\

Towards virtual access of adaptive optics telemetry data
Tiago Gomes, Carlos Correia, Lisa Bardou, Olivier Beltramo-Martin, Thierry
Fusco, Caroline Kulcsar, Timothy Morris, Nuno Morujao, Benoit Neichel,

James Osborn, et al.

» To cite this version:

Tiago Gomes, Carlos Correia, Lisa Bardou, Olivier Beltramo-Martin, Thierry Fusco, et al.. Towards
virtual access of adaptive optics telemetry data. SPIE Astronomical Instrumentation, Adaptive Optics
Systems VIII, SPIE proceedings, 12185, pp.121850H, 2022, 10.1117/12.2630214 . hal-03796284

HAL Id: hal-03796284
https://hal.science/hal-03796284

Submitted on 4 Oct 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03796284
https://hal.archives-ouvertes.fr

arXiv:2207.14344v1 [astro-ph.IM] 28 Jul 2022

Towards virtual access of adaptive optics telemetry data

Tiago Gomes™!, Carlos Correia®f, Lisa Bardou®, Olivier Beltramo-Martin®, Thierry Fusco®9,

Caroline Kulcsar®, Timothy Morris®, Nuno Morujao™{, Benoit Neichel®, James Osborn®, and
Paulo Garcia®f

2Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465
Porto, Portugal
bSpace ODT - Optical Deblurring Technologies, Porto, Portugal
¢Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
9DOTA, ONERA, Université Paris Saclay, F-91123 Palaiseau, France
*Durham University (United Kingdom)
fCenter for Astrophysics and Gravitation, Instituto Superior Técnico, Av. Rovisco Pais 1,
1049-001 Lisboa, Portugal
&Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles
Fabry, 91127 Palaiseau, France
hDepartamento de Fisica e Astronomia, Faculdade de Ciéncias da Universidade do Porto, Rua
do Campo Alegre s/n, 4169-007 Porto, Portugal

ABSTRACT

Large amounts of Adaptive-Optics (AO) control loop data and telemetry are currently inaccessible to end-users.
Broadening access to those data has the potential to change the AO landscape on many fronts, addressing several
use-cases such as derivation of the system’s PSF, turbulence characterisation and optimisation of system control.
We address one of the biggest obstacles to sharing these data: the lack of standardisation, which hinders access.
We propose an object-oriented Python package for AO telemetry, whose data model abstracts the user from an
underlining archive-ready data exchange standard based on the Flexible Image Transport System (FITS). Its
design supports data from a wide range of existing and future AO systems, either in raw format or abstracted from
actual instrument details. We exemplify its usage with data from active AO systems on 10m-class observatories,
of which two are currently supported (AOF and Keck), with plans for more.

Keywords: Adaptive Optics, Telemetry, Data Exchange Standard, Data Model, PSF reconstruction, FITS,
Object Oriented, Python

1. INTRODUCTION

Despite the increasing adoption of Adaptive Optics (AO) systems in astronomy, accessing and interpreting their
telemetry data remains a real challenge. We use the term “telemetry” to represent AO internal signals such
as wavefront sensor measurements, deformable mirror commands and several other reconstruction and control
matrices and parameters. AO telemetry data has the potential to be used in many applications of high scientific
interest, e.g., instrumentation research, deriving the state of the atmospheric turbulence during observations,'®
deriving the point spread function,” 2 performing system performance estimation or runtime optimization.'?1°
Contradictorily, this type of data has been historically seen as “engineering data” and thus third-party access
is disregarded by most data-producing systems.!® While most of these systems already record large amounts of
telemetry for internal use (including one-off instrument commissioning and regular calibration), these data are
usually saved in private archives that are out of reach to the end-user, or it is simply not kept in the long-term.
Even in cases where third-parties can access telemetry datasets, their documentation tends to be poor or non-
existent. This complicates the task of interpreting and analysing them, given that the data points being shared
and how they are structured usually varies significantly between systems (and sometimes even between datasets
generated by the same system). In sum, the landscape is dominated by a complete lack of uniformity in the
data, which ends up being one of the biggest obstacles to data access.

Given the extensive use-cases for AO telemetry data, broadening its access could change the AO and astron-
omy landscape on many fronts. Accordingly, many systems are starting to show interest in saving and sharing
such data. One of the earliest examples of public archiving of AO telemetry was carried out by the CANARY
project,'” who made its open loop data for the sodium laser guide star experiment'® available on the ESO
Science Archive,'? with a data format that is extensively detailed in an accompanying manual.?’ The Gemini
Observatory is planning on publishing one of the first large scale archives of telemetry datal'® (mostly composed
on wavefront slopes and DM commands), through the Gemini Observatory Archive.?! However, publishing AO
telemetry data currently requires significant effort from the responsible teams, as they are forced to design their
own purpose-made data format, and make it available along with proper documentation for their prospective
users. While such formats represent a significant step forward in data accessibility, given that they are tailored
specifically for one instrument/observatory, they typically make no attempts at generalising support for multiple
systems. In fact, to our knowledge, there has been no major attempt in the AO community to establish a
consensual data format for AO telemetry to date.

We believe that access to AO telemetry data can only become ubiquitous by having the bulk of the AO
community agree on a common way of sharing their data, that is, agreeing on a data exchange standard. A
data exchange standard essentially defines a set of attributes/fields, their meanings, the way they relate to other
data and the way they are stored in a shareable format. An ideal data exchange standard for AO telemetry
would be able to package all relevant data in an unambiguous manner that is consistent across as many systems
as possible, allowing data to be easily shared between data-producing systems and their end-users. It should
also be structured in a generalised way that abstracts the user from observatory or instrument-specific details,
without losing access to important information. While some of its fields should be mandatory in order to ensure
the uniformity of data access, a significant portion should be optional, granting its flexibility to adapt to the
irregularities of the telemetry being gathered by the different real-life instruments. Finally, it should be designed
in a way that allows it to be continuously expanded to meet user needs and advancements in the AO field.

With all this in mind, we are developing AOT (Adaptive Optics Telemetry), a data exchange standard for AO
telemetry data. This standard draws some inspiration from OIFITS,?? 24 which was created as a result of similar
challenges that the interferometry community has faced. AOT is built on top of the Flexible Image Transport
System (FITS),?® meaning that AOT files fully comply with the latest FITS standard,?® on top of which we
define AOT-specific keywords and extensions. Specifically, we group data from different parts of the system with
a set of 10 FITS binary tables, followed by as many image extensions as necessary to specify multi-dimensional
data related to the system. While FITS is not an ideal standard for storing object-oriented data, building on top
of FITS ensures significant compatibility with many of the existing tools, since any tool that fully supports the
latest FITS standard will also be able to read AOT files, without requiring any modifications. A full discussion
and exact specification of the first version of the AOT standard will be published separately at a later date. In
this paper, we will be focused on the supporting mechanisms and tools that we have built for AOT.

