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Spiking neural networks (SNNs) using time-to-first-spike (TTFS) codes, in

which neurons fire at most once, are appealing for rapid and low power

processing. In this theoretical paper, we focus on information coding and

decoding in those networks, and introduce a new unifying mathematical

framework that allows the comparison of various coding schemes. In an early

proposal, called rank-order coding (ROC), neurons are maximally activated

when inputs arrive in the order of their synaptic weights, thanks to a shunting

inhibition mechanism that progressively desensitizes the neurons as spikes

arrive. In another proposal, called NoM coding, only the first N spikes of M

input neurons are propagated, and these “first spike patterns” can be readout by

downstream neurons with homogeneous weights and no desensitization: as a

result, the exact order between the first spikes does not matter. This paper also

introduces a third option—“Ranked-NoM” (R-NoM), which combines features

from both ROC and NoM coding schemes: only the first N input spikes are

propagated, but their order is readout by downstream neurons thanks to

inhomogeneousweights and linear desensitization. The unifyingmathematical

framework allows the three codes to be compared in terms of discriminability,

which measures to what extent a neuron responds more strongly to its

preferred input spike pattern than to random patterns. This discriminability

turns out to be much higher for R-NoM than for the other codes, especially

in the early phase of the responses. We also argue that R-NoM is much more

hardware-friendly than the original ROC proposal, although NoM remains the

easiest to implement in hardware because it only requires binary synapses.

KEYWORDS

spiking neural networks, temporal coding, time-to-first-spike coding, rank-order
coding, N-of-M coding

1. Introduction

The last decade has seen an explosion in the use of neural networks for demanding

AI problems that include computer vision, speech and audio processing, and natural

language processing. Indeed, neural networks trained with Deep Learning are now state

of the art in many domains. All such systems can be thought of as “neuromorphic” in

that they involve large networks of neuron-like elements with connections that resemble
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the synapses of biological brains. However, there is currently an

intense debate about whether future systems will need to include

additional neuromorphic features. One key difference between

these state-of-the-art AI systems and biology is how information

is represented. Artificial systems typically perform calculations

using floating-point variables to represent both the neuronal

activation levels and the strength of synaptic connections. In

contrast, real neurons send information as discrete all or none

pulses—spikes. Is this difference important? Spiking Neural

Networks (SNNs) are becoming increasingly popular, especially

for low-power embedded systems. But many mainstream

researchers consider that this difference is essentially irrelevant.

Many assume that neurons send information using a firing rate

code in which the neuron’s activation level is represented by the

number of spikes emitted in a given time window. If that was

the case, replacing the firing rate with a floating-point number

is a perfectly reasonable strategy. However, it has been argued

that this sort of firing rate code would be intrinsically very

inefficient because you would need a lot of spikes to encode

information with any degree of accuracy (Gautrais and Thorpe,

1998). For example, suppose that we wanted to represent the

activation level with a precision of 8-bits. To do this using a

conventional rate code would mean waiting long enough for

the neuron to emit 255 spikes when maximally activated—

and this would mean waiting for a second or more to make

even the most basic decisions. This very low efficiency has led

some researchers to rule out spike-based coding schemes. They

point out that it is much simpler, and much more accurate, to

represent information as a floating-point number that can be

transmitted in a single clock cycle via a 32-bit bus.

You could argue that there are alternative ways of

implementing a firing rate based code that are much faster. For

example, rather than sending an 8-bit activation level using a

single neuron that emits between 0 and 255 spikes in a given time

window, you could have 255 neurons in parallel, each of which

only needs to emit at most one spike in, say, 10 ms. But this sort

of population rate coding scheme would also be very inefficient

because it would need very large numbers of neurons.

You might also argue that it is possible to estimate the

instantaneous firing rate of a neuron by looking at the interval

between two spikes. An interspike interval of exactly 4.0

ms would correspond to an instantaneous firing rate of 250

spikes/second. And, in such a case, the accuracy with which the

underlying rate can be determined would be limited only by

the temporal precision with which the neuron can emit spikes.

If the precision was 0.1 ms, you could encode many different

activation values in 25 ms. But while possible in principle, such

a scheme would require very complex mechanisms to decode as

well as being unusable until the neuron has emitted 2 spikes.

It would appear that the fundamental problem here is

that researchers have apparently been assuming that spike-

based coding has to be some sort of rate coding scheme.

But this is certainly not the case. Even the simplest neuronal

models have the property that the time taken for a neuron to

reach threshold depends on the intensity of the input. And

this means that the latency of the first spike in response to

a stimulus can be used as a code. Remarkably, variations in

spike latency with input intensity were demonstrated in the

very first recordings of activity in the optic nerve by Lord

Edgar Adrian in Cambridge in the 1920s (Adrian, 1928). But

this basic physiological fact was essentially ignored for several

decades, before being demonstrated again by neurophysiological

studies (Gollisch and Meister, 2008).

Once one accepts the idea that the timing of the first spike

provides an alternative way to encode information—a scheme

known as time-to-first spike coding (TTFS)—, there are a

number of very interesting options that can be considered. In

principle, you could use the latency at which a single neuron fires

in response to an input to derive information about the intensity

of the activation. For example, a neurophysiologist could use an

oscilloscope to determine a neuron’s latency. But this requires

knowing precisely when the stimulus came on. Inside the brain,

there is no way to know this. Hence, in this paper we consider

an alternative strategy: looking across a population of neurons

and determining the order in which they fire. Note that TTFS is

not well-suited for dynamic inputs, since coding changes in the

input requires additional spikes. We thus focus on static inputs,

e.g., flashed images. For simplicity and hardware-friendliness,

we also restrict ourselves to non-leaky neurons. A leak is useful

to process dynamic inputs because the oldest inputs should be

forgotten. Yet it is not required with the static inputs used in

this paper.

Historically, TTFS was first proposed to explain the

phenomenal speed of processing in the brain for certain

tasks, such as object recognition (Thorpe and Imbert, 1989).

More recently, TTFS has attracted much attention from the

AI community (Mostafa, 2017; Rueckauer and Liu, 2018;

Zhou et al., 2019; Kheradpisheh and Masquelier, 2020;

Park et al., 2020; Sakemi et al., 2020; Zhang et al., 2020;

Comsa et al., 2021; Mirsadeghi et al., 2021), because it

can be efficiently implemented on low power event-driven

neuromorphic chips (Abderrahmane et al., 2020; Nair et al.,

2020; Srivatsa et al., 2020; Göltz et al., 2021; Liang et al.,

2021; Oh et al., 2022), leveraging two key features. The

first one is sparsity (Frenkel, 2021). Neurons fire at most

once, but usually most neurons do not fire at all. Processing

thus consumes very few spikes, and thus very little energy,

because usually idle neurons do not consume much (Davies

et al., 2018). The second one is time. If using event-driven

processing, for example, address event representation (AER),

time represents itself (Mead, 1990). Thus one can compute with

time without ever storing timestamps. For example, a decision

can be made based on the first neuron to fire in the readout

layer. And this is possible even if the firing time difference

is infinitesimally small. Conversely, a readout based on the

activation levels requires storing these activation levels with
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high precision to be able to always distinguish the most active

neuron.

It is worth mentioning that neurons are intrinsically

sensitive to the timing of their inputs: shifting the input spike

times obviously shifts the response time. But here, we consider

additional mechanisms that allow neurons to respond selectively

to certain input spike time patterns. For example, Rueckauer and

Liu (2018), Sakemi et al. (2020), Srivatsa et al. (2020), and Zhang

et al. (2020) used linearly increasing excitatory postsynaptic

potentials, such that early spikes contribute more. To obtain a

similar effect, Park et al. (2020) used a decaying dendritic kernel.

Yet in this paper, we focus on spike-based, rather than time-

based mechanisms: the input spikes’ contribution depends on

their arrival ranks rather than on their precise times. The idea

is always that the first input spikes contribute more, while later

input spikes contribute less, or not at all. This is implemented

with a modulation function that decreases with the rank, for

example, linearly or geometrically. The net contribution of each

input spike to the neuron’s potential is then the product of the

modulation function with the synaptic weight. The modulation

function can also have a cut-off so that the last spikes make no

contribution at all.

Our main goal, below, is to lay the foundation of a

mathematical framework in order to assess, from a theoretical

point of view, the potential of such order-based TTFS coding

schemes. As an illustration of this framework, the analysis will

be performed upon three instances of such coding schemes: two

previous proposals (Rank Order Coding and NoM coding) and

a combination of both (Ranked-NoM Coding).

Rank Order Coding (ROC) was an early proposal (Thorpe

and Gautrais, 1998). With ROC, all the M afferents of a neuron

fire a spike (Figure 1). The modulation is a real number which

decreases geometrically with the input spike rank. That means in

particular that it is always strictly positive. The synaptic weights

are M, M − 1, ... 1. The final potential is maximal when input

spikes arrive in the order of the weights: the first spike should

arrive through the synapse with weight M, the second one

through the synapse with weightM − 1, and so on.

N-of-M (NoM) coding is another proposal, in which only

the N first spikes among M afferents are propagated (Furber

et al., 2004; Thorpe et al., 2019). This first spike pattern can

be read out by neurons with binary weights (Figure 2): W =
4 ones, and M − W = 12 zeros. With random inputs,

the final potential has a hypergeometric distribution with N

draws from a population of sizeM containingW successes—or,

equivalently, W draws from a population of size M containing

N successes (Furber et al., 2004).

For this paper, we have also designed a third type of coding

scheme, that we call “Ranked-NoM” (R-NoM) coding, and

which incorporates features of both ROC and NoM coding

(Figure 2): only the N first spikes among M afferents are

propagated, but readout neurons can be selective to a particular

order of the N spikes thanks to inhomogeneous weights, and a

decreasing modulation function. Later on, we came across an

article by Furber et al. (2007) where a similar proposal has been

explored in the context of sparse distributed memory (SDM)

research. Below, both the weights and the modulation decrease

linearly, although other schemes could also be explored using a

similar approach (e.g., geometric series as in Furber et al., 2007).

All these codes have been formalized in our unifying

mathematical framework that involves:

• A set of weights, which can be homogeneous (as in NoM),

or decreasing, either linearly (as in original ROC), or

geometrically. This set containsW non-zero weights.

• A modulation function which can be constant (as in

NoM), or decreasing, either linearly, or geometrically (as

in original ROC). This modulation can also have a cut-off,

i.e., becomes zero after the first N spikes.

Our unifying framework allows comparing these codes in

terms of discriminative power. We introduce a discriminability

measure that quantifies how much more a neuron responds

to its preferred pattern than to random inputs. The unifying

mathematical framework also allows tuning the parameters of

the codes in order to optimize their discriminative power.

We conclude that Ranked-NoM Coding with linearly

decreasing modulation and weights offer a particularly

interesting compromise between discriminative power and

hardware-friendliness.

The paper is organized as follows: the Section 2 briefly

introduces the unifying mathematical framework and the

discriminability measure. Then, it gives the main analytical

formulas for the discriminability of R-NoM, NoM, and

ROC, but not their derivations, which can be found in the

Supplementary material. Next, we report a numerical study in

which we explored the speed-accuracy trade-off for the three

different codes. Finally, a brief Discussion summarizes the main

results and gives some perspectives.

2. Results

2.1. Mathematical translation of the three
coding schemes

The goal is to measure the discriminability power of these

codes. We define a measure of selectivity (Equation 2.7) which

quantifies how much more the neuron responds to its preferred

pattern than to random stimuli.

We first define a random experiment for the spikes generated

by M neurons (see Supplementary Section 1.2). For a given

stationary stimulus, each of the M input neurones emits one

spike. Input patterns will then translate into vectors of size M.

We denote ! the ascending lexically ordered set of the possible

permutations over the set M = {0, . . . ,M − 1}. Cardinality of
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FIGURE 1

(A) Rank order coding (ROC) with M = 16 afferents. All the afferents fire exactly one spike. Here we show a neuron selective to the input spike

order: A, B, ... , P. Its synaptic weights are linearly decreasing: M for input A, M− 1 for input B, and so on, down to 1 for input P. The modulation

decreases geometrically with the input spike rank. In practice, this modulation could be implemented with shunting inhibition, as shown with

the red inhibitory neuron. (B) The increase in activation level depends on the order of firing. Maximal activation occurs when the inputs fire in

the order of the weights (A, B, ... , P). Activation is minimal when the order is reversed. Intermediate lines correspond to 5 randomly selected

input patterns chosen from the 16! = 20,922,789,888,000 possible input spike orders. The five dotted lines specify the proportion of such

random patterns that will exceed a given final activation level. Modified from Thorpe and Gautrais (1998).

FIGURE 2

Comparison of different codes. On the left, the M = 16 afferents fire in the order JKCBOAGINHPDMFEL, but a 4-winner-take-all mechanism

only lets the N = 4 first spikes through. NoM coding: the readout neuron uses binary weights: W = 4 ones, and M−W = 12 zeros. The final

potential reaches the maximal value of 4 if the N first spikes correspond to the W non-zero weights. The order of these 4 first spikes does not

matter. Rank Order coding ROC.: the neuron is set up to respond maximally to the order JKCBOAGINHPDMFEL, even though here only the 4

input spikes are propagated. Ranked-NoM coding R-NoM:: we show three readout neurons that are selective to three different orders for the 4

first spikes, among the 4! = 24 possible orders, thanks to graded weights and modulations, both in {1,2,3,4}.

