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Abstract Recent progress in the field of (time-independent) ensemble density-
functional theory (DFT) for excited states are reviewed. Both Gross–Oliveira–
Kohn (GOK) and N -centered ensemble formalisms, which are mathematically
very similar and allow for an in-principle-exact description of neutral and
charged electronic excitations, respectively, are discussed. Key exact results
like, for example, the equivalence between the infamous derivative disconti-
nuity problem and the description of weight dependencies in the ensemble
exchange-correlation density functional, are highlighted. The variational eval-
uation of orbital-dependent ensemble Hartree-exchange (Hx) energies is dis-
cussed in detail. We show in passing that state-averaging individual exact Hx
energies can lead to severe (solvable though) v-representability issues. Finally,
we explore the possibility to use the concept of density-driven correlation,
which has been recently introduced and does not exist in regular ground-state
DFT, for improving state-of-the-art correlation density-functional approxima-
tions for ensembles. The present review reflects the efforts of a growing commu-
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nity to turn ensemble DFT into a rigorous and reliable low-cost computational
method for excited states. We hope that, in the near future, this contribution
will stimulate new formal and practical developments in the field.
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1 Introduction

Kohn–Sham density-functional theory (KS-DFT) [1] has become over the last
two decades the method of choice for modeling the electronic structure of
molecules and materials. This success originates from the relatively low compu-
tational cost of the method and its relatively good accuracy in the description
of ground-state properties such as equilibrium structures and activation bar-
riers. KS-DFT is an in-principle-exact ground-state theory. As such, it cannot
be used straightforwardly for calculating excited-state properties. The formal
beauty of KS-DFT lies in its universal description of electronic ground states.
Indeed, in KS-DFT, all the quantum many-electron effects are encoded into a
system-independent exchange-correlation (xc) density functional Exc[n] which,
if it were known, would allow us to compute the exact ground-state energy of
any electronic system, simply by solving self-consistent one-electron equations,
instead of the many-electron Schrödinger equation. This universality is some-
how lost, at least partially, when turning to the excited states. An obvious
reason is that there are different types of electron excitations. First we should
distinguish charged excitations, where the number of electrons in the system
is modified, from neutral excitations, which occur at a fixed electron num-
ber [2]. In the context of DFT, these two processes are usually approached
very differently. In the case of charged excitations, one traditionally refers
to the extension of DFT to fractional electron numbers [3,4,5,6,7,8,9]. Its
implementation at the simplest (semi-) local xc density functional level of ap-
proximation usually yields too small fundamental gaps for solids [10]. This
can be related to the discontinuities that the density functional derivative of
the xc energy should in principle exhibit, when crossing an integer electron
number, but that are completely absent from standard approximations. This
is the reason why hybrid functionals (where a fraction of orbital-dependent
exchange energy is combined with density functionals) [11,12,8,13] or even
more involved frequency-dependent post KS-DFT approaches like GW [14,
15,16,17,18,19,20,21] are usually employed for improving the description of
fundamental gaps, which implies a substantial increase in computational cost.
If we now turn to neutral excitation processes, the most popular approach is
(linear response) time-dependent-DFT (TD-DFT) [22,23]. In TD-DFT, the
excitation energies are determined by searching for the poles of the KS lin-
ear response function. The success of TD-DFT lies in the fact that in many
(but not all) cases the (rather crude) adiabatic approximation performs rela-
tively well with a moderate computational cost. In the latter approximation,
the time-dependent density-functional xc energy (it is in fact an action [24,
25], to be more precise) is evaluated, in the time range t0 ≤ t ≤ t1, from
the regular (time-independent) ground-state xc functional and the density

n(t) ≡ n(r, t) at time t as follows, Axc[n] ≈
∫ t1
t0
dtExc[n(t)] [24,25,26,23]. Nev-

ertheless, the description of charge-transfer excitations becomes problematic
when semi-local functionals are employed [23,27,28,29]. Moreover, multiple
excitations are completely absent from standard TD-DFT spectra, precisely
because of the adiabatic approximation [30,23,29]. Let us finally mention that
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TD-DFT can be seen as a single-reference post-DFT method, because it re-
lies on the single-configuration KS ground-state wave function. This can be
problematic, for example, when the system under study has near-degenerate
low-lying states, like in the vicinity of a conical intersection, for example [23].

The various limitations (in terms of computational cost, accuracy, or physics)
of the above-mentioned frequency-dependent post-DFT approaches explain
why, in recent years, time-independent formulations of DFT for excited states
have attracted an increasing attention. For charged excitations, the extended
Koopman’s theorem turns out to be an appealing alternative [31,32]. DFT for
fractional electron numbers has also been further developed in the last decade
(see, for example, Refs. [33,34,35,36,37,38,39,40]). It has also been argued
that restricting to integer electron numbers, in the calculation of charged ex-
citations, is a completely valid alternative [41,42]. For neutral excitations,
various state-specific approaches have been explored at the formal [43,44] but
also practical levels. In the latter case, orbital optimizations must be performed
under proper constraints in order to avoid variational collapses. This leads to
various variational computational schemes such as the ∆ self-consistent field
(∆SCF) approach [45,46,47], the maximum overlap method (MOM) [48,49,50,
51,52], orthogonally-constrained DFT [53,54,55,56], and constricted DFT [57,
58,59,60,61]. Interestingly, when a system has a Coulombic one-electron exter-
nal local potential, which is the case for any real molecule, an excited state can
be identified directly from its density [62,63,64,65]. This fundamental property
can be used for constructing an in-principle-exact DFT for individual excited
states. The practical implementation of such a theory is not straightforward
though, in particular because density functionals must be defined also for non-
Coulombic densities, so that functional derivatives can be evaluated. Another
strategy, which is the main topic of this review, is ensemble DFT (eDFT). The
ensemble formalism is often referred to in DFT for mathematical purposes like,
for example, extending the domain of definition of density functionals [66] or
describing strict degeneracies [67,68]. It has probably be underestimated as
a potential alternative to standard time-dependent methods for the practical
calculation of (charged or neutral) excitations [69,70,71,72,73,74,75]. A clear
advantage of eDFT over time-dependent approaches is that its computational
cost is essentially that of a standard KS-DFT calculation. The only difference
is that, in an ensemble, orbitals can be fractionally occupied. Moreover, like
in TD-DFT, regular ground-state xc functionals can be recycled in eDFT [71].
Note that, unlike in thermal DFT [76,77,78], the fractional orbital occupa-
tion numbers are actually known before the eDFT calculation starts. They
are determined by the ensemble weights that the user (arbitrarily) assigns to
the M (M = 1, 2, . . .) lowest excited states she/he wants to study. In (say
canonical) thermal DFT [78], the ensemble weights are determined not only
from the temperature (that is arbitrarily fixed by the user) but also from the
(to-be-calculated) KS orbital energies. Another important feature of eDFT is
that it can in principle describe any kind of excitation, including the double
excitations [79,80] that standard approximate TD-DFT misses. The eDFT
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formalism for neutral excitations is often referred to as Gross–Oliveira–Kohn
DFT (GOK-DFT) because it relies on the GOK variational principle [81,82]. A
similar formalism, referred to as N -centered eDFT, has been derived recently
by Senjean and Fromager [83] for the description of charged excitations. The
present review aims at highlighting recent progress in eDFT, with a particular
focus on the exact theory and the development of approximations from first
principles.

The chapter is organized as follows. An introduction to GOK-DFT and
N -centered eDFT is given in Sec. 2. Even though the two theories describe
completely different physical processes, their mathematical formulations are
very similar, as highlighted in the section. We also explain how individual en-
ergy levels (which give access to excited-state properties) can be extracted, in
principle exactly, from these theories. Then, in Sec. 3, we discuss the equiva-
lence between the xc derivative discontinuity, which is a fundamental concept
in DFT, and the ensemble weight derivative of the xc density functional, which
is central in eDFT. Strategies for developing weight-dependent xc density-
functional approximations (DFAs) for ensembles, which is the most challenging
task in eDFT, are then reviewed. Key concepts will be illustrated with the pro-
totypical asymmetric Hubbard dimer model [84,85]. The rigorous construction
of hybrid functionals for ensembles is discussed in Sec. 4. We reveal that using
state-averaged exact exchange energies, which is common in computational
eDFT studies [75], can lead to severe (solvable though) v-representability is-
sues. Finally, we discuss in Sec. 5 the concept of ensemble density-driven cor-
relation, which was recently introduced by Gould and Pittalis [86], and how it
could be used in the design of correlation DFAs for ensembles. Conclusions and
perspectives are given in Sec. 6. Detailed derivations of some key equations
are provided in the appendices.

2 Unified ensemble DFT formalism for neutral and charged
excitations

In this chapter, we are interested in the evaluation of neutral (ENI −EN0 ) and
charged (EN±10 − EN0 ) excitation energies, where the Ith lowest energy EMI
of the M -electron system under study is in principle obtained by solving the
following Schrödinger equation,

Ĥ
∣∣ΨMI 〉 = EMI

∣∣ΨMI 〉 , (1)

where

Ĥ = T̂ + Ŵee + V̂ext (2)
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is the electronic Hamiltonian within the Born–Oppenheimer approximation
and

T̂ ≡ −
M∑
i=1

1

2
∇2

ri

Ŵee ≡
M∑
i=1

M∑
j>i

1

|ri − rj |
×

V̂ext ≡
M∑
i=1

vext(ri)×

(3)

are the M -electron kinetic energy, Coulomb repulsion, and local (i.e., multi-
plicative) external potential operators, respectively. Both neutral and charged
excitations can be described within a unified eDFT formalism. The calcula-
tions will simply differ in the type of excited states (charged or neutral) that
is included into the ensemble. On the one hand, the GOK-DFT formalism [82]
will be employed for neutral excitations while, for charged excitations, we will
use the more recent N -centered eDFT formalism [83]. In this section, we de-
rive key equations for each theory, and we show how individual excited-state
properties (energy levels and densities) can be extracted, in principle exactly,
from the KS ensemble. Real algebra will be used throughout this work. For
the sake of clarity, derivations will be detailed only for ensembles consisting of
non-degenerate states. The theory obviously applies to more general cases [82,
87].

2.1 DFT of neutral excitations

GOK-DFT has been formulated in the end of the 1980’s by Gross, Oliveira,
and Kohn [81,82,88] and is a generalization of the equiensemble DFT of
Theophilou [89]. In contrast to standard DFT, which is a ground-state the-
ory, GOK-DFT can describe both ground and (neutral) excited states. In
this context, the ensemble density is used as a basic variable (in place of the
ground-state density).

2.1.1 GOK ensembles

Before deriving the main equations of GOK-DFT, let us introduce the exact
ensemble theory. We start with the ensemble GOK energy expression [81]

Ew =
∑
I

wIEI , (4)

which is simply a state-averaged energy where w = (w1, w2, . . .) denotes the
collection of ensemble weights that are assigned to the excited states, and
EI ≡ ENI are the energies of the N -electron ground (I = 0) and excited
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(I > 0) states
∣∣ΨNI 〉. We assumed in Eq. (4) that the full set of weights

(which includes the weight w0 assigned to the ground state) is normalized,
i.e., w0 = 1−∑I>0 wI , so that

Ew =

(
1−

∑
I>0

wI

)
E0 +

∑
I>0

wIEI

= E0 +
∑
I>0

wI (EI − E0) .

(5)

For ordered weights wI ≥ wI+1 ≥ 0, with I ≥ 0, the following (so-called GOK)
variational principle holds [81],

Ew ≤
∑
I

wI

〈
Ψ̃I

∣∣∣ Ĥ ∣∣∣Ψ̃I〉 , (6)

where
{
Ψ̃I

}
is a trial set of orthonormal N -electron wave functions. Note that

the lower bound Ew, which is the exact ensemble energy, is not an observable.
It is just an (artificial) auxiliary quantity from which properties of interest,
such as the excitation energies, can be extracted. Since it varies linearly with
the ensemble weights, the extraction of individual energy levels is actually
trivial. Indeed, combining the following two relations [see Eq. (5)],

∂Ew

∂wI
= EI − E0, (7)

and

EK =
K≥0

E0 +
∑
I>0

δIK(EI − E0)

= Ew +
∑
I>0

(δIK − wI)(EI − E0),
(8)

leads to

EK = Ew +
∑
I>0

(δIK − wI)
∂Ew

∂wI
. (9)

Despite its simplicity the above expression has not been used until very re-
cently for extracting excited-state energies from a GOK-DFT calculation [90,
91]. Further details will be given in the next section.

2.1.2 DFT of GOK ensembles

In GOK-DFT, the ensemble energy is obtained variationally as follows [82],

Ew = min
n→N

{
Fw[n] +

∫
dr vext(r)n(r)

}
, (10)
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where the minimization is restricted to N -electron densities, i.e.,
∫
drn(r) =

N , and the universal GOK density functional

Fw[n] :=
∑
I

wI 〈Ψw
I [n]|T̂ + Ŵee|Ψw

I [n]〉 , (11)

which is evaluated from the density-functional eigenfunctions {Ψw
I [n]} that

fulfill the density constraint
∑
I wInΨw

I [n](r) = n(r), is the analog for GOK
ensembles of the universal Hohenberg–Kohn functional. Its construction relies
on a potential-ensemble-density map that is established for a given and fixed
set w of ensemble weight values. Therefore, the universality of the functional
implies, like in ground-state DFT, that it does not depend on the local ex-
ternal potential. However, it does not mean that it is ensemble-independent
and therefore applicable to any excited state. As discussed in further detail
in Secs. 4 and 5, encoding ensemble dependencies into density functionals is
probably the most challenging task in eDFT.

In the standard KS formulation of GOK-DFT [82], the GOK functional
is split into non-interacting kinetic and Hartree-xc (Hxc) ensemble energy
contributions, by analogy with regular KS-DFT:

Fw[n] = Tw
s [n] + Ew

Hxc[n]. (12)

The non-interacting ensemble kinetic energy functional can be expressed more
explicitly as follows within the constrained-search formalism [92],

Tw
s [n] = min

γ̂w→n

{
Tr
[
γ̂wT̂

]}
(13)

≡
∑
I

wI 〈Φw
I [n]| T̂ |Φw

I [n]〉 , (14)

where Tr denotes the trace, γ̂w =
∑
I wI |ΦI〉 〈ΦI | is a trial ensemble density

matrix operator that fulfills the density constraint nγ̂w(r) ≡ Tr [γ̂wn̂(r)] =∑
I wInΦI (r) = n(r), and n̂(r) ≡∑N

i=1 δ(r−ri) is the electron density operator
at position r. Combining Eqs. (10), (12) and (13) leads to the final GOK-DFT
variational energy expression

Ew = min
{ϕp}

{
Tr
[
γ̂w
(
T̂ + V̂ext

)]
+ Ew

Hxc [nγ̂w ]
}

= Tr
[
γ̂wKS

(
T̂ + V̂ext

)]
+ Ew

Hxc

[
nγ̂w

KS

]
, (15)

where the minimization can be restricted to single-configuration wave func-
tions (determinants or configuration state functions), hence the minimization
over orbitals {ϕp} on the first line of Eq. (15). The minimizing KS orbitals
{ϕw

p }, from which the KS wave functions {Φw
I [nw] ≡ Φw

I } in the minimizing
density matrix operator γ̂wKS are constructed, fulfill the following self-consistent
GOK-DFT equations,(

−∇
2
r

2
+ vext(r) + vwHxc[n

w](r)

)
ϕw
p (r) = εwp ϕ

w
p (r), (16)



Ensemble Density Functional Theory of Neutral and Charged Excitations 9

where

vwHxc[n](r) =
δEw

Hxc[n]

δn(r)
(17)

is the ensemble Hxc density-functional potential. In the exact theory, the en-
semble KS orbitals reproduce the exact (interacting) ensemble density, i.e.,∑

I

wInΦw
I

(r) =
∑
I

wInΨI (r) = nw(r), (18)

where the individual KS densities read as

nΦw
I

(r) =
∑
p

nIp
∣∣ϕw
p (r)

∣∣2, (19)

and nIp is the (weight-independent) occupation number of the orbital ϕw
p in

the single-configuration wave function Φw
I .

Let us now focus on the ensemble Hxc density functional. By analogy with
regular KS-DFT, it can decomposed into Hx and correlation energy contribu-
tions: Ew

Hxc[n] = Ew
Hx[n]+Ew

c [n]. In the original formulation of GOK-DFT [82],
the Hx functional is further decomposed as follows,

Ew
Hx[n] = EH[n] + Ew

x [n], (20)

where

EH[n] =
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′| (21)

is the standard weight-independent Hartree functional, and

Ew
x [n] =

∑
I

wI 〈Φw
I [n]| Ŵee |Φw

I [n]〉 − EH[n] (22)

is the exact (complementary and weight-dependent) ensemble exchange func-
tional. Note that Φw

I [n], which describes one of the configurations included
into the ensemble, may not be a pure Slater determinant [93]. Other (weight-
dependent) definitions for the ensemble Hartree energy, where the explicit
dependence on the ensemble density n is lost, have been explored [94]. In the
most intuitive one, the ensemble Hartree energy is evaluated as the weighted
sum of the individual KS Hartree energies:

Ew
H [n] :=

∑
I

wIEH

[
nΦw

I [n]

]
. (23)

For the sake of generality, we will keep in the following both Hartree and
exchange energies into a single functional Ew

Hx[n] which is defined as

Ew
Hx[n] =

∑
I

wI 〈Φw
I [n]| Ŵee |Φw

I [n]〉 . (24)
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The remaining weight-dependent correlation energy can then be expressed as
follows, according to Eqs. (11) and (14),

Ew
c [n] = Fw[n]− Tw

s [n]− Ew
Hx[n]

=
∑
I

wI

(
〈Ψw
I [n]|T̂ + Ŵee|Ψw

I [n]〉 − 〈Φw
I [n]|T̂ + Ŵee|Φw

I [n]〉
)
,(25)

where the non-interacting KS {Φw
I [n]} and interacting {Ψw

I [n]} wave functions,
which both reproduce the (weight-independent here) trial ensemble density n,
whatever the ensemble weight values w, are in principle weight-dependent [95,
96]. Interestingly, the interacting density-functional wave functions lose their
weight dependence when the trial density n matches the exact physical en-
semble density nw, i.e., Ψw

I [nw] = ΨI ≡ ΨNI . However, as shown in Sec. 5.2,
the KS wave functions remain weight-dependent, even in this special case.

As readily seen from Eqs. (12), (15) and (16), the only (but crucial) dif-
ference between regular ground-state KS-DFT and GOK-DFT is the weight
dependence in the ensemble density-functional Hxc energy and potential. The
computational cost should essentially be the same in both approaches. The
challenge lies in the proper description of the weight-dependent ensemble Hxc
density functional. Different approximations have been considered, such as
the use of (weight-independent) regular ground-state functionals [78,97], or
the use of an ensemble exact-exchange energy [93,98,99] with or without ap-
proximate weight-dependent correlation functionals [99,91,79]. Note that the
expected linearity-in-weight of the ensemble energy is not always reproduced
in (approximate) practical GOK-DFT calculations [97]. As a result, different
weights can give different excitation energies, which is a serious issue. This
lead to different computation strategies, such as trying to find an optimal
value for the weights [100], using Boltzmann weights instead [78], restricting
to equiensembles [91,79], or considering the ground-state w = 0 limit of the
theory, like in the direct ensemble correction (DEC) scheme [87,101]. A linear
interpolation method has also been proposed [97,102].

Designing weight-dependent ensemble DFAs that systematically reduce the
curvature in weight of the ensemble energy, while providing at the same time
accurate excitation energies, is an important and challenging task. Recent
progress in this matter will be extensively discussed in Secs. 4 and 5.

2.1.3 Extraction of individual state properties

In Sec. 2.1.2, we have shown that both exact ensemble energy and density can
be calculated, in principle exactly, within GOK-DFT. At this point we should
stress that the KS and true physical densities are not expected to match in-
dividually, even though they both reproduce the same ensemble density [see
Eq. (18)]. This subtle point will be discussed in more detail in Sec. 5.2. Nev-
ertheless, in complete analogy with Eq. (9), the exact individual densities can
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be extracted from the ensemble density as follows [103],

nΨJ (r) = nw(r) +
∑
I>0

(δIJ − wI)
∂nw(r)

∂wI
, (26)

which, by inserting the expression in Eq. (18), leads to the key result [103]

nΨJ (r) = nΦw
J

(r) +
∑
I>0

∑
K≥0

(δIJ − wI) wK
∂nΦw

K
(r)

∂wI
, (27)

where, according to Eq. (19), the weight derivative of the individual KS den-
sities

∂nΦw
K

(r)

∂wI
= 2

∑
p

nKp ϕ
w
p (r)

∂ϕw
p (r)

∂wI
(28)

can be evaluated from the (static) linear response of the KS orbitals. This can
be done, in practice, by solving an ensemble coupled-perturbed equation [73,
103], for example.

