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Abstract24

Intrinsically disordered proteins (IDP) are at the center of numerous biological25

processes, and attract consequently extreme interest in structural biology. A systematic26

enumeration of protein conformations, carried out using the TAiBP approach based on27

the distance geometry, was performed on two proteins, Sic1 and pSic1, corresponding to28

unphosphorylated and phosphorylated states of an IDP. The populated conformations29

were then obtained by fitting SAXS curves as well as Ramachandran probability maps,30

the original finite mixture approach RamaMix being developed for this second task.31

The similarity between profiles of local gyration radii provides to a certain extend a32

converged view of the Sic1 and pSic1 conformational space. Profiles and populations are33

thus proposed for describing IDP conformations. Di↵erent variations of the resulting34

gyration radius between phosphorylated and unphosphorylated states are observed,35

depending on the set of enumerated conformations as well as on the methods used for36

obtaining the populations.37

Intrinsically disordered proteins (IDP) are at the center of the attention in the structural38

biology of proteins. Indeed, disordered residues are expected to constitute 35 to 50% of39
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the human proteome and, depending on the organism type, the overall percentage of amino40

acids predicted to be disordered ranges from about 12% up to 50%.1 In addition, the41

conformational plasticity of the disordered regions of proteins allows them to interact with42

numerous partners in the cell, as for example for the three intrinsically disordered domains of43

the tumor protein P53.2 This moonlighting3 behavior explains the strong impact of IDPs in44

cellular signaling, regulation, and control, and the di↵erences observed in their interactomes45

with respect to globular proteins.446

Intrinsically disordered proteins represent a challenge for structural biology for several47

reasons. In solution, the nuclear Overhauser e↵ects measuring distance between hydrogens48

is usually not available. On the other hand, crystallization processes are hampered by the49

conformational disorder, or the variability of conformations in the crystal or in the elec-50

tron cryogenic maps makes impossible the observation of electronic density for disordered51

regions. Numerous approaches have been proposed5–8 for the calculation of protein confor-52

mations, based on molecular dynamics or Monte Carlo simulations for generating molecular53

conformations.54

We propose here to explore a new approach for the exploration of the conformational55

space of IDPs, based on a systematic enumeration of conformations in the frame of the dis-56

tance geometry problem. We amend here our previous work introducing TAiBP as a new57

tool to investigate structural ensembles of IDPs in a systematic way, by predicting popu-58

lations and consequently selecting pools of representative conformations. This approach,59

initiated as the interval Branch-and-Prune (iBP) algorithm by Mucherino and coworkers,960

was adapted to the protein molecular modeling as threading-augmented interval Branch-and-61

Prune (TAiBP).10,11 Based on distance geometry, TAiBP, explores the entire conformational62
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space compatible with NMR chemical shifts retaining conformations that are most di↵erent63

from one another yielding thus a diverse set of conformations to be analyzed further. This64

is in contrast to Monte Carlo methods which are informed by force fields and explore the65

part of the configurational space that is thermodynamically relevant in more detail. TAiBP66

was shown recently12 to allow the analysis of the conformational space of a tandem domain67

of protein whirlin, in which a disordered linker induces a large orientation variability of two68

PDZ domains.13 The application of TAiBP to the tandem domain was made possible by69

the analysis of unprocessed output of the neural network TALOS-N,14 the Ramachandran70

likelihood maps. Indeed, drawing boxes on the most probable regions of these maps, allowed71

the determination of intervals on backbone angles, which serve as inputs for the TAiBP72

algorithm. It should be noticed that the approach MERA has been developed15 for the73

prediction of the �,  distributions for IDPs.74

In the present work, we apply TAiBP to a well-know example of IDP.16,17 The obtained75

IDP conformations will be filtered and their relative populations determined by BioEn1876

using SAXS data. In parallel, we propose an original method, RamaMix, to select the main77

conformations, as well as their populations, according the Ramachandran likelihood maps78

predicted by TALOS-N.14 The principle of RamaMix is to fit a bivariate, periodic, finite79

mixture model to the output of TALOS-N. The N terminal fragment of the intrinsically80

disordered protein Sic1, as well as it phosphorylated form pSic1, each one spanning 9081

residues, will be studied.82

Sic1 prevents premature S-phase entry in the budding yeast Saccharomyces cerevisiae83

by inhibiting the complex Cdk1-Clb. At the START point in the yeast cell cycle, Sic1 is84

phosphorylated on three Threonines (residues 7, 35, and 47) and three Serines (residues 71,85
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78, and 82) in order to be degraded by the proteosome. Sic1 as well as pSic1 were shown16,19
86

to contain significant amount of transient secondary structures.87

The comparison of repeated runs of TAiBP on Sic1 and pSic1 reveals a good repro-88

ducibility of global conformational shape. Qualitatively similar but quantitatively di↵erent89

populations are obtained either by fitting distinct SAXS curves or Ramachandran maps. The90

sets of individual conformations selected from the fitting of various data are partially distinct,91

but better convergence is observed for the profiles of local gyration radius. These profiles92

could be proposed as a low resolution description of the IDP conformational space. Depend-93

ing on the way the TAiBP conformations are generated, and on the processing method to94

obtain the populations, di↵erent patterns of variations are observed for the resulting gyration95

radius of Sic1 and pSic1.96

Results97

Enumeration of protein conformations98

The TALOS-N14 prediction was obtained using the chemical shifts measured for the nuclei99

H↵, HN, 15N, 13C↵, 13C� of Sic1 and pSic1 residues, and was used to determine boxes of �100

and  values, giving the limits in which the conformations will be enumerated. Indeed, from101

the NMR chemical shifts and the protein sequence information, the TALOS-N neural network102

predicts the likelihood that a given residue n has backbone torsion angles that fall in any of103

the 324 voxels, of 20� ⇥ 20� each, that make up the Ramachandran map.14 Following the104

approach proposed in Ref. 12, we define boxes (Figures S1-S4) using Ramachandran regions105
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displaying largest likelihood for the TALOS-N prediction, and corresponding supposedly to106

protein conformations populated in solutions.107

rev1mera In order to probe the reliability of the (�, ) boxes obtained from the TALOS-N108

likelihood maps, these boxes were compared to the predictions performed using the approach109

MERA,15 which predicts the residue-by-residue Ramachandran map distributions for disor-110

dered proteins using short-range NOEs, chemical shifts, J couplings and spectral density111

derived from the N15 relaxation measurement. As only chemical shifts were available for112

Sic1 and pSic1, the MERA prediction was performed putting to zeros all other possible in-113

puts. The MERA Ramachandran map distributions are plotted for all successful predicted114

residues, along with the input boxes derived from the TALOS-N prediction (Figures S10 and115

S11), showing a reasonable agreement between the two methods.116

Two replicates of boxes were generated for Sic1 and pSic1, using threshold values of117

0.01 and 0.011 on the Ramachandran probability maps as described in section “Extraction118

of boxes from Ramachandran likelihood” in the Supplementary Material. Using these sets119

of input boxes, five TAiBP runs were performed, named Sic11, Sic12, pSic11, pSic12 and120

pSic13. pSic13 The run pSic13 di↵ers from the others by the procedure for selecting more121

extended representative conformations after the SOM clustering, as described in the section122

”Clustering of generated conformations” in the Supplementary Information.123

The two replicates of TAiBP calculations introduced in the previous subsection were124

based on similar numbers of fragments: 14 and 13 for Sic11 and Sic12, 17 for for pSic11125

and pSic12 and 18 for pSic13 (Table S1). The larger number of fragments used for pSic1126

arises from the regions of residues 5-9, 33-37, 45-49, 69-73, 76-84 for which TALOS-N was127

unable to give a prediction due to the phosphorylated residues and for which generic boxes128
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(Table S2) were used. These boxes being formed of three components, they increase the129

combinatorics of the enumeration and shorter fragments have to be used, requiring a larger130

number of fragments to span the protein sequence.131

The boxes used as inputs for the TAiBP runs (Figures S1-S4) are quite similar. The loop132

region (positive �) is slightly more populated for runs pSic11 and pSic12. For the iBP and133

assembly steps forming the TAiBP approach, the duplicate runs, marked in colors red and134

green in Figure 1, produces parameter values similar in most of the protein sequence.135

For the iBP steps, three parameters were compared (Figure 1, first and second lines)136

along the residue number located at the middle of each fragment: the number of individual137

iBP runs (NiBPrun), the number of saved conformations (NiBPconf ) and the number of ob-138

tained conformations after clustering (NclustiBP ). The three analyzed parameters are located139

in similar ranges for all calculations. Nevertheless, NiBPrun displays the largest observed140

values (3888) around the positions of phosphorylated Threonines in agreement with the141

larger generic boxes used in these protein regions (Table S2). Such increase is not observed142

for phosphorylated Serines due to shorter fragments used in the region 50-90 (Table S1).143

For every calculation, NiBPconf is smaller than 109, which is the input given for the maxi-144

mum number of solutions: all individual iBP trees have been thus completely parsed. The145

NiBPconf profiles display smaller values, mostly in the range 106-107, for all calculations in146

the region of residues 60-90. At the contrary of NiBPconf , the numbers of clustered confor-147

mations (NclustiBP ) display relatively flat profiles for Sic1, but a decrease in the number of148

conformations of pSic1 in the region of residues 60-90. This larger reduction of conforma-149

tions due to the clustering is the sign that the conformations generated by iBP in the region150

60-90 are more diverse in Sic1 than in pSic1. In all calculations, the C terminal fragments151
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which are smaller than the others (Table S1), display smaller NiBP , NiBPconf and NclustiBP .152

The results obtained for the run pSic13 (blue crosses) are quite similar to those of the run153

pSic2, which is not suprising as the fragment definition are the same, except around residues154

40-60 (Table S1).155

Three parameters are plotted (Figure 1, third and fourth lines) along the assembled156

fragments: the number of conformations rejected due to C↵ atoms closer than 1Å (Nclashes),157

the number of saved conformations (Nsaved) and the number of clustered conformations158

(Nclust).L ooking at the relative ranges of values of Nclashes and Nsaved, between 10% and159

15% of the assembled fragments are rejected due to the steric clashes. The profiles of Nclust160

are di↵erent for Sic1 and pSic1, as the number of clustered conformations increases up to161

the last fragment, whereas this number already starts to decrease in the region of residues162