! is then M!. We define an application R that takes values in

DK = {1, 2, ..,M!} (ranks of input order in !) and returns a

vector rk = R(k) in !.

To randomly generate sets of input patterns, we define a

discrete random variable K over DK . We can then consider

X = R(K) as a random vector, and all possible outputs are

collected in DX = !. We consider that all input orders have

the same probability to occur.

By construction, each component Xi is a discrete random

variable taking values from the set DXi = {0, 1, . . . ,M −

Frontiers inNeuroscience 04 frontiersin.org
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1} with marginal probability distribution PXi (r) = 1
M , and

multivariate joint probability distribution PX1X2...XM = 1
M! .

Xi are identically distributed and they are not independent

since realizations of X are permutations from a unique set of

values, the one prescribed by the coding scheme, which implies

correlation, so that: Cov(Wi,Wj) ̸= 0.

This input order is transformed into a vector of weights. For

this, we transform the random variable X in a deterministic way

by defining the affine transformationW = "(X):

"(X) = M − X = W (2.1)

The marginal and joint probability distributions of the new

random variable Wi are determined from the probability

distributions of Xi by the change of variables theorem in

multivariate calculus. At this stage, the random experiment is

fully defined by the random variable X, taking values in !, and

the bijective function ".

We denote # the set of the weights vectors. # is the base to

establish the support of each coding scheme. For this, we define,

for each scheme C, a vector-value function "C from # to #C

and we use the term score vector to denote elements in #C .

For ROC (denoted by R), the function "R is the identity

function and so its cardinality isM!.

For Ranked-NoM Coding (denoted by H), we build the

scores-support #H using a function which depends on the

parameterW :

"H(w) = max(0,w−M +W) (2.2)

Note that"H maps different permutations onto the same vector

permutation. Hence, a subset of vectors that are pure internal

permutations among negative or null values will map to the

same element of #H . Since the cardinality of these subsets is

the number of permutations of the M − W null elements, the

cardinality of #H is:

|#H | =
M!

(M −W)!
(2.3)

For NoM coding (denoted F), we define the scores-support

#F from the scores-support #H by the compositions of the

indicator function 1A with "H . Thus we have

"F(w) = 1A("H(w)) = 1A(max(0,w−M +W)) (2.4)

By the indicator function, the vectors in #H get converted into

vectors of ones and zeros. As a consequence, the support #F of

NoM is reduced because the order is no longer important. Then,

we divide by the number of ways you can arrange W numbers,

which isW !. Thus, the cardinality of #F is:

|#F | =
|#H |
W !

=
M!

W !(M −W)!
=

(

M

W

)

(2.5)

Having defined the scores vectors for each coding scheme by

their scores-support; #H ,#F and #R, we can establish the

probability and statistics to get the first two moments of the

weights for each coding scheme (see Supplementary material).

Next, we define, for each scheme, a modulations vector

v1C = $C["(R(1))], considering that, for the neuron under

consideration, the preferred pattern corresponds to the first

input pattern in !. For ROC, it depends on a modulation

parameter m ∈ {1/n : n ∈ Z, n ̸= 1}, with v1R =
(m0,m1,m2, ...,mM). For Ranked-NoM, $H ≡ "H (2.2), and

for the NoM scheme $F ≡ "F (2.4).

Finally, we define an integration function — effectively

equivalent to the membrane potential — which indicates how

well the random scores vector matches the fixed modulations

vector.

To formally translate intermediate states (i.e., before the

propagation is over), we first define the gate functionGI :%C →
RM which nullifies all components of the modulation vector for

ranks beyond I. Then, over the first I inputs, the integration

function SC(w, I) reads:

SC(w, I) =
〈

GI

(

v1C

)

,"C(w)
〉

(2.6)

Given that Ranked-NoM and NoM are defined for values N <

M, the final potential is obtained when I = N and we would

have intermediate states only for values I < N . For ROC, the

final potential is obtained when I = M and we would have

intermediate states for all values I < M.

2.2. Coding schemes comparison

2.2.1. Comparing discriminability
Since w is a random vector, then SC(w, I) is a random

function. Let SC,I denote the corresponding output random

variable. Its distribution depends on the coding scheme. We

compare the three coding schemes in terms of discriminative

power, characterizing its distribution by the difference between

its best possible value and its expected values, scaled by its

variance.

Definition 2.1. We define discriminability DC(I) as:

DC(I) =
max(SC,I)− E[SC,I]

√

Var[SC,I]
(2.7)

where I ∈ Z and takes values for ROC in the interval [1, M]

and for Ranked-NoM and NoM coding in the interval [1, N ].

This discriminability is also known as the signal-to-noise ratio in

other papers (Masquelier, 2018; Masquelier and Kheradpisheh,

2018; Jordan et al., 2021). Given that for values N < I < M,

Ranked-NoM and NoM are not defined, we set those values to

the final integration corresponding to each scheme.
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TABLE 1 Formulas for the maximum value of integration SC,I for each

scheme.

max(SC,I)

Ranked-NoM(H) WN

(

N + 1

2

)

+
N (1−N 2)

6

NofM(F) N

ROC(R)
(1−m)(1+M)− (1−mM+1)

(1−m)2

The max(SC,I) (see Supplementary Sections 2.6.1, 3.6.1, and

4.6.1), forW > N , are given in Table 1.

The expectation E[SC,I] and variance Var[SC,I] of

integration at intermediate states of each scheme C depend on

the mean µWC , variance VarWC and covariance CovC(Wi,Wj)

of the scores for the corresponding coding scheme C (see

Supplementary Sections for Ranked-NoM 2.7.1, 2.7.7, for NoM

3.7.1, 3.7.2, and for ROC 4.7.1, 4.7.2). Their full expressions are

given in Table 2.

As a general pattern, we have the following non-linear

functions,

E[SC,I] = λC µWC (2.8)

Var[SC,I] = αC VarWC + βC CovC(Wi,Wj) (2.9)

where the constants λC ,αC and βC for each scheme are provided

in Table 3.

2.2.2. Behavior of discriminability for final
potential

Having established the complete expression of

discriminability for the three schemes, we can now compare

how they perform.

We first illustrate how the total number of available inputs

(M) affects discriminability (Figure 3).

Setting N = W = M/2 for Ranked-NoM and

NoM codes, we get the same function for both schemes (see

Supplementary Sections 2.8 and 3.8):

DH(M) =
√
M − 1 (2.10)

For ROC, we found (see Supplementary Section 4.8):

lim
M→∞

DF(M) =

√
3

1−m

√

1−m2 (2.11)

For m = 0.8, the function Y = DF(M) has a horizontal

asymptote in Y ≃ 5.2:

lim
M→∞

DF(M) =

√
3

1− 0.8

√

1− 0.82 ≃ 5.2 (2.12)

In light of these behaviors, we propose that Ranked-NoM and

NoM are to be preferred over ROC.

2.2.3. Behavior of discriminability during
propagation

We now contrast, for a given M = 31, how discriminability

increases as more and more inputs become available (namely,

potential integration, Figure 4).

As shown above, discriminability saturates to the same value

for Ranked-NoM and NoM (here, N = W), while, for ROC, it

saturates at a lower value, which depends on the ROC-parameter

m (herem = 0.8).

We also observe that NoM performs poorly early on since

discriminability increases nearly linearly, while both ROC and

Ranked-NoM increasemore like an exponential relaxation to the

final value.

In contrast to NoM, Ranked-NoM Coding then displays a

much faster increase in discriminability in the early phase of

input integration and reaches a higher value than ROC.

In this regard, Ranked-NoM displays the best performance,

with a high discriminability for the very early inputs.

2.2.4. Exploring the speed-accuracy trade-off
through simulations

Importantly, our discriminability measure (Equation 2.7)

is based on the unconstrained membrane potential, i.e.,

ignoring the threshold. But of course, in a real scenario, a

threshold is needed, especially for neurons in the hidden layers

(otherwise, they will not fire!). When choosing a threshold, a

high value:

• Ensures that the probability of reaching it with random

input (which may be seen as a false alarm, FA) is low.

• Causes a longer latency even when the preferred pattern is

given as input.

Conversely, a low threshold does the opposite (shorter

latency but higher FA rate). This can be seen as a speed-accuracy

trade-off.

We explored this trade-off through numerical simulations.

We fixed M = 20 and estimated the false alarm probabilities

for ROC (m = 0.8), R-NoM (W = N = 10), and NoM

(also W = N = 10), as a function of the threshold, using

2.105 random input spike patterns. In Figure 5, we plotted

those probabilities as a function of the latency (expressed in

input spike number, not in seconds) for the firing response

to the preferred pattern (latency which in turn depends on

the threshold). This plot confirms the supremacy of R-NoM,

especially in the early stage of the response, in agreement

with Figure 4. For example, here the preferred pattern has

N = 10 spikes. Let’s say we want the receiver neuron to

fire as soon as the fifth input spike is received. For R-NoM,

this means the threshold should be in the [294, 330] range.

Choosing 330 will minimize the FA rate, which will be around

3.10−4. For ROC, the corresponding threshold would be 28.36,
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TABLE 2 Formulas for the expectation, variance and covariance of the scores random variableW for each scheme.

C µWC VarWC CovC(Wi,Wj)

Ranked-NoM(H)
W(W + 1)

2M
µWH

(

2W + 1

3
− µWH

)

µWH

M − 1

(

µWH −
2W + 1

3

)

NofM(F)
W

M
µWF (1− µWF ) µWF

(

W − 1

M − 1
− µWF

)

ROC(R)
M + 1

2
µWR

(

M − 1

6

)

µWR

M − 1

(

µWR −
2M + 1

3

)

TABLE 3 Formulas for the expectation and variance coefficients of the different Integration schemes.

C λC αC βC

Ranked-NoM(H)
I(2N − I + 1)

2
N I(N − I + 1)+ N I(I − 1)(N − I + 1)+

I(I − 1)(2I − 1)

6

I2(I − 1)2

4
−

I(I − 1)(2I − 1)

6
NofM(F) I I I (I − 1)

ROC(R)
1−mI

1−m

1−m2I

1−m2

(

1−mI

1−m

)2

−
1−m2I

1−m2

FIGURE 3

Behavior of the maximal discriminability as a function of the

total number of inputs M. NoM and Ranked-NoM (set to

W = N = M/2) converge to the same maximal values and so

the two curves overlap. For these two schemes, the maximal

discriminability scales as DH(M) = DF (M) =
√
M− 1 (proof to be

found in Supplementary material). Hence, discriminability is not

limited, and adding inputs will always improve it. By contrast,

maximal discriminability for ROC saturates at an asymptotic

value (Y ≃ 5.2 for m = 0.8 here).

leading to a much higher FA rate of 0.1. Finally, for NoM, the

threshold would be 5, and the FA rate 0.7, which would be

totally unacceptable!

Here again, our attempt to speculate upon how

to combine computation-power of float-based TTFSs

schemes and power-saving integer-based TTFS schemes

offers a promising avenue: FA rate could be cut

by a factor of three orders of magnitude compared

with the former, and four orders compared with

the latter.

FIGURE 4

Comparison of discriminability for the three coding schemes

during propagation. The Discriminability, DC(I) (Equation 2.7) is

reported as the number of inputs I builds up, for each coding

scheme: ROC (black), NoM (blue), and Ranked-NoM (red). For

ROC coding, the inputs I accumulate up to the maximal number

(here, M = 31) while, in the two others, propagation stops

beyond N = 15 (in this case, we retain the value DC(N ) for later

values).

3. Discussion

In this paper, we presented a new mathematical framework

which allows unifying various TTFS codes. This framework

introduces the concept of modulation: a decreasing function

such that the earliest input spikes matter more. This broad

definition of modulation encompasses previous proposals

(ROC, NoM) as well as new ones. The activation is maximal

when the spikes arrive in the order of the weights: the first

spike should arrive through the strongest weight, and so on. This
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FIGURE 5

Speed-accuracy trade-off. Here, we represented, for the

different codes, the probability of firing to random inputs as a

function of I at threshold crossing for the preferred pattern (both

variables depend on the threshold which is varied, but not

represented on this figure). Solid lines indicate the probabilities

estimated by Monte Carlo simulations (n=2.105 runs for each

value). Dashed lines indicate the probability assuming a

Gaussian distribution for the potential, with the mean and

variance computed from Table 3 formulas. These Gauss-based

values match well the simulations for low latencies. For higher

latencies, they tend to overestimate the FA rate. This suggests

that the potential is roughly normally distributed everywhere

except in the right tail of the distribution.

defines the preferred input spike pattern of a neuron. Then, we

defined discriminability, which measures how much more the

neuron responds to its preferred pattern than to random inputs.