The rate of adoption of a data exchange standard is its biggest metric of success, as low adoption would turn
it into just another incompatible way of storing data, losing its intended purpose. Therefore, we are committed
to alleviate anything that may prove to be a barrier to adoption. Specifically, we have developed aotpy (Adaptive
Optics Telemetry for Python), an object-oriented Python?” package that supports this data exchange standard.
The goal of this package is to facilitate reading, editing and writing of AOT files, by abstracting the user from
the actual file handling and its structure. It does so by implementing a data model through which the user can
interact with all relevant data. We also provide preliminary “Translator” methods, currently for two AO systems
on 10m-class observatories. These methods essentially act as interfaces between non-standard data currently
being produced by these systems and our standard data model, allowing the user to work with supported legacy
data via aotpy and in turn create standard AOT files for it. This feature is important as it bridges the gap for
legacy systems that are unlikely to adopt a newer standard.

This project is being developed in the context of OPTICON-RadioNet Pilot, an European collaboration
through which we aim to promote broad discussion and consensus within the AO community. We plan on
making available on the ESO Science Archive a set of AOT files for existing ESO systems; preliminary talks have
been established with responsible teams, to ensure that no showstoppers exist.

In this paper we will be going through the implementation of the aolpy package, code demonstrations,
examples of its use-cases and the work that we have currently planned for the future.

2. PYTHON PACKAGE

aotpy is an object-oriented Python package that defines a set of classes and variables which can hold all data
that may be shared through an AOT file, as well as interfaces for writing and reading such files. In the future,
this package will also provide tools to explore data in AOT files interactively.

While currently this package only provides support for FITS files, it was designed with the intention of
enabling an easy expansion to other file types, as long as these can still be represented by the aotpy data model.

2.1 Data Model and Classes

The classes in aotpy serve as abstractions of physical objects, their environment or the way they interact and
behave in a AO system. Similar standpoints have been adopted in AO simulation tools such as OOMAQO.?8
They are implemented as Python Data Classes and provide access to a set of related AO data, which aims to be
generalised enough to uniformly support distinct AO systems (classical with single natural or laser guide stars,
multi-wavefront sensor systems, tomographic, etc.). For this purpose, common object-oriented techniques such
as inheritance and polymorphism are employed.

An overview of the data model implemented by aotpy is provided in Fig. 1. Each AOT file can be fully
represented by a single instance of AOSystem, which contains telemetry from a single observation, as well as
other data that may contextualise and support the analysis and interpretation of this telemetry.

A general description of all classes in aotpy is provided in the following sections. Note that most classes have
a name variable, which is a unique user-defined identifier (that is, no other objects of the same type may have
the exact same name). This is so that, even in scenarios where direct references to objects are not possible (for
example, within a FITS file), these objects may still be uniquely referenced via their names.

2.1.1 AOSystem

This is the central class in aotpy. Its purpose is to provide general information about the observation, as well as
references to all the different objects that detail the system (specifically, it references Source, AtmosphericPa-
rameters, MainTelescope, ScoringCamera, WavefrontSensor, RTC and WavefrontCorrector objects). A diagram
defining this class can be found in Fig. 2.

2.1.2 Image

This class provides a generalised interface for multi-dimensional arrays of values. The array itself is stored as
a NumPy?° ndarray, but some metadata (such as units of measurement) can also be associated with an Image
object.

Other classes in aotpy contain references to Image objects whenever some data cannot be represented as a
single value or as a one-dimensional list of values. The same Image object may be referenced by multiple objects
in the system, avoiding data duplication.

A representation of this class can be seen in Fig. 3.

2.1.3 AtmosphericParameters

Atmospheric data that may be relevant to the observation in question, mainly in regards to astronomical seeing
and turbulence profiles, can be stored in AtmosphericParameters instances. The source of such data, as well as
the moment when it was recorded, is coupled with the data itself. This is shown in Fig. 4.

2.1.4 Source

In aotpy, Source objects hold data related to the positioning of a light source. They shall be instantiated as
either a NaturalGuideStar or a LaserGuideStar. The latter may contain further data related to the laser launch
telescope used to create the source, and the sodium layer being targeted by it, as seen in Fig. 5.

DeformableMirror TipTiltMirror LinearStage ShackHartmann Pyramid

\ / OffloadLoop ControlLoop \ /

Extends Extends Extends Extends Extends

S

] 0.* EXtSEgS
WavefrontCorrector 1—0? Loop WavefrontSensor
0.* 0..*
1 1
Telescope Source

<S>

Extends Extends

g

Extends Extends

1
LaserLaunch . 1 - -
Telescope MainTelescope —. AOSystem NaturalGuideStar LaserGuideStar
0.1 y £ 1 WA 1
0.* 0.*
Atmospheric

ScoringCamera
Parameters g

Figure 1. A language-agnostic UML Class Diagram that provides an overview of the data model and classes in aotpy.

2.1.5 Telescope

Telescope objects contain data about a telescope’s physical characteristics and configuration at the time of
observation. These objects should be instantiated as MainTelescope, if they contain data regarding the telescope
at which the observation itself is performed, or LaserLaunchTelescope if their data relates to the telescopes used
to create artificial guide stars.

Each AOSystem must only contain one MainTelescope object (but as many LaserLaunchTelescope objects as
necessary). The contents of these classes are represented in Fig. 6.
2.1.6 Detector

Detector objects are an integral part of objects like ScoringCamera and WavefrontSensor. A Detector object
may hold a wide set of data related to the physical characteristics and configurations of a detector, as well as
the actual pixels recorded by it. A detailed representation of its contents is provided in Fig. 7.

2.1.7 OpticalRelay

An instance of this class contains data related to the physical configuration of the optical assembly, which may
be present in ScoringCamera and WavefrontSensor objects. This is a rather simple class, which is represented
in Fig. 7.

AOSystem

+ start_datetime: datetime

+ end_datetime: str

+ ao_mode: str

+ sources: list[Source]

+ atmosphere: list{AtmosphericParameters]
+ telescope: MainTelescope

+ scoring_cameras: list[ScoringCamera]

+ wavefront_sensors: list{WavefrontSensor]
+rtc: RTC

+ wavefront_correctors: list{WavefrontCorrector]

Figure 2. UML Class Diagram for the AOSystem class.

Image

Metadatum

+ name: str
1 o +key:str

+ data: np.ndarray ——

+ unit: str

+ value: Any

+ comment: str

+ metadata: list{Metadatum]

Figure 3. UML Class Diagram for the Image and Metadatum classes.

AtmosphericParameters
+ data_source: str AtmosphereLayer
+ timestamp: datetime + weight: float
+ wavelength: float ‘1# + height: float
+ r0: float + wind_speed: float
+ 10: float + wind_direction: float
+ layers: list{AtmosphereLayers]

Figure 4. UML Class Diagram for the AtmosphericParameters and AtmosphereLayer classes.

LaserGuideStar

+ laser_launch_telescope: LaserLaunchTelescope

Source + sodium_height: float

+ name: str + sodium_width: float
. . Extends ™ |
+ right_ascension: float Q + sodium_profile: list[float]

+ declination: float + sodium_altitudes: list[float]

+ zenith_angle: float : Extends

+ azimuth: float NaturalGuideStar

Figure 5. UML Class Diagram for the Source class and its subclasses LaserGuideStar and NaturalGuideStar.

Telescope MainTelescope

+ hame: str

+ d_hex: float Extends
+d_circle: float A
+ d_eq: float
+ cobs: float
+ pupil: Image
+ pupil_angle: float v

+ elevation: float Extends

+ azimuth: float LaserLaunchTelescope

+ static_map: Image

Figure 6. UML Class Diagram for the Telescope class and its subclasses MainTelescope and LaserLaunchTelescope.