60-90 in pSic1. This e↵ect can be put in parallel with the decrease of NclustiBP in the same163

region during the iBP step. The last fragments of proteins have strong decreasing e↵ects164

on Nclust, due to their smaller size (Table S1) which induces probably less variability in the165

generated conformations. Smaller numbers of clashes are mostly obtained for run pSic13166

(blue crosses), which is probably due to the larger extension of conformations. The number167

of saved conformations is often larger than in other runs, which may be a consequence of the168

smaller numbers of clashes. Unsurprisingly, the number of clustered conformations increases169

along the number of saved conformations.170

After the distance geometry calculations, a refinement by molecular dynamics (MD),171

described in section ”Molecular dynamics refinement in implicit solvent” of Supplementary172

Material, was applied to the generated conformations. The protein conformations do not173

vary much during MD trajectories. Indeed, the cumulative sums of di↵erences between initial174
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and final values of backbone angles produce values in the range 4.2-4.9� for � and in the range175

0.04-2.4� for  . Similarly, the average coordinate RMSD between the initial and final frames176

of the refinement trajectories are 0.6 Å for the four runs Sic11, Sic12, pSic11 and pSic12. The177

drift is larger for pSic13, with backbone angle values in the ranges -24 to 6� for � and -40 to178

-1� for  , and an average coordinate RMSD of 0.7 Å. The conformations displaying potential179

energy smaller than -50 kcal/mol for the runs Sic11 and Sic12 and smaller than -600 kcal/mol180

for the runs pSic11 and pSic12, were selected for further analyses. This selection produces181

sets of 98 (Sic11), 133 (Sic12), 161 (pSic11), 121 (pSic12) and 148 (pSic13) conformations.182

Comparison of the conformations between duplicate TAiBP runs183

The distributions of gyration radii Rg and maximal diameters Dmax (Figure 2 top) are184

quite similar for the duplicate runs on Sic1 and pSic1. The global envelope of generated185

conformation is thus reproducible between the replicated TAiBP runs. The distribution of186

gyration radii Rg and maximal diameters Dmax have been plotted in magenta for the run187

pSic3 to display the larger extension of the obtained conformations.188

The individual conformations generated for the duplicated runs of Sic1 and pSic1 were189

then compared by calculating the two-by-two coordinate root-mean-square deviation (RMSD,190

Å). The distributions of the minimum RMSD values (Figure 2 bottom left panels) observed191

for each conformation of one run to the conformations of the other run are quite reproducible192

whatever is the performed comparison. They display sets of values in the ranges of 8-16 Å193

for both proteins, with a maximum around 11 Å for Sic1 and around 10 Å for pSic1. This194

drift of pSic1 maximum towards smaller values agrees with a larger compaction of pSic1195
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conformations. Nevertheless, the range 8-16 Å of RMSD values means that the individual196

conformations of a given run are not reproducible in the replicated run. This excludes a197

high resolution determination of representative conformations which is not surprising due to198

the enormous size of the conformational space to explore and the heavy clustering procedure199

used along the TAiBP approach.200

By analogy to the cross-sectional gyration radius, we propose here the profiles of local201

gyration radii to describe the local variation in the shape of conformations. These profiles202

Pq of local gyration radii are calculated along residue number n for each conformation q in203

the following way:204

Pq(n) =

vuut 1

Nn

n+NwinX

i=n�Nwin

(Xi �X
ave
n )2 (1)

where Xi represents the vector of atomic coordinates for the backbone atoms of residue i in205

the range n�Nwin, n+Nwin, and Nwin=5 is the residue window around n on which a local206

gyration radii is calculated, Nn being the number of backbone atoms located in this window.207

X
ave
n is the coordinate vector of the centroid of the atomic coordinates of the backbone atoms208

of residues in the range n�Nwin, n+Nwin.209

The profiles Pq of local gyration radii were compared two-by-two between conformations210

using Euclidean distance. The distributions of minimal distance between Pq (Figure 2 bottom211

right panels) are similar to those observed for minimal RMSD values (Figure 2 bottom left212

panels), but are drifted toward ranges of 4-11 Å. The comparison between local gyration213

profiles shows that one half of the obtained conformations displays a distance between profiles214

located between 1/6 and 1/3 of the average gyration radius. The profile distance smaller than215

the average gyration radius is the sign of a reduced variation of the profiles Pq with respect to216

10



the coordinate RMSD. The Pq profiles, inspired by the cross-sectional gyration radius, seems217

thus to capture a better convergence between the duplicate runs than the coordinate RMSD.218

In the following, the conformations selected by the fitting of SAXS curves and Ramachandran219

maps will be compared through their Pq profiles.220

Quite similar global shape of conformations are populated in the duplicated TAiBP runs.221

The profiles Pq of local gyration radii display also some similarity. But, the comparison of222

atomic coordinates reveals a large variability of the individual conformations selected by the223

TAiBP approach, which is not surprising due to the enormous considered conformational224

space.225

Validation of the finite mixture model on synthetic data226

Once a set of conformations have been selected using TAiBP, one needs to detect the con-227

formations significantly populated and to evaluate their relative populations. Indeed, the228

systematic enumeration along all possible combination of the �/ boxes induces the gener-229

ation of conformations spanning a space possibly larger than the conformations e↵ectively230

populated. The populations were determined, from one side, using BioEn18 on SAXS data,231

and on the other side, using on the Ramachandran maps, a finite mixture model, RamaMix,232

specially developed for this purpose. We first present in this section a validation of RamaMix233

on synthetic data.234

A pseudo Ramachandran map has been generated by randomly choosing up 15 couples of235

�,  values located in most populated regions of the Ramachandran map (Figure S5). Several236

sets of more or less scattered values, represented by di↵erent colors, have been generated,237
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to investigate the e↵ect of conformational superimposition on the population determination.238

Corresponding populations were also chosen randomly (see caption of Figure S5). Noise levels239

of 0.2, 1, 2, 3, 5 and 10 were added to the histogram obtained from the pseudo Ramachandran240

map, the maximum value of the histogram being around 15. The starting points for each241

RamaMix run was the �0,  0 values from the synthetic Ramachandran plot, and random242

population values. During each RamaMix run, several upper limits were imposed to the243

drift of the backbone angles during the optimization, with values of: 1�, 10�, 20�, 30�, 40�244

and 50�. For each Ramachandran synthetic map, each noise level and each drifting limit245

value, one hundred runs are performed producing sets of backbone angles (�0 and  0) (Eq.246

7), von Mises parameters (Eq. 8) (1, 2 and ⇢) and populations �q (Eq. 2). Over the247

12600 individual RamaMix runs, only 275 runs were terminated without convergence of the248

optimization. Averages and standard deviations were calculated from the sets of obtained249

parameters. The di↵erences between the averaged and the input values, as well as the250

standard deviations (Figure 3) are used to evaluate RamaMix.251

The di↵erences between average and initial populations (Figure 3E) as well as the stan-252

dard deviations of populations are mostly smaller than 30%. Thus, the determination of253

populations is not much influenced by the level of noise, but the population values are rather254

qualitative. Interestingly, the standard deviation is of the order of value of the di↵erence.255

The e�ciency of the determination of backbone angles (Figure 3A-D) for noise levels256

of 0.2, 1, 2, 3 and 5, is not much influenced by the scattering of synthetic Ramachandran257

maps, but rather by the drifting limit imposed on the �,  values. Increasing the allowed258

drift induces larger di↵erences and standard deviations: this would support not allowing259

large drift for the calculations. Interestingly, for the large scattered Ramachandran map260
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(bullets in Figure 3), the e↵ect of a large drift is more pronounced than for other synthetic261

Ramachandran maps. For most of the cases, the standard deviations display larger values262

than the di↵erence: allowing a drift induces more error on the precision of the calculation263

than on the average value of angles.264

The parameters describing the von Mises distribution (Figure 3G-L) display contrasted265

results: the di↵erences are larger for ⇢ than for 1 and 2. For 1 and 2, the standard266

deviations are much larger than the di↵erences whereas they are similar for ⇢. The di↵erences267

between ⇢ and 1 and 2, arise from the definition of these parameters (Eq. 8) in which ⇢268

occupies a di↵erent place than 1 and 2.269

Determination of populations270

The TAiBP conformations were fitted to the SAXS curves and Ramachandran probability271

maps using BioEn18 and RamaMix.272

The following sets of conformations were processed: the conformations obtained from273

runs Sic11, Sic12, pSic11, pSic12 and pSic13, as well as two mixed sets of conformations274

obtained by pooling the conformations from pSic11 and pSic13 and the conformations from275

pSic12 and pSic13. These mixed sets of conformations will be denoted pSic113 and pSic123276

and encompass respectively 309 and 269 conformations.277

BioEn calculations were performed using each of the three SAXS curves available (Ta-278

bles 1, 2 and S5). The populations larger than 1% found for a given TAiBP run and the279

fitting of a given SAXS curve, reveal that the same conformations are repeatedly selected:280

the conformation numbers selected more than once have been written in bold in the Tables.281
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Most of the conformations selected only once, display populations smaller than 15%. But282

the populations vary significantly from one analysis to another as for example for the confor-283

mation 109 from the run Sic12 (Table 1B) which display populations of 26.6, 40.9 and 43.8%284

for the three SAXS curve processing. Normalized �2 values smaller than one are found for285

each calculation along with null final SKL values, in agreement with the definition of SKL as286

the Kullback-Leibler divergence.18,20287

Tables 3 and S6 present the populations obtained by RamaMix from the fitting of the288

Ramachandran probability maps on the same sets of conformations. The variations of back-289

bone angles � and  during the RamaMix optimization are smaller than 0.25� for � and 0.1�290

for  during all considered calculations. These variations are smaller for pSic13 with 0.12�291

and 0.03� for � et  , and even smaller for the mixed pools of conformations with 0.06 and292

0.02�. Among six of the seven sets of TAiBP conformations, conformations (marked in bold)293

already repeatedly selected by BioEn, were also selected by RamaMix (Tables 1, 2 and S5).294

Similarly to the populations obtained by BioEn between the di↵erent SAXS data, the295

populations found using RamaMix are quite di↵erent than the ones determined by BioEn.296

Another di↵erence between BioEn and RamaMix processing is the smaller number of con-297

formations selected by RamaMix, it can arise from the essential di↵erence between the data,298

as the SAXS curves describe a global picture of the conformations whereas the Ramachan-299

dran maps give a local information. A smaller number of conformations are selected from300

the sets where more extended conformations were included: this may be due to the impor-301

tant conformational drift induced by the systematic choice of extended conformations during302

the clustering step (Supplementary information section ”Clustering of generated conforma-303

tions”).304

14



In order to compare the conformations selected by BioEn on the three SAXS curves,305

several curves superimpositions have been realized. The superimposition of SAXS curves306

reconstructed from the conformations selected from Tables 1 and 2 to the corresponding307

fitted SAXS curves (Figure S6) displays a reasonable agreement with �
2 in the range 0.6-308

