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Q-switched pulsing lasers subject to delayed feedback: a model comparison

We report theoretical and numerical results on the dynamics of pulsing lasers with gain and absorber sections subject to delayed optical self-feedback. We consider two modelling approaches with the Yamada model on the one hand, and a delay model for ring-cavity mode-locked lasers on the other hand. We focus on the limit where a single mode is involved, and we show that, in the case without feedback, the dynamics of both models show very good quantitative agreement: Q-switched periodic pulsing regimes with similar properties are observed. A bifurcation analysis unveils the conditions for the dynamics to be similar in both systems when an additional delayed feedback term is considered: in particular, what is important is to match the period and the width of the pulsing dynamics of the solitary lasers. Our results show that the simple Yamada model can catch the essence of the dynamics of pulsing lasers with feedback in the limit of single mode systems. This may considerably simplify, in future work, the investigation of the dynamics of certain self-pulsing lasers with feedback.

I. INTRODUCTION

Sources of short, high-amplitude pulses of light are widely used in many applications, such as telecommunications or optical signal processing [START_REF] Ohtsubo | Chaotic optical communication[END_REF]. As such, they have attracted considerable attention in the last decades, and self-pulsing regimes have been observed in a variety of laser systems. This includes fibre laser cavities [START_REF] Grelu | Dissipative solitons for mode-locked lasers[END_REF], vertical cavity surface-emitting laser (VC-SEL) [START_REF] Marconi | How lasing localized structures evolve out of passive mode locking[END_REF], and semiconductor lasers with integrated saturable absorbers [START_REF] Elsass | Control of cavity solitons and dynamical states in a monolithic vertical cavity laser with saturable absorber[END_REF][START_REF] Vladimirov | Dynamical regimes in a monolithic passively mode-locked quantum dot laser[END_REF].

Despite similar features of the pulsing dynamics, the underlying physical mechanism for self-pulsations can be fundamentally different from one device to the other. Q-switching is arguably the simplest mechanism for self-pulsating lasers, as it only relies on variable losses in the laser cavity [START_REF] Erneux | Q-switching bifurcation in a laser with a saturable absorber[END_REF]. In the case of passive Q-switching, these are induced by a saturable absorber medium, in which the transmission increases dramatically when the light intensity in the cavity exceeds a given threshold. Because the intracavity intensity is initially low, the losses due to the saturable absorber are high and most of the energy provided by pumping the gain medium is stored in the gain section. When the gain overcomes the losses, the intensity starts to increase, which eventually saturates the absorber and causes a sudden drop of the cavity losses. The light intensity hence increases rapidly until all the energy stored in the device has been released, at which point the intensity drops back to a very low value. As the process repeats, short, high-amplitude pulses of light are emitted, in between which the intensity is practically zero while the gain recovers. This mechanism for selfpulsations does not involve the interaction between different modes of the laser cavity, and microlasers with integrated saturable absorber, which are essentially single mode due to their small size, have been designed specifically to feature a Q-switching instability [START_REF] Barbay | Excitability in a semiconductor laser with saturable absorber[END_REF][START_REF] Elsass | Control of cavity solitons and dynamical states in a monolithic vertical cavity laser with saturable absorber[END_REF]. Such systems are described accurately by the Yamada rate equations, a system of three ordinary differential equations (ODEs) for the gain, the absorption and the light intensity [START_REF] Yamada | A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers[END_REF][START_REF] Dubbeldam | Selfpulsations of lasers with saturable absorber: dynamics and bifurcations[END_REF], which is described in more details in the next section. In particular, it has been shown that the phase of the electric field is not relevant for the description of these systems [START_REF] Terrien | Asymmetric noise sensitivity of pulse trains in an excitable microlaser with delayed optical feedback[END_REF].

Self-pulsations in lasers can also be achieved by mode-locking. This technique relies on the phase synchronisation of a large number of longitudinal modes of the laser cavity to produce trains of very short optical pulses of high repetition rate [START_REF] Smith | Mode-locking of lasers[END_REF][START_REF]Unlocking dynamical diversity: optical feedback effects on semiconductor lasers[END_REF][START_REF] Lüdge | Nonlinear Laser Dynamics: From Quantum Dots to Cryptography[END_REF]. Compared to Q-switched lasers, mode-locked lasers require a different design to allow a large number of modes to contribute to the laser emission, and to induce a fixed phase relationship between them. The number of modes involved in the lasing process is given by the spectral width of the amplifying medium and can be reduced by spectral filter elements. Mathematical models for mode-locked lasers are more complex than models for Q-switched lasers; in particular, they have to take into account the phase of the complex electric field. Many theoretical studies have adopted a travelling-wave equations approach [START_REF] Mulet | Analysis of timing jitter in external-cavity mode-locked semiconductor lasers[END_REF][START_REF] Javaloyes | Mode-locking in semiconductor fabry-perot lasers[END_REF]. This results in accurate modelling of the dynamics, which requires time-consuming numerical simulations and complicates a systematic bifurcation analysis. Alternatively, a delay model relying on the assumption of unidirectional light propagation in the laser cavity has been proposed in [START_REF] Vladimirov | Delay differential equations for mode-locked semiconductor lasers[END_REF][START_REF] Vladimirov | Model for passive mode locking in semiconductor lasers[END_REF] in the form of delay differential equations (DDEs). Although DDEs are mathematically more complex than ODEs, bifurcation analysis can be performed with advanced numerical methods [START_REF] Engelborghs | DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations[END_REF][START_REF] Engelborghs | Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL[END_REF][START_REF] Sieber | DDE-BIFTOOL v. 3.1 manualbifurcation analysis of delay differential equations[END_REF], yielding global knowledge of the dependance of the dynamics on the parameters.