Our framework allows us to compute this discriminability

analytically. Thus various TTFS codes can easily be compared in

terms of discriminability. The framework also allows the design

of new codes that maximize this discriminability. In particular,

we propose a new code that we dubbed “Ranked-NoM” (R-

NoM), which makes use of integer modulation and weights that

both decrease linearly. We demonstrated that R-NoM has much

more discriminative power than ROC and NoM, especially in

the early phase of the response, which is already very selective.

Thus it allows detectors that are both accurate and reactive.

In addition, the fact that R-NoM uses only integers makes it

much more hardware-friendly than ROC, and the geometric

modulation suggested in Furber et al. (2007).

There are however situations where NoM coding can be

particularly interesting for hardware implementations. The

advantages of R-NoM coding described here apply in situations

where incoming spikes are processed one by one. However,

in some designs, it is possible to process spikes as a packet.

For example, you could define an input array with M bits

that are initially all set to zero. As spikes come in, the

corresponding input lines can be flipped on until a fixed

number of bits (N) are set to one. At this point, it is easy

to determine the level of activation of a target neuron by

performing a logical AND operation between the array of

input spikes and a second array of bits corresponding to

the connected weights. Counting the number of “hits” and

comparing the result to the neuron’s threshold can be done in

a single clock cycle with specialized FPGA or ASIC hardware.

Similar results can be obtained using memristor-based cross-

bar arrays.

That said, the current analysis provides a strong argument

for using implementations that process incoming spikes in

order since it is the only way to take advantage of the

remarkable early discriminative power of R-NoM coding.

Such an approach goes a long way toward ensuring that

computations can be done with the minimum number of

spiking events.

One important issue that we did not address in this

paper is learning. We plan to address it in future work.

Only then we will be able to confront the different coding

schemes with real-world data (e.g., CIFAR, ImageNet, Google

Speech Commands) and compare their performance, possibly

using the methodology of Guo et al. (2021). For unsupervised

learning, we think that the STDP-like learning rule that we

proposed in Thorpe et al. (2019) could be adapted for the

integer, non-binary, weights that are required for R-NoM. In

short, part of the weights from unused synapses could be

moved to used but not saturated synapses. For supervised

learning, backpropagation has already been adapted to TTFS

codes (Mostafa, 2017; Zhou et al., 2019; Kheradpisheh and

Masquelier, 2020; Park et al., 2020; Sakemi et al., 2020; Zhang

et al., 2020; Comsa et al., 2021; Mirsadeghi et al., 2021). Yet

none of these approaches included the concept of a spike-

based decreasing modulation. We will explore that possibility in

future work.
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Supplementary Material

Here, we provide the full details of the theoretical mathematical framework of the temporal coding schemes.
This Theoretical development is based upon multivariate calculus and probability theory. In the first section
(section 1), we build the general theory by defining a random experiment in which we transform the possible
input orders into a probabilized weights support. This set is then a base to build a scores support for each
scheme. In this section, we define how the scores support translate into integration through modulation. As
our goal is to compare the codes’ discriminability power, we then establish the theory of the latter, in order
to find general formulas for the maximal value of integration, its mean and variance.

Then, we apply this general theory to Ranked-NoM Coding (section 2), NoM Coding (section 3) and
ROC Coding (section 4).

We provide, as another SM, a Jupyter-Notebook that numerically validates all results.

1 GENERAL FRAMEWORK

1.1 General principles

Let us consider an input layer made of M spiking neurones, denoted I0, .., I(M�1), which send spikes to
an efferent neurone.

For a given stationary stimulus, each of the M input neurones emits one spike, and the order in which
spikes are emitted depends on the stimulus. We encode the order of the input spikes by the vector
corresponding to the order of neurones’ indices. For instance, the order (I0, .., I(M�1)) will translate into
(0, 1, . . . ,M � 1), and the inverse order will translate into (M � 1,M � 2, . . . , 1, 0).

This input order is transformed into a vector of weights.

Depending on the scheme, the vector of weights is used to build a vector of scores.

The response of an efferent neurone is then built as a sum of the scores multiplied by a modulation which
is specific for each input neurone.

1.2 Random Experiment

We consider the order generated by the M input neurones as a random sequence, where all input orders
have the same probability.

1.2.1 Input orders

Let ⇤ denote the ascending lexically ordered set of the possible permutations over the set M =
{0, . . . ,M � 1}: ⇤ = {r1, ..., rM !} where r 2 RM and rj

i
2 M. To map a rank into an input order

in ⇤, we define the application R : {1, 2, ..,M !} ! ⇤ such that R(k) = rk.

We consider the discrete random variable K, defined as:

K =

8
<

:

DK = {1, 2, ..,M !}

PK(k) = 1
M !

1
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Building upon K, we can then consider X = R(K) = (X1, X2, . . . , XM ) 1 as a random vector or
multivariate random variable with support the ordered set ⇤:

⇤X1X2...XM
=

8
><

>:

2

64

0
1
...

M � 1

3

75

2

64

1
0
...

M � 1

3

75 . . .

2

64

M � 1
...
1
0

3

75

9
>=

>;
(1.1)

By construction, it is a vector of size M , and each component Xi is a random variable defined on the
same sample space obeying:

Xi =

8
<

:

DXi
= {0, . . . ,M � 1}

PXi
(ri) =

1
M

Let its multivariate joint probability mass function be

PX1X2...XM
=

( 1

M !
rk 2 ⇤X1X2...XM

0 Otherwise
(1.2)

X1, X2, . . . , XM are identically distributed, hence they have the same expectation and variance; they are
not independent given that:

PX1(r)PX2(r)...PXM
(r) =

✓
1

M

◆M

6= 1

M !
= PX1X2...XM

(1.3)

thus Cov(Xi, Xj) 6= 0.

1.2.2 From input order to weights
We define the affine transformation � mapping vectors from ⇤ (input orders) to the set ⌦ (weights):

� : ⇤ ⇢ RM �! ⌦ ⇢ RM (1.4)

(rk1 , . . ., r
k

M
) �! (ŵk

1 , . . . , ŵ
k

M
)

rk �! ŵk

Each vectorial component is given by

�i(r
k) = �i(r

k

1 , . . . , r
k

M
) = M � rki = ŵk

i (1.5)

so we have:
�(rk) = �(rk1 , . . . , r

k

M
) (1.6)

= (�1(r
k

1 , . . . , r
k

M
),�2(r

k

1 , . . . , r
k

M
), . . . ,�M (rk1 , . . . , r

k

M
)) (1.7)

= (M � rk1 ,M � rk2 , . . . ,M � rk
M
) (1.8)

= (ŵk

1 , . . . , ŵ
k

M
) = ŵk (1.9)

Consider X1, ..., XM , a set of random variables with joint probability distribution function
PX1...XM

(x1, . . . , xM ) and support ⇤. Let us denote Ŵ k

i
= �i(X1, ..., XM ) for i = 1, . . . ,M. We

1 Throughout the article, we will use rows or columns interchangeably to denote random variables and define vector-value functions.
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transform the random variables Xi (input order) into the new random variables Ŵi (weights) by the
affine transformation �.

Since the multivariate transformation � is one to one, the transformation is invertible and can be solved
for the equations rk

i
= ��1

i
(ŵk

1 , . . . , ŵ
k

M
) for i = 1, . . . ,M .

The Jacobian of this multivariate transformation is

J� =

�������

r�1
r�2

...
r�M

�������
=

���������������

@�1
@rk1

@�1
@rk2

. . .
@�1
@rk

M

@�2
@rk1

@�2
@rk2

. . .
@�2
@rk

M...
... . . . ...

@�M
@rk1

@�M
@rk2

. . .
@�M
@rk

M

���������������

=

�������

�1 0 . . . 0
0 �1 . . . 0
...

... . . . ...
0 0 . . . �1

�������
= �1 (1.10)

Let |J�| denote the absolute value of the determinant J . Then the joint pdf of Ŵ k

1 , . . . , Ŵ
k

M
is

P
Ŵ1...ŴM

(ŵk

1 , . . . , ŵ
k

M
) = PX1...XM

(��1
1 (ŵk

1), . . . ,�
�1
M

(ŵk

1))|J�| (1.11)

The inverse for i = 1, . . . ,M is given by

��1
i

= M � wk

i = rki (1.12)

Therefore, Ŵ = (Ŵ1, Ŵ2 . . . , ŴM ) is a discrete random vector with weights-support the ordered set
⌦ = {ŵk

1 , . . . , ŵ
k

M !}

⌦
Ŵ1Ŵ2...ŴM

=

8
><

>:

2

64

M
M � 1

...
1

3

75

2

64

M � 1
M
...
1

3

75 . . .

2

64

1
...

M � 1
M

3

75

9
>=

>;
(1.13)

and its joint pdf is given by

P
Ŵ1...ŴM

(ŵk

1 , . . . , ŵ
k

M
) = PX1...XM

(��1
1 (ŵk

1), . . . ,�
�1
M

(ŵk

1))|J�|

= PX1...XM
(��1

1 (ŵk

1), . . . ,�
�1
M

(ŵk

1))

= PX1...XM
(M � wk

1 , . . . ,M � wk

M
)

=
1

M !
(1.14)

In order to find the marginal probability mass function of Ŵ1, Ŵ2, . . . , ŴM , we start from

the joint probability distribution of Ŵi, and proceed by summation (see Fig. S1).

Thus, the marginal probability mass function of Ŵ1, Ŵ2, . . . , ŴM defined on the same sample space
DXi

= {M,M�1, ..., 1} for i = 1, ...,M , with joint probability distribution defined in the equation (1.14),
and for equation (1.17) is given by,

P
Ŵi

(w) =

(
(M � 1)!

M !
=

1

M
w = 1, 2, . . .M

0 Otherwise
(1.18)
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Let Y1, Y2, . . . , Yn be discrete random variables defined on the same sample space DYj
=

{y1, y2, . . . , ym} and PY1Y2...Yn be the multivariate probability distribution of the random
variables Yj , then we have:

PY1(y1) =
X

yin2DYn

. . .
X

yi22DY2

PY1Y2...Yn(y1, yi2 , . . . , yin) (1.15)

...
...

PY1(ym) =
X

yin2DYn

. . .
X

yi22DY2

PY1Y2...Yn(ym, yi2 , . . . , yin) (1.16)

and the same way, we can compute the probability of each element of the sample space of
Y2, . . . , Yn. The marginal probability function of �th random variable Y� of �th output y� ,
PY�

(y�), is given by:

PY�
(y�) =

X

yin2DYn

. . .
X

yi
k
2DY

k

k 6=�

. . .
X

yi12DY1

PY1...Y� ...Yn
(yi1 , . . . , y� , . . . , yin) (1.17)

Figure S1. Marginal probability mass function from joint probability distribution
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1.3 Coding theory-definitions

A coding scheme is defined by how weights are transformed to scores, and how these scores are integrated
with a modulation function.
1.3.1 From weights to scores

To attribute scores to the weights for a given coding scheme, we define the score vector, wk

C
=

(wk

1 , . . . , w
k

M
) 2 RM , by the following function �C :

Definition 1.1. We define the vector-valued function,

�C : ⌦ ⇢ RM �! ⌦C ⇢ RM (1.19)

(ŵk

1 , . . ., ŵ
k

M
) �! (wl

1, . . . , w
l

M
)

ŵk �! wl

C

such that:

�C(ŵ
k) = �C(ŵ

k

1 , . . . , ŵ
k

M
) (1.20)

= (�C,1(ŵ
k

1 , . . . , ŵ
k

M
), . . . ,�C,M (ŵk

1 , . . . , ŵ
k

M
)) (1.21)

= (wl

1, . . . , w
l

M
) = wl

C
(1.22)

where l 2 {1, . . . , |⌦C |} and �C,i are real functions of several variables, �C,i : ⌦ ! R that are defined
depending on the coding scheme.

Therefore, let W = (W1,W2 . . . ,WM ) be a discrete random vector with support the ordered set
⌦C = {wl

1, . . . ,w
l

|⌦C |} where wl

C
are the scores of scheme C.

Being built upon W, the components Wi of W are also identically distributed hence they have the same
expectation and variance. We will show below they are not independent, and will establish their covariance
by tree method, one for each scheme (2.32)(3.30)(4.26).

We denote ⌦C the set of possible values for wk

C
, that is, the scores-support and its cardinality |⌦C |

depends on the coding scheme.