2.06. These values are larger than the ones given in the Tables 1 and 2, due to the fact309

that conformations displaying populations smaller than 1% have been removed. Besides, a310

comparison of all sets of BioEn conformations with all SAXS curves (Table S3) reveals that311

the conformations and populations determined from the fit of one SAXS curve display �2
312

values with another SAXS curve going up to 4.42. The variability between the three SAXS313

curves induces thus a drift between conformations and populations selected from the fit of314

each curve.315

A similar comparison has been performed between the SAXS curves and the conforma-316

tions and populations determined with RamaMix (Figure S7). In this comparison, the �2
317

values are in the range 0.98-4.24 which is similar to what is observed for BioEn selected318

conformations in Table S3. The variability between the fits to Ramachandran maps and319

SAXS curves is thus similar to the variability of fit between di↵erent SAXS curves.320

In order to investigate the possible convergence between the di↵erent conformations and321

populations detected using BioEn and RamaMix, systematic comparison of Euclidean dis-322

tances between profiles of local gyration Pq (Eq. 1) was performed (Figures 4, S8 and S9)323

The Euclidean distances within each set of conformations selected by BioEn reveal (Figure 4,324

three left columns) that, for several cases, distances smaller than 8 Å are observed between325

di↵erent conformations. In many cases, such small distances are observed between conforma-326

tions (labeled with asterisk Figure 4) for which populations smaller than 10% are observed.327
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The comparison of profiles Pq (Eq. 1) between conformations selected by RamaMix (Figure328

4, right column) reveals two features. When few conformations have been selected (as for329

Sic12 and pSic12), the distances between their profiles Pq are larger than 8 Å. When more330

conformations are selected (as for Sic11 and pSic11), profile distances smaller than 8 Å are331

observed. The small Pq distances reveal a certain convergence of the profiles Pq.332

The comparison of conformations selected by BioEn and RamaMix as well as the com-333

parison between conformations selected from the fit of the various SAXS curves is displayed334

in Figures S8 and S9. A close inspection of these distance matrices for BioEn conformations335

(Figure S8) shows that, if one excludes the conformations populated less than 10%, there336

are only three conformations displaying profile distances larger than 8 Å and selected in two337

distinct BioEn runs: (i) for Sic12, the conformation 106 selected on the SAXS curve BioEn1338

compared to the conformations selected on the two other SAXS curves; (ii) for pSic12, the339

conformation 74, selected in the runs BioEn1 and BioEn2, and compared to the conforma-340

tions selected from the run BioEn3; (iii) for pSic12, the conformation 139 selected from the341

run BioEn3, and compared to the conformations from the run BioEn1. Overall, most of the342

conformations populated more than 10% from the fitting of di↵erent SAXS curves display343

profile distances smaller than 8 Å, supporting a convergence of the profiles in the di↵erent344

fits.345

On the other hand, the comparison between BioEn and RamaMix fitting (Figure S9)346

displays contrasted behaviors between the duplicated TAiBP runs. For Sic12 and pSic12, all347

RamaMix conformations display profiles closer than 8 Å to the profiles of BioEn conforma-348

tions. For pSic11, this is also the case for three RamaMix conformations (16, 98, 101) over349

five. For Sic11, only the conformation 79 displays profile distances smaller than 8 Å for the350
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three comparisons.351

Examples of profiles Pq superimposition have been chosen accordingly to the values of352

their distances (Figure 5) and give an estimation of the connection between the informa-353

tion related to atomic coordinates and the distance between the profiles. These examples354

represent distances in the 4.05-7.88 Å range. The examination of Figure 5 reveals that the355

profile peaks are mostly located at similar places in the protein sequence. This gives a qual-356

itative description of the conformations separated in extended regions (profile maxima) and357

in aggregated regions (profile minima).358

The description of IDP conformations by Pq profiles permits to detect some convergence359

between the various Bioen fits and also between RamaMix and BioEn fit. This is extremely360

encouraging due to the enormous conformational size and to the heterogeneity of the mea-361

surements (SAXS, NMR) used for fitting the populations. Nevertheless, this comparison362

remains extremely qualitative, and far from any high resolution description. It could repre-363

sent a starting point for deeper investigation of IDP conformations.364

Comparison with PED conformations and link with biological ac-365

tivity366

The sets of Sic1 and pSic1 conformations selected from the fitting of SAXS curves and367

of Ramachandran probability maps, were compared to the sets of protein conformations368

deposited in the Protein Ensemble Database proteinensemble.org.21369

rgyr The values of the resulting gyration radii were calculated (Table 4) from the popula-370

tions determined by BioEn and RamaMix, and using the individual gyration radii of selected371
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conformations. Globally, the resulting gyration radii display orders of values agreeing with372

the measurements reported in Figure 2E of Ref. 17. For the conformations extracted from373

the data-sets Sic11 and Sic12, the resulting gyration radii agree with the measurement of 3.0374

± 4.1 Å given in Figure 2E of Ref. 17. But, for pSic11 and pSic12, the resulting gyration375

radii are smaller than the measurements of Ref. 17: this is particularly true for the BioEn376

processing whereas the RamaMix processing displays values closer to those of Gomes et al.17377

On the more extended conformations (pSic13), all resulting gyration radii are significantly378

closer to the Gomes et al17 measurements, for BioEn and RamaMix processing. Pooling379

pSic13 with the conformations of pSic11 or pSic12 (sets pSic113 and pSic123) produces dif-380

ferent e↵ects for BioEn and RamaMix processing. For these mixed data-sets, the resulting381

gyration radii obtained from the BioEn processing (range 27.2-28.1 Å) decrease to reach a382

level just slightly larger than the one obtained for pSic11 and pSic12 (range 26.1-27.9 Å). At383

the contrary, the gyration radii obtained by RamaMix processing are the same than the ones384

obtained for pSic13. Overall, the BioEn processing is more sensitive than RamaMix to the385

presence of conformation with lower gyration radii. The discrepancy of the results obtained386

here on pSic1 with those shown in Ref. 17 arises in part from the tendency to obtain smaller387

gyration radii by processing of the whole SAXS curve with respect to the larger gyration388

radii obtained by using the Guinier approximation within the low-q region of the SAXS data.389

The selected TAiBP conformations were also compared to the PED conformations by390

realizing a principal component analysis (PCA) of the atomic coordinates. The coordinates391

projected on the first and second or on the second and third component (Figure 6) reveal392

that most of the TAiBP conformations are located in similar space regions than the PED393

conformations.394
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rev3hbond The presence of phosphorylated residues decreases obviously the global charge395

of pSic1 with respect to Sic1. It was pointed out that the induced variation in long-range396

electrostatic interactions plays a role in the electrostatic interaction of pSic1 with its target397

Cdc14.22 But, the variations of charges gives also various opportunities for the formation of398

hydrogen bonds, which were analyzed for the whole set of conformations from the TAiBP399

runs as well as for the PED sets of conformations. All PED conformations were submitted400

to the same refinement than the one used on TAiBP conformations described in the section401

”Molecular dynamics refinement in implicit solvent” of the Supplementary Material, using402

positional restraints on protein backbone atoms with a constant force of 50 kcal/mol. The403

cumulative variations of  and � angles during the refinement were in the range 0.8-1.2� for404

� and in the range 0.3-0.8� for  , and the coordinate RMSD around 0.1 Å. All hydrogen405

bonds were detected on the refined PED conformations as well as on the TAiBP conforma-406

tions. Cumulative contact maps (Figure S12) display these hydrogen bonds, according to407

the involved residues, the hydrogen bonds involving phosphorylated residues being colored408

in magenta. The inspection of these contact maps reveals that the PED and TAiBP confor-409

mations display distinct tendencies. Long range hydrogen bonds involving phosphorylated410

residues are more present in the less extended set of TAiBP conformations pSic1 and pSic2.411

On the other hand, the conformation set PED161 of pSic1 displays the largest number of412

long-range hydrogen bonds involving the sidechains of phosphorylated residues. Thus, the413

presence of phosphorylated residues can induce the appearance of long-range hydrogen bonds414

whatever is the variation of resulting gyration radius.415
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Discussion416

The TAiBP approach enumerating the protein conformations in the frame of the distance417

geometry problem has been used for describing the conformational space of two IDPs, Sic1418

and pSic1, corresponding to the unphosphorylated and phosphorylated states of a disordered419

region involved in the control of S phase in the cellular cycle. The present study represents a420

test for a new approach able to systematically enumerate protein conformations in the frame421

of a distance geometry approach. Indeed, up to now, most of the approaches for calculating422

IDP conformations are based on Monte Carlo approaches8,23,24 which do not guarantee an423

exhaustive exploration of the conformational space.424

One should notice that TAiBP overcome the exponential complexity of the branch-and-425

prune algorithm, due to the parallel calculations on fragments, to the rejection of too close426

solutions, and to the systematic use of clustering. A major advantage of this approach is427

the availability of a systematic procedure. Nevertheless, the obtained conformations are428

only representative conformations, and the represented conformational space has still to be429

defined.430

The use of TAiBP approach permits to avoid the question of the convergence of solutions431

for protein conformations. The introduction of the profiles of local gyration radii Pq along432

with their relative populations allows the reintroduction of a convergence criterion into the433

problem, and this is essential for validation purposes. In the present work, the validity of434

this convergence criterion has been assessed by the comparison of the profiles Pq obtained435

from independent fits. In that frame, the profile of local gyration radii could be proposed436

for describing the IDP conformational space: the knowledge, even qualitative, of the profiles437
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should provide geometrical restraints allowing a more precise exploration of the conforma-438

tional space. label1reviewer1 The profiles are closer between the conformations selected by439

the various fits of SAXS curves, than between the conformations selected by BioEn and440

RamaMix. This is expected as the various fits of SAXS curves use an homogeneous infor-441

mation. More surprisingly, similar profiles are observed between conformations selected by442

RamaMix and BioEn, for the runs Sic12 and pSic12, and for many conformations of the runs443