On top of several mode-locked regimes, modelocked lasers can also exhibit a Q-switching instabil-ity, which can lead to a pulsing regime with modulated amplitude, referred to as Q-switched modelocking [START_REF] Jaurigue | Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback[END_REF]. In such a case, if the spectral filter width is reduced such that only a single cavity mode can contribute to the lasing process, mode-locking cannot occur any longer, but the Q-switching instability remains [START_REF] Lüdge | Nonlinear Laser Dynamics: From Quantum Dots to Cryptography[END_REF]. In this particular case, the Yamada model and the DDE model for mode-locked lasers (DDE MLL) describe the same physical phenomenon, but with very different equations.

Pulsing lasers, whether mode-locked or Q-switched, are highly sensitive to perturbations: small amounts of noise can trigger substantial fluctuations of the repetition rate of pulses [START_REF] Georgiou | Pulsating laser oscillations depend on extremely-small-amplitude noise[END_REF][START_REF] Van Tartwijk | Optical feedback on self-pulsating semiconductor lasers[END_REF][START_REF] Jaurigue | Timing jitter of passively-mode-locked semiconductor lasers subject to optical feedback: A semi-analytic approach[END_REF]. This timing-jitter phenomenon is detrimental to most applications. Delayed optical self-feedback has been proposed as an efficient technique to reduce timing-jitter significantly, and, more generally, to allow a better control of the pulsing dynamics [START_REF]Unlocking dynamical diversity: optical feedback effects on semiconductor lasers[END_REF][START_REF] Jaurigue | Timing jitter of passively-mode-locked semiconductor lasers subject to optical feedback: A semi-analytic approach[END_REF]. The effect of feedback has been studied numerically in both the Yamada model and the DDE MLL model, where the feedback is introduced, respectively, via an external mirror, and through an additional integrated ring cavity. It is worth noting that in the presence of feedback, both models are systems of DDEs, with one delay time for the Yamada model and two different delay times for the DDE MLL model. Extensive bifurcations analysis has been performed [START_REF] Jaurigue | Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback[END_REF][START_REF] Jaurigue | Timing jitter of passively-mode-locked semiconductor lasers subject to optical feedback: A semi-analytic approach[END_REF][START_REF] Krauskopf | Bifurcation Study of a Semiconductor Laser with Saturable Absorber and Delayed Optical Feedback[END_REF][START_REF] Terrien | Bifurcation analysis of the yamada model for a pulsing semiconductor laser with saturable absorber and delayed optical feedback[END_REF], which focused on the feedback-induced dynamics in a Q-switched laser in the excitable regime, and in a laser in the fundamental mode-locked regime.

We consider here the effect of feedback when both solitary lasers are in the Q-switched pulsing regime. We first present the Yamada model and the DDE MLL model in more detail, and show how they relate to each other. We then perform a bifurcation analysis of both models without feedback and compare their dynamics with a focus on the dependance of the pulse width and pulsing period of the Q-switched regime on the pump and absorption levels. With the numerical continuation toolbox DDE-Bitool for delay systems [START_REF] Engelborghs | DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations[END_REF][START_REF] Engelborghs | Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL[END_REF][START_REF] Sieber | DDE-BIFTOOL v. 3.1 manualbifurcation analysis of delay differential equations[END_REF], we then perform a bifurcation analysis of both models with feedback, and unveil the conditions for the feedback-induced dynamics to be qualitatively the same. In particular, we investigate how small changes in the width and period of the pulsing solution of the solitary laser (i.e. without feedback) affect the feedback-induced dynamics. As such, we demonstrate that, on a large range of parameters, the dynamics of the DDE MLL model in the limit of a single active mode can be accurately described by the simpler Yamada model.