Turning to the excitation energies, we obtain from the variational GOK-
DFT ensemble energy expression and the Hellmann–Feynman theorem the
following expression, where the derivatives of the minimizing (and therefore
stationary) KS wave functions do not contribute,

∂Ew

∂wI
= Tr

[
∆γ̂wKS,I

(
T̂ + V̂ext

)]
+
∂Ew

Hxc[n]

∂wI

∣∣∣∣
n=nγ̂w

KS

+

∫
dr

δEw
Hxc[nγ̂w

KS
]

δn(r)
Tr
[
∆γ̂wKS,I n̂(r)

]
, (29)

with ∆γ̂wKS,I = |Φw
I 〉 〈Φw

I |−|Φw
0 〉 〈Φw

0 |. This expression can be further simplified
as follows [90]:

∂Ew

∂wI
= EI − E0 = EwI − Ew0 +

∂Ew
Hxc[n]

∂wI

∣∣∣∣
n=nγ̂w

KS

, (30)

where EwI denotes the Ith (weight-dependent) KS energy which is obtained
by summing up the energies {εwp } of the KS orbitals that are occupied in Φw

I .
Hence, the excitation energies can all be determined, in principle exactly, from
a single GOK-DFT calculation.

As shown by Deur and Fromager [90], individual energy levels can also be
extracted (from the KS ensemble) and written in a compact form. For that
purpose, we will use the exact expression of Eq. (9) where we see, in the light
of Eq. (30), that it is convenient to express the total ensemble energy [first
term on the right-hand side of Eq. (9)] in terms of total KS energies. Levy and
Zahariev (LZ) made such a suggestion in the context of regular ground-state
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DFT [104]. For that purpose, they introduced a shift in the Hxc potential that
can be trivially generalized to GOK ensembles as follows [90],

δEw
Hxc[n]

δn(r)
→ vwHxc[n](r) =

δEw
Hxc[n]

δn(r)
+

Ew
Hxc[n]−

∫
dr

δEw
Hxc[n]

δn(r)
n(r)∫

drn(r)
. (31)

Note that, if the exact LZ-shifted Hxc potential were known, we would be able
to evaluate exact ensemble density-functional Hxc energies as follows,

Ew
Hxc[n] =

∫
dr vwHxc[n](r)n(r). (32)

Once the LZ shift has been applied to the ensemble Hxc potential, the (total
N -electron) KS energies will be modified as follows,

EwI → E
w

I = EwI + Ew
Hxc[nγ̂w

KS
]−
∫

dr
δEw

Hxc[nγ̂w
KS

]

δn(r)
nγ̂w

KS
(r), (33)

and the true ensemble energy will simply read as a weighted sum of (LZ-
shifted) KS energies:

Ew =

(
1−

∑
I>0

wI

)
Ew0 +

∑
I>0

wIE
w

I . (34)

Note that the KS excitation energies are not affected by the shift:

EwI − E
w

0 = EwI − Ew0 . (35)

Thus, by combining Eqs. (9), (30), (34) and (35), we recover the exact expres-
sion of Ref. [90] for ground- and excited-state energy levels:

EK = EwK +
∑
I>0

(δIK − wI)
∂Ew

Hxc[n]

∂wI

∣∣∣∣
n=nγ̂w

KS

. (36)

As readily seen from Eq. (36), applying the LZ shift is not sufficient for reach-
ing an exact energy level. The ensemble weight derivatives of the Hxc density
functional are also needed for that purpose.

Finally, it is instructive to consider the general expression of Eq. (36) in
the ground-state w = 0 limit of the theory, which gives

EI = Ew=0

I + (1− δI0)
∂Ew

Hxc[nΨ0
]

∂wI

∣∣∣∣
w=0

, (37)

where nΨ0
is the exact ground-state density. As readily seen from Eq. (37),

as we start from a pure I = 0 ground-state theory (we recover the energy
expression of Levy and Zahariev in this case [104]), the inclusion of a given
I > 0 excited state into the ensemble induces an additional shift in the Hxc
potential, which corresponds to the weight derivative ∂Ew

Hxc[nΨ0 ]/∂wI |w=0 and
can be interpreted as a derivative discontinuity, as shown in Ref. [105] and
extensively discussed in Sec. 3, in the context of charged excitations.
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2.2 DFT of charged excitations: The N -centered ensemble formalism

A recent adaptation of GOK-DFT to charged excitations, which is referred to
as N -centered eDFT [83], is introduced in the present section.

2.2.1 N -centered ensembles

The N -centered ensemble [83] can be seen as the “grand canonical” ground-
state version of GOK ensembles. It is constructed from the M -electron ground
states where the three possible values of the integer M ∈ {N − 1, N,N + 1}
are, like the corresponding ensemble density (see below), centered in N , hence
the name “N -centered”. The exact N -centered ensemble energy is defined as
follows [83],

Eξ
0 = ξ−E

N−1
0 + ξ+E

N+1
0 +

(
1− ξ−

N − 1

N
− ξ+

N + 1

N

)
EN0 , (38)

where the two N -centered ensemble weights ξ− and ξ+, which describe the
removal/addition of an electron from/to the N -electron system, respectively,
are collected in

ξ ≡ (ξ−, ξ+) . (39)

Similarly, the N -centered ensemble density reads as

nξ0(r) = ξ−nΨN−1
0

(r) + ξ+nΨN+1
0

(r) +

(
1− ξ−

N − 1

N
− ξ+

N + 1

N

)
nΨN0 (r).

(40)

Designed by analogy with GOK-DFT (which describes neutral excitations),
the N -centered ensemble density integrates to the central integer number N
of electrons: ∫

drnξ0(r) = N. (41)

In other words, even though we describe charged excitation processes, the
number of electrons remains fixed and equal to the integer N whatever the
value of the ensemble weights ξ. This major difference with the conventional
DFT for fractional electron numbers [3] has important implications that will
be discussed extensively in Sec. 3.

In this context, the ensemble energy can be determined variationally, as a
direct consequence of the conventional Rayleigh–Ritz variational principle for
a fixed number of electrons, i.e.,

Eξ
0 ≤ ξ−

〈
Ψ̃N−1

∣∣∣Ĥ∣∣∣Ψ̃N−1〉+ ξ+

〈
Ψ̃N+1

∣∣∣Ĥ∣∣∣Ψ̃N+1
〉

+

(
1− ξ−

N − 1

N
− ξ+

N + 1

N

) 〈
Ψ̃N
∣∣∣Ĥ∣∣∣Ψ̃N〉 , (42)
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where {Ψ̃M} are trial M -electron normalized wave functions, provided that the
(so-called convexity) conditions ξ− ≥ 0, ξ+ ≥ 0, and ξ−(N − 1)+ξ+(N + 1) ≤
N are fulfilled. Like in GOK-DFT, the ensemble energy Eξ

0 varies linearly with
the ensemble weights. As a result, charged excitation energies can be extracted
through differentiation with respect to the N -centered ensemble weights. For
example, since

∂Eξ
0

∂ξ±
= EN±10 −

(
N ± 1

N

)
EN0 , (43)

the exact fundamental gap can be determined as follows,

∂Eξ
0

∂ξ−
+
∂Eξ

0

∂ξ+
= EN−10 + EN+1

0 − 2EN0 = Efund
gap . (44)

We can also extract the individual cationic, anionic, and neutral energies,
respectively, as follows,

EN−10 =
N − 1

N

(
Eξ

0 − ξ+
∂Eξ

0

∂ξ+
+

(
N

N − 1
− ξ−

)
∂Eξ

0

∂ξ−

)
, (45)

EN+1
0 =

N + 1

N

(
Eξ

0 − ξ−
∂Eξ

0

∂ξ−
+

(
N

N + 1
− ξ+

)
∂Eξ

0

∂ξ+

)
, (46)

and

EN0 = Eξ
0 − ξ−

∂Eξ
0

∂ξ−
− ξ+

∂Eξ
0

∂ξ+
. (47)

Eqs. (45)–(47) will be used in the following for deriving exact ionization po-
tential and electron affinity theorems.

2.2.2 DFT of N -centered ensembles

In complete analogy with GOK-DFT, the N -centered ensemble energy can be
determined variationally as follows,

Eξ
0 = min

n→N

{
F ξ[n] +

∫
dr vext(r)n(r)

}
, (48)

where, in the KS formulation of the theory [83], the universal N -centered
ensemble functional reads as

F ξ[n] = T ξ
s [n] + Eξ

Hxc[n]. (49)

The non-interacting kinetic energy functional

T ξ
s [n] = min

γ̂ξ→n

{
Tr
[
γ̂ξT̂

]}
(50)
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is now determined through a minimization over N -centered density matrix
operators

γ̂ξ ≡ ξ−
∣∣ΦN−1〉 〈ΦN−1∣∣+ ξ+

∣∣ΦN+1
〉 〈
ΦN+1

∣∣
+

(
1− ξ−

N − 1

N
− ξ+

N + 1

N

) ∣∣ΦN〉 〈ΦN ∣∣ (51)

that fulfill the density constraint nγ̂ξ(r) = Tr
[
γ̂ξn̂(r)

]
= n(r). Combining

Eqs. (48), (49) and (50) leads to the final ensemble energy expression,

Eξ
0 = min

{ϕp}

{
Tr
[
γ̂ξ
(
T̂ + V̂ext

)]
+ Eξ

Hxc

[
nγ̂ξ

]}
= Tr

[
γ̂ξKS

(
T̂ + V̂ext

)]
+ Eξ

Hxc

[
nγ̂ξ

KS

]
, (52)

which is mathematically identical to its analog in GOK-DFT [see Eq. (15)],
even though the physics it describes is completely different. The orbitals {ϕξ

p},
from which the minimizing single-configuration KS wave functions

{
ΦM,ξ
0

}
in

γ̂ξKS are constructed, fulfill self-consistent KS equations that are similar to
those of regular (N -electron ground-state) KS-DFT:(

−∇
2
r

2
+ vext(r) + vξHxc[n

ξ](r)

)
ϕξ
p(r) = εξpϕ

ξ
p(r). (53)

The only difference is that the N -centered ensemble Hxc potential vξHxc[n](r) =

δEξ
Hxc[n]/δn(r) is now employed. In the exact theory, the ensemble KS orbitals

are expected to reproduce the interacting N -centered ensemble density, i.e.,

nξ0(r) = nγ̂ξ
KS

(r) (54)

= ξ−nΦN−1,ξ
0

(r) + ξ+nΦN+1,ξ
0

(r)

+

(
1− ξ−

N − 1

N
− ξ+

N + 1

N

)
nΦN,ξ0

(r), (55)

or, equivalently [83],

nξ0(r) =

(
1 +

ξ− − ξ+
N

) N∑
p=1

|ϕξ
p(r)|2 − ξ−|ϕξ

N (r)|2 + ξ+|ϕξ
N+1(r)|2. (56)

Turning to the N -centered ensemble Hxc density functional, it can be de-
composed as Eξ

Hxc[n] = Eξ
Hx[n] + Eξ

c [n], where, by analogy with GOK-DFT,
the exact Hx energy is expressed in terms of the N -centered ensemble density-
functional KS wave functions as follows,

Eξ
Hx[n] = ξ−

〈
ΦN−1,ξ0 [n]

∣∣∣Ŵee

∣∣∣ΦN−1,ξ0 [n]
〉

+ ξ+

〈
ΦN+1,ξ
0 [n]

∣∣∣Ŵee

∣∣∣ΦN+1,ξ
0 [n]

〉
+

(
1− ξ−

N − 1

N
− ξ+

N + 1

N

) 〈
ΦN,ξ0 [n]

∣∣∣Ŵee

∣∣∣ΦN,ξ0 [n]
〉
,

(57)
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and the complementary correlation functional reads as

Eξ
c [n] = F ξ[n]− T ξ

s [n]− Eξ
Hx[n]

= ξ−

(〈
T̂ + Ŵee

〉
ΨN−1,ξ

0 [n]
−
〈
T̂ + Ŵee

〉
ΦN−1,ξ

0 [n]

)
+ξ+

(〈
T̂ + Ŵee

〉
ΨN+1,ξ

0 [n]
−
〈
T̂ + Ŵee

〉
ΦN+1,ξ

0 [n]

)
+

(
1− ξ−

N − 1

N
− ξ+

N + 1

N

)
×
[〈
T̂ + Ŵee

〉
ΨN,ξ0 [n]

−
〈
T̂ + Ŵee

〉
ΦN,ξ0 [n]

]
, (58)

where {ΨM,ξ
0 [n]} denotes the interacting density-functional N -centered ensem-

ble.

When comparison is made with Sec. 2.1.2, it becomes clear that N -centered
and GOK eDFTs are essentially the same theory (they only differ in the defi-
nition of the ensemble). From that point of view, we now have a unified eDFT
for charged and neutral electronic excitations. As a result, N -centered eDFT
can benefit from progress made in GOK-DFT, and vice versa.

2.2.3 Exact ionization potential and electron affinity theorems

We have shown in Sec. 2.2.1 that neutral, anionic, and cationic ground-state
energies can be extracted exactly from the N -centered ensemble energy [see
Eqs. (45), (46), and (47)]. We can now use the variational density-functional
expression of Eq. (52) to obtain expressions for the fundamental gap, the ion-
ization potential (IP), and the electron affinity (EA). Note that these quan-
tities are traditionally derived in the context of DFT for fractional electron
numbers [3] (see Sec. 3 for a detailed comparison). According to the Hellmann–
Feynman theorem, we can express the weight derivatives of the ensemble en-
ergy as follows,

∂Eξ
0

∂ξ±
= Tr

[
∆±γ̂

ξ
KS

(
T̂ + V̂ext

)]
+
∂Eξ

Hxc[n]

∂ξ±

∣∣∣∣∣
n=n

γ̂
ξ
KS

+

∫
dr
δEξ

Hxc[nγ̂ξ
KS

]

δn(r)
Tr
[
∆±γ̂

ξ
KSn̂(r)

]
, (59)

where ∆±γ̂
ξ
KS =

∣∣∣ΦN±1,ξ0

〉〈
ΦN±1,ξ0

∣∣∣ − N±1
N

∣∣∣ΦN,ξ0

〉〈
ΦN,ξ0

∣∣∣. Since the single-

configuration M -electron KS wave functions ΦM,ξ
0 are constructed from or-

bitals that fulfill the KS Eq. (53), the above energy derivative can be rewritten
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in terms of the KS orbital energies as [83]

∂Eξ
0

∂ξ±
= ± 1

N

N∑
p=1

(
εξ
N+ 1

2±
1
2

− εξp
)

+
∂Eξ

Hxc[n]

∂ξ±

∣∣∣∣∣
n=n

γ̂
ξ
KS

. (60)

By plugging Eq. (60) into Eq. (44), we immediately obtain the following exact
expression for the fundamental gap:

Efund
gap = εξN+1 − εξN +

(
∂Eξ

Hxc[n]

∂ξ+
+
∂Eξ

Hxc[n]

∂ξ−

)∣∣∣∣∣
n=n

γ̂
ξ
KS

. (61)

If we now apply the LZ shift-in-potential procedure [104], by analogy with
GOK-DFT (see Sec. 2.1.3), i.e.,

δEξ
Hxc[n]

δn(r)
→ vξHxc[n](r) =

δEξ
Hxc[n]

δn(r)
+

Eξ
Hxc[n]−

∫
dr

δEξ
Hxc[n]

δn(r)
n(r)∫

drn(r)
,

(62)

we can express both the ensemble energy and its derivatives in terms of the
LZ-shifted KS orbital energies εξp, thus leading to the following compact ex-
pressions for the ensemble and individual energies [83], respectively:

Eξ
0 =

(
1 +

ξ− − ξ+
N

) N∑
p=1

εξp − ξ−εξN + ξ+ε
ξ
N+1, (63)

EN−10 =

N−1∑
p=1

εξp +

(
1− (N − 1)ξ−

N

)
∂Eξ

Hxc[n]

∂ξ−

∣∣∣∣∣
n=n

γ̂
ξ
KS

− (N − 1)ξ+
N

∂Eξ
Hxc[n]

∂ξ+

∣∣∣∣∣
n=n

γ̂
ξ
KS

,

(64)

EN+1
0 =

N+1∑
p=1

εξp +

(
1− (N + 1)ξ+

N

)
∂Eξ

Hxc[n]

∂ξ+

∣∣∣∣∣
n=n

γ̂
ξ
KS

− (N + 1)ξ−
N

∂Eξ
Hxc[n]

∂ξ−

∣∣∣∣∣
n=n

γ̂
ξ
KS

,

(65)
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and

EN0 =

N∑
p=1

εξp − ξ−
∂Eξ

Hxc[n]

∂ξ−

∣∣∣∣∣
n=n

γ̂
ξ
KS

− ξ+
∂Eξ

Hxc[n]

∂ξ+

∣∣∣∣∣
n=n

γ̂
ξ
KS

.

(66)

By subtraction, we immediately obtain in-principle-exact IP and EA theorems:

IN0 = EN−10 − EN0

= −εξN +

(
1 +

ξ−
N

)
∂Eξ

Hxc[n]

∂ξ−

∣∣∣∣∣
n=n

γ̂
ξ
KS

+
ξ+
N

∂Eξ
Hxc[n]

∂ξ+

∣∣∣∣∣
n=n

γ̂
ξ
KS

, (67)

and

AN0 = EN0 − EN+1
0

= −εξN+1 −
(

1− ξ+
N

)
∂Eξ

Hxc[n]

∂ξ+

∣∣∣∣∣
n=n

γ̂
ξ
KS

+
ξ−
N

∂Eξ
Hxc[n]

∂ξ−

∣∣∣∣∣
n=n

γ̂
ξ
KS

.(68)

Interestingly, in the regular ground-state N -electron limit (i.e., when ξ = 0),
the expression of Levy and Zahariev [104] is recovered for the IP,

IN0 = −εξ=0
N +

∂Eξ
Hxc[nΨ0

]

∂ξ−

∣∣∣∣∣
ξ=0

, (69)

where the asymptotic value of the LZ-shifted Hxc potential away from the
system [see Ref. [104] and Eq. (132)] can now be expressed explicitly, within the

N -centered ensemble formalism, as ∂Eξ
Hxc[nΨ0 ]/∂ξ−

∣∣∣
ξ=0

. Similarly, we obtain

the following expression for the EA:

AN0 = −εξ=0
N+1 −

∂Eξ
Hxc[nΨ0

]

∂ξ+

∣∣∣∣∣
ξ=0

. (70)

As readily seen from the above expressions, neutral and charged systems can-
not be described with the same (LZ-shifted) Hxc potential. As shown in Sec. 3,
the additional ensemble weight derivative correction [second term on the right-
hand side of Eqs. (69) and (70)] is actually connected to the concept of deriva-
tive discontinuity which manifests in conventional DFT for fractional electron
numbers, when crossing an integer [106].
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3 Equivalence between weight derivatives and xc derivative
discontinuities

The concept of derivative discontinuity originally appeared in the context of
DFT for fractional electron numbers [3], which is the conventional theoreti-
cal framework for the description of charged excitations. The (xc functional)
derivative discontinuities play a crucial role in the evaluation of fundamen-
tal gaps [106]. More specifically, they correct the bare KS gap which is only
an approximation to the true interacting gap. It is well known that standard
(semi)-local DFAs do not contain such discontinuities, which explains why
post-DFT methods based on Green functions, for example, are preferred for the
computation of accurate gaps [14,15,16,17,18,19,20,21]. Their substantially
higher computational cost is a motivation for exploring simpler (frequency-
independent) strategies. The recently proposed N -centered ensemble formal-
ism [83,107], which has been introduced in Sec. 2.2, is (among others [34,36,
42,108,109,110,111,112]) promising in this respect.

From a more fundamental point of view, it is important to clarify the
similarities and differences between N -centered eDFT and the standard for-
mulation of DFT for charged excitations, which is often referred to as Perdew–
Parr–Levy–Balduz (PPLB) DFT [3]. More specifically, we should explain what
the derivative discontinuity, which is central in PPLB, becomes when switch-
ing to the N -centered formalism. This is the purpose of this section.

After a brief review in Sec. 3.1 of the PPLB formalism and its implications,
we will show (in Sec. 3.2), on the basis of Ref. [113], that derivative disconti-
nuities exist also in N -centered eDFT and that they are directly connected to
the ensemble weight derivatives of the xc functional, like in GOK-DFT [105].
Finally, we will explain in Sec. 3.3 why these discontinuities can essentially be
removed from the theory, unlike in PPLB, and discuss the practical implica-
tions.