Sic11 and pSic11s.444

One specific advantage of the mixture method RamaMix for determining populations of445

conformations from the likelihood Ramachandran maps is that it has a larger domain of446

applicability that the BioEn method based on the SAXS curves. Indeed, polydispersity in447

protein solutions can make di�cult to extract conformational information from the SAXS448

curve. In addition, the chemical shifts from which the likelihood Ramachandran maps are449

extracted, can be measured in solution as well as in in-cell NMR or for an IDP sequence450

inserted in a larger protein.25451

rgyr The comparison of the resulting gyration radii obtained from the BioEn and Ra-452

maMix processing with the values measured in Ref. 17 showed (Table 4) that various ranges453

of gyration radii are obtained, depending on the clustering procedure in TAiBP, as well as454

on the method for SAXS processing. In particular, the processing of the whole SAXS curve455

with BioEn displays a tendency to underestimate the gyration value with respect to the456

processing of the Guinier curve. The determination of populations from the Ramachandran457

probability maps, using RamaMix, seems to be less prone to the underestimation of the458

gyration radius.459

song The discrepancy between resulting gyration radii obtained by processing the whole460
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SAXS curve (BioEn) or restricting the analysis to the low-q region (Guinier approximation17)461

agrees with independent calculations performed using coarse-grained protein model,26 in462

which various distribution of gyration values produce very similar SAXS spectra (Figure 10a463

of26) or di↵erent disordered ensemble produce similar Kratky plots (Figure 13 of26).464

Methods465

Origins of the data466

Three sets of conformations for Sic1 and pSic1 were available from the Protein Ensemble467

Database (PED) proteinensemble.org:21 PED159 and PED160 for pSic1 and PED161 for468

Sic1.17 The residue numbering used here is the one proposed in the PED. The NMR chemical469

shifts were downloaded from the Biological Magnetic Resonance Data Bank (BMRB)27 as470

entries: 16657 for Sic117 and 16659 for pSic1.19 The SAXS data-sets recorded as triplicate471

sets in the conditions described in Ref.17 were provided by Tanja Mittag.472

Enumeration of conformations using TAiBP473

The protein conformations have been enumerated using the recently proposed TAiBP ap-474

proach,10–12 which generalizes the interval branch-and-prune (iBP) algorithm9,28–31 so as to475

overcome the combinatorial barrier arising from the enormous space of IDP conformations.32476

TAiBP is composed of two steps: (i) the enumeration of conformations for peptide fragments477

(Table S1) spanning the studied protein using individual iBP calculations; (ii) the enumer-478

ation of Sic1 and pSic1 conformations by systematic assembly of fragment conformations in479
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a way similar to what is used in the field of protein prediction.33480

The boxes of backbone angles � and  used as inputs for the iBP step were determined481

from the Ramachandran likelihood maps predicted by TALOS-N14 (see section “Extraction of482

boxes from Ramachandran likelihood maps” and Figures S1-S4 in Supplementary Material).483

The �/ boxes were systematically combined by permutation to prepare individual iBP484

calculations as in Ref 11. The enumeration of conformations is realized by the building of485

a tree, each node of the tree corresponding to an atomic position. The tree building allows486

the enumeration of the various possibilities for atom positions (branching step) whereas487

additional geometric information is used to accept or reject a newly built branch (pruning488

step). As the angles � and  are straightforwardly related to distances between atoms C489

and N of residues successive in the sequence,11,12 the discretization of intervals of these490

angles is used in the branching step. In the iBP step, the pruning was applied by preventing491

atoms to be closer than the sum of their van der Waals radii and by checking that the492

improper angle values are correct. In addition, each solution displaying a coordinate root-493

mean-square deviation (RMSD) smaller than 2 Å with the previously stored solution, is494

rejected. The details of the iBP step calculation are described in the section ”Enumeration495

of conformations” of the Supplementary Material.496

The assembly step is also performed with a branch-and-prune approach using as elemen-497

tary blocks, not the atoms, but the fragment conformations previously determined during498

the iBP step. Two peptide fragments are assembled by superimposing the three last and499

initial residues of the fragments successive in the protein sequence. The fragments are then500

merged in the following way: the atom at which the smallest distance was observed between501

corresponding atoms in the two peptides was used to decide where to stop with the first502
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peptide and to continue with the second one. The assembled conformations in which C↵503

atoms closer than 1 Å are observed, were pruned from the calculation. The fragment as-504

sembly was implemented using python scripting based on the MDAnalysis34,35 and numpy505

1.7.136 packages.506

To scale down the combinatorial explosion of the calculation, a clustering approach based507

on Self-Organizing Maps (SOM)37–40 was systematically applied to the generated sets of con-508

formations larger than 100 during the iBP and assembly steps. The details of this approach509

are described in the section “Clustering of generated conformations” of the Supplementary510

Material.511

After the assembly step, the sidechains have been added to the conformation backbones,512

and the conformations were refined by molecular dynamics simulations as described in the513

section ”Molecular dynamics refinement in implicit solvent” in the Supplementary Material.514

Determining the population from Ramachandran maps515

The approach RamaMix, based on a finite mixture model, was designed to determine the pop-516

ulations of conformations by fitting on the Ramachandran probability maps. The setting-up517

of this approach is based on the hypothesis that the likelihood maps describing the likeli-518

hood of the TALOS-N prediction14 can be transformed by normalization into the probability519

density of the presence of � and  values in the set of conformations populated in solution.520

Consequently, for each residue n, the Ramachandran probability map is denoted as a 2D521

probability density p
n(�, ), modeled as a mixture of probability densities p

n
q (�, ) deter-522
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mined on each conformation q:523

p
n(�, ) =

QX

q=1

�qp
n
q (�, ) (2)

where �q � 0 is the population of conformation q in solution.524

RamaMix intends to decompose the probability map p
n(�, ) according to Eq. 2 along525

the following lines: (i) the total number Q of conformations is taken from output of TAiBP;526

(ii) for each conformation q and each residue n, pnq (�, ) is a periodized Gaussian density527

characterized by averaged values of backbone angles (�n
q , 

n
q ) and by a 2⇥2 covariance matrix528

C
n
q ; (iii) the populations �q have to be adjusted in order to maximize the fit between the529

Ramachandran probability maps and the mixture model (Eq. 2).530

The Ramachandran probability maps p
n(�, ) are jointly fitted to the finite mixture531

model (Eq. 2) using a discrepancy measure between both probability maps given by the532

Kullback-Leibler divergence:533

DKL(p1||p2) =
Z

p1(x) ln
p1(x)

p2(x)
dx. (3)

Calculations detailed in the Supplementary material (sections ”Determination of the popu-534

lations from the Ramachandran maps” and ”Maximum likelihood estimation for bivariate535

sine mixtures”) show that using the Kullback-Leibler divergence is equivalent to the maxi-536

mization of the log-likelihood of the data:41537

L(y; ✓) =
NX

n=1

MX

m=1

ln pn(�m, m). (4)

For the sake of clarity, let us first introduce a standard, non-periodized Gaussian density538

p
n
q (�, ) for the residue n in conformation q:539

p
n
q (�, ) =

1

2⇡
det(Cn

q )
�1/2 exp(�V

n
q (�, )) (5)
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where V
n
q (�, ) represents the free energy surface for the basin around the conformation q.540

The free energy surface is described in the frame of an elastic network model on the backbone541

dihedral angles:42–45542

V
n
q (�, ) =

1

2
✓
t
q[C

n
q ]

�1
✓q (6)

where: ✓q = (� � �
n
q , �  

n
q )

t, �n
q and  

n
q are the values of dihedral angles of the residue543

n in the conformation q and C
n
q is the corresponding covariance. The software IMOD42

544

was used for determining the full Hessian (N,N) (N is the total number of residues in the545

protein) matrix Hq along the backbone dihedral angles. The Hessian matrix is then inversed546

to produce: Cq = H
�1
q . The covariance matrix C

n
q of the angles � and  of the considered547

residue n is the (2,2) sub-matrix of Cq, centered on the two �n
q and  n

q angles. The inverse548

of this matrix [Cn
q ]

�1 is used in Eq. 6.549

As the protein conformations are described by couples of angles, we must consider that550

the support of the probability densities pnq (�, ) is a torus, i.e., that they are doubly circular.551

Following,46–48 we replaced Eq. 6 by a bivariate extension of the von Mises distribution, as552

being more easily tractable than a Gaussian density wrapped on the torus. More precisely,553

we adopt a bivariate periodic sine model:46554

p(�, ) =
1

T
exp(W (�� �0, �  0)) (7)

with555

W (�, ) = 1 cos�+ 2 cos + � sin� sin , (8)

1,2 � 0 and �2 < 12. According to Ref. 46, the integration constant T is expressed as556
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an infinite series, depending on parameters (1,2,�):557

T = 4⇡2
1X

m=0

✓
2m

m

◆✓
�
2

412

◆m

Im(1)Im(2) (9)

where Im denotes the modified Bessel functions of the first kind of order m.49558

In Ref.,46 expressions of (1,2,�) are given as functions of the parameters (�2
1, �

2
2, ⇢) of a559

bivariate Gaussian where ⇢ 2 (�1, 1) denotes the normalized correlation coe�cient between560

the two components of the bivariate Gaussian:561

�
2
1 =

2

12 � �2
, �

2
2 =

1

12 � �2
, ⇢ =

�
p
12

. (10)

These expressions are valid only in the case where �2
1 and �

2
2 are small. They are easily562

inverted as563

1 =
1

�
2
1

1

1� ⇢2
, 2 =

1

�
2
2

1

1� ⇢2
, � =

1

�1�2

⇢

1� ⇢2
. (11)

Using (11), we can replace a Gaussian mode pnq by a periodized version, with approximately564

the same location and the same spread. In the following, we will describe basin shapes around565

conformations using the triplets of parameters (1,2, ⇢) rather than (1,2,�), since ⇢2 < 1566

is a simpler constraint than its counterpart on �.567

A well-known local optimization scheme to identify finite mixture models by maximum568

likelihood is the Expectation-Maximization (EM) algorithm.50,51 Unfortunately, the M step569

of the EM has no analytical expression in the case of mixtures of bivariate Von-Mises densi-570

ties. Therefore, we have performed local optimization based on L-BFGS-B52 instead, given571

that both the likelihood and its gradient can be evaluated e�ciently, and that some param-572

eters are subject to box constraints. The implementation details and equations are given in573

the sections ”Determination of the populations from the Ramachandran maps” and ”Maxi-574

mum likelihood estimation for bivariate sine mixtures” of the Supplementary Material.575
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By optimization of the log-likelihood, the RamaMix approach will thus produce the Q576

normalized populations �q, the Q⇥N couples of backbone angles �n
q and �n

q , as well as the577

Q ⇥ N triplets (n1 ,2, ⇢
n
q ) describing the von Mises distributions. The calculations were578

performed starting from the � and  values observed in the set of TAiBP conformations,579

complemented by von Mises parameters allowing us to approximate the Gaussian distribu-580

tions determined by IMOD. Moreover, the variation of � and  values was limited by a581

threshold of 15� during the optimization in order to avoid inappropriate drift.582