1.3.2 Modulations vector function
In order to sort out among stimuli by output neurones, vectors of modulation values must be defined

with the same size as wk

C
. In the same way as we defined wk, modulation vectors vl can be defined by a

modulation function following:
Definition 1.2. We define the application,

 C : ⌦ ⇢ RM �! ⌅C ⇢ RM (1.23)

(ŵk

1 , . . ., ŵ
k

M
) �! (vl1, . . . , v

l

M
)

ŵk �! vl

C

such that:

 C(ŵ
k) =  C(ŵ

k

1 , . . . , ŵ
k

M
) (1.24)

= ( C,1(ŵ
k

1 , . . . , ŵ
k

M
), . . . , C,M (ŵk

1 , . . . , ŵ
k

M
)) (1.25)

= (vl1, . . . , v
l

M
) = vl

C
(1.26)

where l 2 {1, . . . , |⌅|} and  C,i are real functions of several variables,  C,i : ⌦! R that depend upon
the coding scheme.
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We denote ⌅C the set of possible values for vk

C
and its cardinality depends on the coding scheme through

 C .
The modulation vector determines which input order is preferred by the efferent neurone under

consideration. For the sake of clarity, we will consider from now on only the output neurone for which the
preferred stimulus (input order) is the one corresponding to r1. Hence, we will use

v1
C
=  C(ŵ

1) =  C(�(r
1)) (1.27)

as the modulation vector.

1.3.3 Integration function SC(wk

C
, I)

To compare how scores vector matches well with modulations vector, we define an integration function

following:

Definition 1.3. We define the application SC(wk

C
, I) : ⌦C ⇥ {0, . . . ,M} ! R such as:

SC(wk

C
, I) is the inner product of modulations vector v1

C
(set for best matching ŵ1 for the coding scheme

C) by score vector wk

C
, over the I first components of vectors.

In order to formally translate intermediate states, we first define the gate function GI : ⌅C ! RM which
nullifies all components of the modulation vector for ranks beyond I .

Then, the integration function reads:

SC(w
k

C
, I) =

D
GI

�
 C(ŵ

1)
�
,wk

C

E
(1.28)

where GI

�
 C(ŵ1)

�
= GI

�
v1
C

�
= v1

C,I
. We used bracket notation for inner product.

Building upon the random variable W, we finally define the random variable SC,I = SC(W, I):

SC,I =

8
<

:

DSC,I
= {depends upon C}

PSC,I
= {depends upon C}

We can then define the best order max(SC,I), expectation E[SC,I ] and variance Var[SC,I ] for each coding
scheme.

1.4 Discriminability power measure

The goal is to compare the coding schemes by their power to discriminate among stimuli.

1.4.1 Discriminability

Considering integration SC,I random variable, we define discriminability DC(I) as the difference between
its best possible value and its expectation, scaled by its variance :
Definition 1.4.

DC(I) =
max(SC,I)� E[SC,I ]p

Var[SC,I ]
, I 2 {1, . . . ,M} (1.29)

where I 2 {1, . . . ,M} for ROC and I 2 {1, . . . ,N} for Ranked-NoM and NoM coding. Given that the
Ranked-NoM and NoM schemes are not defined for N < I < M , we use the final integration value.

To compute discriminability for the different coding schemes, we then now turn to the expressions of
max(SC,I),E[SC,I ] and Var[SC,I ].
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1.4.2 max(SC,I)

The rearrangement inequality states that

0

@
xn
...
x1

1

A
T

·

0

@
y1
...
yn

1

A 

0

@
x�(1)

...
x�(n)

1

A
T

·

0

@
y1
...
yn

1

A 

0

@
x1
...
xn

1

A
T

·

0

@
y1
...
yn

1

A (1.30)

for every choice of real numbers x1  · · ·  xn and y1  · · ·  yn and every permutation
x�(1), . . . , x�(n) of x1, . . . , xn.

Then the lower bound is attained only for the permutation which reverses the order, that is,
�(i) = n� i+ 1 for all i = 1, . . . , n, and the upper bound is attained only for the identity, that is, �(i) = i.

From equation (1.28), the rearrangement inequality yields that max(SC,I) is given by:

max(SC,I) =< v1
C,I

,w1
C
> (1.31)

1.4.3 Expectation of SC,I

For the sake of clarity, let vC,I = v1
C,I

= GI

�
 C(r1)

�
denote the modulation vector, gated up to the

first I components.

We have:
E[SC,I ] = E[SC(W, I)]

= E
⇥⌦
vC,I ,W

↵⇤

= vT
C,I

· E [W]

(1.32)

where the expected value of a random vector is the vector whose elements are the expected values of the
respective random variables.

1.4.4 Variance of SC,I

Using the same notation vC,I , the variance of SC(K, I) reads:

Var
⇥
SC,I

⇤
= Var [SC(W, I)] (1.33)

= Var
h
vT
C,I

·W
i

(1.34)

= E[vT
C,I

·W ·WT · vC,I ]� E[vT
C,I

·W] · E[vT
C,I

·W]T (1.35)

= vT
C,I

· E[W ·XT] · vC,I � vT
C,I

· E[W] · E[W]T · vC,I (1.36)

= vT
C,I

· (E[W ·WT]� E[W] · E[W]T) · vC,I (1.37)

= vT
C,I

· KWW · vC,I (1.38)

where KWW is the M ⇥M Variance-Covariance Matrix of W:

Frontiers 7



Supplementary Material

KWW = E[(W � E[W])(W � E[W])T] (1.39)

= E[W WT]� E[W] E[W]T

=

2

664

Cov(W1,W1) Cov(W1,W2) . . . Cov(W1,WM )
Cov(W2,W1) Cov(W2,W2) . . . Cov(W2,WM )

...
... . . . ...

Cov(WM ,W1) Cov(WM ,W2) . . . Cov(WM ,WM )

3

775 (1.40)

where covariance Cov(Wi,Wj) is defined as:

Cov(Wi,Wj) = E[(Wi � E[Wi])(Wj � E[Wj ])] (1.41)

=
X

i,j

(wi � µW )(wj � µW )f(Wi = wi,Wj = wj) (1.42)

where µW = E[Wi] = E[Wj ] and f(Wi,Wj) is the bivariate joint probability distribution.

The diagonal elements are the variance of Wi with Cov(Wi,Wi) = E[(Wi � E[Wi])2] = Var(Wi).
Since W elements are identically distributed, they all have the same variance and the same co-variance,

and Cov(Wi,Wj) = Cov(Wj ,Wi).

KWW is then symmetric and has only two values, an on-diagonal value Var(Wi) ⌘ VarW , and an
off-diagonal value Cov(Wi,Wj) ⌘ #, reading:

KWW =

2

64

VarW # . . . #
# VarW . . . #
...

... . . . ...
# # . . . VarW

3

75 (1.43)

We denote the variance-covariance matrix for each C scheme as KC

WW
.

2 APPLICATION TO RANKED-NOM CODING

2.1 Score vector function

Ranked-NoM Coding is parameterized by the number W 2 {1, . . . ,M}. Under this coding, we want
the best weight vector w1 made up of an arithmetic sequence, over the first W elements, starting from W ,
with rate �1, down to zero, and the other elements set to zero.

The scores are obtained by the vector-value function �H(ŵk) = wl

H
defined in (1.1). Then the vectorial

components are given by,

�H,i(ŵ
k) = �H,i(ŵ

k

1 , . . . , ŵ
k

M
) = max(0, ŵk

i �M +W) (2.1)
such that:

�H(ŵk) = �H(ŵk

1 , . . . , ŵ
k

M
) (2.2)

= �H(M � rk1 ,M � rk2 , . . . ,M � rk
M
) (2.3)

= (�H,1(ŵ
k

1 , . . . , ŵ
k

M
), . . . ,�H,M (ŵk

1 , . . . , ŵ
k

M
)) (2.4)

= (max(0,W � rk1), . . . ,max(0,W � rk
M
))

= (wl

1, . . . , w
l

M
) = wl

H
(2.5)
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Note that for k = 1, we have ŵ1 = (M,M � 1 . . . , 1) or equivalently r1
i
= (0, . . . ,M � 1)

�H(ŵ1) = (max(0,W), . . . ,max(0,W �M + 1)) (2.6)

= (W ,W � 1, . . . , 0) = w1
H

(2.7)

which contains M �W zeros.
Example 2.1. As an illustration, let M = 4 and W = 2 (|⌦| = 24 permutations). We would have, for the
best order:

�H(ŵ1) = (max(0, 2),max(0, 1),max(0, 0),max(0,�1)) (2.8)

= (2, 1, 0, 0) = w1
H

(2.9)

and for the worst order:

�H(ŵ24) = (max(0,�1),max(0, 0),max(0, 1),max(0, 2)) (2.10)
= (0, 0, 1, 2) (2.11)

Note that for ŵ18 = (2, 1, 3, 4), we would also obtain:

�H(ŵ18) = (max(0, 0),max(0,�1),max(0, 1),max(0, 2)) (2.12)
= (0, 0, 1, 2) (2.13)

therefore, �H(ŵ18) = �H(ŵ24).

Indeed, �H maps different weights permutations onto the same score permutation. Hence, a subset of
vectors that are pure internal permutations of negative or null values will map to the same element of ⌦H .
Since the cardinality of these subsets is the number of permutations of the M � W null elements, the
cardinality of ⌦H is:

|⌦H | = M !

(M �W)!
(2.14)

In the illustrative example, |⌦H | = 4!

(4� 2)!
= 12 permutations, and we would have �H(ŵ18) =

�H(ŵ24) = w12.

2.2 Probability distribution functions for scores

Let W = (W1,W2, . . . ,WM ) be the discrete random vector with support the ordered set ⌦H =

{w1, . . . ,w
M !

(M�W)!} which is generated by function �̂H defined in 2.1, and :

⌦H = ⌦W1W2...WM
=

8
>>>>>>><

>>>>>>>:

2

66666664

W
W � 1

...
1
0
...
0

3

77777775

2

66666664

W � 1
W
...
1
0
...
0

3

77777775

. . .

2

66666664

0
...
0
1
...

W � 1
W

3

77777775

9
>>>>>>>=

>>>>>>>;

(2.15)

Due to (2.14) let its joint probability mass function be
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PW1W2...WM
=

8
<

:

1

|⌦H | =
(M �W)!

M !
wk 2 ⌦H

0 Otherwise
(2.16)

and from (1.17), the marginal probability mass function of W1,W2, . . . ,WM with sample space DWi
=

{W ,W � 1, ..., 1, 0} for i = 1, ...,M , is given by:

PWi
(w = 0) =

M �W
M

(2.17)

PWi
(w = k) =

1

M
(2.18)

where k = 1, ...,W � 1,W .
Therefore,

Wi =

8
>>>>><

>>>>>:

DWi
= {0, 1, ...,W}

PWi
(w) =

8
><

>:

M �W
M

w = 0

1

M
w = 1, 2, . . .W

(2.19)

2.3 Expectation vector of scores

2.3.1 µW , expected value of Wi

µW ⌘ E[Wi] =
MX

k=0

k PWi
(k) = 0

M �W
M

+
WX

k=1

k
1

M
(2.20)

=
1

M

WX

k=1

k

=
1

M

W(W + 1)

2
(2.21)

2.3.2 E[W], expectation of W
Therefore,

E[W] =

2

664

E[W1]
E[W2]

...
E[WM ]

3

775 =

2

6664

W(W + 1)

2M...
W(W + 1)

2M

3

7775
(2.22)

2.4 Variance-Covariance matrix of scores

The matrix KH

WW
is defined in (1.43) then we will find the variance VarW and the covariance

Cov(Wi,Wj) = #.
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2.4.1 VarW , variance of Wi

Following 2.19, we have:

E[W 2
i ] =

WX

k=0

k2 PWi
(k) = 02

M �W
M

+
WX

k=1

k2
1

M
(2.23)

=
1

M

WX

i=1

k2

=
1

M

W(W + 1)(2W + 1)

6
(2.24)

Therefore,

Var[Wi] = E[W 2
i ]� E[Wi]

2 (2.25)

=
1

M

W(W + 1)(2W + 1)

6
�
✓

1

M

W(W + 1)

2

◆2

(2.26)

= µW
(2W + 1)

3
� µ2

W
(2.27)

2.4.2 #, covariance of Wi,Wj

From equations(2.16) and (2.19), the score random variables Wi of Ranked-NoM coding are not
independent because:

MY

i=1

PWi
(w) =

✓
M �N

M

◆M�N ✓ 1

M

◆N

6= (M �N)!

M !
= PW1W2...WM

(2.28)

To find the covariance (1.42), we must find the bivariate joint probability distribution f(Wi = wi,Wj =
wj), for i, j = 1, 2, . . . ,M .

We will use the following facts:

1. Each random variable Wi can take on W same values: 0, 1, 2, . . . ,W .
2. The bivariate joint probability distribution f(Wi,Wj) is the same for any i, j = 1, . . . ,M .
3. f(Wi = k,Wj = k) = 0 for k 2 {1, 2, . . .W}

4. The support ⌦H , which is the sample space, consists of |⌦H | = M !

(M �W)!
possible pair outcomes

that are equally likely, that is, the probability for each random outcome is
1

|⌦H | .

From fact (2), we only need to establish f(W1,W2). From fact (3), we only need to establish the outcome
frequency for each pair in:

(W ,W � 1), (W ,W � 2), . . . , (W � 1,W), (W � 1,W � 2), . . . , (0, 0).