3.1 Review of the regular PPLB approach to charged excitations

3.1.1 Ensemble formalism for open systems

The key idea in PPLB is to describe electron ionization or affinity processes
through a continuous variation of the electron number, hence the need for an
extension of DFT to fractional electron numbers. For that purpose, the en-
ergy of an artificial (zero-temperature) grand-canonical-type ensemble, which
should not be confused with physical finite-temperature grand-canonical en-
sembles of statistical physics [114], is constructed as follows,

G(µ) = min
M

{
EM0 − µM

}
, (71)
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where we minimize over integer numbers M of electrons and EM0 denotes
the exact M -electron ground-state energy of the system. In this formalism,
the number of electrons in the system can be arbitrarily fixed by tuning the
chemical potential µ. For example, if the following inequalities are fulfilled,

EN−10 − µ(N − 1) > EN0 − µN < EN+1
0 − µ(N + 1), (72)

or, equivalently,

−IN0 < µ < −AN0 , (73)

then the system contains an integer number N of electrons (it is assumed that
the N -electron fundamental gap ENg = IN0 − AN0 is positive, so that Eq. (73)
can be fulfilled). In the special case where one of the inequality becomes a
strict equality, say

EN−10 − µ(N − 1) = EN0 − µN, (74)

which means that the chemical potential is exactly equal to minus the N -
electron ionization potential,

µ = EN0 − EN−10 = −IN0 , (75)

the N - and (N − 1)-electron solutions are degenerate (grand-canonical energy
wise). Therefore, they can be mixed as follows,

G (µ)
µ=−IN0= (1− α)

(
EN−10 − µ(N − 1)

)
+ α

(
EN0 − µN

)
(76)

=
(

(1− α)EN−10 + αEN0

)
− µ

(
N − 1 + α

)
(77)

≡ EN0 − µN , (78)

where 0 ≤ α ≤ 1, thus allowing for a continuous variation of the electron
number N (which now becomes fractional) from N − 1 to N :

N ≡ N − 1 + α. (79)

This is the central idea in PPLB for describing the ionization of an N -electron
system. Ionizing the (N + 1)-electron system gives access to the N -electron
affinity. Interestingly, we recover from Eqs. (77), (78), and (79) the well-known
piecewise linearity of the energy with respect to the electron number [3]:

EN0 ≡ (1− α)EN−10 + αEN0 = (N −N )EN−10 + (N −N + 1)EN0 . (80)

In order to establish a clearer connection between the PPLB and N -centered
formalisms, we follow the approach of Kraisler and Kronik [34] where the
ensemble weight α is used as a variable, in place of the electron number N .
Therefore, in PPLB, the ensemble energy reads as

Eα = (1− α)EN−10 + αEN0 (81)

= (1− α)
〈
ΨN−10

∣∣T̂ + Ŵee

∣∣ΨN−10

〉
+ α

〈
ΨN0
∣∣T̂ + Ŵee

∣∣ΨN0 〉
+

∫
dr vext(r)nα0 (r), (82)
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where

nα0 (r) = (1− α)nΨN−1
0

(r) + αnΨN0 (r) (83)

is the exact ground-state ensemble density. Note that, if we introduce the
ensemble density matrix operator

Γ̂α0 = (1− α)
∣∣ΨN−10

〉 〈
ΨN−10

∣∣+ α
∣∣ΨN0 〉 〈ΨN0 ∣∣ , (84)

the ensemble energy and density can be expressed in a compact way as follows,

Eα = Tr
[
Γ̂α0 Ĥ

]
(85)

and

nα0 (r) = Tr
[
Γ̂α0 n̂(r)

]
, (86)

respectively.

3.1.2 DFT for fractional electron numbers

On the basis of the “grand-canonical” ensemble formalism introduced in the
previous section, we can extend the domain of definition of the universal
Hohenberg–Kohn functional F [n] to densities n that integrate to fractional
electron numbers, i.e., ∫

drn(r) = N − 1 + α, (87)

as follows,

F [n] = (1− α)
〈
T̂ + Ŵee

〉
ΨN−1

0 [n]
+ α

〈
T̂ + Ŵee

〉
ΨN0 [n]

, (88)

where the ground-state density-functional wave functions fulfill the density
constraint

(1− α)nΨN−1
0 [n](r) + αnΨN0 [n](r) = n(r). (89)

From now on we will take α in the range

0 < α ≤ 1, (90)

so that the integer electron number case systematically corresponds to α = 1.
Therefore, in the present density-functional PPLB ensemble, the N -electron
state will always contribute (even infinitesimally), and

N = d∫ drn(r)e. (91)
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At this point it is essential to realize that, unlike in N -centered eDFT, the en-
semble weight α is not an independent variable. Indeed, according to Eqs. (87)
and (91), it is an explicit functional of the density:

α ≡ α[n] =

∫
drn(r)− d∫ drn(r)e+ 1. (92)

Therefore, in PPLB, the ensemble is fully determined from the density. The
latter remains, like in regular DFT for integer electron numbers, the sole basic
variable in the theory. Following Levy and Lieb [92,115,66], the extended
universal functional of Eq. (88) can be expressed in a compact way as follows,

F [n] = min
γ̂α→n

Tr
[
γ̂α
(
T̂ + Ŵee

)]
, (93)

where we minimize over grand-canonical ensemble density matrix operators

γ̂α ≡ (1− α)
∣∣ΨN−1〉 〈ΨN−1∣∣+ α

∣∣ΨN〉 〈ΨN ∣∣ (94)

that fulfill the following density contraint:

Tr [γ̂αn̂(r)] = nγ̂α(r) = (1− α)nΨN−1(r) + αnΨN (r) = n(r). (95)

3.1.3 Kohn–Sham PPLB

The commonly used KS formulation of PPLB is recovered when introducing
the non-interacting kinetic energy functional

Ts[n] = min
γ̂α→n

Tr
[
γ̂αT̂

]
(96)

and the in-principle-exact decomposition

F [n] = Ts[n] + EHxc[n], (97)

where the Hxc functional now applies to fractional electron numbers. Let us
stress that, unlike in N -centered eDFT, the Hxc functional has no ensemble
weight dependence because the weight is determined from the density n. Any
dependence in α is incorporated into the functional through the density. This
is a major difference with N -centered eDFT where the ensemble weight and
the density are independent variables, like in GOK-DFT. This subtle point
will be central later on when comparing the two theories.

According to the variational principle, the exact ensemble energy can be
determined, for a given and fixed value of α, as follows,

Eα = min
n→N−1+α

{
F [n] +

∫
dr vext(r)n(r)

}
, (98)
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where we minimize over densities that integrate to the desired number N−1+α
of electrons. According to Eqs. (96) and (97), the ensemble energy can be
rewritten as

Eα = min
n→N−1+α

{
min
γ̂α→n

{
Tr
[
γ̂α
(
T̂ + V̂ext

)]
+ EHxc[nγ̂α ]

}}
= min

γ̂α

{
Tr
[
γ̂α
(
T̂ + V̂ext

)]
+ EHxc[nγ̂α ]

}
≡ Tr

[
γ̂αKS

(
T̂ + V̂ext

)]
+ EHxc[nγ̂αKS

],

(99)

where the minimizing KS density matrix operator

γ̂αKS = (1− α)
∣∣∣ΦN−1,α0

〉〈
ΦN−1,α0

∣∣∣+ α
∣∣∣ΦN,α0

〉〈
ΦN,α0

∣∣∣ (100)

reproduces the exact ensemble density of Eq. (83):

nγ̂αKS
(r) = Tr [γ̂αn̂(r)] = nα0 (r). (101)

The orbitals from which ΦN−1,α0 and ΦN,α0 are constructed fulfill self-consistent
KS equations,(

−1

2
∇2

r + vext(r) +
δEHxc[nγ̂αKS

]

δn(r)

)
ϕαi (r) = εαi ϕ

α
i (r), (102)

where, as readily seen from the following ensemble density expression,

nγ̂αKS
(r) = (1− α)

N−1∑
i=1

|ϕαi (r)|2 + α

N∑
i=1

|ϕαi (r)|2

=

N−1∑
i=1

|ϕαi (r)|2 + α|ϕαN (r)|2,
(103)

the highest occupied molecular orbital (HOMO) [i.e., ϕαN ] is fractionally oc-
cupied. This is the main difference with conventional DFT calculations for
integer electron numbers.

3.1.4 Janak’s theorem and its implications

Once the ensemble energy Eα has been determined (variationally), we can
evaluate the IP, which is the quantity we are interested in, by differentiation
with respect to the ensemble weight α [see Eq. (81)], i.e.,

dEα

dα
= −IN0 , (104)
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which, according to the Hellmann–Feynman theorem and Eqs. (99), (100), and
(102), can be written more explicitly as follows,

dEα

dα
=
〈
ΦN,α0

∣∣∣T̂ + V̂ext

∣∣∣ΦN,α0

〉
−
〈
ΦN−1,α0

∣∣∣T̂ + V̂ext

∣∣∣ΦN−1,α0

〉
+

∫
dr
δEHxc[nγ̂αKS

]

δn(r)

(
nΦN,α0

(r)− nΦN−1,α
0

(r)
)

(105)

≡
N∑
i=1

εαi −
N−1∑
i=1

εαi

= εαN , (106)

thus leading to the famous Janak’s theorem [116]:

IN0 = −εαN , ∀α ∈]0, 1]. (107)

As readily seen from Eq. (107), the energy εαN of the KS HOMO does not
vary with the fraction α > 0 of electron that is introduced into the (N − 1)-
electron system. Therefore, it matches the N -electron KS HOMO energy that
we simply denote εNN :

εαN = εα=1
N ≡ εNN = −IN0 . (108)

At this point it is important to mention that, unlike in N -centered eDFT [see
Eq. (69)], there is no ensemble weight derivative of the Hxc functional involved
in Janak’s theorem. Such a quantity does not exist in PPLB, simply because
the ensemble weight α and the density n cannot vary independently. However,
while the number of electrons is artificially held constant in the N -centered
formalism, it is not the case in PPLB. Indeed, variations in α induce a change
in density [see the third contribution on the right-hand side of Eq. (105)] that
does not integrate to zero:

1 =

∫
dr
(
nΦN,α0

(r)− nΦN−1,α
0

(r)
)
6= 0. (109)

Therefore, it is crucial, when evaluating the functional derivative of the Hxc
energy δEHxc[nγ̂αKS

]/δn(r) (i.e., the Hxc potential), to consider variations of
the density δn(r) that do not integrate to zero. This is unnecessary in N -
centered eDFT. In PPLB, however, the proper modeling of the xc potential is
essential for describing charged excitations. This is clearly illustrated by the
fact that the exact xc potential exhibits derivative discontinuities when cross-
ing an integer electron number, as discussed further in Sec. 3.2.

Let us finally discuss the unicity of the xc potential. We recall that, in
the present review, the external potential is simply the (Coulomb) nuclear
potential of the molecule under study. It is fixed and it vanishes away from the
system:

vext(r) →
|r|→+∞

0, (110)
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which we simply denote vext(∞) = 0 in the following. As readily seen from
Eq. (107), when describing a continuous variation of the electron number N
in the range N − 1 < N < N , the KS potential becomes truly unique, not
anymore up to a constant. This can be related to the unicity of the chemical
potential which allows for fractional electron numbers, as discussed previously
in the interacting case [see Eq. (75)]. As a result, the xc potential is truly
unique. More precisely, as illustrated in Appendix A for a one-dimensional
(1D) system, Janak’s theorem implies that [117]

δExc[nγ̂αKS
]

δn(r)

∣∣∣∣
|r|→+∞

≡ vαxc(∞) = 0. (111)

3.1.5 Fundamental gap problem

According to Janak’s theorem, the fundamental gap can be evaluated in PPLB,
in principle exactly, from the HOMO energies as follows,

ENg = IN0 − IN+1
0 = εN+1

N+1 − εNN . (112)

What is truly challenging in practice, in particular in solids [10], is the ex-
traction of this gap from a single N -electron calculation. Indeed, the HOMO
energy εN+1

N+1 of the (N + 1)-electron system has no reason to match the lowest

unoccupied molecular orbital (LUMO) energy εNN+1 of the N -electron system,
simply because the infinitesimal addition of an electron to the latter system
will affect the density [see Eq. (A.10)] and, consequently, the xc potential.
The impact of an electron addition on the xc potential will be scrutinized in
Sec. 3.2, in the context of N -centered eDFT. If we denote

∆N
xc = εN+1

N+1 − εNN+1 (113)

the deviation in energy between the above-mentioned HOMO and LUMO, we
recover the usual expression [106]

ENg = εNN+1 − εNN +∆N
xc, (114)

where ∆N
xc can now be interpreted as the difference in gap between the physical

and KS systems. As readily seen from the key Eq. (61) of N -centered eDFT,
that we take in the regular N -electron ground-state DFT limit (i.e., ξ+ = ξ− =
0), ∆N

xc is indeed a nonzero correction to the KS gap that can be expressed
more explicitly as follows,

∆N
xc =

∂E
(ξ−,0)
xc [nΨN0 ]

∂ξ−

∣∣∣∣∣
ξ−=0

+
∂E

(0,ξ+)
xc [nΨN0 ]

∂ξ+

∣∣∣∣∣
ξ+=0

. (115)

Note that we used in Eq. (115) the in-principle-exact decomposition

E
(ξ−,ξ+)
Hxc [n] = EH[n] + E(ξ−,ξ+)

xc [n], (116)
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where the regular (weight-independent) Hartree functional is employed. The
practical disadvantage of such a decomposition will be extensively discussed
in Sec. 4. We focus here on the exact theory.

In the language of N -centered eDFT, ∆N
xc describes the variation in en-

semble weights (while holding the ensemble density fixed and equal to the
N -electron ground-state density nΨN0 ) of the N -centered ensemble xc energy

due to the infinitesimal removal/addition of an electron from/to theN -electron
system. Evidently, standard (local or semi-local) DFAs do not incorporate such
a weight dependence because they were not designed for N -centered eDFT
calculations (we recall that the concept of N -centered ensemble has been pro-
posed quite recently [83,107,113]). Therefore, when such DFAs are used, the
physical gap is systematically approximated by the (also approximate) KS
one. Note that the resulting underestimation of the fundamental gap is highly
problematic, for example, when computing transport properties [118,119]. The
interpretation that is given in PPLB for ∆N

xc is completely different. The lat-
ter actually originates from the discontinuity that the xc potential (which is
the functional derivative of the xc energy) exhibits when crossing an inte-
ger electron number, hence the name derivative discontinuity. In the language
of PPLB, ∆N

xc is not described at all when (semi-) local xc functionals are
employed, simply because the latter do not incorporate functional derivative
discontinuities. The connection between these two very different interpreta-
tions will be made in Sec. 3.2.

3.1.6 Exchange-only derivative discontinuity

Let us finish the previous discussion with a detailed comment on the use of
(orbital-dependent) exact exchange energies, which is often recommended for
improving the description of fundamental gaps [10]. From the perspective of
N -centered eDFT, using an exact exchange energy (or a fraction of it) is a
way to incorporate weight dependencies into the ensemble exchange density
functional. Indeed, according to Eq. (116), the exact exchange-only derivative
discontinuity can be rewritten as

∆N
x =

∂E
(ξ,ξ)
x [nΨN0 ]

∂ξ

∣∣∣∣∣
ξ=0

=
∂E

(ξ,ξ)
Hx [nΨN0 ]

∂ξ

∣∣∣∣∣
ξ=0

, (117)

or, equivalently,

∆N
x =

∂E
(ξ,ξ)
Hx [nξ,ξ0 ]

∂ξ

∣∣∣∣∣
ξ=0

− ∂E
(ξ,ξ)
Hx [nξ,α0 ]

∂α

∣∣∣∣∣
α=ξ=0

− ∂E
(ξ,ξ)
Hx [nα,ξ0 ]

∂α

∣∣∣∣∣
α=ξ=0

,

(118)
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where we have introduced the double-weight N -centered ensemble KS density

nα,ξ0 (r) := (1− 2α)n
Φ
N,(ξ,ξ)
0

(r) + αn
Φ
N−1,(ξ,ξ)
0

(r) + αn
Φ
N+1,(ξ,ξ)
0

(r), (119)

which reduces to nΨN0 when α = ξ = 0. Thus, we can remove all the contribu-

tions involving the derivative of the ensemble density [see the second line of
Eq. (118)] that are erroneously introduced by the first term on the right-hand
side of Eq. (118)]. We recall that, in the evaluation of ∆N

x , we must differ-
entiate with respect to the weight for a fixed density, as readily seen from
Eq. (117). At first sight, Eq. (118) is uselessly complicated, when compared
with Eq. (117), but it will actually enable us to obtain simpler expressions.
This trick has been introduced in the context of GOK-DFT [91,103]. First
we need to realize that, according to the exact expression of the N -centered
ensemble Hx functional in Eq. (57),

E
(ξ,ξ)
Hx [nξ,α0 ] = (1− 2ξ)

〈
Ŵee

〉
Φ
N,(α,α)
0

+ ξ
〈
Ŵee

〉
Φ
N−1,(α,α)
0

+ ξ
〈
Ŵee

〉
Φ
N+1,(α,α)
0

.
(120)

Moreover, we have

∂E
(ξ,ξ)
Hx [nα,ξ0 ]

∂α
=

∫
dr
δE

(ξ,ξ)
Hx [nα,ξ0 ]

δn(r)

∂nα,ξ0 (r)

∂α
, (121)

where, in the α = ξ = 0 limit, the derivative of the density

∂nα,ξ0 (r)

∂α

∣∣∣∣∣
α=ξ=0

= nΦN+1
0

(r) + nΦN−1
0

(r)− 2nΦN0 (r)

=
∣∣ϕNN+1(r)

∣∣2 − ∣∣ϕNN (r)
∣∣2 (122)

can be evaluated from the regular N -electron KS frontier orbitals. By combin-
ing Eqs. (120)–(122) we finally obtain a simple (orbital-dependent) expression
for the exchange-only derivative discontinuity:

∆N
x =

〈
Ŵee

〉
ΦN+1

0

+
〈
Ŵee

〉
ΦN−1

0

− 2
〈
Ŵee

〉
ΦN0

−
∫
dr
δEHx[nΨ0

]

δn(r)

(∣∣ϕNN+1(r)
∣∣2 − ∣∣ϕNN (r)

∣∣2) . (123)

Adding this correction to the exact KS gap leads to the following approximate
fundamental gap expression,

ENg ≈ εNN+1 − εNN +∆N
x =

〈
Ĥ
〉
ΦN+1

0

+
〈
Ĥ
〉
ΦN−1

0

− 2
〈
Ĥ
〉
ΦN0

+

∫
dr
δEc[nΨ0

]

δn(r)

(∣∣ϕNN+1(r)
∣∣2 − ∣∣ϕNN (r)

∣∣2) ,(124)
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where the physical interacting wave functions have been replaced by the KS
ones, and correlation is introduced only through the correlation potential.

Note that a consistent implementation of Eq. (124) on the basis of Eq. (117)
would in principle require using optimized effective potentials (OEPs) [120,
121]. Indeed, in the present formulation of N -centered eDFT, the KS orbitals
are expected to be generated from a local (i.e., multiplicative) xc potential [see
Eq. (53)], unlike in Hartree–Fock (HF)-based methods where the exchange po-
tential is nonlocal. In practice, we would have to consider a trial local potential
v and determine the corresponding KS orbitals,

{ϕi ≡ ϕi[v]} ←−
(
−1

2
∇2

r + v(r)

)
ϕi(r) = εiϕi(r), (125)

thus ensuring that the KS wave functions in Eq. (120) are eigenfunctions of
a non-interacting Hamiltonian, like in the exact theory. The ensemble energy
would then be minimized with respect to v rather than the orbitals (hence the
name OEP given to the method). Obviously, such a procedure induces a sub-
stantial increase in computational complexity, even though simplifications can
be made in the optimization process [122]. Alternative variational evaluations
of orbital-dependent ensemble exchange energies exist [120]. Their practical
advantages and drawbacks will be discussed in detail in Sec. 4.

3.2 Connection between PPLB and N -centered pictures

Crossing an integer electron number, which is a key concept in PPLB, can be
described in the context of N -centered eDFT by considering so-called left and
right N -centered ensembles [107]. These ensembles are recovered when ξ+ = 0
(electron removal only) and ξ− = 0 (electron addition only), respectively. In
the following, we will use the following shorthand notations,

left N -centered ensemble: (ξ−, 0)
notation≡ ξ−, (126)

right N -centered ensemble: (0, ξ+)
notation≡ ξ+, (127)

for convenience. For example, the right N -centered ensemble Hxc functional

and KS orbital energies will be denoted as E
ξ+
Hxc[n] ≡ E

(0,ξ+)
Hxc [n] and ε

ξ+
i ≡

ε
(0,ξ+)
i , respectively. The exact left and right N -centered ensemble densities

read as [see Eq. (40)]

nξ−(r) ≡
(

1− (N − 1)ξ−
N

)
nΨN0 (r) + ξ−nΨN−1

0
(r), (128)

and

nξ+(r) ≡
(

1− (N + 1)ξ+
N

)
nΨN0 (r) + ξ+nΨN+1

0
(r), (129)
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respectively. Note that, with these notations, we have the following equivalence
relation,

ξ− = 0⇔ ξ+ = 0, (130)

as readily seen from Eqs. (128) and (129). When Eq. (130) is fulfilled, the
system is in its pure N -electron ground state which means, in the language of
PPLB, that it contains exactly the integer number N of electrons.

A clearer connection between the two theories can be established by com-
paring the two limits ξ+ → 0+ (which describes the infinitesimal addition of
an electron to the N -electron system) and ξ+ = 0 (or, equivalently, ξ− = 0).
For that purpose, we first need to realize that, by analogy with PPLB (see
Appendix A for the proof in the simpler 1D case), the exact IP/EA theorems
of N -centered eDFT in Eqs. (67) and (68) can be alternatively written as
follows [113],

AN0 = IN+1
0

ξ+>0
= −εξ+N+1 + vξ+xc (∞) (131)

and

IN0
ξ−≥0

= −εξ−N + vξ−xc (∞), (132)

where we recall that v
ξ±
xc (r) ≡ δE

ξ±
xc [n]/δn(r)

∣∣∣
n=nξ±

. Thus, from the explicit

expression of the LZ shift [see the second term on the right-hand side of
Eq. (62)], we obtain the following exact expressions for the asymptotic val-
ues of the right and left N -centered ensemble xc potentials, respectively:

vξ+xc (∞)
ξ+>0

=

(
ξ+
N
− 1

)
∂E

ξ+
xc [n]

∂ξ+

∣∣∣∣∣
n=nξ+

− 1

N

(
E
ξ+
Hxc[n

ξ+ ]−
∫
dr v

ξ+
Hxc(r)nξ+(r)

) (133)

and

vξ−xc (∞)
ξ−≥0

=

(
ξ−
N

+ 1

)
∂E

ξ−
xc [n]

∂ξ−

∣∣∣∣∣
n=nξ−

− 1

N

(
E
ξ−
Hxc[n

ξ− ]−
∫
dr v

ξ−
Hxc(r)nξ−(r)

)
.

