibility as demonstrated by the
voxel-based ATAC-to-Hoechst ratio (Figure 7B). Inhibition of
ciliary RhoA activity decreased chromatin accessibility (Fig-
ure 7C). Chromatin accessibility was also reduced in Htr6 KO
mice (Figure 7D), which may underpin transcription and behav-
ioral changes seen in these mice (Sun et al., 2021). Together,
the data suggest that ciliary 5-HTRG6 signaling controls chromatin
remodeling states via a G,q/11-Trio-RhoA pathway.

DISCUSSION

We presented evidence of synapses between serotonergic axons
arising from the raphe nuclei and 5-HTR6 serotonin receptor-ex-
pressing primary cilia of CA1 pyramidal neurons. We identified
axo-ciliary synapse structures and ciliary 5-HTR6 receptors adja-
cent to serotonergic axonal varicosities containing vesicles and
other markers of synapses. We then demonstrated serotonin
release onto cilia upon opto- and chemogenetic stimulation of

chemogenetic stimulation by DCZ, corresponding to the 3 examples in the top row. Bottom: individual and averaged traces, corresponding to the 3 examples in

the top row. Vertical gray area denotes ligand application.

(H) Cumming estimation plots of ciliary serotonin levels with chemogenetic stimulation of serotonergic axons. Average AF/F across all time points and sam-
ples = 0.08 in hM3Dg. Mean difference between hM3Dq and non-hM3Dq by estimation statistics = —0.06, 95% Cl = —0.10 to —0.03, permutation test p value =
0.0076, two-tailed Mann-Whitney test p value = 0.0079. Mean difference between contact and non-contact by estimation statistics = —0.07, 95% Cl = —0.11 to
—0.04, permutation test p value = 0.0006, two-tailed Mann-Whitney test p value = 0.014.

(D and H) Upper: raw data; lower: bootstrap sampling distributions (dot: mean difference; vertical error bars: 95% ClI).
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Figure 5. Serotonin stimulation of ciliary HTR6 activates RhoA in cilia

(A) HEK293A cells stably expressing the HTR6-RhoA FRET/FLIM sensor. A single cilium arises from the cell soma.

(B and C) Cilia-targeted Arl13b-RhoA sensor responds to RhoA activation. Mean difference by estimation statistics = —60 ps, 95% Cl = —100 to —24 ps, per-
mutation test p value = 0, two-tailed Mann-Whitney test p value = 0.002.

(D and E) GNAQ/11 KO and HTR6-overexpression decreases and increases RhoA activity, respectively. Mean difference between WT and GNAQ/11 KO by
estimation statistics = 142 ps, 95% Cl = 117-169 ps, permutation test p value = 0, Mann-Whitney test p value < 0.00001. Mean difference between Arl13b and
HTR6-cilia by estimation statistics = —125 ps, 95% Cl = —162 to —93 ps, permutation test p value = 0, Mann-Whitney test p value < 0.00001.

(legend continued on next page)
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serotonergic axons. Examining downstream signal transduction in
cilia, we provided evidence that ciliary 5-HTR6 can activate the
non-canonical G,q/11-Trio-RhoA pathway within primary cilia.
Finally, we showed that alterations of this pathway in mature neu-
rons change nuclear actin and H4K5ac, thus modulating hippo-
campal function by altering chromatin accessibility and transcrip-
tional pathways. How these alterations affect the learning and
memory deficits seen in Htr6 KO mice will require a detailed char-
acterization of chromatin accessibility over time with behavioral
perturbations and a better understanding of genes and proteins
affecting learning and memory circuitry.

The primary finding of the present work is that axons release
neurotransmitters onto axo-ciliary synapses and evoke circum-
scribed signaling to the nucleus that is distinct from signaling at
the plasma membrane. Free serotonin levels in the murine hippo-
campus are ~300 fM (Schechter et al., 2008), while the Ky, for rat
5-HTR6 binding to serotonin is ~15 nM (Boess et al., 1997).
Thus, as is common in neurotransmission, the axo-ciliary synap-
ses localize and concentrate serotonin to achieve a specific func-
tion. But unlike traditional synapses, the axo-ciliary synapse may
be more analogous to immunological synapses, which feature
docking of the mother centriole to the lymphocyte target cell inter-
face while sharing many molecular machineries with the primary
cilia (Douanne et al., 2021). Further studies looking more broadly
across the central nervous system and with other neurotransmit-
ters will be needed to determine the generality of axo-ciliary
synapses.