We first note that there are only three possibilities for the outcome frequencies, that is, for the pairs:
(0, 0), (0, y), (x, y) where x, y 2 {W ,W � 1,W � 2, . . . , 1} can take any non-zero integer value. We
denote :
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(0, 0)f = f1 (2.29)
(0, y)f = (y, 0)f = f2 (2.30)
(x, y)f = (y, x)f = f3 (2.31)

We can then enumerate the |⌦H | possible outcomes of W within a tree, with the first level corresponding
to values taken by W1, and the second level corresponding to values taken by W2 once W1 is fixed, with
leaves indicating the number of times each pair repeats:

M !

(M �W)!

0

0

f1

. . .

f2

W � 1

f2

W

f2

. . .W � 1

0

f2

. . .

f3

W � 2

f3

W

f3

W1 = W

0

f2

. . .

f3

W � 2

f3

W2 = W � 1

f3

Tree for Ranked-NoM code (2.32)

For each branch, once values are given to W1 and W2, there are (M � 2)! permutations to consider,
among which permutations corresponding to switching two null values should be considered the same. For
a given branch, this number of permutations switching null values depends on the number of null already
attributed to W1 or W2, hence:

f1 =
(M � 2)!

(M �W � 2)!
(2.33)

f2 =
(M � 2)!

(M �W � 1)!
(2.34)

f3 =
(M � 2)!

(M �W � 0)!
(2.35)

Considering (from fact (4)) that the total number of possible pairs outcomes is |⌦H | = M !

(M �W)!
, the

corresponding probabilities are given by:

P1 =
f1
M !

(M�W)!

=

(M�2)!
(M�W�2)!

M !
(M�W)!

=
(M �W � 1)(M �W)

(M � 1)M
(2.36)

P2 =
f2
M !

(M�W)!

=

(M�2)!
(M�W�1)!

M !
(M�W)!

=
M �W

(M � 1)M
(2.37)

P3 =
f3
M !

(M�W)!

=

(M�2)!
(M�W )!

M !
(M�W)!

=
1

(M � 1)M
(2.38)
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We summarize the distribution f in the following table:

f(Wi,Wj) 0 1 2 . . . W fWj
(wj)

0 P1 P2 P2 . . . P2 P1 +WP2
1 P2 0 P3 . . . P3 P2 + (W � 1)P3
2 P2 P3 0 . . . P3 P2 + (W � 1)P3
...

...
...

... . . .
...

...
W P2 P3 P3 . . . 0 P2 + (W � 1)P3

fWi
(wi) P1 +WP2 . . . P2 + (W � 1)P3 1

(2.39)

Calculating the covariance defined in the equation (1.42) by rows ci, from the bivariate joint probability
table, we have that Cov(Wi,Wj) = c0 + c1 + · · ·+ cW where

c0 = P1(0� µW )(0� µW ) + P2(0� µW )(1� µW ) + · · ·+ P2(0� µW )(W � µW )

c1 = P2(1� µW )(0� µW ) + P3(1� µW )(2� µW ) + · · ·+ P3(1� µW )(W � µW )

cW = P2(W � µW )(0� µW ) + P3(W � µW )(1� µW ) + · · ·+ P3(W � µW )(W � 1� µW )

Resolving the sum and simplifying, we determine that the covariance of the scores random variable for
Ranked-NoM coding is given by:

Cov(Wi,Wj) =
µW

M � 1

✓
µW � 2W + 1

3

◆
(2.40)

2.5 Modulation vector function

For (1.2), we denote  H : ⌦! ⌅H , the function for generating modulations vector for Ranked-NoM
coding. The function we chose in the present article is parameterized by the number N 2 {1, . . . ,M} and
defined as:

 H(ŵk;N ) ⌘ �H(ŵk;N ) (2.41)

Below, we consider v1
H

=  H(ŵ1;N ) = (N (N � 1) . . . 1 0 . . . 0)T.

For Ranked-NoM coding, the modulation vector gated up to the first I < N components is then defined
by

v1
H,I

= (N (N � 1) . . . (N � (I � 1)) 0 . . . 0)T (2.42)

Then, for I = N , that is, for the final potential, the modulation vector is given by

v1
H,N = (N (N � 1) . . . 1 0 . . . 0)T (2.43)

For I > N , we also take v1
H,N .

2.6 SH,N . Integration-Final Potential I = N

2.6.1 max(SH,N )

The maximum value of integration SH,N is defined in equation (1.31). Thus for Ranked-NoM coding
we have that w1 = (W ,W � 1, . . . , 1, 0, . . . , 0) and modulation vector is given in the equation (2.43),

Frontiers 13



Supplementary Material

therefore max(SH,N ) is,

=< w1,v1
H,N >

= WN + (W � 1)(N � 1) + . . .+ (W � (N � 1))(N � (N � 1))

= N 2W � (W +N )

✓
N (N + 1)

2
�N

◆
+

✓
N (N + 1)(2N + 1)

6
�N 2

◆
(2.44)

simplifying, the expression of the max value of integration is given by,

max(SH,N ) = WN
✓
N + 1

2

◆
+

N (1�N 2)

6
(2.45)

2.6.2 E[SH,N ], expectation of final potential

E[SH,N ] = E[vT
H,N W] = vT

H,N E[W] (2.46)

= vT
H,N · 1

M

✓
W(W + 1)

2
, ...,

W(W + 1)

2

◆T

(2.47)

= (N (N � 1) . . . 1 0 . . . 0) · 1

M

✓
W(W + 1)

2
, ...,

W(W + 1)

2

◆T

(2.48)

=
1

M

✓
NW(W + 1)

2
+

W(N � 1)(W + 1)

2
+ ...+

W(W + 1)

2

◆

=
1

M

W(W + 1)

2
(N + (N � 1) + ...+ 1)

=
1

M

W(W + 1)

2

N (N + 1)

2
(2.49)

=
1

4M
W(W + 1) N (N + 1) (2.50)

Then the expectation of Integration E[SH,N ] is given by

E[SH,N ] =
1

4M
W(W + 1) N (N + 1) (2.51)

2.6.3 Var[SH,N ], variance of final potential

From (1.38), the variance of integration is given by Var[SH,N ] = vT
H,N ·KH

WW
· vH,N .
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Using (1.43) for the expression of Variance-covariance matrix KH

WW
and the modulation vector v1

H,N
for final potential given by (2.43), we have :

Var[SH,N ] = vT
H,N ·KH

WW
· vH,N (2.52)

= (N (N � 1) . . . 1 0 . . . 0)

2

64

VarW # . . . #
# VarW . . . #
...

... . . . ...
# # . . . VarW

3

75

2

66666664

N
N � 1

...
1
0
...
0

3

77777775

(2.53)

= N 2VarW +N #

✓
N (N + 1)

2
�N

◆
+ (N � 1)2VarW+ (2.54)

(N � 1) #

✓
N (N + 1)

2
� (N � 1)

◆
+ · · ·+ #

✓
N (N + 1)

2
� 1)

◆
+ VarW

= VarW (N 2 + (N � 1)2 + · · ·+ 1) + #


N
✓
N (N + 1)

2
�N

◆�
+ (2.55)

#


(N � 1)

✓
N (N + 1)

2
� (N � 1)

◆
+ · · ·+

✓
N (N + 1)

2
� 1

◆�

= VarW
✓
N (N + 1)(2N + 1)

6

◆
+ #

" NX

i=1

i

✓
N (N + 1)

2
� i

◆#
(2.56)

= VarW
N (N + 1)

2

2N + 1

3
+ #

"✓
N (N + 1)

2

◆2

� N (N + 1)

2

2N + 1

3

#
(2.57)

Denoting p =
N (N + 1)

2
and q =

2N + 1

3
, it reads:

Var[SH,N ] = (p q)VarW + (p2 � p q) Cov(Wi,Wj) (2.58)

where VarW is given by (2.27) and Cov(Wi,Wj) by (2.40).

In case N = W , we have:

Var[SH,N ] =
M2 µ2

W

M � 1
(q � µW )2 (2.59)

where µW is given by (2.21).

2.7 SH,I. Integration-intermediate states, I < N

The modulation vector gated up to the first I components is defined by v1
H,I

= (N (N � 1) . . . (N �
(I � 1)) 0 . . . 0)T in equation (2.42).
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2.7.1 E[SH,I ], expectation at intermediate states

E[SH,I ] =E[vT
H,I

W] = vT
H,I

E[W] (2.60)

=vT
H,I

· 1

M

✓
W(W + 1)

2
...
W(W + 1)

2

◆T

(2.61)

=(N (N � 1) . . . (N � (I � 1)) 0 . . . 0)· (2.62)

1

M

✓
W(W + 1)

2
...
W(W + 1)

2

◆T

=
W(W + 1)

2M
(N +N � 1 + . . .+N � (I � 1)) (2.63)

=
W(W + 1)

2M

✓
I N � I(I � 1)

2

◆
(2.64)

The expectation of Integration at intermediate states SH,I is then given by:

E[SH,I ] =
IW(W + 1)

4M
(2 N � I + 1) (2.65)

2.7.2 Var[SH,I ], variance at intermediate states

From (1.38), we have Var[SH,I ] = vT
H,I

·KH

WW
· vH,I . The Variance-covariance matrix KH

WW
is given

by (1.43) and modulation vector v1
H,I

by (2.42). Therefore we have:
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Var[SH,I ] = vT
H,I

·KH

WW
· vH,I

= (N (N � 1) . . . (N � (I � 1)) 0 . . . 0) ·KH

WW
·

2

666666664

N
(N � 1)

...
(N � (I � 1))

0
...
0

3

777777775

(2.66)

= VarW [N 2 + (N � 1)2 + . . .+ ((N � (I � 1))2)] + # N (2.67)
[N +N � 1 + . . .+ (N � (I � 1)] + # (N � 1)

[N +N � 2 + . . .+ (N � (I � 1)] + . . .+ # (N � (I � 1))

[N +N � 1 + . . .+ (N � (I � 2))]

= VarW

"
I�1X

i=0

(N � i)2
#
+ #

"
I�1X

i=0

(N � i)(N (I � 1))

#
� (2.68)

#

"
I�1X

i=0

(N � i)

✓
I(I � 1)

2
� i

◆#

= VarW

N 2I � 2 N I(I � 1)

2
+

I(I � 1)

2

(2 I � 1)

3

�
+ # (2.69)


N I(I � 1)

2
(2 N � I + 1)

�
� #


I(I � 1)

2

✓
N (I � 1)� I(I � 1)

2
+

(2 I � 1)

3

◆�

Defining p̂ =
I(I � 1)

2
and q̂ =

2 I � 1

3
and simplifying, we obtain the formula for the variance at

intermediate states:

Var[SH,I ] = [N (N I � 2p̂) + p̂ q̂] VarW+

p̂ [2N (N � I + 1) + p̂� q̂] Cov(Wi,Wj) (2.70)

2.8 Behavior of discriminability for final potential

We set N = W = M/2
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Let us define p =
N (N + 1)

2
and q =

2N + 1

3
, and substituting N = W , in each expression we get,

max(SH,N ) = WN
✓
N + 1

2

◆
+

N (1�N 2)

6
(2.71)

= NN
✓
N + 1

2

◆
+

N (1 +N )

2

(1�N )

3
(2.72)

= N p+ p
1�N

3
(2.73)

= p (N +
1�N

3
) (2.74)

= p

✓
2N + 1

3

◆
(2.75)

= p q (2.76)

E[SH,N ] = �C µWC
(2.77)

=
N (N + 1)

2
· W(W + 1)

2M
(2.78)

=
N (N + 1)

2
· N (N + 1)

2M
(2.79)

=
p2

M
(2.80)

For the variance Var[SH,N ] we have that

VarWH = µWH

✓
2W + 1

3
� µWH

◆
= µ(q � µ)

CovH(Wi,Wj) =
µWH

M � 1

✓
µWH

� 2W + 1

3

◆
=

µ

M � 1
(µ� q)

therefore,

Var[SH,N ] = (p q)VarW + (p2 � p q) Cov(Wi,Wj) (2.81)

= p q µ(q � µ) + (p2 � p q)
µ

M � 1
(µ� q) (2.82)

=
p µ(q � µ)(M q � p)

M � 1
(2.83)

then substituting in the formula of discriminability, max (2.76), expectation(2.80) and variance (2.83) of
integration for Ranked-NoM code, we get,
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DH(M) =
max(SH,N )� E[SC,N ]p

Var[SC,N ]
(2.84)

=
p q � p2

Mr
p µ(q � µ)(M q � p)

M � 1

(2.85)

=

vuuut
(p q � p2/M)2

p µ(q � µ)(M q � p)

M � 1

(2.86)

=

vuuut
p2/M2(qM � p)2

p µ(q � µ)(M q � p)

M � 1

(2.87)

=

s
(qM � p)(M � 1) p

M2µ(q � µ)
(2.88)

we can see that we finally get:
DH(M) =

p
M � 1 (2.89)
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3 APPLICATION TO N-OF-M (NOM) CODING

Since this scheme is already known as N-of-M coding, we keep the name. In our formalism, N will however
become W .