2.1.8 OpticalAberration

This class provides variables that allow a user to describe optical aberrations. In aotpy these may be associated to
ScoringCamera and WavefrontSensor objects (as represented in Fig. 7) but also to WavefrontCorrector objects.

2.1.9 ScoringCamera

A ScoringCamera object may contain some data about the characteristics of the camera, as well as references to
related Detector, OpticalRelay and OpticalAberration objects. However, it is important to note that the science
data itself is not included here, or anywhere else in the package or the AOT standard, given that the focus is in
handling telemetry data (usually, science data is already accessible separately). Fig. 7 details this class as well
as its relation with other classes.

2.1.10 WavefrontSensor

A WavefrontSensor object may contain a wide set of data related to its subapertures, the detected wavefront
(such as gradients and intensities) and the algorithms and gain values involved. It can also provide references to
related Detector, OpticalRelay and OpticalAberration objects. WavefrontSensor objects must always provide a
reference to the Source that they are sensing.

Objects shall not be instantiated as WavefrontSensor, but specifically as one of the two subclasses provided:
ShackHartmann or Pyramid. These subclasses support extra data that are specific to that type of Wavefront
Sensor. Support for further types may be provided in the future.

A detailed representation of the contents of this class, its subclasses and interactions with other classes can
be seen in Fig. 7.

2.1.11 WavefrontCorrector

An instance of this class characterises a set of actuators that are commanded jointly to correct wavefronts.
WavefrontCorrector objects must always provide a reference to the Telescope that they are installed on (either a
MainTelescope or a LaserLaunchTelescope) and may also provide a reference to related OpticalAberration objects.
Objects shall not be instantiated as WavefrontCorrector, but specifically as one of the three subclasses provided:
DeformableMirror, TipTiltMirror or LinearStage. The difference in these types of Wavefront Correctors lies
mostly on the number of actuators involved (a Linear Stage has a single actuator, for translation, a Tip-Tilt
Mirror has two actuators, for tip and tilt, and a Deformable Mirror may have any number of actuators larger
than 2). Other types of correctors may be supported in the future. A diagram for this class is provided in Fig. 8.

ShackHartmann

+ spot_fwhm: Image

Extends

Extends

Pyramid

+modulation: float

Figure 7.

OpticalAberration

+ name: str
0.1 0.1

+ coefficients: Image

1

WavefrontSensor

+ name: str

+ source: Source

+ slopes: Image

+ ref_slopes: Image

+ theta: float

+ wavelength: float

+ d_wavelength: float

+ n_subapertures: int

+ valid_subapertures: Image
+ subaperture_size: float

+ subaperture_intensities: Image
+ pupil_angle: float

+ algorithm: str

+ optical_gain: float

+ centroid_gains: Image

+ detector: Detector

+ optical_relay: OpticalRelay

+ optical_aberration: OpticalAberration

1

+ modes: Image

+ pupil: Image

Detector

+ name: str

+ flat_field: float

+ readout_noise: float

+ pixel_intensities: Image
+ integration_time: float
+ coadds: int

+ dark: Image

+ weight_map: Image

+ quantum_efficiency: float 0.1
+ pixel_scale: float

+ binning: int

+ bandwidth: float

+ transmission_wavelength: list[float]
+ transmission: list[float]

+ sky_background: Image

+ gain: float

+ excess_noise: float

+ filters: str

+ bad_pixel_map: Image

OpticalRelay

+ name: str

UML Class Diagram for all the classes related to optical sensors.

<>1

ScoringCamera

+ name: str

+ pupil: Image

+ theta: float

+ wavelength: float

+ frame: Image

-

+ field_static_map: Image
+ x_stat: list[float]
+y_stat: list[float]

+ detector: Detector

+ optical_relay: OpticalRelay

+ optical_aberration: OpticalAberration

1 Q

+ field_of_view: float

+ focal_length: float

This includes Detector, OpticalRelay,

OpticalAberration, ScoringCamera, WavefrontSensor and its subclasses ShackHartmann and Pyramid

WavefrontCorrector

DeformableMirror

+ name: str

+ telescope: Telescope
+ pitch: float

+ n_actuators: int

+ tfz_num: list[float]

+ tfz_den: list[float]

+ valid_actuators: Image

j Extends— | + influence_function: Image

TipTiltMirror

q—Exten ds——

ﬁ‘ + n_actuators = 2
Extends
—

LinearStage

+ optical_aberration: OpticalAberration

+ n_actuators = 1

Figure 8. UML Class Diagram for the WavefrontCorrector class and its subclasses DeformableMirror, Tip TiltMirror and

LinearStage.

2.1.12 RTC

The RTC (Real-Time Computer) is a conceptual object that holds lookup tables (LUTSs) and non-common path
aberrations (NCPAs) that may be used in AO computation, as well as a set of Loop objects.

In the context of AO, a loop may be generally understood as the process through which the RTC periodically
gathers data from a certain input and calculates a resulting output data, which is usually a set of commands
sent to some sort of WavefrontCorrector. In the case of ControlLoop objects, wavefront data (as sensed by
a WavefrontSensor) are taken as the input, from which the RTC calculates the necessary adjustments to a
WavefrontCorrector, based on interaction and control matrices. As for OffioadLoop objects, the input is instead
the set of commands received by one WavefrontCorrector, which then results on an output which is offloaded
to another WavefrontCorrector, based on a offload matrix. Loop objects shall be instantiated as their specific
subclass, in order to properly setup the objects they coordinate.

In the real-world, an AO loop may command multiple wavefront correctors based on a single wavefront sensor,
or even multiple wavefront sensors may be used to command a single wavefront corrector. While aotpy can only
instantiate one-to-one relationships, this limitation can easily be worked around by instantiating multiple Loop
objects that represent the same real-world conceptual loop*, with minimal overhead (given that the duplicated
data is mostly composed of references).

It is important to note that, since ControlLoop objects provide references to one WavefrontSensor object
and one WavefrontCorrector, which themselves provide references to one Source object and one Telescope object
respectively, we can access the entire chain of objects that are related to a single ControlLoop object via references.
This property can be easily observed in the overview of the data model in Fig. 1, as all of these objects are linked
together by aggregation. For a more specific view into the RTC, Loop and its subclasses, Fig. 9 is provided.

RTC

+ lookup_tables: list[Image]

+ non_common_path_aberrations: list[lmage]
+ loops: list[Loop]

1
0.*

Loop ControlLoop
+ name: str + input_wfs: WavefrontSensor
+ commanded_corrector: WavefrontCorrector + residual_wavefront: Image
+ commands: Image j Extends— | * control_matrix: Image
+ ref_commands: Image + interaction_matrix: Image

+ timestamps: list[float]

+ framerate: float <~
Extends
+ delay: float OffloadLoop
+ time_filter_num: Image + input_corrector: WavefrontCorrector
+ time_filter_den: Image + offload_matrix: Image

Figure 9. UML Class Diagram for the RT'C class as well as Loop and its subclasses ControlLoop and OffloadLoop.

*For example, if a real-world AO loop uses a single wavefront sensor to command multiple wavefront correctors, in
aotpy we can create one ControlLoop object for each wavefront corrector being commanded. These objects will all have
the same WavefrontSensor object as input, but their control matrices and commands will differ based on their respective
WavefrontCorrector object (output).