Not all cilia we examined form serotonergic axo-ciliary synap-
ses. The fact that the portion of cilia with axo-ciliary synapses de-
tected in FIB-SEM (~67%-80%) is greater than those in contact
with serotonergic axons (35%) suggests that some CA1 pyrami-
dal neuronal cilia receive different axonal inputs. Indeed, our pre-
liminary data indicated that a different subset of neuronal ciliais in
apposition with catecholaminergic axons, which would secrete
epinephrine, norepinephrine (NE), or dopamine (DA). This is
intriguing since neuronal cilia can also be enriched in other
GPCRs, such as the DA receptor 1 (DRD1, Domire et al., 2011),
potentially underlying a distinct functional network.

The raphe serotonergic system is much more active in wake
states than during sleep (Oikonomou et al., 2019; Wan et al,,
2021). HTR6 transcript levels in the brain oscillate (Baldi et al.,
2021). A recent preprint suggested that cilia are essential for the
rhythmicity of a subset of neurons in the suprachiasmatic nuclei
(Tu et al., 2022). We do not know if 5-HTR6 axo-ciliary synapses
oscillate and may be involved in chromatin remodeling during
sleep/wake cycles (Hor et al., 2019), which may impact learning

Cell

and memory (Rasch and Born, 2013). A recent genome-wide asso-
ciation study identified HTR6 as one of the 15 genes indicated in
bipolar disorders (Mullins et al., 2021). Further studies of seroto-
nergic axo-ciliary synapses under physiological contexts may pro-
vide insights into neuropsychiatric disorders.

Finally, and most importantly, the ciliary 5-HTR6-Trio-RhoA
signaling axis limits serotonin-RhoA signaling to the cilium and
exploits its specialized link to the nucleus, much as the Shh
pathway regulating Gli transcription factors is limited by com-
partmentalized G,¢/PKA signaling. This rationalizes the persis-
tence of primary cilia in non-dividing mature cells such as neu-
rons and can explain how alterations in ciliary signaling can
impact structures such as excitatory synapses on dendrites
that can be hundreds of microns distant (Tereshko et al.,
2021). Interestingly, in other cells such as pre-adipocytes,
omega-3 fatty acids were shown to activate primary ciliary
FFAR4 receptors to induce CTCF-dependent chromatin
changes (Hilgendorf et al., 2019). These findings raise the tanta-
lizing possibility that primary cilia act as an epigenetic regulator
to stabilize transcriptional programming in response to environ-
mental cues. In this “cilia as the nuclear antenna” model, cilia
provide a protected compartment for shorter, and more direct,
encoding of receptor binding to regulate nuclear transcription.

Limitations of the study

Due to the limited brightness/sensitivity of our cilia-targeted sero-
tonin sensor and the small size of cilia (few sensors /cilium), we
were not able to demonstrate serotonin release onto cilia in acute
brain slices. Future improvement of the sensor can address this
issue. We do not know what initiates the formation and mainte-
nance of axo-ciliary synapses. Preliminary data with light micro-
scopy suggest that serotonergic axons and neuronal primary cilia
still form contacts in Htr6 KO mice, with cilia being 0.5 um shorter
but otherwise well formed. Presumably, adhesion molecules are
involved in the establishment of axon-cilium contacts. The
5-HTREG6 cilia proteome reveals several adhesion molecules such
as L1CAM (Kohli et al., 2017), which is present in the postsynaptic
sites of inhibitory synapses (Tai et al., 2019). Further studies on the
molecular composition of axo-ciliary synapses may answer these
questions and provide molecular handles to perturb these synap-
ses, which could help address some of the limitations of this study.
Our work focuses on 5-HTR6 receptor signaling. As a single cilium
can have multiple receptors, it will be important to determine how
other receptors employ intraciliary signaling molecules, such as
calcium and cAMP, to affect their functions. Notably, cAMP/PKA
has been shown to decrease RhoA activity by phosphorylation

(F-H) 10 nM 5HT stimulation of neuronal cilia increases ciliary RhoA activity. Mean difference at 15 min by estimation statistics = —63 ps, 95% Cl = —106 to —41
ps, permutation test p value = 0, Wilcoxon p value = 0.00001. This effect is blocked by either HTR6 blocker SB258585 (100 nM, mean difference at 15 min by
estimation statistics = 2 ps, 95% Cl = —9-22 ps, permutation test p value = 0.82, Wilcoxon p value = 1) or the G,q/11 blocker YM-254890 (1 uM, mean difference at
15 min by estimation statistics = 8 ps, 95% Cl = —3-24 ps, permutation test p value = 0.3, Wilcoxon p value = 0.22). Buffer control showed minimal change (mean
difference at 15 min by estimation statistics = 8 ps, 95% Cl = —17-59 ps, permutation test p value = 0.74, Wilcoxon p value = 1).