3.1 Scores vector function

The support ⌦F is generated by using the function of Ranked-NoM coding �H . For NoM, �F is a
composition of the indicator function 1A with the Ranked-NoM function �H where A = {wk

i
2 ⌦H :

wk

i
= max(0, ŵk

i
�M +W) 6= 0}.

The scores are obtained by the vector-value function �F (ŵk) = wl

F
defined in (1.1). Then the vectorial

components are given by:

�F,i(ŵ
k) = �F,i(ŵ

k

1 , . . . , ŵ
k

M
) = 1A � �H,i(ŵ

k

1 , . . . , ŵ
k

M
), (3.1)

such as
�F (ŵ

k) = �F (ŵ
k

1 , . . . , ŵ
k

M
) (3.2)

= (�F,1(ŵ
k

1 , . . . , ŵ
k

M
), . . . ,�F,M (ŵk

1 , . . . , ŵ
k

M
)) (3.3)

= (1A(�H,1(ŵ
k

1 , . . . , ŵ
k

M
)), . . . ,1A(�H,M (ŵk

1 , . . . , ŵ
k

M
))) (3.4)

= (1A(max(0, ŵk

i �M +W), . . . , (1A(max(0, ŵk

i �M +W)))) (3.5)

= (wl

1, . . . , w
l

M
) = wl

F
(3.6)

Note that for k = 1, we have that ŵ1 = (M,M � 1 . . . , 1), thus

�F (ŵ
1) = (1A(�H,1(ŵ

1
1, . . . , ŵ

1
M
)), . . . ,1A(�H,M (ŵ1

1, . . . , ŵ
1
M
))) (3.7)

= (1A(max(0,W)), . . . ,1A(max(0,W �M + 1))) (3.8)
= (1A(W),1A(W � 1), . . . ,1A(0)) (3.9)

= (1, 1, . . . , 0) = w1
F

(3.10)

The vectors in the support of Ranked-NoM coding by the function �F get the vectors in ⌦H converted
into vectors of ones and zeros. Therefore, we have that ⌦F gets reduced vectors each time we generated
vectors from ⌦H , because we are no longer interested in their order. Then we divide by the number of
ways that you can arrange W numbers, which is W !. Thus the cardinality of support of NoM, ⌦F is:

|⌦H |
W !

=
M !

W !(M �W)!
=

✓
M

W

◆
= |⌦F | (3.11)

and thus ⌦F = {w1, ...,w|⌦F |}.
Example 3.1. As an illustration, let M = 4 and W = 2 (|⌦| = 24, |⌦H | = 12 permutations and
|⌦F | =

�4
2

�
= 6 combinations.). We would have, for the best order:

�F (ŵ
1) = (1A(max(0, 2)),1A(max(0, 1)),1A(max(0, 0)),1A(max(0,�1))) (3.12)

= (1A(2),1A(1),1A(0),1A(0))

= (1, 1, 0, 0) = w1
H

(3.13)
and for the worst order:

�F (ŵ
24) = (1A(max(0,�1)),1A(max(0, 0)),1A(max(0, 1)),1A(max(0, 2))) (3.14)

= (1A(0),1A(0),1A(1),1A(2))

= (0, 0, 1, 1) = w6
H

(3.15)
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Note that for ŵ18 = (2, 1, 3, 4) and ŵ23 = (1, 2, 4, 3) we would also obtain:

�F (ŵ
18) = (1A(max(0, 0)),1A(max(0,�1)),1A(max(0, 1)),1A(max(0, 2))) (3.16)

= (1A(0),1A(0),1A(1),1A(2))

= (0, 0, 1, 1) = w6
H

(3.17)

�F (ŵ
23) = (1A(max(0,�1)),1A(max(0, 0)),1A(max(0, 2)),1A(max(0, 1))) (3.18)

= (1A(0),1A(0),1A(2),1A(1))

= (0, 0, 1, 1) = w6
H

(3.19)

therefore, �F (ŵ24) = �F (ŵ18) = �F (ŵ23) = w6
H

.

3.2 Probability distribution of Scores

Let W = (W1 W2 . . . WM )T be a discrete random vector with support the ordered set ⌦F =

{w1, . . . ,w(MW)}, which is generated by the vector-function �F defined in (3.1), thus the support is
given by:

⌦F = ⌦W1W2...WM
=

8
><

>:

2

64

1
1
...
0

3

75 . . .

2

64

0
...
1
1

3

75

9
>=

>;
(3.20)

Due to (3.11), let its joint probability mass function be

PW1W2...WM
=

8
<

:

1
�
M

W
� =

(M �W)!W !

W !
wk 2 ⌦W1W2...WM

0 Otherwise
(3.21)

From (1.17), the marginal probability mass function of W1,W2, . . . ,WM with sample space DWi
=

{1, 0} for i = 1, ...,M is given by:

PWi
(w) =

8
>>>>>>><

>>>>>>>:

�
M�1
W
�

�
M

W
� =

M �W
M

w = 0

�
M�1
W�1

�
�
M

W
� =

�
M�1
W�1

�

M

W
�
M�1
W�1

� =
W
M

w = 1

0 Otherwise

(3.22)

3.3 Expectation vector of scores

3.3.1 µW , expected value of Wi

E[W ] =
2X

i=1

wi P (wi) = 1
W
M

=
W
M

= µW (3.23)
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3.3.2 E[W], expectation of W,

Therefore, the expected value of random vector W is:

E[W] =

2

664

E[W1]
E[W2]

...
E[WM ]

3

775 =

2

6664

W
M...
W
M

3

7775
(3.24)

3.4 Variance-Covariance matrix of scores

The matrix KF

WW
is defined in (1.43) then we will find the variance VarW and the covariance

Cov(Wi,Wj) = #.

3.4.1 VarW , variance of Wi

Var(W ) = E[W 2]� E[W ]2 (3.25)

=
X

w2
i P (wi)�

✓
W
M

◆2

(3.26)

=
W
M

�
✓
W
M

◆2

= µW (1� µW ) (3.27)

Thus the variance of the random variable W is given by,

Var(W ) = µW (1� µW ) (3.28)

3.4.2 #, covariance of Wi,Wj

From equations(3.21) and (3.22), the score random variable Wi of NoM coding are not independent
because:

MY

i=1

PWi
(w) =

✓
M �W

M

◆M�W ✓
W
M

◆W
6= (M �W)!W !

M !
= PW1W2...WM

(3.29)

To find the covariance (1.42), we must find the bivariate joint probability distribution f(Wi = wi,Wj =
wj), for i, j = 1, 2, . . . ,M .

We have the following facts:

• Each random variable can take on 2 same binary values: 0, 1.
• For any combination of wi, wj with i, j = 1, . . .M the joint probability distribution f are the same.

• The support ⌦F which is the sample space consists of |⌦F | =
�
M

W
�

random possible pair outcomes

that are equally likely, that is, the probability for each random outcome is
1

|⌦F |
.

• f(Wi,Wj) = f(Wj ,Wi)

To establish the joint probability distribution f , we need a general method to find the frequency of the
various pair outcomes. As we have the fact that the random pair outcomes are equally likely, we only need
to count the number of times each pair repeats.

Let us introduce a notation to define the support ⌦F (equation (3.20)) as a matrix and from here we get
the frequency hence the joint probability distribution.
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Definition 3.1. Let d
�
M

W
�

being a M ⇥
�
M

W
�

matrix.
�
M

k

�
1 denote the number of 1’s and

�
M

k

�
0 the number

of 0’s at the matrix d
�
M

W
�
. [
�M
k

�
] denote a M⇥

�M
k

�
matrix that represents all the combinations M choose

k. For k = 0, [
�M
0

�
] is a M⇥ 1 column of zeros, and k = M, [

�M
M
�
] is a M⇥ 1 column of ones.

To build the support ⌦F as a matrix, we first set the number one in the first row of the matrix and then set
the zero. We know that the sum of ones and zeros is |⌦F | =

�
M

W
�
. To know how many numbers one (10s)

we have, we use the combination formula for one less ”1” and one less ”element” of the vector. Using the
notation above we will have

�
M�1
W�1

�
1

ones (10s).

The number of zeros (00s) is
�
M�1
W
�
0 since the size of the vector decreases but the ones (10s) that are W ,

remain fixed. So we have
�
M�1
W�1

�
1
+
�
M�1
W
�
0 =

�
M

W
�
. In the second row we set the ones and zeros again in

the same way but for each row of ones and zeros, and so on.

In general, the matrix d
�
M

W
�

can be represented as a tree, where each line j represents the jth row of the
matrix

d�M
W
�

�
M�1
W
�
0

�
M�2
W
�
0

...

�
M�j

W
�
0

�
M�j

W�1

�
1

�
M�3
W�1

�
1

...

�
M�2
W�1

�
1

�
M�3
W�1

�
0

...

...

�
M�1
W�1

�
1

�
M�2
W�1

�
0

...
�
M�3
W�2

�
1

...

�
M�2
W�2

�
1

...
...

�
M�j

W�(j�1)

�
0

�
M�j

W�j

�
1

Tree for NoM coding (3.30)

Note that the last row using the tree is when W = j but it is not the last row of the matrix. We define the
matrices [

�M
k

�
], to denote the entire matrix in the definition (3.1).

For instance, with M = 4,W = 2 we have

⌦W1W2W3W4 =
d✓4
2

◆
=

2

4

�3
1

�
1

�3
2

�
0�2

0

�
1

�2
1

�
0

�2
1

�
1

�2
2

�
0

[
�2
0

�
] [

�2
1

�
] [
�2
1

�
] [

�2
2

�
]

3

5 (3.31)

=

2

64
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

3

75

4⇥(42)

(3.32)

the first row corresponds to the first random variable W1, the second row to the W2 random variable and so
on.
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To find the frequency we can consider two first random variables W1,W2 in ⌦F ,

⌦W1...WM
=

d✓M
W

◆
=

2

64

�
M�1
W�1

�
1

�
M�1
W
�
0�

M�2
W�2

�
1

�
M�2
W�1

�
0

�
M�2
W�1

�
1

�
M�2
W
�
0

...
...

...
...

3

75 (3.33)

=

2

4

�
M�1
W�1

�
1

�
M�1
W
�
0

f3 f2 f2 f1
...

...
...

...

3

5 (3.34)

the frequency of the pair outcome (1, 1) is
�
M�2
W�2

�
1
= f3, of the pair (1, 0) = (0, 1) is

�
M�2
W�1

�
0
=
�
M�2
W�1

�
1
=

f2 and (0, 0) is
�
M�2
W
�
0 = f1 therefore we have that,

f(W1,W1) = P1 =
f1�
M

W
� =

�
M�2
W
�

�
M

W
� (3.35)

f(W1,W2) = P2 =
f2�
M

W
� =

�
M�2
W�1

�
�
M

W
� (3.36)

f(W2,W2) = P3 =
f3�
M

W
� =

�
M�2
W�2

�
�
M

W
� (3.37)

We summarize the bivariate joint probability distribution f in the following table,

f(Wi,Wj) 0 1 fWj
(Wj)

0 P1 P2 P1 + P2
1 P2 P3 P2 + P3

fWi
(Wi) P1 + P2 P2 + P3 1

(3.38)

Now we can calculate the covariance(1.42). Doing the operations by rows, we have that Cov(Wi,Wj) =
c0 + c1 where

c0 = P1 (0� µW )(0� µW ) + P2 (0� µW )(1� µW ) (3.39)
c1 = P2 (1� µW )(0� µW ) + P3 (1� µW )(1� µW ) (3.40)

Using the combination formula,
✓
n

r

◆
=

n!

r!(n� r)!

the following properties of the combination
✓
n

1

◆
= n,

✓
n

0

◆
=

✓
n

n

◆
= 1,

✓
n

n� r

◆
=

✓
n

r

◆
,

✓
n

r

◆
+

✓
n

r � 1

◆
=

✓
n+ 1

r

◆
(3.41)

and simplifying, we get,
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Cov(Wi,Wj) = c0 + c1 (3.42)

= P1 µ
2
W

+ P2 µW (1� µW )� P2 µW (1� µW ) + P3 (1� µW )2 (3.43)

= µ2
W

� 2µW P3
W � 1

M � 1
+ P3 (3.44)

= µW
W � 1

M � 1
� µ2

W
(3.45)

Thus the covariance Cov(Wi,Wj) of scores of NoM is given by:

Cov(Wi,Wj) = µW
W � 1

M � 1
� µ2

W
(3.46)

where µW is defined in the equation (3.23).

3.5 Modulation vector function

For (1.2), we denote  F : ⌦! ⌅F , the function for generating modulations vector for NoM coding. The
function we chose in the present article is parameterized by the number N 2 {1, . . . ,M} and defined as:

 F (ŵ
k;N ) ⌘ �F (ŵ

k;N ) (3.47)

Below, we consider v1
F
=  F (ŵ1;N ) = (1, . . . , 1N , 0, . . . 0)T, which contains N ones.

For NoM, the modulation vector gated up to the first I components is then defined by

v1
F,I

= (1, . . . , 1, 0, . . . 0)T (3.48)

which contains I < N ones.