2.2 Readers and Writers

In aotpy, the task of a Reader is to receive one AOT file as input and return a single A OSystem object. Conversely,
a Writer is able to write an AOSystem object into an AOT file. These tools completely abstract users from the
file handling process, allowing them to analyse, edit and store AO telemetry without any prior knowledge of the
actual file structure and specification. It is important to note that the reading and writing process is independent
from the actual source of the data or its contents, as it simply handles a standardised AOSystem object. This
means that, for AOT files, we can handle data produced by any system with a single Reader/Writer pair, for
a given file type. A diagram representing the overall functionality of the Readers and Writers can be seen in
Fig. 10.

. FITS FITS ~LT
} " reader writer > }
AOT ASDF ASDF AOT
___-_"fi‘”{__ reader writer jﬂ__
AOT HDF5 HDF5 AOT
hdf5 reader writer .hdf5
L L

Figure 10. Diagram representing the functionality of the Readers and Writers in aotpy. The FITS Reader and Writer
are currently implemented, while the others are examples of file types that could be supported. The “AOT object” here
is a AOSystem object, which can be freely edited before being written again.

Currently, only a FITS Reader and a FITS Writer are provided, but other file types (such as ASDF3" or
HDF53!) could be supported by creating corresponding Reader/Writer pairs, without requiring any change to
the data model or classes provided by aotpy (though this is not currently planned). The FITS Reader/Writer
implementation makes heavy use of Astropy®?’s FITS File Handling package. For all of the main classes, the
FITS writer essentially aggregates objects of that type and stores their data in one table per type, with the
exception of Image objects, which are stored separately as FITS image extensions.

2.3 Translators

While ideally all data-producing systems would adopt the AOT standard, in practice the current state of AO
telemetry data is mostly not standardised (as previously described in Sec. 1). This means that most data
currently available cannot to be read by the Readers provided by this package. To ease the adoption of AOT,
aotpy aims to provide Translators for a set of relevant data-producing systems. For a supported data-producing
system, a Translator is able to read a given set of files (produced by that system) that are related to a single
observation, and then use that data to populate the corresponding fields of an AOSystem object. This object can
then be handled as any other AOSystem object, particularly it can then be written to an AOT file, allowing for
future reading of that data without requiring the user to go through the translation process again. A conceptual
diagram of this feature can be seen in Fig. 11.

Translators are highly system specific, as they require in-depth knowledge of how a given system stores its
data. As such, their development requires significant collaboration with system designers/engineers familiar with
that system. Therefore, aotpy is currently only able to provide preliminary Translator support for two systems:
the Adaptive Optics Facility (AOF) at ESO’s VLT?? and the AO system at the W. M. Keck Observatory.>*
Preliminary support for other systems in ESO’s VLT (specifically, NAOMI?*36 and CIAO®7) is currently under
development.

Telemetry-producing

Python Package

Systems
'_]:
AOF . AOF
telemet - translator

Multiple fits files

'_I—
Keck _ Keck

| telemetry - | Translator

.sav files + others

AQT fits

\ 4

Writer

1

System .| |,| Translator

X X

Figure 11. Diagram representing the functionality of Translators in aotpy. The translators for AOF and Keck are
currently implemented, while X represents other translators that could be supported, e.g. NAOMI or CTAO. The standard
AOSystem object could be directly used for any pipeline that accepts these objects, so writing the object to a file is purely
optional.

AOF telemetry data is usually recorded manually and takes the form of more than 50 distinct FITS files
per observation, which together contain intensity and gradient data of both of its wavefront sensors, the pixels
of the NGS WEFS detector, the positions of its DSM and other correctors present in its laser launch telescopes,
control/offload /interaction matrices and a wide range of data regarding the characteristics of the detectors in
the system. The AOF translator is able to package all of the relevant data made available in these files, along
with a few configuration matrices that were sourced externally, into the standardised A OSystem object.

The Translator for Keck currently supports both its NGS and LGS mode, for the NIRC2 instrument. Teleme-
try data is provided in the form of an IDL SAVE file (for which SciPy3®’s readsav routine is used), which mostly
contains data regarding its wavefront sensors (specifically slopes for one or two of its WFS, depending on the
mode), the commands sent to its deformable and tip-tilt mirrors and the corresponding control/interaction ma-
trices. Relevant atmospheric data can be obtained through the Mauna Kea Weather Center seeing page.?? Other
relevant data such as pupil masks, NCPAs and filter characteristics has been sourced externally.

2.4 Code Demonstrations

In order to exemplify the usage of this package and to familiarise the reader with its workflow, in the following
sections we provide three examples of common tasks that may be performed with aotpy, each having code
excerpts along with explanations of the logic behind them.

2.4.1 Creating an AQOT file from scratch

Let’s say that we have some AO telemetry data that we want to store following the AOT specification. For
this demonstration we will assume that we have a system with one NGS and one LGS, each being sensed by a
different Shack-Hartmann wavefront sensor (with 4 subapertures), and the RTC uses data from these WEFSs to
calculate commands for a single Deformable Mirror in the system (32 actuators). The data is assumed to have
been recorded for 10000 frames. For simplicity, we will focus mostly on the slopes and commands data, but keep
in mind that we could add large amounts of data related to physical characteristics of all the objects.

We'll start by importing all the classes that we will need for this example, as well as NumPy, which we will
use to create some dummy data for demonstration purposes.

o

10

11

12

14

15

16

17

18

19

import numpy as np
from aotpy import AOSystem, RTC, MainTelescope, NaturalGuideStar, LaserGuideStar,\
ShackHartmann, ControlLoop, DeformableMirror, Image

from aotpy.fits import write_to_fits

Then, we create our main telescope, as well as its single DM.

tel = MainTelescope (name="Example telescope")

cor = DeformableMirror(name="Example DM", n_actuators=32, telescope=tel)

We then create an object that represents our NGS, followed by the wavefront sensor that is sensing that source.
For this wavefront sensor, we provide a 10000-by-8 image, representing the vertical and horizontal slopes of the
4 subapertures during all of the recorded frames.

ngs = NaturalGuideStar (name="Example NGS")
ngs_wfs = ShackHartmann(name="WFS1", source=ngs,

slopes=Image (name="NGS slopes", data=np.ones((10000, 8))))

After that, we do a similar process for the LGS, making sure we use the appropriate class.

lgs = LaserGuideStar (name="Example LGS")
lgs_wfs = ShackHartmann(name="WFS2", source=1gs,

slopes=Image (name="LGS slopes", data=np.ones((10000, 8))))

Please note that, if in a certain scenario we knew that two different objects in our system were referencing
the same multi-dimensional data, instead of creating two separate Image objects we could create a single Image
object that is referenced by both of them. This would be preferable as it would avoid data duplication in the
AOSystem object and also in any resulting AOT files. That said, while in this demonstration the slopes data
happens to be the exact same for both wavefront sensors, in a real-world example this would be unlikely, so we
kept these as two separate Image objects.