(134)

We recall that the decomposition of Eq. (116) is employed for a direct com-
parison with PPLB. Let us now consider the ξ+ → 0+ and ξ− = 0 limits in
Eqs. (133) and (134), respectively. Since

nξ+→0+(r) = nξ−=0(r) = nΨN0 (r), (135)

v
ξ+→0+

H (r) = v
ξ−=0
H (r), (136)

E
ξ+
Hxc[n

ξ+ ]
∣∣∣
ξ+→0+

= E
ξ−
Hxc[n

ξ− ]
∣∣∣
ξ−=0

= EHxc[nΨN0 ], (137)
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it comes, by subtraction,∫
dr

N

(
vξ+→0+

xc (r)− vξ+=0
xc (r)

)
nΨN0 (r) = v

ξ+→0+

xc (∞)− vξ+=0
xc (∞) +∆N

xc,

(138)

or, equivalently,

∆N
xc =

∫
dr

N

[ (
vξ+→0+

xc (r)− vξ+→0+

xc (∞)
)
−
(
vξ+=0
xc (r)− vξ+=0

xc (∞)
) ]
nΨN0 (r),

(139)

where we used Eq. (115) and the relation v
ξ−=0
xc (r) = v

ξ+=0
xc (r), according to

Eq. (130). Note that, as readily seen from Eq. (139), ∆N
xc is insensitive to con-

stant shifts in the xc potential, as expected from Eq. (114).

The connection that is made explicit in Eq. (139) between the N -centered
ensemble weight derivative∆N

xc of the xc density-functional energy [see Eq. (115)]
and the xc potential is an important result that was highlighted very recently
in Ref. [113]. It proves that weight derivatives and derivative discontinuities
are equivalent, thus extending to charged excitations what was already known
for neutral excitations [105]. Indeed, if we systematically choose (but we do
not have to in the N -centered formalism, unlike in PPLB) the xc potential
that asymptotically goes to zero, i.e.,

vξ±xc (∞)=0, ξ± ≥ 0, (140)

then we recover what looks like a Janak’s theorem [see Eqs. (131) and (132)]
and, according to Eq. (138),∫

dr
(
vξ+→0+

xc (r)− vξ+=0
xc (r)

)
nΨN0 (r) = N∆N

xc 6= 0. (141)

It then becomes clear that, in the region of the system under study (i.e., where
the density nΨN0 (r) is nonzero), the xc potentials obtained in the ξ+ → 0+ and
ξ+ = 0 limits, respectively, cannot match. In order to fulfill the arbitrary
constraint of Eq. (140), while still reproducing for ξ+ > 0 the correct density
in all regions of space [which includes a proper description of the density’s
asymptotic behavior (see Appendix A)], the xc potential must be shifted in
the region the system, thus ensuring that the ground-state density nΨN0 (r) is
also correctly reproduced in that region. This has been nicely illustrated in
Ref. [113] for an atom in 1D. Thus, we recover a well-known result of PPLB:
When an electron is infinitesimally added (i.e., ξ+ → 0+) to a system with an
integer number of electrons (ξ+ = 0 case), the xc potential exhibits a jump (in
the region of the system) which, according to Eqs. (114) and (141), corresponds
exactly to the deviation in fundamental gap of the true system from the KS
one.
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3.3 Suppression of the derivative discontinuity

The fundamental gap expression of Eq. (61), which has been derived within
the N -centered eDFT formalism, may intrigue PPLB practitioners. Indeed, it
makes it possible to describe charged excitations, in principle exactly, with-
out invoking explicitly the concept of derivative discontinuity. Instead, all our
attention should be focused on the weight dependence of the N -centered en-
semble xc density functional. Note that, despite this major difference between
N -centered eDFT and PPLB, the xc potential exhibits derivative discontinu-
ities in both theories, as we have seen in Sec. 3.2. One may argue that model-
ing weight dependencies in ensemble xc density functionals is actually easier
than modeling functional derivative discontinuities. Nevertheless, as discussed
in further detail in Secs. 4 and 5, designing weight-dependent exchange and
correlation DFAs from first principles raises several fundamental questions to
which, up to now, no definitive answers have been given.

From a conceptual point of view, the fact that we do not need anymore
to put efforts into the explicit description of derivative discontinuities, once
we have moved from the standard PPLB picture to the N -centered one, can
be interpreted as follows. Unlike in PPLB, the constraint in Eq. (140) is arbi-
trary because the KS potential remains unique up to a constant when charged
excitations occur in N -centered eDFT, by construction. If, for simplicity, we

keep this constraint for ξ+ = 0, i.e., we set ṽ
ξ+=0
xc (r) ≡ v

ξ+=0
xc (r) so that

ṽ
ξ+=0
xc (∞) = 0, which is likely to be fulfilled in a practical N -electron DFT

calculation, it can be relaxed as follows, when ξ+ → 0+,

vξ+→0+

xc (r)→ ṽξ+→0+

xc (r) = vξ+→0+

xc (r)−∆N
xc, (142)

thus leading to ṽ
ξ+→0+

xc (∞) = −∆N
xc. We stress that ṽ

ξ+
xc is as exact as v

ξ+
xc .

However, according to Eq. (139), which also holds for the new (shifted) po-

tential ṽ
ξ+
xc (r), the relation in Eq. (141) now reads as∫

dr
(
ṽξ+→0+

xc (r)− ṽξ+=0
xc (r)

)
nΨN0 (r) = 0. (143)

In other words, via the shifting procedure of Eq. (142), we can simply move the
derivative discontinuity away from the system, i.e., in regions where the den-
sity is essentially equal to zero. Consequently, with this change of paradigm,
the absence of derivative discontinuities in standard semi-local DFAs should
not be considered as an issue anymore. The ability of the local density approxi-
mation (LDA) to reproduce relatively accurate LZ-shifted KS orbital energies,
as shown in a 1D atomic model [113], is actually encouraging since the lat-
ter are central in the evaluation of both the IP and the EA [see Eqs. (69)
and (70)]. On the other hand, the resulting charged excitation energies are
rather poor because weight dependencies are completely absent from stan-
dard LDA [113]. We hope that, in the near future, (much) more efforts will
be put into the design of weight-dependent DFAs. Recent developments based
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on uniform electron gas models [91,79] are a first and important step in this
direction.

4 The exact Hartree-exchange dilemma in eDFT

We have shown in Sec. 3 that the infamous derivative discontinuity prob-
lem, which appears in DFT when describing electronic excitations, can be
bypassed, in principle exactly, via a proper modeling of the ensemble weight
dependence in the xc density functional. We focus in this section on the de-
sign of weight-dependent exchange DFAs. Despite several (scarce though) at-
tempts [100,123,124,79], it is still unclear how weight dependencies can be
introduced into standard (semi-) local exchange functionals in a general and
systematically improvable way. The use of orbital-dependent exchange func-
tionals seems much more promising in this respect [71,91,120].

Combining (a fraction of) orbital-dependent HF-like exchange energies
with semi-local DFAs has been a key ingredient in the success of regular
ground-state DFT in chemistry. This procedure finds its rigorous foundation
in the generalized KS theory of Seidl et al. [125]. As we will see in the fol-
lowing, its extension to ensembles is nontrivial because different formulations
that have pros and cons are possible. The resulting dilemma is nicely sum-
marized by the title “Ensemble generalized Kohn–Sham theory: The good, the
bad, and the ugly” of a recent paper by Gould and Kronik [120]. Their discus-
sion of the current situation will serve as a guideline for this section. Following
Lieb [66], we will show how an in-principle-exact (OEP-free) hybrid eDFT ap-
proach can be derived simply by exploiting the concavity (in potential) of the
state-averaged HF energy. For simplicity, we will focus on GOK ensembles but
the discussion applies to other eDFTs like, for example, PPLB or N -centered
eDFT (see Sec. 3).

4.1 Extending the Hartree–Fock method to ensembles

The reason why extending generalized KS-DFT [125] to ensembles leads to
a dilemma has actually nothing to do with DFT. It is more a wave function
theory problem that arises at the HF level of approximation. Therefore, for
clarity, we will first discuss the extension of HF theory to ensembles.

4.1.1 Ensemble density matrix functional approach

We start with a brief review of the procedure that is usually followed by DFT
practitioners for extending HF to (GOK in the present case) ensembles. In the
regular scheme, the ensemble HF energy is evaluated variationally by inserting
the ensemble (spin-summed one-electron reduced) density matrix (eDM) into
the ground-state DM-functional HF energy. For that reason, we refer to the
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approach as eDMHF. The corresponding potential-functional ensemble energy
can be expressed as follows,

Ew
eDMHF[v] ≡ min

{ΦI}

{∑
I

wI 〈ΦI |T̂ + V̂ |ΦI〉+ EHx

[∑
I

wID
ΦI

]}
, (144)

where V̂ =
∫
dr v(r)n̂(r) is a local potential operator (in practice it would

correspond to the nuclear potential). The eDM is evaluated from the trial
orthonormal set {ΦI} of single-configuration wave functions (i.e., Slater deter-
minants or configuration state functions). In an arbitrary orthonormal orbital
basis {ϕp}, the eDM reads in second quantization as

∑
I

wID
ΦI ≡

{∑
I

wID
ΦI
pq

}
=

∑
I

wI
∑
τ=↑,↓

〈
â†pτ âqτ

〉
ΦI

 . (145)

In this context, the ensemble Hx energy is evaluated as follows,

EHx

[∑
I

wID
ΦI

]
≡WHF

[∑
I

wIγ
ΦI

]
, (146)

where the ground-state HF interaction functional reads as

WHF [γ] =
1

2

∫
dr

∫
dr′

γ(r, r)γ(r′, r′)− 1
2γ

2(r, r′)

|r− r′| , (147)

and

γΦI (r, r′) =
∑
pq

ϕp(r)ϕq(r
′)DΦI

pq . (148)

As shown in Appendix B, the orbitals
{
ϕw
p

}
, from which the minimizing wave

functions
{
Φ
w

I

}
in Eq. (144) are constructed, fulfill the following stationarity

condition: (
θwp − θwq

)
fwqp = 0. (149)

The (possibly fractional) occupation number θwp of the orbital ϕw
p within the

ensemble is determined from the ensemble weights and the (fixed) integer
occupation numbers nIp of ϕw

p in each Φ
w

I as follows,

θwp =
∑
I

wIn
I
p. (150)

The ensemble Fock matrix elements fwrs ≡ frs(Dw) in Eq. (149) are functionals
of the eDM Dw ≡ {Dw

nl = δnlθ
w
l }:

frs(D) = hrs +
∑
nl

(
〈rn|sl〉 − 1

2
〈rn|ls〉

)
Dnl, (151)
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where hrs ≡ 〈ϕw
r |ĥ|ϕw

s 〉 [with ĥ ≡ − 1
2∇2

r + v(r)] and

〈rn|sl〉 ≡
∫
dr

∫
dr′ϕw

r (r)ϕw
n (r′)ϕw

s (r)ϕw
l (r′)/|r− r′| (152)

are regular one- and two-electron integrals, respectively.

By analogy with the complete active space SCF (CASSCF) method [126],
we can distinguish the doubly occupied (so-called inactive) ϕw

i , ϕ
w
j orbitals

from the partially occupied (so-called active) ϕw
u , ϕ

w
v and unoccupied (virtual)

ϕw
a , ϕ

w
b ones. Thus, the stationarity condition of Eq. (149) can be detailed as

follows:

fwai = fwau = fwiu = 0 (153)

and

(θwu − θwv )fwuv = 0. (154)

Since θwi = θwj = 2 and θwa = θwb = 0, there is no specific condition for the
inactive-inactive and virtual-virtual blocks of the Fock matrix, like in a regular
ground-state HF calculation. Therefore, we can freely rotate the orbitals within
the inactive and virtual orbital subspaces. As readily seen from Eq. (154), this
statement holds also for active orbital subspaces in which the orbitals have the
same fractional occupation (θwu = θwv ). However, if θwu 6= θwv , then fwuv = 0. In
conclusion, an optimal set of orbitals can be determined by diagonalizing the
ensemble Fock matrix, i.e., by solving the (self-consistent) eigenvalue equation

f̂wϕw
p (r) = εwp ϕ

w
p (r). (155)

The fact that standard SCF routines can be trivially recycled in this context
is the main reason why ensemble HF and, more generally, hybrid eDFT calcu-
lations are performed this way. However, as discussed further in the following,
the eDMHF energy is unphysical in many ways. For example, by construction,
it varies quadratically with the ensemble weights [see Eqs. (146) and (147)]
while the true physical ensemble energy is expected to vary linearly.

4.1.2 Ghost interaction errors

The most severe issue with the eDMHF energy expression of Eq. (144) is that it
incorporates unphysical interactions between the states of the ensemble. These
are known as ghost interactions (GIs) [127]. The error, which is inherent to
the eDMHF method, simply originates from the fact that, at the HF level of
approximation, the ground-state interaction energy is a quadratic functional
of the density matrix. More explicitly, we have

WHF

[∑
I

wIγ
ΦI

]
=

1

2

∑
IJ

wIwJ

∫
dr

∫
dr′

1

|r− r′|

×
(
γΦI (r, r)γΦJ (r′, r′)− 1

2
γΦI (r, r′)γΦJ (r, r′)

)
,

(156)
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where, as readily seen, GI terms arise from all “I 6= J” pairs. Even though
GI corrections can be applied on top of the converged eDMHF energies [91,
128], the procedure is not variational, thus making the evaluation of energy
derivatives (and therefore, according to Eq. (9), of excited-state properties)
less straightforward. Let us stress that, in the original formulation of GOK-
DFT [82], the ensemble Hartree energy, which is evaluated from the standard
(ground-state) Hartree functional [see Eq. (20)], includes GI errors [see the
first term on the right-hand side of Eq. (156)]. In the exact theory, the latter
are supposed to be removed by the weight-dependent ensemble exchange func-
tional. It is not necessarily the case in practice when, for example, standard
(weight-independent) local or semi-local DFAs are employed [128,97].

For wave function theory practitioners, using eDMHF with ad hoc GI cor-
rections would probably seem uselessly complicated. Indeed, substituting the
(GI-free) weighted sum of individual (single-configuration) interaction ener-
gies, which are evaluated from the individual density matrices, for the HF
interaction eDM functional of Eq. (144) looks, at least at first sight, like a
simple and straightforward solution to the problem:

EHx

[∑
I

wID
ΦI

]
→
∑
I

wI

〈
Ŵee

〉
ΦI
→
∑
I

wIEIHx

[
DΦI

]
=
∑
I

wI
(
EH[nΦI ] + EIx

[
DΦI

])
.

(157)

Note that, in Eq. (157), we assumed that individual interaction energies can
be written as functionals of the individual (one-electron reduced) density ma-
trices, for simplicity. The variational evaluation of state-averaged interaction
energies is discussed in detail in Sec. 4.1.3 on that basis. Such a simplifica-
tion is always valid for single Slater determinants. For more general multide-
terminant (single configuration though) wave functions, the simplification in
Eq. (157) might be used as an (additional) approximation. Alternatively, one
may evaluate exactly multideterminant interaction energies from the individ-
ual two-electron reduced density matrices, by analogy with the state-averaged
CASSCF (SA-CASSCF) method [126]. The latter approach is not described
further in the present review. Both (approximate anyway) strategies lead ul-
timately to an in-principle-exact eDFT, once a proper complementary corre-
lation ensemble density functional has been introduced (see Sec. 4.4).

As discussed in the next section, the reason why the state-averaging of
interaction energies is not as popular as one would expect is that, as we switch
from eDMHF to the state-averaged energy paradigm, the orbital optimization
cannot be performed anymore with standard SCF routines. An additional im-
plementation work is needed in this case [71]. We stress that this statement
holds even when individual one-electron reduced density matrix-functional in-
teraction energies are employed [see Eq. (157)], as assumed in the rest of the
review.
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4.1.3 State-averaged Hartree–Fock approach

The paradigm on the right-hand side of Eq. (157) can be seen as an adapta-
tion of the SA-CASSCF method [126] to single-configuration wave functions.
While, in SA-CASSCF, (correlated) multiconfigurational wave functions are
employed, we simply restrict, in the present case, the energy minimization to
sets of (uncorrelated) single-configuration wave functions. The resulting (GI-
free) total ensemble energy, which is obtained from the eDMHF energy ex-
pression and the substitution in Eq. (157), will be referred to as state-averaged
HF (SAHF) energy in the following. It reads as follows,

Ew
SAHF[v] ≡ min

{ΦI}

{∑
I

wI 〈ΦI |T̂ + Ŵee + V̂ |ΦI〉
}

= min
{ΦI}

{∑
I

wI

(
〈ΦI |T̂ |ΦI〉+ EH[nΦI ] + EIx

[
DΦI

]
+

∫
dr v(r)nΦI (r)

)}
,

(158)

where, as already mentioned after Eq. (157), we assume for simplicity that in-
teraction energies can be evaluated from the individual (one-electron reduced)

density matrices. Let us denote
{
Φ̃w
I

}
(with a tilde symbol) the minimizing

single-configuration wave functions so that they can be clearly distinguished
from the eDMHF ones. As further discussed in Appendix C, these minimizing
SAHF wave functions are all constructed from the same set of orthonormal
molecular orbitals which can be optimized variationally through orbital rota-
tions. The minimizing orbitals

{
ϕ̃w
p

}
fulfill the following stationarity condi-

tions [see Appendix C],

(
θwp − θwq

) 〈
ϕ̃w
p

∣∣ĥ∣∣ϕ̃w
q

〉
+
∑
I

wI
(
nIp − nIq

) 〈
ϕ̃w
p

∣∣v̂wHx,I

∣∣ϕ̃w
q

〉
= 0, (159)

where the individual (non-local) density-matrix-functional Hx operators read
as

v̂wHx,I = v̂H[nΦ̃w
I

] + v̂Ix

[
DΦ̃w

I

]
, (160)

v̂H[n] ≡ vH[n](r)× = δEH[n]/δn(r)× being the standard local (multiplicative)
density-functional Hartree potential operator and

〈ϕr|v̂Ix[D]|ϕs〉 ≡
∂EIx [D]

∂Drs
. (161)

The major difference between SAHF and eDMHF lies in the fact that, as
we now employ individual density matrices separately in the evaluation of
the ensemble Hx energy [see Eq. (157)], differentiating with respect to any
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variational orbital rotation parameter κpq generates individual Hx potentials,

∂

∂κpq

(
EHx

[∑
I

wID
ΦI

])
=
∑
rs

(∑
I

wI
∂DΦI

rs

∂κpq

)
∂EHx[D]

∂Drs

∣∣∣∣
D=

∑
I wID

ΦI

−→ ∂

∂κpq

(∑
I

wIEIHx

[
DΦI

])
=
∑
rs

∑
I

wI
∂DΦI

rs

∂κpq

∂EIHx[D]

∂Drs

∣∣∣∣
D=DΦI

.

(162)

In eDMHF, the same (ensemble) Hx operator is systematically recovered by
differentiation [see the left-hand side of Eq. (162)] and, from the stationarity
condition and the definition in Eq. (150) of the fractional orbital occupation
numbers, a unique to-be-diagonalized Fock operator can be extracted. This
does not happen in SAHF, as readily seen from the second term on the left-
hand side of Eq. (159) or, equivalently, on the right-hand side of Eq. (162).
Still we can introduce an orbital-dependent ensemble Fock operator [71,120,
75],

F̂w
p := ĥ+

1

θwp

∑
I

wIn
I
p v̂

w
Hx,I , (163)

so that the stationarity condition of Eq. (159) can be rewritten as follows,

θwp
〈
ϕ̃w
p

∣∣F̂w
p

∣∣ϕ̃w
q

〉
− θwq

〈
ϕ̃w
p

∣∣F̂w
q

∣∣ϕ̃w
q

〉
= 0. (164)

Let us stress that, unlike in GOK-DFT (see Sec. 2.1.2) or eDMHF, the min-
imizing orbitals are a priori not eigenfunctions of their associated Fock op-
erator. Indeed, if we consider two fractionally occupied orbitals ϕ̃w

u and ϕ̃w
v ,

and assume that 〈ϕ̃w
u |F̂w

u |ϕ̃w
v 〉 = 0, Eq. (164) would immediately imply that

〈ϕ̃w
u |F̂w

v |ϕ̃w
v 〉 = 0, which is unlikely due to the orbital dependence of the Fock

operator [see Eq. (163)]. As a result, the self-consistent SAHF equations will
have the following general structure,

θwp F̂w
p ϕ̃

w
p (r) =

∑
q

ε̃wqp ϕ̃
w
q (r), (165)

or, more explicitly [see Eq. (163)],(
−1

2
∇2

r + v(r) +
1

θwp

∑
I

wIn
I
p v̂

w
Hx,I

)
ϕ̃w
p (r) =

1

θwp

∑
q

ε̃wqp ϕ̃
w
q (r), (166)

where off-diagonal one-electron energy couplings
{
ε̃wqp
}
p 6=q cannot be removed.