3.6 SF,N , integration-Final Potential I = N

3.6.1 max(SF,N )
The maximum value of integration SF,N is defined in equation (1.31). Thus, for NoM coding, we have

that w1 = (1, . . . , 1W , 0, . . . , 0) and modulation vector is given in the equation (3.48), therefore,
max(SF,N ) = 1 + 1 . . .+ 1 = N (3.49)

considering W > N . If W < N , max(SF,N ) = W .

3.6.2 E[SF,N ], expectation of final potential

E[SF,N ] = E[vT
F,I

W] = vT
F,I

E[W] (3.50)

= vT
F,I

·
✓
W
M

, ...,
W
M

◆T

(3.51)

= (1 1 . . . 0) ·
✓
W
M

, ...,
W
M

◆T

=

✓
W
M

+ ...+
W
M

◆
=

N W
M

(3.52)

Then the expectation of Integration SF,N is given by

E[SF,N ] =
N W
M

(3.53)
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3.6.3 Var[SF,N ], variance of final potential

From (1.38), we have Var[SF,N ] = vT
F,N · KF

WW
· vF,N . The Variance-covariance matrix, KF

WW
, is

defined in equation (1.43), and the modulation vector v1
F,N of final potential for NoM coding is given by

(3.48). Therefore,

Var[SF,N ] = vT
F,N ·KF

WW
· vF,N (3.54)

= (1 1 . . . 1 0 . . . 0)

2

64

VarW # . . . #
# VarW . . . #
...

... . . . ...
# # . . . VarW

3

75

2

66666664

1
1
...
1
0
...
0

3

77777775

(3.55)

= VarW + (N � 1) #+ . . .+ VarW + (N � 1) # (3.56)
= N VarW +N (N � 1)# (3.57)

Then the variance of integration is given by:

Var[SF,N ] = N VarW +N (N � 1) Cov(Wi,Wj) (3.58)

where VarW is given by (3.28) and Cov(Wi,Wj) by (3.46).

We check that Var[SF,N ] equation (3.58) is equivalent to the variance considering that NoM model
follows the hypergeometric distribution:

Var[SF,N ] = N Var(W ) +N (N � 1) Cov(Wi,Wj) (3.59)

= N (µW (1� µW )) +N (N � 1)

✓
µW

W � 1

M � 1
� µ2

W

◆
(3.60)

= N µW [1� µW + (N � 1)
W � 1

M � 1
� (N � 1)µW ] (3.61)

= N µW


1� W N

M
+

(N � 1)(W � 1)

M � 1

�
(3.62)

=
W N
M


(M �N )(M �W)

M(M � 1)

�
(3.63)
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3.7 SF,I. Integration-intermediate states, I < N
3.7.1 E[SF,I], expectation at intermediate states

E[SF,I ] = E[vT
F,I

W] = vT
F,I

E[W] (3.64)

= vT
F,I

·
✓
W
M

, ...,
W
M

◆T

= (1 1 . . . 0) ·
✓
W
M

, ...,
W
M

◆T

=

✓
W
M

+ ...+
W
M

◆
=

I W
M

(3.65)

Then the expectation of Integration SF,I is given by

E[SF,I ] =
I W
M

(3.66)

3.7.2 Var[SF,I], variance at intermediate states

From (1.38), the variance at intermediate states is given by Var[SF,I ] = vT
F,I

·KF

WW
· vF,I . From (1.43),

we have the Variance-covariance matrix KF

WW
and the modulation vector v1

F,I
for NoM code is given by

(3.48). Therefore,

Var[SF,I ] = vT
F,I

·KF

WW
· vF,I

= (1 . . . 1 0 . . . 0)

2

64

VarW # . . . #
# VarW . . . #
...

... . . . ...
# # . . . VarW

3

75

2

6666664

1
...
1
0
...
0

3

7777775
(3.67)

= VarW + (I � 1) #+ . . .+ VarW + (I � 1) # (3.68)
= I VarW + I (I � 1)# (3.69)

Then the variance of integration is given by

Var[SF,I ] = I VarW + I (I � 1) Cov(Wi,Wj) (3.70)

where VarW is given by (3.28) and Cov(Wi,Wj) by (3.46).

3.8 Behavior of discriminability for final potential

Substituting N = W = M/2, we have,

max(SF,N ) = N =
M

2
(3.71)

E[SF,N ] = �F µWF
(3.72)

= NW
M

=
M

4
(3.73)
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thus for N = M/2 and simplifying we get, For the variance Var[SF,N ], we have that

VarWF = µWF

�
1� µWF

�
=

W
M

✓
1� W

M

◆
= 1/4

CovH(Wi,Wj) =
µWH

M � 1

✓
µWH

� 2W + 1

3

◆
=

1

4(1�M)

therefore,

Var[SF,N ] = NVarW +N (N � 1) Cov(Wi,Wj) (3.74)

=
M

2

1

4
+

M

4
(M � 2)

1

4(1�M)
(3.75)

=
M2

16(M � 1)
(3.76)

then substituting in the formula of discriminability, max (3.71), expectation(3.73) and variance (3.76) of
integration for NoM code, we get a function depending on M,

DF (M) =
max(SF,N )� E[SF,N ]p

Var[SF,N ]
(3.77)

=

M

2
� M

4s
M2

16(M � 1)

(3.78)

=
p
M � 1 (3.79)

therefore,
DF (M) =

p
M � 1 (3.80)
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4 APPLICATION TO RANK-ORDER CODING

4.1 Scores vector function

Rank-Order Coding weights have no other parameter than M . Under this coding, we want the best
weights vector w1 = ŵ1 = �(R(1)) made up of an arithmetic sequence from M down to zero, with rate
�1. The weights are obtained by the vector-value function �R(ŵk) = wk

R
define in (1.1). We then define

�R,i as the identity function,

�R,i(ŵ
k) = ŵk = wk

R
(4.1)

such that:

�R(ŵ
k) = �R(M � rk1 ,M � rk2 , . . . ,M � rk

M
) (4.2)

= (M � rk1 ,M � rk2 , . . . ,M � rk
M
) (4.3)

= (wk

1 , . . . , w
k

M
) = wk

R
(4.4)

Note that, for k = 1, we have that ŵ1 = (M,M�1 . . . , 1), given that r1 = (r11, . . . , r
1
M
) = (0, 1, . . . ,M�

1). Thus

�R(ŵ
1) = �R(M,M � 1, . . . , 1) (4.5)

= (M,M � 1, . . . , 1) = (w1
1, . . . , w

1
M
) = w1

R
(4.6)

For k = M !, given that rM ! = (rM !
1 , rM !

2 , . . . , rM !
M

) = ((M � 1), (M � 2), . . . , 0) we have that ŵM ! =
(1, 2, . . . ,M), so we get:

�R(ŵ
M !) = �R(1, 2, . . . ,M) (4.7)

= (1, 2, . . . ,M) = (wM !
1 , . . . , wM !

M
) = wM !

R
(4.8)

�R being a bijection, we have:
|⌦| = |⌦R| = M ! (4.9)

Example 4.1. As an illustration, let M = 4 (|⌦C | = 24 permutations). We would have, for the best order:

�R(ŵ
1) = �R(4, 3, 2, 1) = (4, 3, 2, 1) = w1

R
(4.10)

and for the worst order

�R(ŵ
24) = �R(1, 2, 3, 4) = (1, 2, 3, 4) = w24

R
(4.11)

4.2 Probability distribution function of scores

Let W = (W1 W2 . . . WM )T be the discrete random vector with support the ordered set ⌦R =
{w1, . . . ,wM !}, which is generated by the vector-value function �̂R defined in (4.1), therefore,

⌦R = ⌦W1W2...WM
=

8
><

>:

2

64

M
M � 1

...
1

3

75

2

64

M � 1
M
...
1

3

75 . . .

2

64

1
...

M � 1
M

3

75

9
>=

>;
(4.12)

Due to (4.9), its joint probability mass function is
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PW1W2...WM
=

( 1

M !
wk 2 ⌦W1W2...WM

0 Otherwise
(4.13)

and from (1.17), the marginal probability mass function of W1,W2, . . . ,WM with sample space DWi
=

{M,M � 1, ..., 1} for i = 1, ...,M , is given by:

PWi
(w) =

(
(M � 1)!

M !
=

1

M
w = 1, . . . ,M

0 Otherwise
(4.14)

4.3 Expectation vector of scores

4.3.1 µW , expected value of Wi

E[W ] =
MX

i=1

wi P (wi) =
MX

i=1

wi

1

M
(4.15)

=
1

M

MX

i=1

wi =
1

M

M(M + 1)

2
=

(M + 1)

2
(4.16)

4.3.2 E[W], expectation of W
Therefore, the expected value of a random vector W is:

E[W] =

2

664

E[W1]
E[W2]

...
E[WM ]

3

775 =

2

6664

M + 1

2...
M + 1

2

3

7775
(4.17)

4.4 Variance-Covariance matrix of scores

The matrix KR

WW
is defined in (1.43) then we will find the variance VarW and the covariance

Cov(Wi,Wj) = #.

4.4.1 VarW , variance of Wi

Var(W ) = E[W 2]� E[W ]2 (4.18)

=
X

w2
i P (wi)�

(M + 1)2

4
(4.19)

=
X

w2
i

1

M
� (M + 1)2

4

=
1

M

✓
M(M + 1)(2M + 1)

6

◆
� (M + 1)2

4
(4.20)

=
M2 � 1

12
(4.21)

thus the variance of random variable W is given by,
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VarW =
M2 � 1

12
=

µW (M � 1)

6
(4.22)

4.4.2 #, covariance of Wi,Wj

From (4.13) and (4.14), the score random variable Wi of ROC coding are not independent because:

MY

i=1

PWi
(w) =

✓
1

M

◆M

6= 1

M !
= PW1W2...WM

(4.23)

hence Cov(Wi,Wj) 6= 0.

From (1.42),we must find the bivariate joint probability distribution f(Wi = wi,Wj = wj), i, j =
1, 2, . . . ,M to find the covariance. We will use the following facts:

• Each random variable can take on M same values: 1, 2, . . . ,M
• For any combination of wi, wj with i, j = 1, . . .M the joint probability distribution f are the same.
• The support ⌦R which is the sample space consists of |⌦R| = M ! possible pair outcomes that are

equally likely, that is, the probability for each outcome is
1

|⌦R|
.

• f(Wi,Wj) = f(Wj ,Wi)

• f(Wi = wi,Wj = wj) = 0, for i = j

To obtain the support ⌦R (4.12) as a matrix where the rows would represent the random variables
W1,W2, . . . ,WM , we consider all permutations of the set (M,M � 1, . . . , 1), and arrange them as
columns in decreasing lexical order.

For example, for M = 3 the support represented as a matrix is given by:

⌦1 =

"
3 3 2 2 1 1
2 1 3 1 3 2
1 2 1 3 2 3

#

3⇥3!

(4.24)

and for M = 4 we have that,

⌦2 =

2

64
4 4 4 4 4 4 . . .
3 3 2 2 1 1 . . .
2 1 3 1 3 2 . . .
1 2 1 3 2 3 . . .

3

75

4⇥4!

(4.25)

Let us consider the two first variables W1,W2. If we fix the value for W1, we are left with the permutations
of the M � 1 remaining values. Hence, each value appears (M � 1)! times. If we now fix also the value for
W2, we are left with the permutations of the M � 2 remaining values. Hence, we have :

M !

1(M�1)!

M � 1(M�2)!. . .M(M�2)!

. . .M � 1(M�1)!M(M�1)!

1(M�2)!. . .M � 1(M�2)!

Tree for ROC coding (4.26)
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Therefore, the frequency is the same for each possible pair outcome, and f = (M � 2)!. Then the
probability P is given by:

P =
(M � 2)!

M !
=

(M � 2)!

(M � 2)! (M � 1) M
=

1

(M � 1) M
(4.27)

We summarize the distribution f in the following table,

f(Wi,Wj) 1 2 . . . M fWj
(Wj)

1 0 P . . . P (M � 1)P
2 P 0 . . . P (M � 1)P
...

...
... . . .

...
...