The RamaMix approach was implemented in Fortran90, and the software is available at583

github.com/tmalliavin/RamaMix.584

Determining the populations from SAXS data585

The software BioEn 0.1.118 was used in order to determine the populations from SAXS data.586

On each considered conformation, theoretical SAXS curves were calculated using CRYSOL53
587

available in the package ATSAS 3.0.354 with 847 points, a maximum scattering vector of 0.503588

nm�1 and a maximum order of harmonics of 18. A 1D cubic interpolation55 was used to589

obtained the theoretical SAXS values at the same sets of scattering vectors q than the ones590

at which the experimental SAXS curve was recorded.591

The processing with BioEn was performed in the following way. For each TAiBP run592

and each SAXS curve, the optimization was run for 1000 steps using the GSL library.56593

Ten runs were performed independently on all considered conformations, and the subset of594

conformations for which the sum of observed populations is larger than 0.01, was selected.595

Ten additional BioEn runs were performed on the subset of conformations, and from the596
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results of these ten repetitions, average values and standard deviations were computed for597

the populations.598
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Figure 1: Parameters of the iBP and assembly steps of the TAiBP procedure. The signs
red and green correspond respectively to the duplicated runs in which thresholds of 0.01 and
0.011 have been applied on the probability Ramachandran map. The blue crosses correspond
to the run pSic13 producing more extended conformations. The positions of phosphorylated
Threonines and Serines are marked with T and S for the runs on pSic1. The parameters are
plotted along the number of the residue located at the middle of the fragment (iBP step) or
at the middle of the last attached fragment (assembly step).
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Figure 2: Four panels on top: Distribution of the gyration radii Rg and of maximal diameters
Dmax values in the two sets of TAiBP obtained during the first runs Sic11 and pSic11 (solid
line) and the second runs Sic12 and pSic12 (dashed line) runs. The Rg and Dmax distribution
obtained for the run pSic13 are plotted in magenta. Four panels on bottom: Distribution of
the minimum RMSD values (Å) and of the minimum distances (Å) between profiles for the
duplicate runs performed for Sic11 and Sic2 and for pSic11 and pSic12. full line: first run
with respect to the second one, dashed line: second run with respect to the first one.
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Figure 3742
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Figure 3: E�ciency of RamaMix for determining the �0,  0 positions (A-D: Eq. 7), the von
Mises shape parameters 1, 2 and ⇢ (G-L: Eq. 8), and the populations �q (E-F: Eq. 2)
using synthetic data and various noise levels described in Figure S5. The results obtained
for large, medium and narrow scattered synthetic Ramachandran maps are drawn as bullets,
triangles and squares.
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Figure 4743

Figure 4: Distances between the profiles Pq (Eq. 1) of local gyration radii between the con-
formations selected from the fit of SAXS curves (BioEn1,BioEn2, BioEn3) or Ramachandran
maps (RamaMix). The conformations for which populations smaller than 10% were calcu-
lated, are labeled with an asterisk. The diagonals correspond to the comparison of the same
conformations and are thus not annotated with distance value. The limit of 8 Å used to
display superimposed plots of profiles Pq (Figure 5) is drawn in red on the scale of distance.
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Figure 5744

Index

cc
[, 

2]

56−105
5

6

7

8

9

10
Sic11 BioEn1

Index

cc
[, 

2]

56−106

Sic11 BioEn1/2

Index

kk
[, 

2]

79−100Sic11 BioEn/RamaMix

Index

aa
[, 

2]

38−109
5

6

7

8

9

10
Sic12 BioEn1

Index

hh
[, 

2]
128−129

Sic12 BioEn2

Index

dd
[, 

2]

60−109

Sic12 BioEn3

Index

hh
[, 

2]

128−138
5

6

7

8

9

10
Sic12 BioEn/RamaMix

Index

gg
[, 

2]

117−119

pSic11 BioEn1

Index
aa

[, 
2]

16−101

pSic11 RamaMix

Index

cc
[, 

2]

52−101
5

6

7

8

9

10
pSic11 BioEn/RamaMix

Index

cc
[, 

2]

52−16

pSic11 BioEn/RamaMix

Index

hh
[, 

2]

102−124

pSic12 BioEn2

Index

gg
[, 

2]

99−125

1 20 40 60 80

5

6

7

8

9

10
pSic12 BioEn3

Index

aa
[, 

2]

6−95

1 20 40 60 80

pSic12 BioEn1/2

Index

hh
[, 

2]

102−139

1 20 40 60 80

pSic12 BioEn2/3

Pr
of

ile
s 

of
 lo

ca
l R

g (
A° )

Residue numbers

Figure 5: Superposition of profiles Pq (Eq. 1) displaying distances smaller than 8 Å extracted
from Figures 4 and S8, S9. The name of the run (Sic11, Sic12, pSic11, pSic12) is given, along
with the name of the considered fits (BioEn1, BioEn2, BioEn3, RamaMix, RamaMix/BioEn)
and the conformations numbers. The labels RamaMix/BioEn correspond to the comparison
of conformations selected by BioEn on one side and RamaMix on the other side. The labels
BioEn1/2 and BioEn2/3 correspond to the comparison of conformations selected by BioEn
from two di↵erent SAXS curves.
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Figure 6745
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Figure 6: Projections of the Sic1 and pSic1 conformations along the three largest components
of their principal component analysis (PCA). On these projections, the TAiBP conformations
selected by BioEn or RamaMix are colored in magenta and the conformations stored in PED21

are colored in black.
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A. Sic11 conformation populations
numbers percentages

79 44.7 ± 0.5
77 23.4 ± 0.6
67 21.7 ± 0.4
46 10.2 ± 0.4

B. Sic12 conformation populations
numbers percentages
109 67.8 ± 2.9
138 32.1 ± 0.8

C. pSic11 conformation populations
numbers percentages

98 23.2 ± 1.4
154 22.7 ± 2.0
101 21.2 ± 0.7
135 19.2 ± 3.3
16 13.7 ± 1.0

D. pSic12 conformation populations
numbers percentages

6 59.2 ± 3.7
102 40.7 ± 3.0

Table 3: Conformations and populations selected by fitting of the Ramachandran maps using
RamaMix. For each set of protein conformations, 100 runs were performed starting from
random values for the populations. The few converged optimizations which did not converge,
were discarded: 6 for Sic11, 2 for Sic12, 3 for pSic11 and 3 for pSic12. The backbone angles �
and  were allowed to move up to 15�. The populations of conformations for the converged
runs were averaged and these mean values are given as percentages in the Table along with
the corresponding standard deviation values. The labels of conformations also selected by
BioEn are written in bold.
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Data-set BioEn1 BioEn2 BioEn3 RamaMix
Sic11 27.8 28.7 28.5 31.3
Sic12 27.7 28.4 28.4 27.1
pSic11 26.7 26.1 27.2 28.0
pSic12 27.4 27.1 27.9 30.0
pSic13 30.4 30.6 30.5 32.4
pSic113 27.4 27.2 28.0 32.5
pSic123 27.4 27.4 28.1 32.5

Table 4: Resulting gyration radii (Å) calculated from the individual gyration radii of the
conformations selected by the BioEn and RamaMix analyses. The data-sets Sic11, Sic12 and
pSic11, pSic12, pSic13 were obtained using the approach TAiBP on the proteins Sic1 and
pSic1. The data-sets pSic113 and pSic123 were obtained by pooling together the conforma-
tions of pSic13 and pSic11 or the conformations of pSic13 and pSic12.
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Daniel Förster (1), Jérôme Idier (2), Leo Liberti (3), Antonio Mucherino (4), Jung-Hsin3
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Extraction of boxes from Ramachandran likelihood24

The likelihood Ramachandran maps, calculated by TALOS-N [1], were first normalized in25

order to get the sum of values equal to 1 and to produce probability maps. Each �,  box was26

determined from these maps in the following way. In the current state of the Ramachandran27

map, the pixels belonging to a box are removed from the map. From the remaining pixels,28

the pixel of maximum probability value and larger than the threshold, is selected and a box29

is iteratively drawn around this position by testing systematically all pixels neighboring the30

current box limits. All neighbouring pixels containing values larger than a given threshold31

are included in the box. If values are smaller than the threshold, the calculation stops, the32

current box definition is kept for further analyses and the pixels selected from the box are33

removed from the Ramachandran map. This approach is iteratively applied to the map up34

to the situation where all remaining map pixels display values smaller than the threshold. In35

order to probe the reproducibility of TAiBP results, two sets of boxes have been determined36

with threshold values of 0.01 (Figures S1 and S3) and 0.011 (Figures S2 and S4).37

In pSic1, the presence of phosphorylated Threonines 7, 35 and 47 and of phosphorylated38

Serines 71, 78 and 82 makes impossible the TALOS-N predictions for residues 5-9, 33-37,39
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45-49, 69-73, 76-84, due to the lack of phosphorylated proteins in the learning set of the40

neural network. Thus, for these residues, generic boxes (Table S2) have been used as input41

of TAiBP, in order to cover the Ramachandran regions corresponding to ↵-helix, extended,42

� strand and loop structures.43

Enumeration of conformations44

The enumeration of protein conformations was performed using boxes of backbone angles �45

and  . These boxes (Figures S1-S4) have been extracted from the likelihood Ramachandran46

maps obtained by TALOS-N [1] as described in the previous section. During the tree building,47

each atomic position is determined by trilateration from the previously determined atomic48

positions, following a specific ordering (Table S4) [2]. More precisely, two out of three of49

the distances involved in trilateration must be known exactly, and one may be subject to50

uncertainty and represented by an interval [2, 3]. The iBP algorithm was the one described51

by Worley et al [4, 3].52

The backbone dihedral angles � and  can be straightforwardly related to bond lengths53

and bond angles and respectively to distances between atoms C of residues i � 1 and i54

and between atoms N of residues i and i + 1. This equivalence between the backbone55

dihedral angles and inter-atomic distances permits to use the angles � and  for the so-56

called branching step. This branching step is performed by discretization of the intervals in57

order to generate new branches in the tree.58

The bond lengths, bond angles, improper angles and van der Waals radii were taken from59

the force field protein-allhdg5-4 PARALLHDG (version 5.3) [5, 6]. The van der Waals radii60
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were scaled by a factor of 0.7.61