In practice, Eq. (165) can be solved with the coupling operator technique [129,
75] which consists in diagonalizing repeatedly (θwp F̂w

p −θwq F̂w
q )/(θwp −θwq ) until

convergence is reached. In the latter case, the matrix ε̃w ≡
{
ε̃wqp
}

becomes
hermitian, as a consequence of Eqs. (164) and (165), and the hermiticity of
the Fock operators:

ε̃wqp =
〈
ϕ̃w
q

∣∣θwp F̂w
p

∣∣ϕ̃w
p

〉
=
〈
ϕ̃w
p

∣∣θwp F̂w
p

∣∣ϕ̃w
q

〉
=
〈
ϕ̃w
p

∣∣θwq F̂w
q

∣∣ϕ̃w
q

〉
= ε̃wpq.(167)
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4.1.4 eDMHF versus SAHF

Let us summarize what we have learned from the previous subsections. While
the orbital optimization in eDMHF is relatively straightforward, because stan-
dard SCF routines can be recycled in this context, it is more involved in
SAHF because no to-be-diagonalized Fock operator emerges from the sta-
tionarity condition. On the other hand, the commonly used eDMHF energy
expression suffers from severe GI errors, while SAHF is completely GI-free.
The latter point is probably the strongest argument for promoting SAHF over
eDMHF. Note that both schemes would be good starting points for turn-
ing the recently formulated ensemble reduced density matrix functional theory
(w-RDMFT) [130] into a practical method for the computation of low-lying
excited states. In the following, we will show how eDMHF and SAHF can be
merged rigorously with eDFT.

4.2 Concavity of approximate energies and Lieb maximization

In order to derive in-principle-exact hybrid eDFT schemes, where (a fraction
of) orbital-dependent exchange energies are combined with ensemble density
functionals, we need to “exactify” the eDMHF and SAHF approximations re-
viewed previously. In a DFT perspective, an approximation becomes exact
when it reproduces the exact density of the system under study. This is how
KS-DFT transforms an approximate non-interacting problem into an exact
one. In the present case, we want to extend the Hohenberg–Kohn theorem
to the more advanced eDMHF and SAHF approximations. For that purpose,
convex analysis [66,131,132] turns out to be a powerful mathematical tool be-
cause, as we will see, it allows for the derivation of several exact eDFTs within
the same (unified) formalism.

For the sake of generality, we will express the various approximate ensemble
energies discussed previously as follows,

E w
approx.[v] = min

κ

{
Fw

approx.(κ) +

∫
dr v(r)nw(κ, r)

}
, (168)

where κ denotes the collection of variational parameters (in the present case,
the latter will be orbital rotation parameters). Each approximation (non-
interacting (KS), eDMHF, or SAHF) is characterized by a specific potential-
independent function of κ:

Fw
approx.(κ)

KS≡
∑
I

wI

〈
T̂
〉
ΦI(κ)

, (169)

Fw
approx.(κ)

eDMHF≡
∑
I

wI

〈
T̂
〉
ΦI(κ)

+ EHx

[∑
I

wID
ΦI(κ)

]
, (170)

Fw
approx.(κ)

SAHF≡
∑
I

wI

[〈
T̂
〉
ΦI(κ)

+ EH[nΦI(κ)] + EIx
[
DΦI(κ)

]]
,(171)
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where single-configuration ground- and excited-state wave functions {ΦI(κ)}
are employed. The potential-dependent contribution to the energy expression
of Eq. (168) is determined from the ensemble density nw(κ, r) =

∑
I wInΦI(κ)(r).

From a mathematical point of view, the fact that the approximate ensemble
energies are evaluated variationally has important implications. Even though
they are approximate, these energies still share a fundamental property with
the exact ensemble energy, namely the concavity with respect to the local
potential v. Indeed, for two potentials va and vb, α in the range 0 ≤ α ≤ 1,
and any set κ of variational parameters, we have

Fw
approx.(κ) +

∫
dr ((1− α)va(r) + αvb(r))nw(κ, r)

= (1− α)

[
Fw

approx.(κ) +

∫
dr va(r)nw(κ, r)

]
+ α

[
Fw

approx.(κ) +

∫
dr vb(r)nw(κ, r)

]
≥ (1− α)E w

approx.[va] + αE w
approx.[vb],

(172)

thus leading to

E w
approx.[(1− α)va + αvb] ≥ (1− α)E w

approx.[va] + αE w
approx.[vb]. (173)

Following Lieb [66], we can now construct (thanks to this concavity property)
an approximation to the universal GOK density functional as follows,

Fw[n] ≈ Fw
approx.[n] = max

v

{
E w
approx.[v]−

∫
dr v(r)n(r)

}
, (174)

where we assume, for simplicity, that a maximum is reached. An even more
rigorous definition (from a mathematical point of view [66]) would actually
be obtained by using a “sup” instead of a “max” [and a “inf” instead of a
“min”, in Eq. (168)]. The maximizing potential vwapprox.[n] in Eq. (174) fulfills
the following stationarity condition:

δE w
approx.[v]

δv(r)

∣∣∣∣
v=vwapprox.[n]

= n(r). (175)

We conclude from the Hellmann–Feynman theorem that, when the approxi-
mate ensemble energy of Eq. (168) is calculated with v = vwapprox.[n], the min-
imizing single-configuration wave functions (which are determined from the
minimizing κ) reproduce the desired ensemble density n. Thus, we automati-
cally extend the Hohenberg–Kohn theorem to eDMHF and SAHF ensembles.
If we choose for n the true physical ensemble density of a given system, both
approximations become exact density wise, because they reproduce the correct
density. Exact ensemble energies can then be recovered from the approximate
ensembles once a complementary ensemble (x)c density functional has been
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introduced. This final step will be discussed in Sec. 4.4

Let us finally focus on the OEP- and GI-free SAHF approximation. The
corresponding universal density functional reads more explicitly as [see Eqs. (168),
(171), and (174)]

Fw
SAHF[n] = E w

SAHF[vwSAHF[n]]−
∫
dr vwSAHF[n](r)n(r)

≡
∑
I

wI

〈
Φ̃w
I [n]

∣∣∣T̂ + Ŵee

∣∣∣Φ̃w
I [n]

〉
,

(176)

where vwSAHF[n] denotes the stationary (maximizing) density-functional poten-
tial of Eq. (175) in the particular case of the SAHF approximation. By analogy
with the constrained-search formalism of Levy [92], the SAHF functional can
be rewritten as follows,

Fw
SAHF[n] = min

{ΦI}
w→n

{∑
I

wI 〈ΦI |T̂ + Ŵee|ΦI〉
}
, (177)

where the density constraint {ΦI} w→ n imposed on the single-configuration
wave functions {ΦI} reads as

∑
I wInΦI (r) = n(r). Note that, as illustrated in

Sec. 4.3, some densities may not be v-representable by a single SAHF ensemble.
In this case, a more general Levy–Lieb-like [66] functional, where an ensemble
of ensembles is considered, should be employed:

Fw
SAHF[n] = min{{

Φ
(i)
I

}
,α(i)

}
w→n

∑
i

α(i)

{∑
I

wI

〈
Φ
(i)
I

∣∣∣T̂ + Ŵee

∣∣∣Φ(i)
I

〉}
, (178)

where the density constraint reads as

∑
i

α(i)

(∑
I

wInΦ(i)
I

(r)

)
=
∑
I

wI

(∑
i

α(i)n
Φ

(i)
I

(r)

)
= n(r), (179)

with ∑
i

α(i) = 1. (180)

We stress that, in the above more general definition, the additional ensemble
weights

{
α(i)

}
are not given, unlike the GOK ensemble weights w. They are

determined from the density constraint of Eq. (179). An interesting feature of
the constrained-search formalism is that it applies to densities that might be
ensemble N -representable but not SAHF v-representable, i.e., densities that
cannot be generated from a given potential v according to Eq. (168). For
clarity, we will use in Sec. 4.4 the simpler density functional expression of
Eq. (177) [rather than the one in Eq. (178)].
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4.3 Insights from the Hubbard dimer model

In order to compare SAHF with eDMHF, both methods are applied in this
section to the (two-electron) Hubbard dimer model [84,85,96]. Despite its
simplicity, it is nontrivial and has become in recent years the model of choice
for analyzing and understanding failures of DFT or TD-DFT, but also for
exploring new concepts [133,134,135,99,101,136]. In this model, the ab initio
Hamiltonian is simplified as follows,

T̂ → T̂ = −t
∑
τ=↑↓

(ĉ†0τ ĉ1τ + ĉ†1τ ĉ0τ ), Ŵee → Û = U

1∑
i=0

n̂i↑n̂i↓,

V̂ → ∆v(n̂1 − n̂0)/2, n̂iτ = ĉ†iτ ĉiτ , (181)

where operators are written in second quantization and n̂i =
∑
τ=↑↓ n̂iτ is the

density operator on site i (i = 0, 1). Note that the local potential reduces to
a single number ∆v which controls the asymmetry of the dimer. The density
also reduces to a single number n = n0, which is the occupation of site 0, given
that n1 = 2− n.

We consider in the following a two-electron singlet biensemble consisting
of the ground state and the singly-excited state.

4.3.1 SAHF and eDMHF energy expressions

In (restricted) SAHF theory, both ground- and excited-state wave functions
are approximated by configuration state functions. Following this view, trial
singlet ground-state Φ0 and first excited-state Φ1 wave functions of the two-
electron Hubbard dimer read as follows, in second quantization,

|Φ0〉 =
∣∣σ2

0

〉
≡ ĉ†σ0↑ĉ

†
σ0↓ |vac〉 (182)

and

|Φ1〉 = |σ0σ1〉 ≡
1√
2

(
ĉ†σ1↑ĉ

†
σ0↓ − ĉ

†
σ1↓ĉ

†
σ0↑

)
|vac〉 , (183)

respectively, where σ0 and σ1 stand for the molecular orbitals (MOs) written
in the basis of the orthonormal local atomic orbitals (AOs) a and b. In this

context, the latter simply correspond to site 0 (ĉ†aτ ≡ ĉ†0τ ) and 1 (ĉ†bτ ≡ ĉ†1τ ),
respectively. Bonding σ0 and anti-bonding σ1 MOs can be determined through
orbital rotation as follows,

σ0 = a cos (α) + b sin (α) ,

σ1 = −a sin (α) + b cos (α) ,
(184)
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where the angle α is the sole variational parameter in the model. In SAHF,
the energy that must be minimized, for a fixed ensemble weight w in the range
0 ≤ w ≤ 1/2, is constructed as follows,

Ew
SAHF ≡ (1− w)

〈
Ĥ
〉
Φ0

+ w
〈
Ĥ
〉
Φ1

, (185)

where 〈
Ĥ
〉
Φ0

= 2hσ0σ0
+ Jσ0σ0

(186)

and 〈
Ĥ
〉
Φ1

= hσ0σ0 + hσ1σ1 + Jσ0σ1 +Kσ0σ1 . (187)

We use standard notations for Coulomb and exchange two-electron integrals,

Jij = (ii, jj) = 〈ij|ij〉 , (188)

Kij = (ij, ji) = 〈ij|ji〉 , (189)

both expressed in the MO basis {σ0, σ1} of Eq. (184). At this point, let us
stress that the SAHF energy substantially differs from that of a (truncated)
configuration interaction calculation. Indeed, in the present case, the weight w
is fixed. Moreover, the configurations Φ0 and Φ1 are never coupled explicitly,
whether the dimer is symmetric or not. They are just mixed through the
ensemble formalism. Note that, in the symmetric ∆v = 0 case, symmetry can
in principle be artificially broken, like in (spin) unrestricted calculations. This
feature will be discussed in further detail in the next section. For convenience,
we denote

θ =
π

4
− α, (190)

so that the symmetric solution corresponds to θ = 0. Consequently, the SAHF
energy expression of Eq. (185) reduces to

Ew
SAHF(∆v, θ) = −(1− w) [2t cos(2θ) +∆v sin(2θ)]

+
U

4
[3− w + (3w− 1) cos(4θ)] .

(191)

As readily seen from the above expression, the SAHF energy is π-periodic,
which means that it is sufficient to vary θ in the range −π2 ≤ θ ≤ π

2 .

Similarly, from the general expression in Eq. (144), we obtain the following
analytical expression for the eDMHF energy:

Ew
eDMHF(∆v, θ) = −(1− w) [2t cos(2θ) +∆v sin(2θ)]

+
U

4

[
w2 − 2w + 3− (1− w)2 cos(4θ)

]
.

(192)
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Note that, according to Eq. (184), the ensemble density (on site 0) varies
with the trial angle θ as follows,

nw(θ) ≡ (1− w)
∑
τ=↑↓

〈
ĉ†0τ ĉ0τ

〉
Φ0

+ w
∑
τ=↑↓

〈
ĉ†0τ ĉ0τ

〉
Φ1

= 1 + (1− w) sin(2θ).

(193)

4.3.2 Symmetric case

Let us concentrate on the symmetric dimer, for which ∆v = 0. In this case,
the dimer is a prototype for the H2 molecule. If we denote

ρ(θ) = cos(2θ) = 2 cos2 θ − 1, (194)

then the SAHF energy reads as

Ew
SAHF(∆v = 0, θ) ≡ Ew

SAHF(θ) = EwSAHF(ρ(θ)), (195)

where

EwSAHF(ρ) =
U

2
(3w− 1)ρ2 − 2t(1− w)ρ+ U(1− w). (196)

By taking its first derivative with respect to θ, we obtain the following sta-
tionarity condition,

dEw
SAHF(θ)

dθ
= −2 sin(2θ) [(U(3w− 1)ρ(θ)− 2t(1− w)] = 0. (197)

Therefore, θ = 0 is systematically an extremum where the traditional in-phase
and out-of-phase linear combinations for σ0 and σ1 are recovered. The nature
(maximum or minimum) of this stationary point, which is discussed in the
following, emerges from a straightforward evaluation of the energy curvature:

d2Ew
SAHF(θ)

dθ2

∣∣∣∣
θ=0

= −4[U(3w− 1)− 2t(1− w)]. (198)

Remembering that |ρ(θ)| ≤ 1, the stationarity condition of Eq. (197) is also
fulfilled for two additional (opposite) θ values given by

ρ(θ) = ρ0 ≡
2t(1− w)

U(3w− 1)
, (199)

as long as

|ρ0| 6 1. (200)

Note that, with this notation, the successive energy derivatives can be ex-
pressed as follows,

dEw
SAHF(θ)

dθ
= −4t(1− w) sin(2θ)

[
ρ(θ)

ρ0
− 1

]
(201)
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and

d2Ew
SAHF(θ)

dθ2

∣∣∣∣
θ=0

= −8t(1− w)

[
1

ρ0
− 1

]
. (202)

The symmetric solution θ = 0 will not be the absolute minimum anymore
when the above curvature becomes strictly negative, which implies 1/ρ0 > 1,
as readily seen from Eq. (202). Obviously, this constraint can only be fulfilled
if w > 1/3, since 1/ρ0 must be strictly positive. This is a necessary but not
sufficient condition. More precisely, for weights in the range 1/3 < w ≤ 1/2,
electron correlation should be strong enough such that ρ0 < 1 or, equivalently,

U

t
>

2(1− w)

3w− 1
. (203)

Interestingly, if we introduce effective weight-dependent hopping t̃ = t(1− w)
and on-site interaction Ũ = U(3w− 1) parameters, the condition in Eq. (203)
can be rewritten as

2t̃

Ũ
< 1, (204)

which resembles the usual definition of moderate (up to strong) electron corre-
lation in lattices. Actually, in the commonly used equiensemble case (w = 1/2),
the effective ratio matches the physical one 2t/U .

Finally, when w ≤ 1/3, the SAHF energy becomes convex at θ = 0 and,
since it can have two additional (say θ+ > 0 and θ− = −θ+) stationary points
at most in the range −π/2 ≤ θ ≤ π/2 [see Eqs. (194) and (201)], the symmetric
solution has to be the absolute minimum. The different possible scenarios are
summarized in Table 1. Note that a connection can be made with the (spin)

Table 1 θ values minimizing the SAHF energy of the symmetric Hubbard dimer. See text
for further details.

w 6 1/3 w > 1/3
|ρ0| > 1 θ = 0 θ = 0
|ρ0| 6 1 θ = 0 θ 6= 0

unrestricted energy of a symmetric dimer (e.g., the H2 molecule in the mini-
mal basis) [137]. For sufficiently large bond distances, the restricted solution
becomes a saddle point and two unrestricted lower-in-energy solutions emerge.
Accordingly, the constraint in Eq. (203) is compatible with a reduction of the
t value featuring an increasing bond length. Still, even in the strictly corre-
lated t→ 0 limit, θ = 0 remains the global minimum for weights in the range
0 ≤ w ≤ 1/3.
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In order to illustate the above discussion, trial SAHF energies are plotted
as functions of the rotation angle θ in the top panel of Fig. 1 for the strongly
correlated U/t = 3.5 dimer and various biensemble weight values. As expected,
the symmetric θ = 0 solution gives systematically the lowest ensemble energy
as long as w ≤ 1/3. When w > 1/3, two scenarios can be observed. For example,
when w = 0.35, which gives 2(1 − w)/(3w − 1) = 26 � U/t, the dimer is not
strongly correlated enough to break the symmetry and θ = 0 is still the global
minimum. However, for the larger w = 0.475 weight value [2(1− w)/(3w− 1) =
2.47 < U/t in this case] or in the commonly used equiensemble case [w = 0.5
and 2(1 − w)/(3w − 1) = 2 < U/t], the energy has the expected double-well
shape, thus leading to two degenerate (non-zero) minima, both corresponding
to asymmetric solutions. Interestingly, in such situations, the popular eDMHF
approach always favors the symmetric solution, as shown in the bottom panel
of Fig. 1.

4.3.3 Single SAHF ensemble v-representability issue

We show in Fig. 2 the potential-ensemble-density maps

∆v → nw(θmin(∆v)) (205)

generated from Eq. (193) and

θmin(∆v) = arg min
θ

{
Ew

approx.(∆v, θ)
}
, (206)

at both eDMHF and SAHF levels of approximation for the fixed U/t = 3.5
interaction strength value. Various scenarios are illustrated, in particular those
where broken symmetry SAHF solutions are obtained when the dimer is sym-
metric (see Sec. 4.3.2). As we will see, what happens in the symmetric case
can play a crucial role in the density-functional description of the asymmetric
dimer. In cases where w ≤ 1/3, or w > 1/3 and 2(1 − w)/(3w − 1) > U/t,
both approximations give smooth density profiles. We note in passing the
one-to-one correspondence between potentials and ensemble densities, as ex-
pected from the concavity of the eDMHF and SAHF energies (see Sec. 4.2).
However, when w > 1/3 and 2(1 − w)/(3w − 1) < U/t, the SAHF density
profile exhibits a discontinuity at ∆v = 0, unlike the eDMHF one. This step
in density can be interpreted as follows. If w > 1/3 and the constraint of
Eq. (203) is fulfilled, as ∆v → 0±, we will recover the SAHF biensemble so-
lution γ̂± ≡ (1− w)

∣∣Φ±0 〉 〈Φ±0 ∣∣+ w
∣∣Φ±1 〉 〈Φ±1 ∣∣, where Φ±I ≡ ΦI(θ±) and θ± are

the minimizing angles associated to the broken-symmetry orbitals. Any slight
deviation from ∆v = 0 will favor one of these solutions, depending on its sign,
as illustrated in the top panel of Fig. 1 (see the “∆v = +0.15” curve which
exhibits, in the equiensemble case, a single absolute minimum in the vicinity of
θ+). Note that, in eDMHF, the minimizing angle simply passes through θ = 0
when the potential changes from ∆v = 0− to ∆v = 0+ [see the “∆v = +0.15”
curve in the bottom panel of Fig. 1], and no discontinuity is observed in the
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density profile. The step in density observed in SAHF covers the density range
n− ≤ n ≤ n+, where

n± ≡ 1 + (1− w) sin(2θ±) = 1± (1− w)
√

1− ρ20. (207)

In the equiensemble case (w = 0.5), we have n± = 1.0 ± 0.410326, as readily
seen from the top panel of Fig. 2. We keep many digits for analysis purposes
(see the bottom panel of Fig. 3). It is important to stress that none of the
densities in the range n− < n < n+, which includes the a priori simple sym-
metric n = 1 case, can be represented by a single SAHF ensemble. This severe
v-representability issue, which would deserve further investigation at the ab
initio level, for example, in the stretched H2 molecule, might be used as an
argument for promoting the eDMHF approach over the SAHF one in practi-
cal calculations. A counter-argument is of course the presence of GI errors in
eDMHF. At the formal level, the v-representability issue can be solved easily
as follows. As illustrated in Fig. 3, Lieb’s maximization of Eq. (174) systemat-
ically returns ∆v = 0 for input densities in the range n− ≤ n ≤ n+. As soon
as the input density leaves this interval, a non-zero maximizing potential is
obtained [see the bottom panel of Fig. 3]. If we exploit the strict degeneracy
of the broken-symmetry solutions, we can write, for ∆v = 0 [see Eq. (181)],

Ew
SAHF(θ+) = Ew

SAHF(θ−)

= (1− α)Ew
SAHF(θ−) + αEw

SAHF(θ+)

= Tr
[
γ̂(α)

(
T̂ + Û

)]
,

(208)

where 0 ≤ α ≤ 1 and

γ̂(α) := (1− α)γ̂− + αγ̂+ (209)

is the convex combination of the two degenerate SAHF ensemble density ma-
trix operators. The density (on site 0) of the resulting “ensemble of ensembles”
reads as

n(α) = Tr [γ̂(α)n̂0] = (1− α)n− + αn+, (210)

and, as readily seen, it can vary continuously from n− to n+. The general-
ization of this approach to the ab initio theory is provided in Eqs. (178) and
(179).