II. MODEL EQUATIONS

The Yamada model [START_REF] Yamada | A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers[END_REF] describes the dynamics of Q-switched single-mode semiconductor lasers. It is originally a system of three ODEs for the gain G, the absorption Q and the intensity I, which becomes a system of three DDEs when an additional optical feedback term is introduced [START_REF] Krauskopf | Bifurcation Study of a Semiconductor Laser with Saturable Absorber and Delayed Optical Feedback[END_REF]:

Ġ (t) =Γ G [A -G(t) -G(t)I(t)] , Q(t) =Γ Q [B -Q(t) -aQ(t)I(t)] , İ(t) = (G(t) -Q(t) -1) I(t) + ηI(t -τ ). (1) 
Here, Γ G and Γ Q are the recombination rates of carriers in the gain and absorber section, respectively, a is the saturation parameter, A is the pump level, and B is the linear absorption. Furthermore, η and τ are the feedback strength and feedback delay, respectively. All the time variables are rescaled with respect to the photon lifetime τ ph in the cavity [START_REF] Barbay | Excitability in a semiconductor laser with saturable absorber[END_REF]. Importantly, this model only describes the evolution of the intensity of the electric field. In particular, the phase of the electric field is not taken into account and the feedback is modelled as being incoherent: no phase relationship is considered between the electric field at instant t and tτ . Although this may appear as a major limitation, the Yamada model with feedback has been shown to be valid for a microlaser with feedback as the one sketched in figure 1. In particular, it shows very good agreement with experimental observations, when the pulses are short compared to the delay time [START_REF] Terrien | Asymmetric noise sensitivity of pulse trains in an excitable microlaser with delayed optical feedback[END_REF][START_REF] Terrien | Bifurcation analysis of the yamada model for a pulsing semiconductor laser with saturable absorber and delayed optical feedback[END_REF]. The DDE MLL model for mode-locked lasers, on the other hand, was originally derived from the standard travelling wave equations for semiconductor lasers under the assumption of unidirectional propa-gation [START_REF] Vladimirov | Model for passive mode locking in semiconductor lasers[END_REF][START_REF] Tromborg | Traveling wave analysis of semiconductor lasers: Modulation responses, mode stability and quantum mechanical treatment of noise spectra[END_REF]. As such, it describes the mode-locked dynamics of a ring cavity semiconductor laser, as represented schematically in figure 2. In the case without feedback, it is a system of three DDEs already, which has been extended to include delayed optical feedback from one or more external cavities [START_REF] Otto | Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers subject to optical feedback[END_REF]. It is then written as a system of three DDEs for the complex electric field E(t) at the outcoupling facet, as well as the gain G and the absorption Q integrated over one internal roundtrip:

Ė(t) = -γE(t) + γR(t -τ c )e -i∆Ωτc E(t -τ c ) +Ke -iC γR(t -τ c -τ )e -i∆Ω(τc+τ ) E(t -τ c -τ ), (2) 
Ġ(t) = J g -γ g G(t) -e -Q(t) e G(t) -1 |E (t) | 2 , (3) 
Q(t) = J q -γ q Q(t) -r s e -Q(t) e Q(t) -1 |E (t) | 2 , (4) 
with

R (t) = √ κe 1 2 ((1-iαg)G(t)-(1-iαq)Q(t)) .
Here, α g and α q are the linewidth enhancement factors in the gain and absorber sections, respectively, γ and ∆Ω are the width and the center frequency of the spectral filter element. Further τ c is the internal roundtrip time, and κ describes the outcoupling losses such that a fraction √ κE(t) of the light remains in the cavity. The delayed optical feedback is described by the feedback strength K, the delay τ , and the feedback phase shift C. Moreover, J g and J q , on the one hand, and γ g and γ q , on the other hand, are the pump parameters and the recombination rates of carriers in the gain and the absorber section, respectively. Finally, the saturation energies ratio is represented by the parameter r s . For numerical purposes, the time variables and parameters, as well as the rates, are rescaled (either multiplied or divided) by the roundtrip time τ c [START_REF] Jaurigue | Dynamics and Stochatic Properties of Passively Mode-Locked Semiconductor Lasers subject to Optical Feedback[END_REF]. In particular, this means that τ c = 1 in Eq.( 2)-( 4); nevertheless we keep τ c explicitly in this and the following formulas for clarity. It is worth noting that in systems ( 1) and ( 2)-( 4), each variable evolves on its own timescale, which is modelled by the parameters Γ G and Γ Q in the Yamada model and γ g and γ q in the DDE MLL model; the different parameters and their chosen values are given in table I. Equations ( 1) and ( 2)-( 4) are slow-fast dynamical systems with three different timescales. The dynamics of such systems is of theoretical and practical interest, beyond the particular models considered here; see for example [START_REF] Krupa | Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron[END_REF].