For each fragment, two dummy residues were added at the N and C terminal extremities,62

and the � and  dihedral angles of the inner peptide residues were sampled according to the63

box limits (Table S1). In order to avoid pruning due to slight discrepancy between distances,64

a tolerance of 0.05 Å has been added to the bounds of distance intervals. The maximum65

number of branches by discretized interval was set to 4. The minimum discretization factor,66

which is the minimum ratio between each distance interval to the number of tree branches67

generated within the interval, was set to 0.1 Å, in order to avoid that the branching over-68

samples small intervals. A maximum number of 109 saved conformations was permitted for69

each iBP run. The solutions were stored in a multiframe dcd format [7].70

Clustering of generated conformations71

The approach Self-Organizing Map (SOM) [8, 9, 10, 11], used to cluster conformations,72

is an artificial neural network (ANN) trained using unsupervised learning. SOM displays73

the advantage with respect to the k-means clustering approach that it does not require the74

predetermined knowledge of the number of clusters. The SOM approach was used after each75

iBP calculation or assembly step as soon as the number of saved conformations was larger76

than 100. The conformations are encoded from the distances dij calculated between the n77

C↵ atoms by diagonalizing the covariance matrix C:78

Ci,j =
1

n

nX

k=1

nX

l=1

(di,k � d̄i)(dl,j � d̄j) (1)

where d̄s = 1

n

Pn
p=1

ds,p. The information contained in the matrix C is equivalent to its79

four largest eigenvalues along with the corresponding eigenvectors, and is formatted as an80
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input vector of length 4(n+1). These vectors are used to train a periodic Euclidean 2D81

self-organizing map (SOM), which corresponds to a three-dimensional matrix. The first two82

matrix dimensions were chosen to be 100⇥ 100 and define the map size, the third dimension83

being equal to 4(n+1). Each vector along the third dimension defines a neuron of the map.84

The neurons of the self-organizing map are initialized with a random uniform distribution85

covering the range of values of the input vectors. At each step, an input vector is presented86

to the map, and the neurons closest to this input are updated. The training parameters were87

those previously described [12, 11].88

Once the SOM has been determined, representative conformations are extracted from the89

conventionalUnified distancematrix (U-matrix) calculated from the final SOM neurons. For90

each neuron ⌫, the corresponding U-matrix element is calculated as the average Euclidean91

distance between the neuron ⌫ and its eight immediate neighbors:92

U-matrix(⌫) =
1

8

X

⌫2N(⌫)

d(⌫, µ) (2)

where N(⌫) is the set of neighbors, and d(⌫, µ) is the Euclidean distance between the neurons93

µ and ⌫. pSic13 The neurons corresponding to local minima of the U-matrix, and thus to94

local maxima of conformational homogeneity, are extracted and for all performed runs except95

pSic13, the protein conformation displaying the closest distance to this neuron is saved. In the96

case of pSic13, among the conformations saved in the neurons, the one displaying the longest97

distance between the Carbons ↵ of the first and the last residues is saved, in order to obtain98

more extended conformations in agreement with the values of gyration radii measured in Ref.99

[13]. The conformations generated during the iBP or assembly steps are finally replaced by100

the sets of representative conformations extracted from local minima of U-matrix.101
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Molecular dynamics refinement in implicit solvent102

Molecular dynamics (MD) trajectories were used to relax the Sic1 and pSic1 conformations103

obtained from the TAiBP approach. The MD trajectories were recorded using NAMD 2.13104

[14]. Topology parameters were taken from the force fields c36 [15] and c36m [16]. The105

simulations were performed at a temperature of 300 K. A Generalized Born implicit solvent106

(GBIS) [17] model was used with an ion concentration of 0.3M, and a cuto↵ of 12 Å for107

calculating Born radius. A cuto↵ of 14 Å and a switching distance of 13 Å were defined108

for non-bonded interactions. The RATTLE algorithm [18, 19] was used to keep all covalent109

bonds involving hydrogens rigid, enabling a time step of 2 fs. Temperature was regulated110

according to a Langevin thermostat [20]. At the beginning of each trajectory, the system111

was first minimized for 1,000 steps, then heated up gradually from 0 K to 300 K in 30,000112

integration steps. Finally, the system was equilibrated for 5,000 steps. During all steps, from113

minimization to production, positional restraints were applied on protein backbone atoms114

with a constant force of 1 kcal/mol. A production run of 100ps was then performed and the115

conformation of the final frame was saved as the relaxed conformation.116

Determination of the populations from the Ramachan-117

dran maps118

Using the neural network TALOS-N [1], it is possible, starting from the NMR chemical119

shifts measured on protein atoms, to determine for each residue n a 2D probability density120

pn
TALOS-N

(�, ). As NMR analyses a sample containing a mixture of conformations, we121
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propose to decompose the probability map produced by TALOS-N as a mixture of probability122

densities pnq (�, ), corresponding to a certain number of free energy basins q present in the123

experimental sample:124

pn
TALOS-N

(�, ) ⇡
QX

q=1

�qp
n
q (�, ) (3)

where �q � 0 is the proportion of local basins q in the NMR sample. Thus:125

QX

q=1

�q = 1. (4)

In the following, the problem described by Eq. 3 will be named as a Q-class mixture126

problem, each class corresponding to a conformation of the studied protein. In addition, for127

each conformation q, the couple of angles corresponding to the bottom of the basin will be128

named its location parameters.129

To fit the set of N available TALOS-N probability densities using the mixture model (3),130

we have to rely on a discrepancy measure between both probability maps. Kullback-Leibler131

divergence is a standard choice:132

DKL(p1||p2) =
Z

p1(x) ln
p1(x)

p2(x)
dx. (5)

Here, we consider the sum of discrepancy measures over the N residues between TALOS-N133

probability densities and the corresponding mixture model densities pn =
PQ

q=1
�qpnq :134

NX

n=1

DKL(p
n
TALOS-N

|| pn) =
NX

n=1

Z
pn
TALOS-N

(�, ) ln
pn
TALOS-N

(�, )

pn(�, )
d�d . (6)

In practice, TALOS-N probability densities are available on a finite rectangular grid {�1, . . . ,�I}⇥135

{ 1, . . . , J}. Let us modify (6) using a zeroth-order approximation of the integrals:136

NX

n=1

DKL(p
n
TALOS-N

|| p2) =
NX

n=1

IX

i=1

JX

j=1

p̂nij ln
p̂nij
pnij

. (7)
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where p̂nij = pn
TALOS-N

(�i, j) and137

pnij = pn(�i, j) =
QX

q=1

�qp
n
q (�i, j). (8)

Finally, the minimization of Eq. 7 with respect to � = (�1, . . . , �Q) amounts to the138

maximization of139

f(�) =
NX

n=1

IX

i=1

JX

j=1

p̂nij ln p
n
ij, (9)

pnij(�, ) being given by (8), under the constraints �q � 0 and
PQ

q=1
�q = 1. Let us remark140

that f is a concave function of �, so that its local maximization with respect to � cannot be141

trapped in a local maximum.142

In case TALOS-N yielded observations in the form of angle couples ynm = (�n
m, 

n
m),143

m = 1, . . . ,M , instead of a probability map, we would naturally maximize the log-likelihood144

of the data [21],145

L(y; ✓) =
NX

n=1

MX

m=1

Ln(�n
m, 

n
m), (10)

a well-known local optimization scheme to reach this goal being the EM algorithm [22, 23].146

Let us remark the similarity between Eqs. (9) and (10). In fact, Eq. (9) identifies with147

the log-likelihood of virtual data, each couple (�i, j) being observed Dn
ij = p̂nij ⇥ C times148

for the nth residual (C being an arbitrary constant). This corresponds to a well-known149

correspondance between the log-likelihood and the Kullback-Leibler divergence between the150

empirical data distribution and the parametrized one (see for instance [23]).151

In the case where data points correspond to couples of angles, we must consider that152

the support of densities pq is a torus, i.e., that they are doubly circular. The most natural153

circular extension of the univariate Gaussian is the wrapped normal distribution. However,154

the von Mises distribution is usually considered as a better option, being more easily tractable155
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[24]. Moreover, multivariate extensions exist for the latter. In particular, in the Ref. [25]156

a bivariate version was introduced, motivated by problems of modelling torsional angles157

in molecules, and a pseudo-maximum likelihood method was proposed [24] to estimate its158

parameters. Moreover, a so-called cosine version was investigated [26] and an Expectation-159

Maximization (EM) algorithm was used [26, 27] to solve a problem that is almost identical160

to ours.161

Here, we adopt the same bivariate periodic sine model as [25]:162

p(�, ) =
1

T
exp(W (�� �0, �  0)) (11)

with163

W (�, ) = 1 cos�+ 2 cos + � sin� sin (12)

and 1,2 � 0 and �2 < 12. A di�culty is that the integration constant is expressed as164

an infinite series, depending on parameters (1,2,�):165

T = 4⇡2

1X

m=0

✓
2m

m

◆✓
�2

412

◆m

Im(1)Im(2). (13)

In Ref. [25], expressions of 1, 2, � are given as functions of the parameters (�2

1
, �2

2
, ⇢)166

of a bivariate Gaussian:167

�2

1
=

2
12 � �2

, �2

2
=

1
12 � �2

, ⇢ =
�

p
12

. (14)

where ⇢ 2 (�1, 1) denotes the normalized correlation coe�cient between the two components168

of the bivariate Gaussian. These expressions are valid only in the case where �2

1
and �2

2
are169

small. They are easily inverted as170

1 =
1

�2

1

1

1� ⇢2
, 2 =

1

�2

2

1

1� ⇢2
, � =

1

�1�2

⇢

1� ⇢2
. (15)
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Using (15), we can replace a Gaussian mode pnq by a periodized version, with approximately171

the same location and the same spread. This is not specific to the Gaussian case, so it also172

holds for the bivariate von Mises-type model.173

In the following section “Maximum likelihood estimation for bivariate sine mixtures”, we174

are deriving the equations describing an original approach for solving the problem (3) by a175

maximum likelihood approach.176

Maximum likelihood estimation for bivariate sine mix-177

tures178

Let Y = (y1, . . . , yD) stand for D iid datapoints. We make the assumption that each yd is

sampled from a Q-class mixture model, and we use the notation Cd to refer to the random

class attached to yd, taking values in (1, . . . , Q). For each d, we have

p(yd; ✓) =
QX

q=1

Pr(Cd = cq) p(yd|Cd = cq; ⇣) =
QX

q=1

�q p(yd; ⇣
L

q , ⇣
S

q ) (16)

with unknown parameters ✓ = (�, ⇣) = (�, ⇣L, ⇣S), including179

• normalized weights � = (�q),180

• location parameters ⇣L = (⇣Lq ) where ⇣
L

q = (�q, q) is specific to class q,181

• shape parameters ⇣S = (⇣Sq ) where ⇣
S

q = (1q,2q,�q) is specific to class q.182

We would like to estimate ✓ according to the maximum likelihood principle:

✓̂ = argmax
✓

p(Y ; ✓).
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where p(Y ; ✓) =
QD

d=1
p(yd; ✓). Equivalently, ✓̂ maximizes the log-likelihood, which reads

L(Y ; ✓) = �
DX

d=1

ln

 
QX

q=1

�q p(yd; ⇣
L

q , ⇣
S

q )

!
.