4.4 Exact self-consistent eDFT based on SAHF

Let us continue with the general ab initio SAHF-based formulation of eDFT
that we left at the end of Sec. 4.2. As already mentioned, the SAHF universal
density functional Fw

SAHF[n] that is defined in Eq. (177) is an approximation
to the universal GOK functional Fw[n]. As readily seen from Eq. (177), the
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Fig. 1 Trial SAHF (top panel) and eDMHF (bottom panel) energies of the symmetric
Hubbard dimer plotted as functions of the orbital rotation angle ✓ for U/t = 3.5 and various
ensemble weight values. In the equiensemble (w = 0.5) case, results are also shown for a
slightly asymmetric (�v/t = +0.15) dimer, for analysis purposes. In the latter case, a non-
degenerate (positive) minimizing angle is recovered at the SAHF level (see the red dashed
curve in the top panel), unlike in the strictly symmetric �v = 0 case. See text for further
details.

Fig. 1 Trial SAHF (top panel) and eDMHF (bottom panel) energies of the symmetric
Hubbard dimer plotted as functions of the orbital rotation angle θ for U/t = 3.5 and various
ensemble weight values. In the equiensemble (w = 0.5) case, results are also shown for a
slightly asymmetric (∆v/t = +0.15) dimer, for analysis purposes. In the latter case, a non-
degenerate (positive) minimizing angle is recovered at the SAHF level (see the red dashed
curve in the top panel), unlike in the strictly symmetric ∆v = 0 case. See text for further
details.
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Fig. 2 Manu: to be polished! Potential-density maps generated at the SAHF and eDMHF
levels of calculation for the Hubbard dimer with U/t = 3.5 and two di↵erent ensemble weight
values. See text for further details.

Fig. 2 Potential-ensemble-density maps generated for the Hubbard dimer at the SAHF
(top panel) and eDMHF (bottom panel) levels of approximation for various ensemble weight
values and U/t = 3.5. See text for further details.
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Fig. 3 Bruno: We should consider 1 more digit in the y axis. (Top) To-be-maximized
Lieb’s potential functional (see Refs. [86,87] and the main text for further details) evaluated
at the equal-weight SAHF level of approximation and plotted as a function of �v for various
input densities n. (Bottom) Zoom around �v = 0 for densities inside and outside the single
SAHF-ensemble representability domain. See text for further details.

Fig. 3 (Top) To-be-maximized Lieb’s potential functional (see Refs. [96,99] and the main
text for further details) evaluated at the equal-weight SAHF level of approximation and
plotted as a function of ∆v for various input densities n. (Bottom) Zoom around ∆v = 0
for densities inside and outside the single SAHF-ensemble representability domain. See text
for further details.
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former misses all correlation effects. These effects can actually be introduced
into the theory as a density-functional complement:

Ẽw
c [n] := Fw[n]− Fw

SAHF[n]. (211)

As a result, according to Eqs. (10) and (177), the exact ensemble energy can
be calculated variationally as follows,

Ew = min
n

{
min
{ΦI}

w→n

{∑
I

wI 〈ΦI |T̂ + Ŵee|ΦI〉
}

+ Ẽw
c [n]

+

∫
dr vext(r)n(r)

}
, (212)

or, equivalently,

Ew = min
n

{
min
{ΦI}

w→n

{∑
I

wI 〈ΦI |Ĥ|ΦI〉+ Ẽw
c

[∑
I

wInΦI

]}}
, (213)

thus leading to the final expression:

Ew = min
{ΦI}

{∑
I

wI 〈ΦI |Ĥ|ΦI〉+ Ẽw
c

[∑
I

wInΦI

]}
. (214)

By differentiating the density-functional correlation energy with respect to any
(orbital rotation) variational parameter κpq [see Appendix C],

∂

∂κpq

(
Ẽw

c

[∑
I

wInΦI(κ)

])
=

∫
dr

δẼw
c [n]

δn(r)

∣∣∣∣∣
n=

∑
I wInΦI (κ)

× ∂

∂κpq

(∑
I

wInΦI(κ)(r)

)
,

(215)

we realize that the minimizing orbitals in Eq. (214), from which the single-
configuration wave functions that reproduce the exact ensemble density nw

are constructed (we denote them Φ̃w
I for convenience), fulfill SAHF-like self-

consistent equations [see Eq. (166)] where the density-functional correlation

potential δẼw
c [n]/δn(r)

∣∣∣
n=

∑
I wInΦ̃w

I

is simply added to the local external one.

In practice, the quantities of interest are usually the excitation energies
and, more generally, the ground- and excited-state energy levels (which are
needed, for example, for geometry optimizations). According to Eqs. (9) and
(214), and the Hellmann–Feynman theorem, the latter can be evaluated, in
principle exactly, as follows,

EI =
〈
Ĥ
〉
Φ̃w
I

+

∫
dr Ṽw

c (r)nΦ̃w
I

(r) +
∑
J>0

(δIJ − wJ)
∂Ẽw

c [n]

∂wJ

∣∣∣∣∣
n=nw

, (216)



Ensemble Density Functional Theory of Neutral and Charged Excitations 51

where the following relation has been used,∑
J>0

(δIJ − wJ)
(
nΦ̃w

J
(r)− nΦ̃w

0
(r)
)

= nΦ̃w
I

(r)− nw(r), (217)

and Ṽw
c ≡ Ṽw

c [nw] is the LZ-shifted [104,91] ensemble correlation-only density-
functional potential:

Ṽw
c [n](r) =

δẼw
c [n]

δn(r)
+
Ẽw

c [n]−
∫
dr

δẼw
c [n]

δn(r) n(r)∫
drn(r)

. (218)

Interestingly, an expression similar to that of Eq. (216) has been derived in the
context of GOK-DFT [91,103] (see also Sec. 5) where, unlike in the present
case, a local ensemble exchange potential was used.

4.5 Connection with practical hybrid eDFT calculations

By analogy with conventional (ground-state) hybrid functionals, we can mod-
ify as follows the SAHF-based functional of Eq. (176), in order to combine
rigorously a fraction λ of SAHF exchange energy with a weighted sum of (ap-
proximate) individual density-functional exchange energies, thus leading to
another (Hx-only) approximation to the GOK functional:

Fw[n] ≈ Fw,λ
hybrid[n] = max

v

{
E w,λ
hybrid[v]−

∫
dr v(r)n(r)

}
, (219)

where

E w,λ
hybrid[v] = min

{ΦI}

{∑
I

wI

[〈
T̂ + λŴee + V̂

〉
ΦI

+ (1− λ)EHx[nΦI ]

]}
,(220)

and EHx[n] is the regular ground-state Hx density functional of KS-DFT. The
above approximate ensemble energy can be computed from SAHF routines
simply by scaling the individual non-local exchange potentials and then adding
to each of them the complementary fraction (1−λ) of individual local density-
functional exchange potential. As readily seen from Eq. (220), in the present
scheme, the total ensemble Hx energy remains GI-free, even in the limiting
λ = 0 case. On that basis, an exact hybrid eDFT can be derived along the lines
of Sec. 4.4 by considering the following in-principle-exact decomposition of the
universal GOK functional (where correlation is described with an ensemble
density functional):

Fw[n] = Fw,λ
hybrid[n] + (1− λ)∆Ẽw,λ

x [n] + Ẽw,λ
c [n]. (221)

A density-functional correction ∆Ẽw,λ
x [n] to the ensemble exchange energy

must in principle be introduced since each individual exchange energy Ex[nΦI ]
is evaluated, for both ground- and excited-state densities, as a ground-state
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exchange energy. This correction is usually neglected in practical calcula-
tions [75]. This observation would actually hold also for approximate ensemble
correlation energies that are constructed from the regular ground-state corre-
lation functional Ec[n] of KS-DFT (see below and Sec. 5.1). Note finally the
λ-dependence of both ∆Ẽw,λ

x [n] and Ẽw,λ
c [n] functionals in Eq. (221). It orig-

inates from the fact that the ensemble xc energy is now evaluated from the
(SAHF-like) λ-dependent single-configuration wave functions that reproduce
the desired density n.

Finally, as discussed in further detail in Sec. 5, it is quite common to
construct weight-dependent ensemble density-functional correlation energies
by recycling the ground-state correlation functional as follows [71],

Ẽw,λ
c

[∑
I

wInΦI

]
≈
∑
I

wIEc[nΦI ]. (222)

This standard approximation, which is referred to as ground-state individual
correlations (GS-ic) scheme in the following, can also be made formally exact
within the present formalism. Indeed, once we have introduced the following
(approximate) potential-functional energy

E w,λ
GS−ic[v] = min

{ΦI}

{∑
I

wI

( 〈
T̂ + λŴee + V̂

〉
ΦI

+(1− λ)EHx[nΦI ] + Ec[nΦI ]
)}

, (223)

and the subsequent density functional

Fw,λ
GS−ic[n] = max

v

{
E w,λ
GS−ic[v]−

∫
dr v(r)n(r)

}
, (224)

we only need to consider the alternative (but still exact) partitioning of the
GOK functional

Fw[n] = Fw,λ
GS−ic[n] + (1− λ)∆Ěw,λ

x [n] +∆Ěw,λ
c [n], (225)

where complementary density-functional corrections to both exchange and
(GS-ic) correlation energies have been introduced. Note that, in practice, these
corrections are simply neglected [75]. While SAHF is expected to provide,
through its orbital dependence, a proper description of the ensemble exchange
energy, modeling the correlation density-functional correction ∆Ěw,λ

c [n] re-
mains a necessary and challenging task that has attracted too little attention
until now. For that purpose, it is essential to have a deeper understanding of
how individual correlation energies are connected to the ensemble one. This is
the main focus of the next section.
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5 Individual correlations within ensembles: An exact construction

While the previous section was dedicated to the description of orbital- and
weight-dependent ensemble Hx energies, this last section deals with correlation
effects in many-body ensembles. For convenience, we continue focusing on
GOK ensembles but the discussion applies to other types of ensembles like, for
example, N -centered [83] or thermal ones [78,76,77,136]. We will work within
the original GOK-DFT formalism [82], where a local multiplicative ensemble-
density-functional Hxc potential is employed, but the discussion holds also
when orbital-dependent exchange energies are employed (see Sec. 4).

5.1 State-of-the-art ensemble correlation DFAs and beyond

To the best of our knowledge, very few works have addressed the construction
of weight-dependent ensemble correlation DFAs from first principles. We can
essentially distinguish two different general strategies. In the first and most
straightforward one, which was introduced in Eq. (222) and that we referred
to as GS-ic, the (weight-independent) ground-state correlation functional is
recycled as follows,

Ew
c [nw]

GS−ic≈
∑
I

wIEc[nΦw
I

], (226)

where, in the exact theory, the KS wave functions {Φw
I } are expected to re-

produce the true ensemble density nw.

More recently [91,79], Loos and coworkers explored another path. They
designed a first generation of weight-dependent ensemble LDA (eLDA) corre-
lation functionals where the regular ground-state LDA functional ELDA

c [n] =∫
drn(r)εc(n(r)), which is based on the infinite uniform electron gas (UEG)

model, is combined with the density-functional correlation excitation energies
of a finite UEG (hence the acronym fLDA used below) as follows,

Ew
c [n]

eLDA≈ ELDA
c [n] +

∑
I>0

wI

(
EfLDA
c,I [n]− EfLDA

c,I=0 [n]
)
. (227)

The individual correlation functional EfLDA
c,I [n] =

∫
drn(r)εfc,I(n(r)) is con-

structed from the Ith state of the finite UEG:

Nf ε
f
c,I(n) ≡ 〈ΨI(n)|T̂ + Ŵee|ΨI(n)〉 − 〈ΦI(n)|T̂ + Ŵee|ΦI(n)〉 , (228)

where Nf is the number of electrons in the finite gas. If Nf is fixed, a pa-

rameterization of the correlation energy per particle εfc,I(n) as a function of
the uniform density n is obtained by varying the volume of the gas [91]. Note
that, in a uniform system, there is no need to introduce weight dependencies
into the interacting and non-interacting (ground- or excited-state) density-
functional wave functions, unlike in the general definition of Eq. (25). Indeed,
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all the eigenstates of the (interacting or non-interacting) uniform gas have the
same (uniform) density n, which then becomes the ensemble density of the
gas, whatever the value of the ensemble weights:∑

I

wInΨI(n) =
∑
I

wInΦI(n) = n
∑
I

wI = n. (229)

Note also that, while the finite UEG allows for the incorporation of weight de-
pendencies into the correlation functional, the use of a regular LDA correlation
functional reduces finite-size errors. Refinements are possible, for example, by
including a dependence in the Fermi hole curvature [138].

The strategies depicted in Eqs. (226) and (227) miss various correlation
effects that we briefly review below. More insight will be given in the next
subsections. Let us start with the GS-ic approximation. From the exact ex-
pression,

Ec[nΦw
I

] =
〈
T̂ + Ŵee

〉
Ψ0[nΦw

I
]
−
〈
T̂ + Ŵee

〉
Φ0[nΦw

I
]
, (230)

where Ψ0[n] and Φ0[n] are the interacting and KS non-interacting ground-state
density-functional wave functions of regular KS-DFT, respectively, we imme-
diately identify two sources of errors. The first one is related to the fact that,
as already mentioned in Sec. 2.1.3, the individual KS density nΦw

I
does not

necessarily match the interacting individual one nΨI . This subtle point was re-
cently highlighted by Gould and Pittalis [86,139]. It induces what the authors
referred to as density-driven (DD) correlation effects. Even if the true individ-
ual densities {nΨI} (which can be extracted in principle exactly from the KS
ensemble, as shown in Eq. (27) and Ref. [103]) were inserted into the expres-
sion of Eq. (230), we would still not recover the correct individual excited-state
correlation energies simply because Ψ0[nΨI ] will always be a ground-state wave
function, even when nΨI is an excited-state density. The missing energy con-
tribution is connected to the concept of state-driven (SD) correlation [86].
Interestingly, eLDA describes (approximately) SD correlations, as readily seen
from Eq. (228). However, it completely misses DD ones, simply because KS
and interacting (ground- or excited-state) wave functions have the same den-
sity in a uniform system.

Even though the physical meaning of DD and SD correlations is rather
clear, it is less obvious how their contributions to the total exact ensemble
correlation energy should be defined mathematically [86,103,139,140]. Ad-
dressing this fundamental question is of primary importance for the design
of more accurate and systematically improvable ensemble correlation DFAs,
which is probably the most challenging task in GOK-DFT. Up to now, we
have discussed the concept of DD and SD correlations in the light of the GS-
ic approximation [see Eqs. (226) and (230)]. We may actually wonder if a
proper definition can be (or should be) given without referring explicitly to
the GS correlation functional of KS-DFT. Indeed, the latter appears naturally
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in GOK-DFT only in the limiting w = 0 case. Gould and Pittalis [86], and
then Fromager [103], recently addressed this SD/DD ensemble correlation en-
ergy decomposition issue from that perspective. A detailed and complemented
review of the two approaches is presented in the following.

5.2 Weight dependence of the KS wave functions in GOK-DFT

Before proceeding with the extraction of individual correlation energies from
the GOK-DFT ensemble energy, which is convenient for deriving in-principle-
exact SD/DD decompositions [103], we would like to highlight the importance
of weight dependencies in the KS wave functions. It might be surprizing at first
sight because the true ground and excited states of the system under study
are of course weight-independent. We explain below, with a simple argument,
why it cannot be the case in the KS ensemble.

Since the KS and true ensemble densities match for any set of weights
w, their derivatives with respect to the weights also match. Therefore, if we
consider the ground-state w = 0 limit of GOK-DFT, it comes

∂

∂wJ

(∑
I

wInΨI (r)

)∣∣∣∣∣
w=0

J>0
=

∂

∂wJ

(∑
I

wInΦw
I

(r)

)∣∣∣∣∣
w=0

, (231)

or, equivalently,

nΨJ (r)− nΨ0
(r) = nΦJ (r)− nΦ0

(r) +
∂nΦw

0
(r)

∂wJ

∣∣∣∣
w=0

, (232)

where {ΦI} denote here the ground- and excited-state KS wave functions gen-
erated from a regular ground-state KS-DFT calculation. In KS-DFT, the den-
sity constraint applies to the ground state only, i.e., nΦ0

(r) = nΨ0
(r), not to

the excited states. Thus, we obtain the exact individual excited-state density
expression, which can be recovered from Eq. (27) when w = 0,

nΨJ (r)− nΦJ (r)
J>0
=

∂nΦw
0

(r)

∂wJ

∣∣∣∣
w=0

6= 0, (233)

where we readily see that, in GOK-DFT, the KS wave functions (the ground-
state one in the present case) are necessarily weight-dependent. This feature is
central in the design of DD correlation energies [103], as discussed further in
the following. We refer to Eq. (275) for an illustrative example (based on the
prototypical Hubbard dimer) of weight-dependent KS ground-state density.
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5.3 Extraction of individual correlation energies

In this section we revisit the derivation of the individual energy levels in
Eq. (36) in order to construct individual correlation energies within the en-
semble under study. For that purpose, we start from the exact relation be-
tween individual and ensemble energies in Eq. (9), and the variational GOK-
DFT ensemble energy expression of Eq. (15), thus leading to, according to the
Hellmann–Feynman theorem,

EJ =
∑
I≥0

wI 〈Φw
I |T̂ + V̂ext|Φw

I 〉+ Ew
Hxc[n

w]

+
∑
I>0

(δIJ − wI)
[
〈Φw
I |T̂ + V̂ext|Φw

I 〉 − 〈Φw
0 |T̂ + V̂ext|Φw

0 〉
]

+
∑
I>0

(δIJ − wI)

∂Ew
Hxc[n

w]

∂wI
− ∂Eξ

Hxc[n
ξ,w]

∂wI

∣∣∣∣∣
ξ=w

 ,
(234)

or, equivalently,

EJ = 〈Φw
J |T̂ + V̂ext|Φw

J 〉+ Ew
Hxc[n

w]

+
∑
I>0

(δIJ − wI)

∂Ew
Hxc[n

w]

∂wI
− ∂Eξ

Hxc[n
ξ,w]

∂wI

∣∣∣∣∣
ξ=w

 , (235)

where, in analogy with Eq. (119), the following double-weight ensemble KS
density has been introduced:

nξ,w(r) =
∑
I≥0

ξInΦw
I

(r). (236)

The last contribution (that is subtracted) on the right-hand side of Eq. (235)
originates from the Hellmann–Feynman theorem. In other words, derivatives
of the KS wave functions (and, therefore, of their densities) do not contribute
to the derivatives of the total ensemble energy, because the latter is variational.

As shown in Refs. [91,103], the Hx contribution to the individual Jth
energy level reduces to the expectation value of the two-electron repulsion
operator evaluated for the Jth KS state, as one would guess. Indeed, once we
have realized that, for given weight values ξ, the ensemble KS potential that
reproduces nξ,w is simply the one that reproduces the true ensemble density
nw, we deduce from Eq. (24) that

Eξ
Hx[nξ,w] =

∑
K≥0

ξK 〈Φw
K |Ŵee|Φw

K〉 , (237)

and, consequently,

∂Eξ
Hx[nξ,w]

∂wI

∣∣∣∣∣
ξ=w

=
∑
K≥0

wK
∂ 〈Φw

K |Ŵee|Φw
K〉

∂wI
. (238)
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As a result, since Ew
Hx[nw] = Ew

Hx[nw,w], it comes

∂Ew
Hx[nw]

∂wI
− ∂Eξ

Hx[nξ,w]

∂wI

∣∣∣∣∣
ξ=w

= 〈Φw
I |Ŵee|Φw

I 〉 − 〈Φw
0 |Ŵee|Φw

0 〉 , (239)

thus leading to the expected result:

Ew
Hx[nw] +

∑
I>0

(δIJ − wI)

∂Ew
Hx[nw]

∂wI
− ∂Eξ

Hx[nξ,w]

∂wI

∣∣∣∣∣
ξ=w


= 〈Φw

J |Ŵee|Φw
J 〉 .

(240)

We conclude from Eq. (235) that the energy levels can be evaluated exactly
within GOK-DFT as follows,

EJ = 〈Φw
J |Ĥ|Φw

J 〉+ Ew
c,J [nw], (241)

where the individual correlation energy of the Jth state is determined from
the ensemble correlation density functional as follows,

Ew
c,J [nw] = Ew

c [nw] +
∑
I>0

(δIJ − wI)

[
∂Ew

c [nw]

∂wI
− ∂Eξ

c [nξ,w]

∂wI

∣∣∣∣
ξ=w

]
. (242)

In the following section, we will see how the concept of DD correlation emerges
from Eq. (242), once it has been rewritten more explicitly in terms of individual
densities.

5.4 Individual correlations versus individual components

According to the definition of the ensemble correlation functional in GOK-
DFT [see Eq. (25)], the exact ensemble correlation energy can be decomposed
as follows,

Ew
c [nw] =

∑
J≥0

wJEwc,J [nw], (243)

where the individual components read as

Ewc,J [nw] = 〈ΨJ |T̂ + Ŵee|ΨJ〉 − 〈Φw
J |T̂ + Ŵee|Φw

J 〉 . (244)

Let us stress that these components do not match the individual correlation
energies of Eq. (242). Indeed, unlike the latter [see Eq. (241)], they do not give
access to the exact individual energy levels,

〈Φw
J |Ĥ|Φw

J 〉+ Ewc,J [nw] = 〈ΨJ |T̂ + Ŵee|ΨJ〉+

∫
dr vext(r)nΦw

J
(r)

6= EJ ,

(245)
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simply because the KS density nΦw
J

does not match, in general, the true physi-
cal density nΨJ . The concept of DD correlation, which was introduced recently
by Gould and Pittalis [86], originates from this observation. The important
property that the true individual correlation energies share with the individ-
ual correlation components is that both of them can be used to construct the
total ensemble correlation energy, i.e.,

Ew
c [nw] =

∑
J≥0

wJE
w
c,J [nw]. (246)

The above expression can be deduced from Eq. (242) and the fact that, for
any {∆I}I>0,

∑
J≥0

wJ

(∑
I>0

(δIJ − wI)∆I

)
=
∑
I>0

∑
J≥0

δIJwJ∆I −

∑
J≥0

wJ

∑
I>0

wI∆I

=
∑
I>0

wI∆I −
∑
I>0

wI∆I

= 0.