With the previous steps completed, we now can create the control loops in the system. Let’s assume we have
a High Order (HO) loop that uses data from the LGS, and a Low Order (LO) loop that uses data from the NGS.
For each loop, we have a 10000-by-32 image that represents the commands sent to the DM. We also have the
two 8-by-32 control matrices that were used to create the commands.

lo_loop = ControlLoop(name="L0O loop", input_wfs=ngs_wfs, commanded_corrector=cor,
commands=Image (name="L0 commands", data=np.ones((10000, 32))),

control_matrix=Image(name='L0 control matrix', data=np.ones((8, 32))))

ho_loop = ControlLoop(name="HO loop", input_wfs=1lgs_wfs, commanded_corrector=cor,
commands=Image (name="HO commands", data=np.ones((10000, 32))),

control_matrix=Image(name='HO control matrix', data=np.ones((8, 32))))

Then we need to create an RT'C object that contains the loops that we created.

rtc = RTC(loops=[lo_loop, ho_loop])

To wrap it all up into a single object, we create an AOSystem object, which receives references to the objects
that we created.

21

22

23

24

25

system = AOSystem(sources=[ngs, 1lgs],
telescope=tel,
wavefront_sensors=[ngs_wfs, lgs_wfs],
rtec=rtc,

wavefront_correctors=[cor])

Finally, we write this object into a file, by providing the Writer function with the relevant path (including
filename), which may be relative or absolute.

write_to_fits(system, "example.fits")

The structure of the resulting FITS file can be seen in Fig. 12. Note that, while NumPy handles arrays in
row-major order by default, arrays stored in FITS always use column-major order, which is why the order of the
dimensions appears reversed in the figure. However, the user is completely abstracted from this conversion, as
it is handled automatically by aotpy.

Index Extension Type Dimension
|] Primary Image 0
m1 ADT_ATMOSFHERIC_PARAMETERS Binary 1 cols X 0 rows
m2 ADT_DETECTORS Binary 19 cols X 0 rows
m3 ADT_DPTICAL_RELAYS Binary 3 cols X 0 rows
ma ADT_DPTICAL_ABERRATIONS Binary 4 cols X 0 rows
m5 ADT_SCORING_CAVERAS Binary 11 cols X 0 rows
| ADT_WAVEFRONT_SENSORS Binary 21 cols X 2 rows
mv ADT_RTC Binary 15 cols X 2 rows
m3 ADT_SOURCES Binary 10 cols X 2 rows
L] ADT_TELESCOPES Binary 11 cols X 1 rows
m10 ADT_WAVYEFRONT_CDRRECTORS Binary 10 cols X 1 rows
m1 NGS SLOPES Image 3X 10000
12 LGS SLOPES Image 3X10000
13 HO COMMANDS Image 32 X 10000
14 HO CONTROL MATRIX Image J2X3
H15 LOCOMMANDS Image 32 X 10000
M 15 LD CONTROL MATRIX Image J2X8

Figure 12. Screenshot of the “example.fits” file created in Sec. 2.4.1 being opened with fv FITS viewer.?%*! As expected,
we have two entries in the wavefront sensors, sources and RTC tables, while we have just one entry for the telescope and
wavefront correctors tables. All the remaining tables have no entries. We also have 6 image extensions, which match the
images created for the slopes, commands and control matrices.

2.4.2 Reading and editing an existing AOT file

Now that we have created an AOT file in the previous section, it can be shared with anyone that might be
interested in the data. While they will be able to read the file with any FITS reader that supports the latest
specification, they can also read the data through aotpy, which provides useful abstractions and enables the user
to easily edit the contents.

To exemplify this, we can start by importing the relevant Reader function and then providing it with the
path to the file we want to read (in this case, the file created in the previous section).

1

2

from aotpy.fits import read_from_fits

system = read_from_fits('example.fits')

After the reading process is finished, system is an AOSystem object whose contents are completely equivalent
to the system variable that we had at the end of the previous section. This means that we are essentially picking
back up from where we left off in the previous section.

This variable can now be explored in the same way as any Python object can be explored, and it is also directly
editable by changing the values associated with its attributes. For example, we could specify the framerate of
the LO and HO loops as such:

system.rtc.loops[0] .framerate = 500

system.rtc.loops[1].framerate = 1000

While in the previous step we have locally edited this variable, keep in mind that this change is not automatically
reflected in the file itself, by design. In order to achieve this, one would have to use a Writer to write this edited
variable into a new FITS file.

2.4.3 Translating from non-standard files

When a Translator for a certain dataset is available, handling that data is a simple process. The first step is to
import the relevant translation method and then calling it by passing the path to the folder which contains all
the relevant files. For AOF data, this could be achieved in the following way:

from aotpy.translators.aof import load_from_aof
system = load_from_aof ('path/to/folder"')

From this point on, system is a standard AOSystem object which can be freely edited and explored. We could,
for example, write this object into an AOT FITS file:

from aotpy.fits import write_to_fits

write_to_fits(system, 'aof.fits')
An overview of the contents of the resulting “aof.fits” file can be seen in Fig. 13.

3. EXAMPLE USE-CASES

To demonstrate the usefulness of AO telemetry data, we provide an example of a scientifically relevant use-
case with real-world data. Specifically, a topic of recent investigation efforts is the estimation of atmospheric
turbulence parameters from Shack-Hartmann slopes.%

Using a work-in-progress aotpy Translator for NAOMI data, we created an AOSystem object that was then
fed into an internal pipeline for estimating atmospheric turbulence parameters. The resulting estimation is
illustrated in Fig. 14.

4. FUTURE WORK

Given the importance of community acceptance, we are developing this project following a “bottom-up” approach.
We start by releasing the aotpy package to the community (fully open-sourced) in its current state, as a beta
version. These supporting tools allow the community to experiment with the standard and provide feedback at
an earlier stage, allowing us to rapidly iterate the standard and package to fix any issues that arise and to better
match the needs of the community.

Then, in Fall 2022, we will release a paper fully describing the AOT FITS standard, which will mark the
release of its version 1.0. Along with it the version 1.0 of the aotpy package will also be released, marking

Index Extension Type Dimension
o Primary Image 0
1 ADT_ATWMOSFHERIC_PARAMETERS Binary 9 cols X 0 rows
2 AODT_DETECTORS Binary 19 cols X 5 rows
m3 ADT_DPTICAL_RELAYS Binary 3 cols X 0 rows
LA ADT_OPTICAL_ABERRATIONS Binary 4 cols X 0 rows
s ADT_SCORING_CAMERAS Binary 11 cols X 0 rows
LIl ADT_WAYEFRDNT_SENSDRS Binary 21 cols X 5 rows
m7 ADT_RTC Binary 13 cols X 13 rows
[k ADT_SOURCES Binary 10 cols X 5 rows
ma ADT_TELESCOPES Binary 11 cols X 5 rows
10 ADT_WAVEFRONT_CORRECTORS Binary 10 cols X 9 rows
11 LGSACQ.DET1.DARK Image 240 X240
w12 LGSACOQDET1WEIGHT Image 240 X240
W13 WFS1_GRADIENTS Image 2430 X 10000
L RF LGSACOQ.DET1.REFSLP_WITH_DFFSETS Image 2430 %1
L R SAVALID_LGS1 Image 1098 X1
W15 WFS1_INTENSITIES Image 1240 X 10000
w17 LGSACQ.DET2.DARK Image 240 X240
w13 LGSACQDET2WEIGHT Image 240 X240
W19 WFS2_GRADIENTS Image 2430 X 10000

Figure 13. Partial screenshot of fv opening an AOT file containing standardised AOF telemetry. Of 81 total extensions

20
21
u 22
H23
24
25
W26
27
H23
m29
H 30
L ki
u 32
N33
W3
W35
M35
37
u 33

m39

LGSACO.DET2.REFSLP_WITH_DFFSETS
SAVALID_LGS2
WFS2_INTENSITIES
LGSACO.DET3.DARK
LGSACQ.DETIWEIGHT
WFS3_GRADIENTS
LGSACQ.DETI.REFSLP_WITH_DFFSETS
SAVALID_LGS3
WFS3_INTENSITIES
LGSACO.DET4.DARK
LGSACQ.DET4 WEIGHT
WFS4_GRADIENTS
LGSACQ.DET4.REFSLP_WITH_DFFSETS
SAVALID_LGS4
WFS4_INTENSITIES
NGS PIXELS
IRACQ.DET1.DARK
IRACQ.DET1.WEIGHT
WFS_GRADIENTS

IRACOL.DET1.REFSLP_WITH_OFFSETS

(HDUs) contained in this particular file, an overview of the first 40 is shown.