In the following, we are first describing what should be an Expectation-Maximization183

(EM) algorithm adapted for solving the maximum likelihood problem, to finally remark that184

the Maximization step of the EM cannot be solved analytically. Thus, we turn to a solution185

based on a well-grounded gradient-based optimization scheme. We derive explicit expressions186

for the gradient terms, on the basis of the Expectation step of the EM. At the end of this187

section, we present how to include into the optimization scheme, several Ramachandran188

probability maps corresponding to several protein residues.189

Expectation-Maximization (EM) algorithm190

The EM algorithm is a reference solution to determine ✓̂ by iterative local optimization.191

Each EM iteration consists in solving the following auxiliary problem:192

✓new = argmax
✓

Q(✓; ✓old), (17)

where Q is the expectation of the log-likelihood of the “complete” dataset:

Q(✓, ✓old) = E
⇥
ln (Pr(C; �) p(Y |C; ⇣)) |Y ; ✓old

⇤
(18)

= Q0(�, ✓
old) +Q1(⇣, ✓

old) (19)

with

Q0(�, ✓
old) = E

⇥
ln Pr(C; �)|Y ; ✓old

⇤
, (20)

Q1(⇣, ✓
old) = E

⇥
ln p(Y |C; ⇣)|Y ; ✓old

⇤
. (21)
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On the one hand, along classical derivations, we get

Q0(�, ✓
old) =

QX

q=1

 
DX

d=1

Pqd

!
ln �q (22)

where Pqd = Pq(yd), with

Pq(y) = Pr(C = q|y; ✓old) =
�oldq pq(y; ⇣old)P
q0 �

old

q0 pq0(y; ⇣old)
. (23)

On the other hand,

Q1(⇣, ✓
old) =

DX

d=1

QX

q=1

Pqd ln p(yd; ⇣
L

q , ⇣
S

q ). (24)

The optimization problem (17) splits in two parts at each iteration, according to

�new = argmax
�

Q0(�, ✓
old), (25)

⇣new = argmax
⇣

Q1(⇣, ✓
old). (26)

The first subproblem is constrained by
P

q �q = 1. It has a simple, explicit solution. Un-193

fortunately, the second subproblem cannot be solved analytically for the sine model, neither194

for the shape parameters ⇣S, nor for the location parameters ⇣L. As a consequence, exact195

closed-form EM formulas do not exist for the sine model. To our best knowledge, the same196

holds for other von Mises type models, such as the cosine version of [26]. Indeed, we guess197

that the EM algorithm used therein solves the maximization step in an approximate way. We198

rather propose a di↵erent solution, relying on a well-grounded gradient-based optimization199

scheme (namely, the L-BFGS-B algorithm [28]) applied to the log-likelihood itself.200

Gradient-based log-likelihood maximization201

Fisher’s identity [29] relates the gradient of Q to the gradient of the log-likelihood L:202

@

@✓
Q(✓; ✓old)

����
✓=✓old

=
@

@✓
L(Y ; ✓)

����
✓=✓old

(27)
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This property is very useful when the M step is not closed-form, since it allows one to replace203

non-explicit EM iterations by explicit gradient-based iterations, directly applicable to the204

log-likelihood.205

Partial derivative w.r.t. the weights �206

Given Eqs (19), (22) and (27), we have

@

@�q
L(Y ; ✓)

����
✓=✓old

=
@

@�q
Q0(�, ✓

old)

����
✓=✓old

=

 
DX

d=1

Pqd

!
1

� q

. (28)

Optimization w.r.t. the weights must be conducted under the constraints of nonnegativity

and sum-to-one. The latter can be easily handled using the simple reparameterization �q =

�0
qP
r �

0
r
. It is easy to establish that

@

@�0q
L(Y ; ✓)

����
✓=✓old

=

 
DX

d=1

Pqd

!
1

�0q
� D
PQ

r=1
�0r
.

Partial derivative w.r.t. the shape parameters ⇣S207

Given Eqs (19), (24) and (27), we have

@

@⇣Sq
L(Y ; ✓)

����
✓=✓old

=
@

@⇣Sq
Q1(✓; ✓

old)

����
✓=✓old

=
DX

d=1

Pqd
@

@⇣Sq
ln p(yd; ⇣

L

q , ⇣
S

q ) (29)

where p(yd; ⇣Lq , ⇣
S

q ) is a sine density defined by (11). Explicit expressions for the partial

derivative depend on each shape parameter, according to

@

@1
ln p(�, ) = cos(�� �0)�

1

T

@T

@1
(30)

@

@2
ln p(�, ) = cos( �  0)�

1

T

@T

@2
(31)

@

@�
ln p(�, ) = sin(�� �0) sin( �  0)�

1

T

@T

@�
, (32)
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where, given the expression of T (Eq. (13)) and I 0m(u) =
m
u Im(u) + Im+1(u) (see [30]),

@T

@1
= 4⇡2

1X

m=0

✓
2m

m

◆✓
�2

412

◆m

Im+1(1)Im(2) (33)

@T

@2
= 4⇡2

1X

m=0

✓
2m

m

◆✓
�2

412

◆m

Im(1)Im+1(2) (34)

@T

@�
=

8⇡2

�

1X

m=1

✓
2m

m

◆✓
�2

412

◆m

mIm(1)Im(2). (35)

Optimization must be performed under the nonlinear inequality constraint �2 < 12. A208

simpler alternative consists in replacing � by ⇢ = �/
p
12 in the parameterization, so the209

constraint becomes ⇢ 2 (�1, 1). We then need to replace Eq. (12) by210

W (�, ) = 1 cos�+ 2 cos +
p
12⇢ sin� sin (36)

and (30)-(32) by

@

@1
ln p(�, ) = cos(�� �0) +

�

21
sin(�� �0) sin( �  0)�

1

T

@T

@1
(37)

@

@2
ln p(�, ) = cos( �  0) +

�

22
sin(�� �0) sin( �  0)�

1

T

@T

@2
(38)

@

@⇢
ln p(�, ) =

�

⇢
sin(�� �0) sin( �  0)�

1

T

@T

@⇢
, (39)

with

@T

@1
= 4⇡2

1X

m=0

✓
2m

m

◆⇣⇢
2

⌘2m
I 0m(1)Im(2) (40)

@T

@2
= 4⇡2

1X

m=0

✓
2m

m

◆⇣⇢
2

⌘2m
Im(1)I

0
m(2) (41)

@T

@⇢
=

8⇡2

⇢

1X

m=1

✓
2m

m

◆⇣⇢
2

⌘2m
mIm(1)Im(2), (42)

given211

T = 4⇡2

1X

m=0

✓
2m

m

◆⇣⇢
2

⌘2m
Im(1)Im(2). (43)
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Partial derivative w.r.t. the location parameters ⇣L212

Given Eqs (19), (22) and (27), we have

@

@⇣Lq
L(Y ; ✓)

����
✓=✓old

=
@

@⇣Lq
Q1(✓; ✓

old)

����
✓=✓old

=
DX

d=1

Pqd
@

@⇣Lq
ln p(yd; ⇣

L

q , ⇣
S

q ). (44)

Moreover,

@

@�0

ln p(�, ) = 1 sin(�� �0)� � cos(�� �0) sin( �  0) (45)

@

@ 0

ln p(�, ) = 2 sin( �  0)� � sin(�� �0) cos( �  0) (46)

Case of multiple datasets213

In the case where N residues are available, each conformation is characterized by a unique214

weight vector, whereas its location and shape parameters are specific to each residue. The215

identification problem then consists in estimating:216

• Q normalized weights � = (�q) for the protein conformations (classes),217

• 5NQ = 3NQ+2NQ shape and location parameters specific to each conformation and218

each residue, respectively ⇣Sqn = (1qn,2qn,�qn) and ⇣Lqn = (�qn, qn).219

The log-likelihood then reads

L(Y ; ✓) =
NX

n=1

DnX

d=1

ln

 
QX

q=1

�q p(ydn; ⇣
S

qn, ⇣
L

qn)

!

where the nth residue corresponds to Dn observed pairs of angles ydn.220

The gradient component relative to each shape or location parameter can still be cal-221

culated using the equations (37)-(42) and (44)-(46), respectively, while a summation of Eq.222

15



(28) over all residues must be performed to obtain the gradient components relative to the223

weight parameters.224

The scheme developed here has been used to calculate the relative weigths of the confor-225

mations by fitting the probability Ramachandran maps obtained using TALOS-N [1].226
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Figure S1: Boxes for backbone angles used as inputs for the run Sic11 and obtained from the
Ramachandran maps using a threshold of 0.01. The boxes and the corresponding sequence
are colored according to the considered residue.
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Figure S2229
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Figure S2: Boxes for backbone angles used as inputs for the run Sic12 and obtained from the
Ramachandran maps using a threshold of 0.011. The boxes and the corresponding sequence
are colored according to the considered residue.
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Figure S3230

−180

−90

0

90

180

T PSXPP RSRGTR Y L AQPS

−180

−90

0

90

180

GNT SSS A LMQGQ KXPQKP

−180

−90

0

90

180

SQN L VP VXPS T T KS F KNA

−180

−90

0

90

180

P L L APP NSNMGM T Z P FNG

−180 −90 0 90 180

−180

−90

0

90

180

L T Z PQR

−180 −90 0 90 180

Z P F PKS

−180 −90 0 90 180

SVKR

φ ( °) φ ( °) φ ( °)