(247)

From now on we will substitute the decomposition of Eq. (246) for the more
conventional one of Eq. (243). As shown in the following, with this change
of paradigm, DD-type correlation energy contributions will naturally emerge
from the derivation of a more explicit expression. Unlike in Ref. [86], the
approach of Ref. [103], which is reviewed in the next section, does not re-
quire additional (state-specific) KS systems, thus avoiding formal issues such
as the non-uniqueness of KS potentials for individual excited states or v-
representability issues [103].

5.5 Density-driven ensemble correlation energy expression

Let us now derive a more explicit expression for the ensemble correlation en-
ergy, on the basis of Eq. (246). We start with a simplification of the true
individual correlation energy expression of Eq. (242), where the standard de-
composition into components [see Eq. (243)] of the ensemble correlation energy
will be employed. On the one hand, we will have

∂Ew
c [nw]

∂wI
= Ewc,I [nw]− Ewc,0[nw] +

∑
K≥0

wK
∂Ewc,K [nw]

∂wI
, (248)

where, according to Eq. (244),

∂Ewc,K [nw]

∂wI
= − ∂

∂wI

[
〈Φw
K |T̂ + Ŵee|Φw

K〉
]

= −2

〈
Φw
K

∣∣∣∣T̂ + Ŵee

∣∣∣∣∂Φw
K

∂wI

〉
.

(249)
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As readily seen from Eq. (249), the weight derivatives of the individual corre-
lation components are evaluated solely from the KS wave functions and their
(static) linear response to variations in the ensemble weights. The true inter-
acting wave functions are not involved since, unlike the KS wave functions,
they do not vary with the ensemble weights [see the comment that follows
Eq. (25), and Eq. (244)]. Combining Eqs. (243), (248), and (249) leads to the
following expression for the first two contributions in Eq. (242) to the true
individual correlation energy:

Ew
c [nw] +

∑
I>0

(δIJ − wI)
∂Ew

c [nw]

∂wI

= Ewc,J [nw]− 2
∑
I>0

∑
K≥0

(δIJ − wI)wK

〈
Φw
K

∣∣∣∣T̂ + Ŵee

∣∣∣∣∂Φw
K

∂wI

〉
.

(250)

On the other hand, according to Eq. (236),

∂Eξ
c [nξ,w]

∂wI

∣∣∣∣
ξ=w

=

∫
dr
δEw

c [nw]

δn(r)

∑
K≥0

wK
∂nΦw

K
(r)

∂wI
, (251)

thus leading to [see Eq. (27)]

−
∑
I>0

(δIJ − wI)
∂Eξ

c [nξ,w]

∂wI

∣∣∣∣
ξ=w

=

∫
dr
δEw

c [nw]

δn(r)

(
nΦw

J
(r)− nΨJ (r)

)
.(252)

Finally, by combining Eqs. (242), (250), and (252), we recover the expression
of Ref. [103] for the deviation of the true Jth individual correlation energy
from the component Ewc,J [nw],

Ew
c,J [nw]− Ewc,J [nw] = −2

∑
I>0

∑
K≥0

(δIJ − wI)wK

〈
Φw
K

∣∣∣∣T̂ + Ŵee

∣∣∣∣∂Φw
K

∂wI

〉
+

∫
dr
δEw

c [nw]

δn(r)

(
nΦw

J
(r)− nΨJ (r)

)
,

(253)

thus leading [see Eq. (244)] to the following exact expression for individual
correlation energies:

Ew
c,J [nw] = 〈ΨJ |T̂ + Ŵee|ΨJ〉 − 〈Φw

J |T̂ + Ŵee|Φw
J 〉

− 2
∑
I>0

∑
K≥0

(δIJ − wI)wK

〈
Φw
K

∣∣∣∣T̂ + Ŵee

∣∣∣∣∂Φw
K

∂wI

〉
+

∫
dr
δEw

c [nw]

δn(r)

(
nΦw

J
(r)− nΨJ (r)

)
.

(254)

The above expression is a key result of Ref. [103] which, as we will see, allows
us to explore in-principle-exact SD/DD correlation energy decompositions.
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Let us now analyze the different contributions on the right-hand side of
Eq. (254). While, on the first line, the bare Jth correlation energy component
is recovered, the additional terms on the second and third lines ensure that
the external potential energy is evaluated with the correct true density (see
Eqs. (241) and (245), and the supplementary material of Ref. [103]). Interest-
ingly, in the summation (in K) over all the states that belong to the ensemble
[see the second line of Eq. (254)], one may separate the contribution of the
state under consideration (i.e., the Jth state) from the others, thus defining
an individual SD correlation energy:

Ew,SD
c,J [nw] = 〈ΨJ |T̂ + Ŵee|ΨJ〉 − 〈Φw

J |T̂ + Ŵee|Φw
J 〉

− 2wJ
∑
I>0

(δIJ − wI)

〈
Φw
J

∣∣∣∣T̂ + Ŵee

∣∣∣∣∂Φw
J

∂wI

〉
.

(255)

The above definition, which was denoted SD in Ref. [103] (the “overline” nota-
tion is dropped in the present work, for simplicity), differs substantially from
the definition of Gould and Pittalis [86]. In the latter, an additional state-
specific KS wave function, which is expected to reproduce the true individual
density of the state under consideration, is introduced. In this case, the name
“state-driven” means that the correlation energy is evaluated from interacting
and non-interacting wave functions which share the same density. Here, no
additional KS wave function is introduced, which is obviously appealing from
a computational point of view. One possible criticism about the definition in
Eq. (255) is its arbitrariness. Indeed, we may opt for a more density-based
definition, in the spirit of what Gould and Pittalis proposed, by introducing,
for example, the following auxiliary wave functions:

Φ
w

J = Φw
J +

∑
I>0

∑
K≥0

√
|δIJ − wI |wK

(
sgn(δIJ − wI)Φ

w
K +

∂Φw
K

∂wI

)
. (256)

Note that, in the ground-state w = 0 limit, Φ
w

0 reduces to the conventional KS
wave function Φw=0

0 of KS-DFT. What might be interesting in the (somehow
artificial) construction of the above individual auxiliary KS states is the pos-
sibility it gives to recover, like in the Gould-Pittalis approach [86], all the KS
contributions (to the individual correlation energy) that appear on the first
two lines of Eq. (254) from a single expectation value, thus generating, on the
other hand, (several) additional terms that should ultimately be removed:

〈
Φ
w

J

∣∣∣T̂ + Ŵee

∣∣∣Φw

J

〉
= 〈Φw

J |T̂ + Ŵee|Φw
J 〉+ 2

∑
I>0

∑
K≥0

(δIJ − wI)wK

〈
Φw
K

∣∣∣∣T̂ + Ŵee

∣∣∣∣∂Φw
K

∂wI

〉
+ . . .

(257)
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Moreover, according to Eq. (27), we recover (among other terms) the correct
physical density:〈

Φ
w

J

∣∣∣n̂(r)
∣∣∣Φw

J

〉
= nΦw

J
(r) +

∑
I>0

∑
K≥0

(δIJ − wI)wK
∂nΦw

K
(r)

∂wI
+ . . .

= nΨJ (r) + . . .

(258)

On that basis, we could argue that the first two lines on the right-hand side
of Eq. (254) should be interpreted as a SD correlation energy, while the third
line would correspond to the missing DD correlation energy. The issue with
such a decomposition is that the individual DD correlation energies would
then cancel out in the weighted sum:∑

J≥0

wJ

∫
dr
δEw

c [nw]

δn(r)

(
nΦw

J
(r)− nΨJ (r)

)
=

∫
dr
δEw

c [nw]

δn(r)
(nw(r)− nw(r)) = 0,

(259)

which means that the ensemble DD correlation energy would be zero. As a
result, with such an interpretation, the concept of DD correlation would not
be of any help in the development of correlation DFAs for ensembles. This is of
course not what we want [86]. In this respect, the definition in Eq. (255) is much
more appealing. We will stick to this definition from now on. Consequently, the
complementary ensemble DD correlation energy will read as [see Eqs. (243),
(244), and (255)]

Ew,DD
c [nw] = Ew

c [nw]−
∑
J≥0

wJE
w,SD
c,J [nw] (260)

= 2
∑
J≥0

w2J

∑
I>0

(δIJ − wI)

〈
Φw
J

∣∣∣∣T̂ + Ŵee

∣∣∣∣∂Φw
J

∂wI

〉
. (261)

Thus, we recover another key result of Ref. [103]. As readily seen from Eq. (261),
the exact evaluation of the DD correlation energy only requires computing the
static linear response of the KS wave functions that belong to the ensemble,
which is computationally affordable.

Finally, at a more formal level, we note that the ensemble DD correlation
energy expression of Eq. (261) is related to the individual components fwJ [n] =

〈Φw
J [n]|T̂ + Ŵee|Φw

J [n]〉 of the Hx-only approximation to the universal GOK
functional [see Eqs. (12), (14), and (24)]

fw[n] := Tw
s [n] + Ew

Hx[n] =
∑
K

wK 〈Φw
K [n]|T̂ + Ŵee|Φw

K [n]〉 , (262)

as follows,

Ew,DD
c [nw] =

∑
J≥0

w2J

∑
I>0

(δIJ − wI)
∂fwJ [nw]

∂wI
. (263)
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We can even establish a direct connection with the total ensemble functional
fw[n], by analogy with Eq. (237). Indeed, since

fξ
[
nξ,w

]
=
∑
K

ξK 〈Φw
K |T̂ + Ŵee|Φw

K〉 , (264)

it comes

fwJ [nw] = fw [nw] +
∑
I>0

(δIJ − wI)
∂fξ

[
nξ,w

]
∂ξI

∣∣∣∣∣
ξ=w

. (265)

5.6 Application to the Hubbard dimer

The importance of DD correlations, which was revealed in Ref. [86], has been
confirmed in Ref. [103], in the weakly asymmetric and stronly correlated regime
of the two-electron Hubbard dimer. We propose in the following to complete
the study of Ref. [103] by exploring all asymmetry and correlation regimes,
and comparing exact results with that of standard approximations.

5.6.1 Exact theory and approximations

The Hubbard dimer has been introduced in Sec. 4.3. In this simple model sys-
tem, exact (two-electron and singlet) biensemble density-functional correlation
energies Ew

c (n) can be evaluated through Lieb maximizations [96,99] from the
following analytical expressions for the exact potential-functional interacting
energies [136,84,85]:

EI(∆v) =
2U

3
+

2r

3
cos

(
θ +

2π

3
(I + 1)

)
, I = 0, 1, (266)

where

r =
√

3(4t2 +∆v2) + U2 (267)

and

θ =
1

3
arccos

[
9U(∆v2 − 2t2) − U3

r3

]
. (268)

Exact ground- and excited-state densities are then obtained from the Hellmann–
Feynman theorem [see Eq. (181)],

nΨI = 1 − ∂EI(∆v)

∂∆v
, (269)

and the cubic polynomial equation that the energies fulfill (see the Appendix
of Ref. [96]). The resulting biensemble density reads as nw = (1 − w)nΨ0

+
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wnΨ1 . The Hx-only GOK functional introduced in Eq. (262) can be expressed
analytically as follows [96],

fξ(n) = T ξs (n) + EξHx(n)

= −2t
√

(1− ξ)2 − (1− n)2 +
U

2

[
1 + ξ − (3ξ − 1)(1− n)2

(1− ξ)2
]
,(270)

so that, as shown in Appendix D, the exact DD ensemble correlation energy
reads explicitly as

Ew,DD
c (nw) = −w(nw − 1)(nΨ1 − 1)

×
[

2t√
(1− w)2 − (1− nw)2

+
U(1 + w)

(1− w)2

]
.

(271)

Since the KS excited-state density is always equal to 1 in this model [96],
the prefactor (nΨ1 − 1) matches the deviation in density of the true physical
excited state from the KS one:

nΨ1 − 1 = nΨ1 − nΦw
1
. (272)

Then it becomes clear that Ew,DD
c (nw) is a DD correlation energy. We also see

from the expression of Eq. (271) that, in the regular ground-state DFT limit
(w = 0), this type of correlation disappears.

In the following we test two common DFAs: A (weight-independent) ground-
state density-functional description of the ensemble correlation energy (GS-
ec) [97,96],

Ew
c (nw)

GS−ec≈ Ec(n
w), (273)

where Ec(n) = Ew=0
c (n), and the GS-ic approximation introduced in Sec. 5.1

which, in the present case, gives

Ew
c (nw)

GS−ic≈ (1− w)Ec(nΦw
0
) + wEc(nΦw

1
)

= (1− w)Ec(nΦw
0
) + wEc(n = 1).

(274)

Note that the KS ground-state density nΦw
0

fulfills the constraint (1− w)nΦw
0

+
wnΦw

1
= nw, thus leading to

nΦw
0

=
nw − w

(1− w)
= nΨ0 +

w(nΨ1 − 1)

(1− w)
, (275)

where we readily see that, in general, nΦw
0
6= nΨ0 . In the following, the local

potential will be fixed. It is then analogous to the external potential of ab
initio calculations, hence the notation ∆v = ∆vext.
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5.6.2 Results and discussion

Let us first discuss the strictly symmetric (∆vext = 0) dimer in which simple
analytical expressions can be derived for both exact and approximate ensemble
correlation energies. In this special case, ground- and excited-state densities
are equal to 1, in both KS and physical interacting systems. Consequently,
the ensemble DD correlation energy vanishes [see Eq. (271)]. Total and SD
ensemble correlation energies are equal and vary linearly with the ensemble
weight [99] as

Ew
c (nw = 1) = 2t(1− w)

(
1−

√
1 +

U2

16t2

)
= (1− w)Ec(n = 1), (276)

with the positive slope −Ec(n = 1). As readily seen, the excited state exhibits
no correlation effects in this density regime. Turning to the approximations,
GS-ic erroneously assigns a (ground-state) correlation energy to the excited
state [see Eq. (274)], thus leading to a total ensemble correlation energy that
is wrong and equal to Ec(n = 1), like in GS-ec [see Eq. (273)]. In conclusion,
in the symmetric case, both GS-ic and GS-ec approximations completely miss
the weight dependence of the ensemble correlation energy.

We now discuss the performance of GS-ec and GS-ic in the asymmetric
dimer. Results are shown in Fig. 4. The features described in the symmetric
case are preserved in the weakly asymmetric regime (see the top left panel of
Fig. 4). When the asymmetry is more pronounced, both exact and approxi-
mate ensemble correlation energies exhibit curvature. By construction, these
energies all reduce to the same (ground-state) correlation energy when w = 0.
They differ substantially by their slope in the ground-state limit (w = 0). Fur-
ther insight into GS-ic, for example, is obtained from the following analytical
expression,

∂Ew
c (nw)

∂w

∣∣∣∣
w=0

GS−ic≈ Ec(n = 1)− Ec(n = nΨ0
)

+ (nΨ1 − 1)
∂Ec(n)

∂n

∣∣∣∣
n=nΨ0

,

(277)

where Ec(n = 1)−Ec(n = nΨ0
) ≤ 0, as readily seen from Fig. 4 of Ref. [99]. In-

terestingly, in the strongly asymmetric ∆vext/U � 1 regime, the true ground-
(nΨ0

) and excited-state (nΨ1
) densities tend to 2 and 1, respectively (see Fig.

1 of Ref. [96]). This is the situation where the slope in weight expressed in
Eq. (277) reaches its maximum (in absolute value), thus inducing a large devi-
ation from the exact slope, as shown in the bottom left panel of Fig. 4. At the
GS-ec level of approximation, the situation is less critical, at least for small
weight values. As readily seen from the following expression [see Eq. (273)],

∂Ew
c (nw)

∂w

∣∣∣∣
w=0

GS−ec≈ (nΨ1
− nΨ0

)
∂Ec(n)

∂n

∣∣∣∣
n=nΨ0

, (278)
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when ∆vext ∼ U , the slope (at w = 0) is relatively small since nΨ1 ∼ nΨ0

(see Fig. 1 of Ref. [96]). This is in agreement with the right panels of Fig. 4.
Note that, in this regime, GS-ic can exhibit positive slopes (see the top right
panel of Fig. 4). In this case, the density derivative contribution [second
line of Eq. (277)], which is positive [96,99], is not negligible anymore and
it (more than) compensates the negative correlation energy difference [first
line of Eq. (277)]. When the asymmetry of the dimer is more pronounced (i.e.,
∆vext � U), the GS-ec slope (in weight) remains negligible, as shown in the
bottom left panel of Fig. 4. Indeed, in this case, nΨ0

tends to 2. Moreover,
since the ground-state correlation functional expands as follows in the weakly
and strongly correlated regimes [99],

Ec(n) = Ew=0
c (n)

U/t�1≈ −U
2
(
1− (1− n)2

)5/2
16t

, (279)

and

Ec(n)
U/t�1≈ U

[
|n− 1| − 1

2
(1 + (n− 1)2)

]
, (280)

respectively, we immediately see that ∂Ec(n)/∂n ≈ 0 when n approaches 2,
whether U/t is large or small. Note finally that, as already mentioned, in
regimes where the asymmetry is weaker than the correlation, i.e., ∆vext/t <
t/U < 1 (see the top left panel of Fig. 4), the slopes obtained at w = 0
with GS-ec and GS-ic are identical and relatively weak. This can now be
understood from the expressions in Eqs. (277) and (278), and the fact that
∂Ec(n)/∂n|n=1 = 0 [99], knowing that nΨ0

≈ 1 [96] in this case.

We see in Fig. 4 that the overall weight dependence of the exact ensemble
correlation energy differs substantially from that of the GS-ec and GS-ic ap-
proximations. It is again instructive to look at the slope at w = 0. It can be
expressed exactly as follows,

∂Ew
c (nw)

∂w

∣∣∣∣
w=0

= (nΨ1
− nΨ0

)
∂Ec(n)

∂n

∣∣∣∣
n=nΨ0

+
∂Ew

c (nΨ0
)

∂w

∣∣∣∣
w=0

, (281)

where we readily see from Eq. (278) that GS-ec neglects the derivative in weight
of the ensemble correlation density functional. As highlighted in Eq. (37) [see
also Sec. 3.2 for a more detailed discussion in the context of charged exci-
tations], the latter contribution is connected to the derivative discontinuity
that the xc potential exhibits when an excited state is incorporated into the
ensemble. Since, in the weakly correlated regime [99],

Ew
c (n)

U/t�1≈ −U
2
(
(1− w)2 − (1− n)2

)3/2
16t(1− w)2

×
[
1 +

(1− n)2

(1− w)2

(
3− 4(1− 3w)2

(1− w)2

)]
,

(282)
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it comes

∂Ew
c (nΨ0)

∂w

∣∣∣∣
w=0

U/t�1≈ U2

16t
(nΨ0

(2− nΨ0
))

3/2 (
1− 12(nΨ0

− 1)2
)
. (283)

Therefore, as long as the ground state does not deviate too much from the
symmetric nΨ0

= 1 density profile, which is the case when ∆vext � U , the
exact slope is not negligible, and it is positive. This is in agreement with
the top left panel of Fig. 4. Interestingly, in this density regime, this feature
is preserved when the strength of electron correlation increases (not shown).
Indeed, in this case, the ensemble correlation functional reads as [99]

Ew
c (n)

U/t�1, |n−1|≤w≈ −U
2

[
(1− w)− (3w− 1)(n− 1)2

(1− w)2

]
, (284)

n=nΨ0≈ U

2
(w− 1), (285)

thus leading to ∂Ew
c (nΨ0

)/∂w ≈ U/2. When the dimer is strongly asymmetric,
the ground-state density approaches 2 and, in this case [99],

Ew
c (n)

U/t�1, w≤|n−1|≤1−w≈ U |n− 1|

− U

2

[
(1 + w)− (3w− 1)(n− 1)2

(1− w)2

]
,

(286)

so that

∂Ew
c (nΨ0)

∂w

∣∣∣∣
w=0

U/t�1≈ −U
2

(
1− (nΨ0

− 1)2
)
, (287)

thus leading to ∂Ew
c (nΨ0

)/∂w|w=0 ≈ 0. As readily seen from Eq. (283), the
same result is obtained in the weakly correlated regime. This is in complete
agreement with the bottom left panel of Fig. 4. It also explains why the devi-
ation of GS-ec from the exact result drastically reduces when ∆vext increases
for a fixed interaction strength U and relatively small weight values. Finally,
in the particular case where ∆vext = U , the computed ground-state densities
equal nΨ0

≈ 1.30 and nΨ0
≈ 1.46 in the moderately U/t = 1 and strongly

U/t = 5 correlated regimes, respectively. As expected from Eqs. (283) and
(287), the exact slope will be substantial and negative, which agrees with the
right panels of Fig. 4.