M P P . . . 0 (M � 1)P
fWi

(wi) (M � 1)P (M � 1)P . . . 1

(4.28)

To calculate the covariance defined in the equation (1.42), we do the operations by rows c1, . . . , cM from
the bivariate joint distribution, and obtain:

c1 = (1� µW )(2� µW ) P + (1� µW )(3� µW ) P + . . .+ (1� µW )(M � µW ) P

c2 = (2� µW )(1� µW ) P + (2� µW )(3� µW ) P + . . .+ (2� µW )(M � µW ) P

. . .

cM = (M � µW )(1� µW ) P + . . .+ (M � µW )((M � 1)� µW ) P

Therefore Cov(Wi,Wj) = c1 + c2 + . . .+ cM ,

Cov(Wi,Wj) =(1� µW ) P [(2� µW ) + . . .+ (M � µW )]+ (4.29)
(2� µW ) P [(1� µW ) + (3� µW ) . . .+ (M � µW )+

(M � µW ) P [(1� µW ) + (2� µW ) . . .+ ((M � 1)� µW )]

=(1� µW ) P


M(M + 1)

2
� 1� (M � 1)µW

�
+ (4.30)

(2� µW ) P


M(M + 1)

2
� 2� (M � 1)µW

�
+

(M � µW ) P


M(M + 1)

2
�M � (M � 1)µW

�

=
MX

i=1

(i� µW ) P [M µW � i� (M � 1)µW ] (4.31)

=
MX

i=1

(i� µW ) P (µW � i) = �P
MX

i=1

(i� µW )2 (4.32)

Using the summation formulas and simplifying, we finally get that the covariance of the scores for ROC
coding is given by:

Cov(Wi,Wj) =
µW

M � 1

✓
µW � 2M + 1

3

◆
(4.33)
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4.5 Modulations vector function

Under the geometrical-ROC scheme that we consider in this paper, we want the modulations vector for
r1 to be composed as a decreasing geometric sequence, starting from 1, and with rate m.

For (1.2), we denote  R : ⌦! ⌅R, the function for generating modulations vector for ROC.
It is parametized by the numbers M 2 {1, . . . ,M} and m 2 [0, 1].
We then define  R,i as:

 R,i(ŵ
k;m) =  R,i((ŵ

k

1 , . . . , ŵ
k

M
);m) = mM�ŵ

k

i (4.34)
such that

 R(ŵ
k) =  R(ŵ

k

1 , . . . , ŵ
k

M
) (4.35)

= ( R,1(ŵ
k

1 , . . . , ŵ
k

M
), . . . , R,M (ŵk

1 , . . . , ŵ
k

M
)) (4.36)

= (mM�ŵ
k

1 , . . . ,mM�ŵ
k

M ) = vl

R
(4.37)

with l 2 {1, . . . |⌦R|}.
 R is a bijective function so |⌦R| = |⇤| = M !.

For k = 1, we have that r1 = (r11 r
1
2 . . . r1

M
)T = (1 2 . . . M)T then

 R(ŵ
1) = ( R,1(ŵ

1
1, . . . , ŵ

1
M
), . . . , R,M (ŵ1

1, . . . , ŵ
1
M
)) (4.38)

= (mM�ŵ
1
1 , . . . ,mM�ŵ

1
M ) (4.39)

= (mM�M , . . . ,mM�1) (4.40)

= (m0,m1 . . . ,mM�1) = v1
R

(4.41)

Below, we consider the modulation vector being : v1
R,M

=  R(ŵ1;m).

The modulation vector gated up to the first I < M components is then defined by

 R(ŵ
1) = (m0,m1 . . . ,mI�1, 0, . . . , 0) (4.42)

4.6 SR,M . Integration-Final Potential I = M

4.6.1 max(SR,M )
The maximum value of integration SR,M is defined in equation (1.31). Thus, for ROC coding, we have

that w1 = (M,M � 1, . . . , 1) and modulation vector is given by (4.41). Thus max(SR,M ) is

=< w1,v1
R,M

>

= (M � 0)m0 + (M � 1)m1 + (M � 2)m2 + . . .+ (M � (M � 1))mM�1

= M(m0 +m1 + . . .+mM�1)� (m1 + 2m2 + . . .+ (M � 1)mM�1) (4.43)

= M
M�1X

i=0

mi �
M�1X

i=1

i mi (4.44)

= M

✓
1�mM

1�m

◆
� 1�mM+1 � (MmM + 1)(1�m)

(1�m)2
(4.45)
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Simplifying, the max of integration for ROC is given by:

max(SR,M ) =
(1�m)(1 +M)� (1�mM+1)

(1�m)2
(4.46)

4.6.2 E[SR,M ], expectation of final potential

E[SR,M ] = E[vT
R,M

W] = vT
R,M

E[W] (4.47)

= vT
R,M

·
✓
M + 1

2
, ...,

M + 1

2

◆T

(4.48)

= (m0 m1 . . . mM�1) ·
✓
M + 1

2
, ...,

M + 1

2

◆T

(4.49)

=

✓
m0(M + 1)

2
+

m1(M + 1)

2
+ ...+

mM�1(M + 1)

2

◆

=
(M + 1)

2
(m0 +m1 + ...+mM�1) (4.50)

=
(M + 1)

2

1�mM

1�m
(4.51)

Then the expectation of Integration SR,M is given by

E[SR,M ] =
(M + 1)

2

1�mM

1�m
(4.52)

4.6.3 Var[SR,M ], variance of final potential

From (1.38), we have Var[SR,M ] = vT
R,M

·KR

WW
· vR,M . The Variance-covariance matrix, KR

WW
is

given by (1.43), and the modulation vector v1
R,M

of final potential for geometric ROC coding is given by
(4.41). Therefore:
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Var[SR,M ]

= vT
R,M

·KR

WW
· vR,M

= (m0 m1 . . . mM�1)

2

64

VarW # . . . #
# VarW . . . #
...

... . . . ...
# # . . . VarW

3

75

2

664

m0

m1

...
mM�1

3

775 (4.53)

= m0(m0VarW +m1#+ . . .+mM#) +m1(m0#+m1VarW + . . .+mM#)+ (4.54)

. . .+mM�1(m0#+m1#+ . . .+mM�1VarW )

= VarW
M�1X

i=0

m2i+ (4.55)

#

"
m0

 
M�1X

i=0

mi �m0

!
+m1

 
M�1X

i=0

mi �m1

!
+mM�1

 
M�1X

i=0

mi �mM�1

!#

=

✓
1�m2M

1�m2

◆
VarW +

"
M�1X

i=0

mi

✓
1�mM

1�m
�mi

◆#
# (4.56)

Using the geometric summation formulas, we get:

Var[SR,M ] =

✓
1�m2M

1�m2

◆
VarW +

"✓
1�mM

1�m

◆2

� 1�m2M

1�m2 �
#

Cov(Wi,Wj) (4.57)

where VarW is given by (4.22) and Cov(Wi,Wj) by (4.33).

4.7 SR,I. Integration-intermediate states, I < M

4.7.1 E[SR,I ], expectation at intermediate states

E[SR,I ] = E[vT
R,I

W] = vT
R,I

E[W] (4.58)

= vT
R,I

·
✓
(M + 1)

2
, ...,

(M + 1)

2

◆T

= (m0 m1 . . . mI�1 0 . . . 0) ·
✓
(M + 1)

2
, ...,

(M + 1)

2

◆T

=

✓
m0(M + 1)

2
+

m1(M + 1)

2
+ ...+

mI�1(M + 1)

2

◆

=
(M + 1)

2
(m0 +m1 + ...+mI�1)

=
(M + 1)

2

1�mI

1�m
(4.59)

Then the expectation of Integration SR,I is given by

E[SR,I ] =
(M + 1)

2

1�mI

1�m
(4.60)
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4.7.2 Var[SR,I ], variance at intermediate states

From (1.38), the variance at intermediate states is given by Var[SR,I ] = vT
R,I

· KR

WW
· vR,I . The

Variance-covariance matrix KR

WW
is given by (1.43) and modulation vector v1

R,I
by (4.41). Therefore we

have:

Var[SR,I ]

= vT
R,I

·KR

WW
· vR,I (4.61)

= (m0 m1 . . . mI�1 0 . . . 0)

2

64

VarW # . . . #
# VarW . . . #
...

... . . . ...
# # . . . VarW

3

75

2

666666664

m0

m1

...
mI�1

0
...
0

3

777777775

(4.62)

= m0(m0VarW +m1#+ . . .+mI#) +m1(m0#+m1VarW + . . .+mI#)+ (4.63)

. . .+mI�1(m0#+m1#+ . . .+mI�1VarW )

= VarW
I�1X

i=0

m2i+ (4.64)

#

"
m0

 
I�1X

i=0

mi �m0

!
+m1

 
I�1X

i=0

mi �m1

!
+mI�1

 
I�1X

i=0

mi �mI�1

!#

=

✓
1�m2I

1�m2

◆
VarW +

"
I�1X

i=0

mi

✓
1�mI

1�m
�mi

◆#
# (4.65)

Using the geometric summation formulas, we get:

Var[SR,I ] =

✓
1�m2I

1�m2

◆
VarW +

"✓
1�mI

1�m

◆2

� 1�m2I

1�m2 �
#

Cov(Wi,Wj) (4.66)

where VarW is given by (4.22) and Cov(Wi,Wj) by (4.33).

4.8 Behavior of discriminability for final potential

Let us assign p =
1�m2M

1�m2 , q =
1�mM

1�m
and substituting in the formulas,

max(SR,M ) =
(1�m)(1 +M)� (1�mM+1)

(1�m)2
(4.67)

=
1 +M

1�m
� (1�mM+1)

(1�m)2
(4.68)

=
1 +M

1�m
� q +mM

1�m
(4.69)

=
M � q m

1�m
(4.70)
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E[SF,M ] = �F µWF
(4.71)

=
1�mM

1�m

M + 1

2
(4.72)

= q
M + 1

2
(4.73)

Var[SR,N ] = pVarW + (q2 � p) Cov(Wi,Wj) (4.74)

= p µWR

✓
M � 1

6

◆
+ (q2 � p)

µWR

M � 1

✓
µWR

� 2M + 1

3

◆
(4.75)

=
µ

6(M � 1)

✓
p(M � 1)2 + 6(q2 � p)

✓
µ� 2M + 1

3

◆◆
(4.76)

=
M + 1

12
(p M � q2) (4.77)

then substituting in the formula of discriminability, max (4.70), expectation(4.73) and variance (4.77) of
integration for ROC code, we get the following function,

DF (M) =
max(SF,M )� E[SF,M ]p

Var[SF,M ]
(4.78)

=

M � q m

1�m
� q

M + 1

2r
M + 1

12
(p M � q2)

(4.79)

=

vuuuuut

(2(M � q m)� q(M + 1)(1�m))2

4(1�m)2

M + 1

12
(p M � q2)

(4.80)

=

p
3

1�m

s
(2(M � q m)� q(M + 1)(1�m))2

(M + 1)(p M � q2)
(4.81)

dividing numerator and denominator of the radicand by M2 to find the tendency of the function when
M ! 1, we get,

DF (M) =

p
3

1�m

vuuuuuut

✓
2
⇣
1� q m

M

⌘
� q

✓
1 +

1

M

◆
(1�m)

◆2

✓
1 +

1

M

◆✓
p� q2

M

◆ (4.82)
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Note that lim
M!1

p =
1

1�m2 and lim
M!1

q =
1

1�m
then we have that,

lim
M!1

DF (M) = lim
M!1

p
3

1�m

vuuuuuut

✓
2
⇣
1� q m

M

⌘
� q

✓
1 +

1

M

◆
(1�m)

◆2

✓
1 +

1

M

◆✓
p� q2

M

◆ (4.83)

=

p
3

1�m

s
(2� q(1�m))2

p
(4.84)

=

p
3

1�m

p
1�m2 (4.85)

therefore for m = 0.8 the function Y = DF (M) has an asymptote horizontal in Y = 5.2 given that,

lim
M!1

DF (M) =

p
3

1� 0.8

p
1� 0.82 = 5.196152422706633 (4.86)

5 PEARSON CORRELATION COEFFICIENT

The scores of the Ranked-NoM, NoM and ROC codes are negatively correlated and the Pearson correlation
coefficient ⇢ is the same for the three schemes. They are not independent since permutation of a given set
of values implies correlation. That is, the correlation comes from the fact that the choice for, say the last
value to be put at the last position of the vector, depends upon the value which has not been put into the
vector yet.

The correlation coefficient is defined by

⇢ =
Cov(Wi,Wj)p
VarWi

p
VarWj

(5.1)

then we calculate ⇢ for each scheme. For the Ranked-NoM code,

⇢H =

µW
M � 1

(µW � 2W + 1

3
)

 r
µW

2W + 1

3
� µ2

W

!2 (5.2)

=

1

M � 1

✓
µW � 2W + 1

3

◆

2W + 1

3
� µW

(5.3)

=
�1

M � 1
(5.4)
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for the ROC code,

⇢R =

µW
M � 1

(µW � 2M + 1

3
)

✓r
µX
6

(M � 1)

◆2 (5.5)

=

1

M � 1

✓
µW � 2M + 1

3

◆

1

6
(M � 1)

(5.6)

=
2(3µW � 2M � 1)

(M � 1)2
(5.7)

=
�1

M � 1
(5.8)

and for NoM, ⇢ is defined by,

⇢F =

µW

✓
W � 1

M � 1

◆
� µ2

W

(
p

µW (1� µW ))2
(5.9)

=

✓
W � 1

M � 1

◆
� µW

1� µW
(5.10)

=
�1 +

W
M

(M � 1)

✓
1� W

M

◆ (5.11)

=
�1

M � 1
(5.12)

therefore, ⇢H = ⇢R = ⇢F =
�1

M � 1
thus the correlation vanishes when M� > 1, and it is because the

effect of previous choice tends to zero for next choice. So, it is the fact that we make permutations of a
given set of values.
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