ψ ( °)

ψ ( °)

ψ ( °)

ψ ( °)

ψ ( °)

Figure S3: Boxes for backbone angles used as inputs for the run pSic11 and obtained from the
Ramachandran maps using a threshold of 0.01. The boxes and the corresponding sequence
are colored according to the considered residue. The pT and pS residues are marked as X
and Z in the sequences.
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Figure S4231

−180

−90

0

90

180

T PSXPP RSRGTR Y L AQPS

−180

−90

0

90

180

GNT SSS A LMQGQ KXPQKP

−180

−90

0

90

180

SQN L VP VXPS T T KS F KNA

−180

−90

0

90

180

P L L APP NSNMGM T Z P FNG

−180 −90 0 90 180

−180

−90

0

90

180

L T Z PQR

−180 −90 0 90 180

Z P F PKS

−180 −90 0 90 180

SVKR

φ ( °) φ ( °) φ ( °)

ψ ( °)

ψ ( °)

ψ ( °)

ψ ( °)

ψ ( °)

Figure S4: Boxes for backbone angle used as inputs for the run pSic12 using a threshold of
0.011. The boxes and the corresponding sequence are colored according to the considered
residue. The pT and pS residues are marked as X and Z in the sequences.
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Figure S5232
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Figure S5: Synthetic Ramachandran plots used for validation of RamaMix. The colors black,
red and green correspond to most (large), averaged (medium) and least (narrow) scattered
15 � and  values. These synthetic data correspond to five hypothetical residues located in
three conformations, the relative weights of conformations being 56.8%, 11.6 % and 31.6 %.
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Figure S6233
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Figure S6: Superimposition of experimental SAXS curves with the reconstructed SAXS
curves from the conformations of Sic1 and pSic1 selected by BioEn. The reconstructions of
the SAXS curves from the selected conformations are plotted using red and green solid lines,
depending on the TAiBP first (Sic11, pSic11) or second (Sic12, pSic12) run.
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Figure S7234
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Figure S7: Superimposition of experimental SAXS curves (black) with the reconstructed
SAXS curves (red) from the conformations of Sic1 and pSic1 selected by RamaMix.
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Figure S8235

Figure S8: Distances between the profiles Pq (Eq. 11 of the main text) for local gyration radii
between the conformations selected from di↵erent fittings of SAXS curves (BioEn1,BioEn2,
BioEn3). The limit of 8 Å used for the superposed plots of profiles (Figure 5 of the main
text) is drawn in red on the scale of distance.
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Figure S9236

Figure S9: Distances between the profiles Pq (Eq. 11 of the main text) for local gyration radii
between the conformations selected from fitting of SAXS curves (BioEn1,BioEn2, BioEn3)
and of Ramachandran maps (RamaMix). The limit of 8 Å used for the superposed plots of
profiles (Figure 5 of the main text) is drawn in red on the scale of distance.
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Figure S10 (5 next pages)237

Figure S10: Superimposition of the MERA �,  distributions obtained on residues of Sic1
with the (�,  ) input boxes for TAiBP. The size of the points on MERA distribution is large
for predicted probability values larger than 0.005 and small for the other probability values.
The TAiBP input boxes are colored in magenta and green for the duplicated TAiBP runs:
Sic11 and Sic12.

26



−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

S6

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

R10

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

S11

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

R12

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

T14

−150 −50 0 50 150
−1

50
−5

0
50

15
0

aa[, 1]

aa
[, 

2]

R15

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

Y16

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

L17

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

A18

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

S21

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

N23

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

T24

238



−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

S25

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

S26

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

S27

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

A28

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

L29

−150 −50 0 50 150
−1

50
−5

0
50

15
0

aa[, 1]

aa
[, 

2]

M30

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

Q31

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

Q33

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

K34

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

Q37

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

S40

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

Q41

239



−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

N42

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

L43

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

V46

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

S49

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

T50

−150 −50 0 50 150
−1

50
−5

0
50

15
0

aa[, 1]

aa
[, 

2]

T51

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

K52

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

S53

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

F54

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

K55

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

N56

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

L59

240



−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

L60

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

N64

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

S65

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

N66

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

M67

−150 −50 0 50 150
−1

50
−5

0
50

15
0

aa[, 1]

aa
[, 

2]

M69

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

T70

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

F73

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

N74

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

L76

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

T77

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

Q80

241



−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

R81

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

K86

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

S87

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

S88

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

V89

−150 −50 0 50 150
−1

50
−5

0
50

15
0

aa[, 1]

aa
[, 

2]

K90

−150 −50 0 50 150

−1
50

−5
0

50
15

0

aa[, 1]

aa
[, 

2]

R91

242



Figure S11 (5 next pages)243

Figure S11: Superimposition of the MERA �,  distributions obtained on residues of pSic1
with the (�,  ) input boxes for TAiBP. The size of the points on MERA distribution is large
for predicted probability values larger than 0.005 and small for the other probability values.
The TAiBP input boxes are colored in magenta and green for the duplicated TAiBP runs:
pSic11 and pSic12.
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Figure S12249
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Figure S12: Contact maps displaying cumulative hydrogen bonds observed for the confor-
mation sets PED159(Sic1), PED160(Sic1), PED161(pSic1) refined using MD simulations, as
well as for the TAiBP conformational sets Sic11, Sic12, pSic11, pSic12 and pSic13. The hydro-
gen bonds involving sidechains of phosphorylated residues are plotted in magenta, whereas
the other hydrogen bonds are plotted in black. An arrow on the contact map of pSic13

indicates the presence of few long-range hydrogen bonds involving phosphorylated residues.

38



Fragment Residue Residue Fragment Residue Residue Fragment Residue
range range range range range
Sic11 Sic12 pSic11 pSic12 pSic13

Pept1 4-12 4-12 Pept1 (pT7) 4-11 4-11 Pept1 (pT7) 4-11
Pept2 10-19 10-19 Pept2 9-15 9-15 Pept2 9-15
Pept3 17-25 17-25 Pept3 13-21 13-21 Pept3 13-21
Pept4 23-32 23-31 Pept4 19-26 19-26 Pept4 19-26
Pept5 30-39 29-38 Pept5 24-32 24-32 Pept5 24-32
Pept6 37-48 36-47 Pept6 (pT35) 30-37 30-37 Pept6 (pT35) 30-37
Pept7 46-56 45-56 Pept7 (pT35) 35-44 35-44 Pept7 (pT35) 35-42
Pept8 54-63 54-63 Pept8 (pT47) 42-51 42-51 Pept8 (pT47) 40-47
Pept9 61-67 61-68 Pept9 49-57 49-58 Pept9 45-51
Pept10 65-71 66-73 Pept10 55-62 56-63 Pept10 49-58
Pept11 69-76 71-79 Pept11 60-66 61-67 Pept11 56-63
Pept12 74-81 77-85 Pept12 64-70 65-71 Pept12 61-67
Pept13 79-87 83-91 Pept13 (pS71) 68-74 69-75 Pept13 (pS71) 65-71
Pept14 85-91 - Pept14 (pS78) 72-78 73-79 Pept14 (pS78) 69-75

Pept15 (pS78) 76-82 77-83 Pept15 (pS78) 73-79
Pept16 (pS82) 80-86 81-87 Pept16 (pS82) 77-83
Pept17 84-91 85-91 Pept17 (pS82) 81-87

Pept18 85-91

Table S1: Peptide fragments used for TAiBP runs. The phosphorylated residues in pSic1
are indicated as pS and pT.
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� interval  interval
-150 -20 -100 -50
-180 -50 80 180
40 100 0 80

Table S2: Definition of backbone angle generic boxes used for residues of pSic1 on which
TALOS-N [1] does not produce a prediction.
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Conformations BioEn1 BioEn2 BioEn3
Sic11/BioEn1 0.74 3.74 1.45
Sic11/BioEn2 3.64 0.73 1.5
Sic11/BioEn3 1.27 1.57 0.65
Sic12/BioEn1 0.86 4.71 1.98
Sic12/BioEn2 1.97 1.01 0.76
Sic12/BioEn3 0.96 2.13 0.75
pSic11/BioEn1 1.78 4.21 1.59
pSic11/BioEn2 3.65 2.06 2.53
pSic11/BioEn3 1.8 3.41 1.46
pSic12/BioEn1 1.68 4.42 1.51
pSic12/BioEn2 2.24 2.06 1.59
pSic12/BioEn3 1.69 3.34 1.3

Table S3: Values of �2 between experimental and reconstructed SAXS curves obtained for
the various sets of conformations selected by BioEn on Sic1 and pSic1. The Table columns
are labeled with experimental SAXS curves, and the Table rows are labeled with the sets of
conformations selected from the fitting of SAXS curves.
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Residue position order
first N, H1, H2, CA, N, HA, CA, C
inner N, -O, -CA, -C, N, CA, C, +N,

-C, N, CA, H1, N, CA, C, HA, C, CA
last N, -O, -CA, -C, N, CA, C,

-C, N, CA, H1, N, CA, C, HA,
C, CA, O, C, O2

Table S4: Atom re-ordering used during the iBP calculation step within the first, the last
and the inner residues of the peptide fragment. The order is described by the list of atoms
names, the signs ”-” and ”+” describing atoms located in the previous and the next residues
in the primary sequence.
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A. pSic13 conformation populations
numbers percentages

40 28.5 ± 3.2e-5
47 39.5 ± 3.8e-5
49 32.0 ± 3.1e-5

B. pSic113 conformation populations
numbers percentages

247 39.5 ± 2.7
249 31.7 ± 3.0
240 28.8 ± 0.9

C. pSic123 conformation populations
numbers percentages

240 28.8 ± 1.0
247 39.4 ± 2.6
249 31.7 ± 2.8

Table S6: Conformations and populations selected by fitting of the Ramachandran maps
using RamaMix. For each set of protein conformations, 100 runs were performed starting
from random values for the populations. The few optimizations which did not converge,
were discarded: 2 for pSic113 and for pSic123. The backbone angles � and  were allowed
to move up to 15�. The populations of conformations for the converged runs were averaged
and these mean values are given as percentages in the Table along with the corresponding
standard deviation values. The labels of conformations also selected by BioEn are written
in bold.Numbers larger than 200 in pSic113 and pSic123 were assigned to the conformations
from pSic13.
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