We now focus on the exact SD/DD decomposition of the ensemble correla-
tion energy. Results are shown in Fig. 5 for various correlation and asymmetry
regimes. In the ground-state limit, the slope of the DD ensemble correlation
energy reads as [see Eq. (271)]

∂Ew,DD
c (nw)

∂w

∣∣∣∣
w=0

= −(nΨ0
− 1)(nΨ1

− 1)

[
2t√

1− (1− nΨ0
)2

+ U

]
. (288)
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Interestingly, when ∆vext ≈ U [nΨ0 ≈ nΨ1 in this case], the slope is nonzero
(and negative), whether the dimer is strongly correlated or not, as seen from
the top right and bottom left panels of Figs. 5. In the strongly correlated
regime, the DD ensemble correlation energy essentially varies in w as [see
Eq. (271)]

Ew,DD
c (nw)

U/t�1≈ −U(nΨ1 − 1)(nΨ0 − 1 + w(nΨ1 − nΨ0))
w(1 + w)

(1− w)2
, (289)

which means that, when approaching the equiensemble w = 1/2 case, it sys-
tematically decreases with the ensemble weight (because of the term (1−w)2 in
the denominator), unlike the total ensemble correlation energy [see Eq. (284)].
As long as the dimer remains close to symmetric, which requires that ∆vext
reduces as U increases (see Fig. 1 of Ref. [96]), the numerator in Eq. (289) will
be small enough such that DD correlations are at most equal to the total cor-
relation energy. This feature is actually observed in the moderately correlated
U/t = 1 regime (see the top left panel of Fig. 5). However, in asymmetric and
strongly correlated regimes where 0 < ∆vext � U (nΨ0

≈ 1 and nΨ1
> 1 in

this case) or ∆vext ≈ U (i.e., nΨ0
≈ nΨ1

≈ 1.5) [96], the numerator is not
negligible anymore and, consequently, the DD ensemble correlation energy is
significantly lower than the total one (see the bottom left panel of Fig. 5; see
also Ref. [103]). In such cases, the complementary SD ensemble correlation en-
ergy can be large and positive. This may look unphysical at first sight but, if
we return to the definition of Eq. (255), we see that the individual SD correla-
tion energies are not guaranteed to be negative. The reason is that, unlike the
total ensemble correlation energy, they are not evaluated variationally. Note
finally that, when ∆vext > U � t (nΨ0 ≈ 2 and nΨ1 ≈ 1 in this case), the
numerator in Eq. (289) will be relatively small, because of the (nΨ1

− 1) pref-
actor, thus reducing the energy difference between total and DD correlations
(see the bottom right panel of Fig. 5).

In summary, with the present SD/DD decomposition [see Eqs. (260) and
(261)], both SD and DD correlation energies become relatively large (when
compared to the total ensemble correlation energy), especially in the commonly
used equiensemble case, and they mostly compensate when the Hubbard dimer
has a pronounced asymmetry. This is clearly not a favorable situation for the
development of DFAs, which was the initial motivation for introducing the
SD/DD decomposition [86,103]. The latter should definitely be implemented
for atoms and diatomics, for example, in order to get further insight. In the
case of stretched diatomics, the present study of the Hubbard dimer might be
enlightening [141]. We should also stress that, in the asymmetric ∆vext = U
case, standard GS-ic and GS-ec approximations give ensemble correlation en-
ergies that are of the same order of magnitude as the exact one, unlike the SD
and DD correlation energies. As briefly mentioned in Sec. 5.1, exploring alter-
native SD/DD decompositions that rely explicitly on GS-ic, which is maybe a
better starting point, would be relevant in this respect. Work is currently in
progress in this direction.
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Fig. 4 Exact (solid black lines) and approximate ensemble correlation energies plotted
as functions of the biensemble weight for the Hubbard dimer in various correlation and
asymmetry regimes. See text for further details.

6 Conclusions and perspectives

Despite the success of time-dependent post-DFT approaches for the descrip-
tion of charged and neutral electronic excitations, various limitations (in terms
of accuracy, computational cost, or physics) have motivated in recent years
the development of time-independent alternatives. In the present review, we
focused on GOK-DFT and N -centered eDFT, which are two flavors of eDFT
for neutral and charged excitations, respectively. Their computational cost is
essentially that of a standard KS-DFT calculation, because they both rely on
self-consistent one-electron KS equations [see Eqs. (16) and (53)]. A major
difference though is that, in eDFT, the Hxc density functional is ensemble
weight-dependent. This weight dependence is central in eDFT. It allows for
the in-principle-exact extraction, from the KS ensemble, of individual (ground-
and excited-state) energy levels [see Eqs. (36), (64) and (65)] and densities
[Eq. (27)]. We have also shown that the infamous derivative discontinuity
problem that must be addressed when computing fundamental (or optical)
gaps [see Eqs. (30),(61) and (141)] can be bypassed, in principle exactly, via a
relocation of the derivative discontinuity away from the system [see Eq. (143)]
and a proper modeling of the ensemble weight dependence in the xc density
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Fig. 5 Exact SD/DD decomposition of the ensemble correlation energy plotted as a function
of the biensemble weight w in various asymmetry and correlation regimes. Comparison is
made with the approximate GS-ec and GS-ic ensemble correlation energies, for analysis
purposes. See text for further details.

functional. Recent progress in the design of weight-dependent xc DFAs have
been reviewed. The pros and cons of using an (orbital-dependent) ensemble
density matrix functional exchange energy or state-averaging individual exact
exchange energies have been discussed in detail. We reveal in passing that,
in the latter case, severe (solvable though) v-representability issues can occur
when electron correlation becomes strong. Turning to the design of DFAs for
ensemble correlation energies, state-of-the-art strategies have been discussed,
in particular the combination of finite and infinite uniform electron gas models
as well as the recycling of standard (ground-state) correlation DFAs through
state-averaging. In the latter case, further improvements may emerge from
the concept of density-driven correlation, which does not exist in ground-state
KS-DFT. How to define mathematically the corresponding correlation energy
is an open question to which we provided a tentative answer [see Eqs. (261)
and (263)]. Test calculations on the Hubbard dimer reveal how difficult it is
to have a definition that is both rigorous and useful for the development of
approximations. Work is currently in progress in other (briefly discussed) di-
rections. Even though it was not mentioned explicitly in the review, we would
like to stress that current formulations of eDFT do not give a direct access to



70 Filip Cernatic et al.

exact response properties such as oscillator strengths, Dyson orbitals, or non-
adiabatic couplings. Extending Görling–Levy perturbation theory [142,143,
144] to ensembles might be enlightening in this respect. We recently became
aware of such an extension [145] for the computation of excitation energies
within the DEC scheme [87,101], which is an important first step. Neverthe-
less, a general quasi-degenerate density-functional perturbation theory based
on ensembles, where individual energy levels and properties can be evaluated,
is still highly desirable. Work is currently in progress in this direction.

In conclusion, we have summarized in the present review recent efforts of
a growing community to put eDFT to the front of the scene. We highlighted
several formal and practical aspects of the theory that should be investigated
further in the near future in order to turn eDFT into a reliable and low-cost
computational method for excited states.
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A Asymptotic behavior of the xc potential

Let us consider the simpler one-dimensional (1D) case in which the KS-PPLB equations
read as

−
1

2

d2ϕαi (x)

dx2
+ (vext(x) + vαHxc(x))ϕαi (x) = εαi ϕ

α
i (x), (A.1)

thus leading to

d2ϕαi (x)

dx2
=

|x|→+∞
−2 (εαi − vαxc(∞))ϕαi (x), (A.2)

where we used the limits vext(∞) = vαH(∞) = 0. Note that
∣∣ϕαi (x)

∣∣ is expected to decay as

|x| → +∞, which implies −2
(
εαi − vαxc(∞)

)
> 0. Therefore,

ϕαi (x) ∼
|x|→+∞

e−
√
−2(εαi −v

α
xc(∞))|x|, (A.3)

and

nγ̂αKS
(x) ∼
|x|→+∞

α|ϕαN (x)|2 ∼ α e−2
√
−2(εα

N
−vαxc(∞))|x|. (A.4)

In the true interacting system, the N -electron ground-state wave function ΨN0 fulfills N∑
i=1

(
−

1

2

∂2

∂x2i
+ vext(xi)

)
+

N∑
1≤i<j

wee(|xi − xj |)

ΨN0 (x1, . . . , xN )

= EN0 Ψ
N
0 (x1, . . . , xN ),

(A.5)

where wee(|xi − xj |) is a well-behaved two-electron repulsion energy in 1D. Let us consider
the situation where |x1| → +∞ while x2, . . . , xN remain in the region of the system, which
corresponds to an ionization process in the ground state. Since wee(|x1 − xj |) → 0, the
(to-be-antisymmetrized) wave function and its density can be rewritten as

ΨN0 (x1, . . . , xN ) ∼
|x1|→+∞

ϕ[N ](x1)ΨN−1
0 (x2, . . . , xN ) (A.6)

and

nΨN0
(x1) ∼

|x1|→+∞

∣∣∣ϕ[N ](x1)
∣∣∣2, (A.7)

respectively, where

d2ϕ[N ](x1)

dx21
∼

|x1|→+∞
−2
(
EN0 − E

N−1
0

)
ϕ[N ](x1) = 2IN0 ϕ

[N ](x1), (A.8)

thus leading to the explicit expression

ϕ[N ](x) ∼
|x|→+∞

e
−
√

2IN0 |x|. (A.9)

From the exact mapping of the ensemble PPLB density onto the KS system, we deduce
from Eqs. (A.7) and (A.9) that

nγ̂αKS
(x) ∼
|x|→+∞

(1− α)e−2
√

2IN−1
0 |x| + α e

−2
√

2IN0 |x| ∼ α e−2
√

2IN0 |x|, (A.10)
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where we assumed that EN−1
g = IN−1

0 − IN0 > 0. Thus, we conlude from Eq. (A.4) that

IN0 = −(εαN − v
α
xc(∞)). (A.11)

Any constant shift in the xc potential vαxc(r) does not affect the above expression. Since,
according to Janak’s theorem, IN0 = −εαN , the constant is imposed in PPLB and

vαxc(∞) = 0. (A.12)

We now turn to the left and right formulations of N -centered eDFT. We recall the

shorthand notations (ξ−, 0)
notation
≡ ξ− and (0, ξ+)

notation
≡ ξ+. When ξ+ > 0, the right

N -centered ensemble density, which is mapped onto a non-interacting KS ensemble, has the
following asymptotic behavior [we just need to substitute N + 1 for N in Eqs. (A.4), (A.7),
and (A.9)],

nξ+ (x) ∼
|x|→+∞

ξ+ e
−2

√
2IN+1

0 |x| (A.13)

∼ ξ+ e
−2

√
−2(ε

ξ+
N+1

−v
ξ+
xc (∞))|x|

. (A.14)

Similarly, for ξ− ≥ 0, we have

nξ− (x) ∼
|x|→+∞

(
1−

(N − 1)ξ−

N

)
e
−2

√
2IN0 |x| (A.15)

∼
(

1−
(N − 1)ξ−

N

)
e
−2

√
−2(ε

ξ−
N
−v

ξ−
xc (∞))|x|

. (A.16)

Thus, we conclude that

AN0 = IN+1
0

ξ+>0
= −εξ+N+1 + v

ξ+
xc (∞) (A.17)

and

IN0
ξ−≥0

= −εξ−N + v
ξ−
xc (∞). (A.18)

B Derivation of the eDMHF equations

For convenience, we use the following exponential parameterization of the single-configuration
wave functions [126],

|ΦI〉 ≡ |ΦI(κ)〉 = e−κ̂
∣∣∣Φw
I

〉
, (B.1)

where κ ≡ {κpq}p<q are the variational orbital rotation parameters and κ̂ is the correspond-
ing real singlet rotation quantum operator. The latter reads as follows in second quantization,

κ̂ =
∑
p<q

κpq(Êpq − Êqp) = −κ̂†, (B.2)

where the index p refers to the orbital ϕw
p and Êpq =

∑
τ=↑,↓ â

†
pτ âqτ . Therefore, the eDMHF

energy becomes a function of κ,

Ew
eDMHF(κ) = EHF (Dw(κ)) , (B.3)
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where Dw(κ) =
∑
I wID

ΦI (κ) is a trial ensemble density matrix, and EHF(D) is the con-
ventional ground-state HF density matrix functional energy:

EHF(D) =
∑
mk

hmkDmk +
1

2

∑
klmn

(
〈mn|kl〉 −

1

2
〈mn|lk〉

)
DmkDnl. (B.4)

By construction, the minimum is reached when κ = 0, and we denote Dw = Dw(κ = 0).
Note that

D
Φ

w
I

pq =
〈
Φ
w
I

∣∣∣Êpq∣∣∣Φw
I

〉
= δpqn

I
p, (B.5)

where the occupation number nIp is an integer, and

Dw
pq =

∑
I

wID
Φ

w
I

pq = δpq
∑
I

wIn
I
p = δpqθ

w
p , (B.6)

where θwp can be fractional. The stationarity condition that is fulfilled by the minimizing
eDMHF orbitals can now be written explicitly as follows,

∂Ew
eDMHF(κ)

∂κpq

∣∣∣∣
κ=0

=
∑
rs

∂Dw
rs(κ)

∂κpq

∣∣∣∣
κ=0

∂EHF (D)

∂Drs

∣∣∣∣
D=Dw

= 0, (B.7)

where

∂EHF (D)

∂Drs
= hrs +

1

2

∑
nl

(
〈rn|sl〉 −

1

2
〈rn|ls〉

)
Dnl

+
1

2

∑
mk

(
〈mr|ks〉 −

1

2
〈mr|sk〉

)
Dmk

= hrs +
∑
nl

(
〈rn|sl〉 −

1

2
〈rn|ls〉

)
Dnl

≡ frs(D)

(B.8)

is the conventional density matrix functional Fock operator matrix element, and

∂Dw
rs(κ)

∂κpq

∣∣∣∣
κ=0

=
∑
I

wI

〈[
Êpq − Êqp, Êrs

]〉
Φw
I

=
∑
I

wI

(
δqrδpsn

I
p − δpsδqrnIq − δprδqsnIq + δqsδprn

I
p

)
= (δqrδps + δprδqs)

∑
I

wI

(
nIp − nIq

)
= (δqrδps + δprδqs) (θwp − θwq ),

(B.9)

where we used the relation [Êpq , Êrs] = δqrÊps − δpsÊrq (see Ref. [126]) with Eqs. (B.5)
and (B.6). If we denote fwrs = frs(Dw), Eq. (B.7) can be written in a compact form as
follows,

(θwp − θwq )
∑
rs

(δqrδps + δprδqs) f
w
rs = 0, (B.10)

thus leading to the final result: (
θwp − θwq

)
fwqp = 0. (B.11)
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C Derivation of the SAHF equations

We use the same parameterization as in Appendix B, i.e.,

|ΦI〉 ≡ |ΦI(κ)〉 = e−κ̂
∣∣∣Φ̃w
I

〉
, (C.1)

where the indices {p} in creation/annihilation operators (as well as in one- and two-electron
integrals) now refer to the minimizing SAHF orbitals

{
ϕ̃w
p

}
. The to-be-minimized SAHF

energy can be expressed as follows,

Ew
SAHF(κ) =

∑
I

wI

(∑
rs

hrsD
ΦI (κ)
rs + EH[nΦI (κ)] + EIx

[
DΦI (κ)

])
, (C.2)

so that the stationarity condition reads as

∂Ew
SAHF(κ)

∂κpq

∣∣∣∣
κ=0

= 0

=
∑
I

wI

[∑
rs

(
hrs +

[
vwx,I

]
rs

) ∂DΦI (κ)
rs

∂κpq
+

∫
dr vH[nΦ̃w

I
](r)

∂nΦI (κ)(r)

∂κpq

]
κ=0

,

(C.3)

where
[
vwx,I

]
rs
≡ ∂EIx [D] /∂Drs

∣∣
D=D

Φ̃w
I

and vH[n](r) = δEH[n]/δn(r). Note that the

individual densities are recovered from the density matrices as follows,

nΦI (κ)(r) = γΦI (κ)(r, r) =
∑
rs

ϕ̃w
r (r)ϕ̃w

s (r)D
ΦI (κ)
rs . (C.4)

Therefore, if we use the notation

〈ϕ̃w
r |ĥ+ v̂wHx,I |ϕ̃

w
s 〉 = hrs +

∫
dr ϕ̃w

r (r)vH[nΦ̃w
I

](r)ϕ̃w
s (r) +

[
vwx,I

]
rs
, (C.5)

Eq. (C.3) can be rewritten in a compact form as follows,

∑
I

wI
∑
rs

〈ϕ̃w
r |ĥ+ v̂wHx,I |ϕ̃

w
s 〉

∂D
ΦI (κ)
rs

∂κpq

∣∣∣∣∣
κ=0

= 0. (C.6)

We conclude from Eq. (B.9) that

0 =
∑
I

wI

(
nIp − nIq

)∑
rs

(δqrδps + δprδqs) 〈ϕ̃w
r |ĥ+ v̂wHx,I |ϕ̃

w
s 〉

= 2
∑
I

wI

(
nIp − nIq

) 〈
ϕ̃w
p

∣∣ĥ+ v̂wHx,I

∣∣ϕ̃w
q

〉
,

(C.7)

thus leading to the final result:

(θwp − θwq )
〈
ϕ̃w
p

∣∣ĥ∣∣ϕ̃w
q

〉
+
∑
I

wI

(
nIp − nIq

) 〈
ϕ̃w
p

∣∣v̂wHx,I

∣∣ϕ̃w
q

〉
= 0. (C.8)

D Exact DD ensemble correlation energy in the Hubbard dimer

For convenience, we will use the following exact expression for the ensemble DD correlation
energy:

Ew,DD
c (nw) = −(1− w)2w

∂fw0(nw)

∂w
+ w2(1− w)

∂fw1(nw)

∂w
. (D.1)
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The individual Hx-only GOK energies are extracted from the ensemble one,

fξ(n) = −2t
√

(1− ξ)2 − (1− n)2 +
U

2

[
1 + ξ −

(3ξ − 1)(1− n)2

(1− ξ)2

]
, (D.2)

as follows,

fw0 (nw) = fw (nw)− w
∂fξ

(
nξ,w

)
∂ξ

∣∣∣∣∣
ξ=w

, (D.3)

and

fw1 (nw) = fw (nw) + (1− w)
∂fξ

(
nξ,w

)
∂ξ

∣∣∣∣∣
ξ=w

, (D.4)

where

nξ,w = (1− ξ)nΦw
0

+ ξnΦw
1
. (D.5)

Since nΦw
1

= 1 and

(1− w)nΦw
0

+ wnΦw
1

= nw, (D.6)

or, equivalently,

nΦw
0

=
nw − w

(1− w)
, (D.7)

it comes

nξ,w = (1− ξ)
(nw − w)

1− w
+ ξ (D.8)

and

∂nξ,w

∂ξ

∣∣∣∣
ξ=w

= 1−
(nw − w)

1− w
=

1− nw

1− w
. (D.9)

From the weight derivative expression

∂fξ
(
nξ,w

)
∂ξ

∣∣∣∣∣
ξ=w

=
∂fξ(nw)

∂ξ

∣∣∣∣
ξ=w

+
∂nξ,w

∂ξ

∣∣∣∣
ξ=w

×
∂fw(n)

∂n

∣∣∣∣
n=nw

, (D.10)

where

∂fξ(n)

∂ξ
=

2t(1− ξ)√
(1− ξ)2 − (1− n)2

+
U

2

[
1−

(n− 1)2(1 + 3ξ)

(1− ξ)3

]
(D.11)

and

∂fw(n)

∂n
=

2t(n− 1)√
(1− w)2 − (1− n)2

+ U
(3w− 1)(1− n)

(1− w)2
, (D.12)

thus leading to

∂fξ
(
nξ,w

)
∂ξ

∣∣∣∣∣
ξ=w

=
2t(1− w)√

(1− w)2 − (1− nw)2

−
2t(1− nw)2

(1− w)
√

(1− w)2 − (1− nw)2

+
U

2

[
1−

(nw − 1)2(1 + 3w)

(1− w)3

]
+ U

(3w− 1)(1− nw)2

(1− w)3
,

(D.13)
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or, equivalently,

∂fξ
(
nξ,w

)
∂ξ

∣∣∣∣∣
ξ=w

=
2t
√

(1− w)2 − (1− nw)2

(1− w)
+
U

2

[
1−

3(1− nw)2

(1− w)2

]
, (D.14)

it comes

fw0 (nw) = −
2t
√

(1− w)2 − (1− nw)2

(1− w)
+
U

2

[
1 +

(1− nw)2

(1− w)2

]
(D.15)

and

fw1 (nw) = U

[
1−

(1− nw)2

(1− w)2

]
. (D.16)

As a result,

∂fw0(nw)

∂w
=

2t(nw − 1)(nΨ1 − 1)

(1− w)2
√

(1− w)2 − (1− nw)2
+ U

(nw − 1)(nΨ1 − 1)

(1− w)3
(D.17)

and

∂fw1(nw)

∂w
= −

2U(nw − 1)(nΨ1
− 1)

(1− w)3
, (D.18)

which leads, according to Eq. (D.1), to the final compact expression

Ew,DD
c (nw) = −w(nw − 1)(nΨ1 − 1)

×
[

2t√
(1− w)2 − (1− nw)2

+
U(1 + w)

(1− w)2

]
.

(D.19)
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