Figure 14. Turbulence estimation fit utilising telemetry data for the NAOMI system. Utilising the methods described
in Ref. 6 we can obtain an estimation of the characteristic parameters of turbulence, the Fried parameter and the outer-
scale, by correcting for the effects of cross-talk and aliasing inherently present in the finite sensor measurement. From the

Zernike variance fit - seeing @ 500 nm = 0.92 as

0.2 1

0.0 1

Zernike coefficient variances / rad™2
|
o
N

—4— corrected variances

—&— variances with noise + cc

Noll modes

10

12 14

obtained fit we can estimate a 7o of (11.36 & 1.02) cm and a Lo of (14.1 £ 1.5) m.

Image
Image
Image
Image
Image
Image
Image
Image
Image
Image
Image
Image
Image
Image
Image
Image
Image
Image
Image

Image

2430 X1

1111 X1

1240 X 10000

240X 240

240X 240

2430 X 10000

2430 X1

1087 X1

1240 X 10000

240X 240

240X 240

2430 X 10000

2430 X1

1079 X1

1240 X 10000

16 X 16 X 100

16 X 16

16 X 16

4 X5000

ax1

the end of its beta phase. From this point forward, file backwards compatibility will be guaranteed, ensuring
that a file that respects any version of the AOT standard will always be readable by the latest version aotpy.
Although, it is expected that the new versions of AOT FITS standard may be developed in the future (with
expansions to meet advancements in the field and user needs), these will be accompanied by new aotpy versions
that guarantee compatibility. Specifically, we aim to adequately support future ELT-class observatories, by
making any necessary updates as their requirements become clearer.

In the short term, aotpy will provide Translator support for additional ESO systems (NAOMI and CTAO). A
selection of datasets from ESO systems will be made available in the ESO Science Archive, following the AOT
standard.

ACKNOWLEDGMENTS

This project has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreements No. 730562 (OPTICON) and 101004719 (OPTICON-RadioNet Pilot).

REFERENCES

[1] Vidal, F., Gendron, E., and Rousset, G., “Tomography approach for multi-object adaptive optics,” Journal
of the Optical Society of America A 27, A260000 (Oct. 2010).

[2] Guesalaga, A., Neichel, B., Cortés, A., Béchet, C., and Carmine, G., “Using the ¢2 and wind profiler method
with wide-field laser-guide-stars adaptive optics to quantify the frozen-flow decay,” Monthly Notices of the
Royal Astronomical Society 440, 1925-1933 (2014).

[3] Martin, O. A., Correia, C. M., Gendron, E., Rousset, G., Vidal, F., Morris, T. J., Basden, A. G., Myers,
R. M., Ono, Y. H., Neichel, B., and Fusco, T., “William Herschel Telescope site characterization using the
MOAO pathfinder CANARY on-sky data,” in [Adaptive Optics Systems V], Marchetti, E., Close, L. M.,
and Véran, J.-P.; eds., 9909, 1143 — 1157, International Society for Optics and Photonics, SPIE (2016).

[4] Jolissaint, L., Ragland, S., Christou, J., and Wizinowich, P., “Determination of the optical turbulence
parameters from the adaptive optics telemetry: critical analysis and on-sky validation,” Appl. Opt. 57,
7837-7856 (Sep 2018).

[5] Laidlaw, D. J., Osborn, J., Morris, T. J., Basden, A. G., Gendron, E., Rousset, G., Townson, M. J., and
Wilson, R. W., “Automated wind velocity profiling from adaptive optics telemetry,” Monthly Notices of the
Royal Astronomical Society 491, 1287-1294 (11 2019).

[6] Andrade, P. P., Garcia, P. J., Correia, C. M., Kolb, J., and Carvalho, M. 1., “Estimation of atmospheric
turbulence parameters from Shack-Hartmann wavefront sensor measurements,” Monthly Notices of the
Royal Astronomical Society 483(1), 1192-1201 (2019).

[7] Veran, J. P., Rigaut, F., Maitre, H., and Rouan, D., “Estimation of the adaptive optics long-exposure
point-spread function using control loop data.,” Journal of the Optical Society of America A 14, 3057-3069
(Nov. 1997).

[8] Gendron, E., Clénet, Y., Fusco, T., and Rousset, G., “New algorithms for adaptive optics point-spread
function reconstruction,” Astronomy & Astrophysics 457, 359-363 (Oct. 2006).

[9] Gilles, L., Correia, C., Véran, J.-P., Wang, L., and Ellerbroek, B., “Simulation model based approach for
long exposure atmospheric point spread function reconstruction for laser guide star multiconjugate adaptive
optics,” Applied Optics 51(31), 7443-7458 (2012).

[10] Beltramo-Martin, O., Correia, C. M., Ragland, S., Jolissaint, L., Neichel, B., Fusco, T., and Wizinowich,
P. L., “PRIME: PSF Reconstruction and Identification for Multiple-source characterization Enhancement
- application to Keck NIRC2 imager,” Monthly Notices of the Royal Astronomical Society 487, 5450-5462
(Aug. 2019).

[11] Fusco, T., Bacon, R., Kamann, S., Conseil, S., Neichel, B., Correia, C., Beltramo-Martin, O., Vernet, J.,
Kolb, J., and Madec, P. Y., “Reconstruction of the ground-layer adaptive-optics point spread function for
MUSE wide field mode observations,” Astronomy & Astrophysics 635, A208 (Mar. 2020).

[12] Beltramo-Martin, O., Marasco, A., Fusco, T., Massari, D., Milli, J., Fiorentino, G., and Neichel, B., “Push-
ing point-spread function reconstruction to the next level: application to SPHERE/ZIMPOL,” Monthly
Notices of the Royal Astronomical Society 494, 775-788 (May 2020).

[13] Sivo, G., Kulesar, C., Conan, J.-M., Raynaud, H.-F., Gendron, E., Basden, A., Vidal, F., Morris, T.,
Meimon, S., Petit, C., et al., “First on-sky scao validation of full lqg control with vibration mitigation on
the canary pathfinder,” Optics express 22(19), 2356523591 (2014).