(I-K) Chemogenetic stimulation of serotonergic axons increases ciliary RhoA activity in contacting cilia (mean difference at 10 min by estimation statistics = —65
ps, 95% Cl = —106 to —41 ps, permutation test p value = 0, Wilcoxon rank sum test p value < 0.0001) but not in non-contacting cilia (mean difference at 10 min by
estimation statistics = —1 ps, 95% Cl = —15-15 ps, permutation test p value = 0.82, Wilcoxon rank sum test p value = 0.81). Arrow in (I) points to area magnified in
the inset, which is shown at an oblique angle to demonstrate the close apposition of axon and cilium at the synapse. Contrast is enhanced in the 10 min time point

in ().

(C, E, H, and K) Gardner-Altman (C) and Cumming estimation plot (E, H, and K). Upper, raw data; lower, bootstrap sampling distributions (dot: mean difference;

vertical error bars: 95% Cl).
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of RhoA or RhoGDla. (Oishi et al., 2012; Qiao et al., 2003). In addi-
tion, EPAC, another downstream effector of CAMP, has also been
reported to decrease RhoA activity (Yu et al., 2017; Zieba et al.,
2011). Careful measurements using cilia-targeted sensors can
help determine the integrated output from a single cilium.
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Figure 6. 5-HTR6 signaling modulates H4K5 acetylation

(A and B) Ratiometric measurements of H4K5ac (A) and H3K27ac levels in fixed mouse brain sections (B). Monoclonal antibodies against H4K5ac and H3K27ac
were used to detect histone lysine acetylation (single Airyscan optical sections; green, merged panel). The fluorescent intensity is divided by the Hoechst intensity
levels (magenta in the merged panel) to obtain the ratio (rightmost panel, downsampled).

(C) 5-HTR6 agonist stimulation increases H4K5ac level. ~60% increase in mode: DMSO: 1.10, WAY181187: 1.76.

(D) 5-HTR6 stimulation did not significantly alter H3K27ac level: modes of DMSO and WAY181187 are both 0.77.

(E) Ciliary RhoA inhibition for ~1-week decreases H4K5ac level; ~68% decrease in mode: CTRL: 0.82, doxy: 0.26. Many nuclei have small and irregular

shapes (arrow).

(F) 5-HTR6 agonist stimulation in Htr6 KO mice does not increase the H4K5ac level. ~24% decrease in mode: DMSO: 2.16, WAY181187: 1.73.
(C-F) Left and middle panels: single optical sections of the H4K5ac/Hoechst or H3K27ac/Hoechst ratio. Right panel: histograms with kernel density estimates
from entire stacks. Data in (A)-(D) were from 3- to 3.5-month-old and (E) and (F) from 4-month-old male C57BL/6J mice.
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Figure 7. 5-HTR6 signaling modulates chromatin accessibility

(A) Measurements of chromatin accessibility (ATAC-see) normalized against Hoechst (green) on per voxel bases (right panel). Representative single optical
Airyscan section of CA1 pyramidal neurons showing ATAC-see labeling with ATTO-590 dye (magenta). Heterochromatin puncta labeled by Hoechst had little
ATAC-see labeling (arrows).

(B-D) The ATAC/Hoechst ratio is increased with 5-HTR6 agonist WAY181187 (B, 51% increase in mode: DMSO: 0.34, WAY181187: 0.70), decreased after ciliary
RhoA inhibition (C, 70% reduction in mode: CTRL: 0.20, doxy: 0.06), and in Htr6 KO (D, 52% reduction in mode: CTRL: 0.50, KO: 0.24). Left and middle panels:
single optical sections of ATAC/Hoechst ratio. Right: histograms with kernel density estimates from entire stacks. Data in (A) and (B) from 3- to 3.5-month-old and
in (C) and (D) from 4-month-old male C57BL/6J mice.
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