[14] Petit, C., Sauvage, J.-F., Fusco, T., Sevin, A., Suarez, M., Costille, A., Vigan, A., Soenke, C., Perret, D.,
Rochat, S., et al., “Sphere extreme ao control scheme: final performance assessment and on sky validation of
the first auto-tuned lqg based operational system,” in [Adaptive Optics Systems IV], 9148, 214-230, SPIE
(2014).

[15] Sinquin, B., Prengere, L., Kulcsér, C., Raynaud, H.-F., Gendron, E., Osborn, J., Basden, A., Conan, J.-M.,
Bharmal, N., Bardou, L., et al., “On-sky results for adaptive optics control with data-driven models on
low-order modes,” Monthly Notices of the Royal Astronomical Society 498(3), 3228-3240 (2020).

[16] Hirst, P., Jenkins, D., and Sivo, G., “Adaptive optics telemetry as a science product for users,” in [Adaptive
Optics Systems VII|], Schreiber, L., Schmidt, D., and Vernet, E., eds., 11448, International Society for
Optics and Photonics, SPIE (2020).

[17] Myers, R. M., Hubert, Z., Morris, T. J., Gendron, E., Dipper, N. A., Kellerer, A., Goodsell, S. J., Rousset,
G., Younger, E., Marteaud, M., Basden, A. G., Chemla, F., Guzman, C. D., Fusco, T., Geng, D., Roux,
B. L., Harrison, M. A., Longmore, A. J., Young, L. K., Vidal, F., and Greenaway, A. H., “CANARY: the
on-sky NGS/LGS MOAO demonstrator for EAGLE,” in [Adaptive Optics Systems], Hubin, N., Max, C. E.,
and Wizinowich, P. L., eds., 7015, 52 — 60, International Society for Optics and Photonics, SPTE (2008).

[18] Bardou, Lisa, Gendron, Eric, Rousset, Gérard, Gratadour, Damien, Basden, Alastair, Bonaccini Calia,
Domenico, Buey, Tristant, Centrone, Mauro, Chemla, Fanny, Gach, Jean-Luc, Geng, Deli, Hubert, Zoltan,
Laidlaw, Douglas J., Morris, Timothy J., Myers, Richard M., Osborn, James, Reeves, Andrew P., Townson,
Matthew J., and Vidal, Fabrice, “ELT-scale elongated LGS wavefront sensing: on-sky results,” Astronomy
& Astrophysics 649, A158 (2021).

[19] Bardou, Lisa and Schulz, Christine, “ESO Science Archive - Wendelstein Laser Guide Star Unit Data
Products.” https://archive.eso.org/wdb/wdb/eso/wlgsu/form (2018). Accessed: 2022-07-02.

[20] Bardou, Lisa and Schulz, Christine, “Manual for the open loop LGS-AO data taken with elongated LGS in
ELT geometry configuration.” https://archive.eso.org/wdb/help/eso/WLGSU_CANARY_AQ_Manual.pdf
(2018). Accessed: 2022-07-02.

[21] Hirst, P. and Cardenes, R., “The new Gemini Observatory archive: a fast and low cost observatory data
archive running in the cloud,” in [Software and Cyberinfrastructure for Astronomy IV], Chiozzi, G. and
Guzman, J. C., eds., 9913, 531 - 539, International Society for Optics and Photonics, SPTE (2016).

[22] Pauls, T. A., Young, J. S., Cotton, W. D.; and Monnier, J. D., “A data exchange standard for optical
(visible/IR) interferometry,” in [New Frontiers in Stellar Interferometry|, 5491, 1231-1239, International
Society for Optics and Photonics (Oct. 2004).

[23] Pauls, T. A., Young, J. S., Cotton, W. D., and Monnier, J. D., “A Data Exchange Standard for Optical
(Visible/IR) Interferometry,” Publications of the Astronomical Society of the Pacific 117, 1255-1262 (Nov.
2005). Publisher: IOP Publishing.

[24] Duvert, G., Young, J., and Hummel, C. A., “OIFITS 2: the 2nd version of the data exchange standard for
optical interferometry,” Astronomy & Astrophysics 597, A8 (Jan. 2017). Publisher: EDP Sciences.

[25] Wells, D. C. and Greisen, E. W., “FITS-a flexible image transport system,” in [Image Processing in As-
tronomy], 445 (1979).

[26] Chiappetti, L., Currie, M. J., Allen, S., Dobrtzycki, A., Pence, W. D., Rots, A., Shaw, R., and Thompson,
W. D., “Definition of the Flexible Image Transport System (FITS) The FITS Standard Version 4.0: updated
2016 July 22 by the IAUFWG Original document publication date: 2016 July 22 Language-edited document
publication date: 2018 August 13,” tech. rep., Italian National Institute for Astrophysics (INAF) (2018).

[27] Van Rossum, G. and Drake, F. L., [Python 3 Reference Manual], CreateSpace, Scotts Valley, CA (2009).

[28] Conan, R. and Correia, C., “Object-Oriented Matlab Adaptive Optics toolbox,” in [Adaptive optics systems
1V], 9148, 2066-2082, SPIE (2014).

https://archive.eso.org/wdb/wdb/eso/wlgsu/form
https://archive.eso.org/wdb/help/eso/WLGSU_CANARY_AO_Manual.pdf

[29]

[33]

[36]

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,
Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane,
A., del Rio, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W.,
Abbasi, H., Gohlke, C., and Oliphant, T. E., “Array programming with NumPy,” Nature 585, 357-362
(Sept. 2020).

Greenfield, P., Droettboom, M., and Bray, E., “ASDF: A new data format for astronomy,” Astronomy and
Computing 12, 240251 (Sept. 2015).

The HDF Group, “Hierarchical Data Format, version 5.” https://www.hdfgroup.org/HDF5/ (1997-2022).
Accessed: 2022-06-27.

Astropy Collaboration, Price-Whelan, A. M., Sipécz, B. M., Giinther, H. M., Lim, P. L., Crawford, S. M.,
Conseil, S., Shupe, D. L., Craig, M. W., Dencheva, N., Ginsburg, A., Vand erPlas, J. T., Bradley, L. D.,
Pérez-Sudrez, D., de Val-Borro, M., Aldcroft, T. L., Cruz, K. L., Robitaille, T. P., Tollerud, E. J., Ardelean,
C., Babej, T., Bach, Y. P., Bachetti, M., Bakanov, A. V., Bamford, S. P., Barentsen, G., Barmby, P.,
Baumbach, A., Berry, K. L., Biscani, F., Boquien, M., Bostroem, K. A., Bouma, L. G., Brammer, G. B.,
Bray, E. M., Breytenbach, H., Buddelmeijer, H., Burke, D. J., Calderone, G., Cano Rodriguez, J. L., Cara,
M., Cardoso, J. V. M., Cheedella, S., Copin, Y., Corrales, L., Crichton, D., D’Avella, D., Deil, C., Depagne,
E., Dietrich, J. P., Donath, A., Droettboom, M., Earl, N., Erben, T., Fabbro, S., Ferreira, L. A., Finethy,
T., Fox, R. T., Garrison, L. H., Gibbons, S. L. J., Goldstein, D. A., Gommers, R., Greco, J. P., Greenfield,
P., Groener, A. M., Grollier, F., Hagen, A., Hirst, P., Homeier, D., Horton, A. J., Hosseinzadeh, G., Hu, L.,
Hunkeler, J. S., Ivezié, Z., Jain, A., Jenness, T., Kanarek, G., Kendrew, S., Kern, N. S., Kerzendorf, W. E.,
Khvalko, A., King, J., Kirkby, D., Kulkarni, A. M., Kumar, A., Lee, A., Lenz, D., Littlefair, S. P., Ma,
Z., Macleod, D. M., Mastropietro, M., McCully, C., Montagnac, S., Morris, B. M., Mueller, M., Mumford,
S. J., Muna, D., Murphy, N. A., Nelson, S., Nguyen, G. H., Ninan, J. P., Néthe, M., Ogaz, S., Oh, S,
Parejko, J. K., Parley, N., Pascual, S., Patil, R., Patil, A. A., Plunkett, A. L., Prochaska, J. X., Rastogi,
T., Reddy Janga, V., Sabater, J., Sakurikar, P., Seifert, M., Sherbert, L. E., Sherwood-Taylor, H., Shih,
A. Y., Sick, J., Silbiger, M. T., Singanamalla, S., Singer, L. P.; Sladen, P. H., Sooley, K. A., Sornarajah,
S., Streicher, O., Teuben, P., Thomas, S. W., Tremblay, G. R., Turner, J. E. H., Terrén, V., van Kerkwijk,
M. H., de la Vega, A., Watkins, L. L., Weaver, B. A., Whitmore, J. B., Woillez, J., Zabalza, V., and
Astropy Contributors, “The Astropy Project: Building an Open-science Project and Status of the v2.0 Core
Package,” The Astronomical Journal 156, 123 (Sept. 2018).

Arsenault, R., Madec, P.-Y., Hubin, N., Paufique, J., Stroebele, S., Soenke, C., Donaldson, R., Fedrigo, E.,
Oberti, S., Tordo, S., Downing, M., Kiekebusch, M., Conzelmann, R., Duchateau, M., Jost, A., Hackenberg,
W., Calia, D. B., Delabre, B., Stuik, R., Biasi, R., Gallieni, D., Lazzarini, P., Lelouarn, M., and Glindeman,
A.; “ESO adaptive optics facility,” in [Adaptive Optics Systems], Hubin, N., Max, C. E., and Wizinowich,
P. L., eds., 7015, 577 — 588, International Society for Optics and Photonics, SPTE (2008).

Wizinowich, P., Acton, D. S., Shelton, C., Stomski, P., Gathright, J., Ho, K., Lupton, W., Tsubota, K.,
Lai, O., Max, C., Brase, J., An, J., Avicola, K., Olivier, S., Gavel, D., Macintosh, B., Ghez, A., and Larkin,
J., “First light adaptive optics images from the keck IT telescope: A new era of high angular resolution
imagery,” Publications of the Astronomical Society of the Pacific 112, 315-319 (mar 2000).
Aller-Carpentier, E., Dorn, R., Delplancke-Stroebele, F., Paufique, J., Andolfato, L., Dupuy, C., Fedrigo,
E., Gitton, P., Jolley, P., Lilley, P., Louarn, M. L., Duc, T. P., Rakich, A., Reyes, J., Ridings, R., Woillez,
J., Marchetti, E., Valles, M. S., Schmid, C., Hubin, N., Berger, J.-P., Quentin, J., Delabre, B.-A., McLay,
S., and Pasquini, L., “NAOMI: a new adaptive optics module for interferometry,” in [Optical and Infrared
Interferometry IV], Rajagopal, J. K., Creech-Eakman, M. J., and Malbet, F., eds., 9146, 405 — 413,
International Society for Optics and Photonics, SPIE (2014).

Gonté, F. Y. J., Alonso, J., Aller-Carpentier, E., Andolfato, L., Berger, J.-P., Cortes, A., Delplancke-
Strobele, F., Donaldson, R., Dorn, R. J., Dupuy, C., Egner, S. E., Huber, S., Hubin, N., Kirchbauer, J.-P.,
Louarn, M. L., Lilley, P.; Jolley, P., Martis, A., Paufique, J., Pasquini, L., Quentin, J., Ridings, R., Reyes,
J., Shchkaturov, P., Suarez, M., Duc, T. P., Valdes, G., Woillez, J., Bouquin, J.-B. L., Beuzit, J.-L., Rochat,
S., Vérinaud, C., Moulin, T., Delboulbé, A., Michaud, L., Correia, J.-J., Roux, A., Maurel, D., Stadler, E.,
and Magnard, Y., “NAOMI: a low-order adaptive optics system for the VLT interferometer,” in [Optical

https://www.hdfgroup.org/HDF5/

[37]

[39]
[40]

[41]

and Infrared Interferometry and Imaging V], Malbet, F., Creech-Eakman, M. J., and Tuthill, P. G., eds.,
9907, 539 — 550, International Society for Optics and Photonics, SPIE (2016).

Kendrew, S., Hippler, S., Brandner, W., Clénet, Y., Deen, C., Gendron, E., Huber, A., Klein, R., Laun, W.,
Lenzen, R., Naranjo, V., Neumann, U., Ramos, J., Rohloff, R.-R., Yang, P.; Eisenhauer, F., Amorim, A.,
Perraut, K., Perrin, G., Straubmeier, C., Fedrigo, E., and Valles, M. S., “The GRAVITY Coudé Infrared
Adaptive Optics (CIAO) system for the VLT Interferometer,” in [Ground-based and Airborne Instrumenta-
tion for Astronomy I'V], McLean, I. S., Ramsay, S. K., and Takami, H., eds., 8446, 2391 — 2399, International
Society for Optics and Photonics, SPTE (2012).

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,
Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov,
N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I., Feng, Y., Moore, E. W,
VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R.,
Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature Methods 17, 261-272 (2020).
Lyman, R., Businger, S., and Cherubini, T., “Mauna Kea Weather Center seeing page.” http://mkwc.ifa.
hawaii.edu/current/seeing/ (Sept. 2021). Accessed: 2022-06-25.

Pence, W., Xu, J., and Brown, L., “Fv: A new FITS file visualization tool,” in [Astronomical Data Analysis
Software and Systems VI|, 125, 261 (1997).

Pence, W. and Chai, P., “Fv: The interactive FITS file editor.” https://heasarc.gsfc.nasa.gov/ftools/
fv/ (2020). Accessed: 2022-06-20.

http://mkwc.ifa.hawaii.edu/current/seeing/
http://mkwc.ifa.hawaii.edu/current/seeing/
https://heasarc.gsfc.nasa.gov/ftools/fv/
https://heasarc.gsfc.nasa.gov/ftools/fv/

	1 INTRODUCTION
	2 PYTHON PACKAGE
	2.1 Data Model and Classes
	2.1.1 AOSystem
	2.1.2 Image
	2.1.3 AtmosphericParameters
	2.1.4 Source
	2.1.5 Telescope
	2.1.6 Detector
	2.1.7 OpticalRelay
	2.1.8 OpticalAberration
	2.1.9 ScoringCamera
	2.1.10 WavefrontSensor
	2.1.11 WavefrontCorrector
	2.1.12 RTC

	2.2 Readers and Writers
	2.3 Translators
	2.4 Code Demonstrations
	2.4.1 Creating an AOT file from scratch
	2.4.2 Reading and editing an existing AOT file
	2.4.3 Translating from non-standard files

	3 EXAMPLE USE-CASES
	4 FUTURE WORK