A. From the DDE MLL model to the Yamada model

Although both models rely on different assumptions, they are derived from the same physical principles. We now show how the Yamada model ( 1) can be symbol value symbol value ΓG ( γg) 0.0125 (1 ns -1 ) ΓQ ( γq) 0.9375 (75 ns -1 ) a 1.04 τ ph 12.5 ps γg ( γg) 0.00625 (1ns -1 ) γq ( γq) 0.4675 (75 ns -1 ) rs 78.0 τc ( τc) 1 (6.25 ps) κ 0.34 γ ( γ) 1 (0.16 ps -1 ) TABLE I. Parameter values used in numerical simulations of Eq. ( 1) and Eq. ( 2)-( 4), respectively, with physical units where appropriate.

related directly to the DDE MLL model ( 2)-( 4). Assuming that the frequency maximum of the spectral filter coincides with the gain maximum, ∆Ω is zero.

Assuming further, as in [START_REF] Jaurigue | Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback[END_REF][START_REF] Otto | Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers subject to optical feedback[END_REF], α g = α q = 0 and a vanishing phase shift C = 0 the electric field becomes real. Moreover, the feedback term in system ( 2)-( 4) is included such that the light enters from the back facet and has to go through the ring cavity before one roundtrip is complete (see figure 2). In principle, this leads to a gain and loss dependent feedback strength, which can be assumed to be constant for small gain G and absorption Q, in particular in small devices.

One can then write:

Ė (t) = -γE (t) + γ √ κe 1 2 (G(t-τc)-Q(t-τc)) E (t -τ c ) +Kγ √ κE (t -τ c -τ ) . (5) 
In equation ( 5), the derivative includes all temporal changes during one internal roundtrip within the device. When the electric field envelope evolves slowly in time and thus does not change much during one internal roundtrip, one can neglect the left-hand side term γ -1 Ė(t) in equation [START_REF] Vladimirov | Dynamical regimes in a monolithic passively mode-locked quantum dot laser[END_REF]. Under this assumption we can define a new derivative describing only the slow changes between roundtrips by [START_REF] Lang | External optical feedback effects on semiconductor injection laser properties[END_REF][START_REF] Van Tartwijk | Semiconductor lasers with optical injection and feedback[END_REF]:

E(t -τ c ) ≈ E(t) -τ c dE dt . ( 6 
)
The assumption is well satisfied for the rather long Qswitched pulses and we arrive at the following equation:

dE(t) dt = 1 τ c -E(t) + e 1 2 [ln(κ)+G(t)-Q(t)] E(t) +K √ κE(t -τ ) ,
where G and Q are now evaluated at time t rather than t-τ c . Note further that the effect of outcoupling losses is still included and described by κ. Linearising the exponential term with the argument of small gain G and absorption Q and redefining G = G/τ c and Q = Q/τ c , as well as introducing the intensity I = |E| 2 , one eventually obtains:

˙ G = J g τ c -γ g G(t) -G(t)I(t), ˙ Q = J q τ c -γ q Q(t) -r s Q(t)I(t), İ = G(t) -Q(t) + ln(κ) τ c I(t) + 2K √ κ τ c E(t -τ )E(t). (7) 
It has been shown theoretically that, in the limit of pulsing dynamics, one can consider, again in first approximation, that KE(t-τ )E(t) ≈ KI(t-τ ). In particular, a bifurcation analysis shows that both terms lead to identical qualitative dynamics [START_REF] Terrien | Bifurcation analysis of the yamada model for a pulsing semiconductor laser with saturable absorber and delayed optical feedback[END_REF]. By defining the dimensionless variables and parameters as in [START_REF] Dubbeldam | Selfpulsations of lasers with saturable absorber: dynamics and bifurcations[END_REF], one eventually obtains the Yamada model with feedback [START_REF] Ohtsubo | Chaotic optical communication[END_REF].

A serious difficulty for the comparison of both models is the matching of parameters. We consider identical values for the physical parameters γ g = 1 ns -1 , γ q = 75 ns -1 , and r s = 78. Here, a tilde above a symbol refers to the non-rescaled value; these are chosen to match the parameters values commonly considered in the literature for the DDE MLL model ( 2)-( 4) [START_REF] Jaurigue | Dynamics and Stochatic Properties of Passively Mode-Locked Semiconductor Lasers subject to Optical Feedback[END_REF]. It is worth noting that the values of γ g and γ q , which describe the timescales on which the gain and absorption variables evolve, differ considerably from the values usually considered for the Yamada model [START_REF] Barbay | Excitability in a semiconductor laser with saturable absorber[END_REF][START_REF] Dubbeldam | Selfpulsations of lasers with saturable absorber: dynamics and bifurcations[END_REF][START_REF] Terrien | Asymmetric noise sensitivity of pulse trains in an excitable microlaser with delayed optical feedback[END_REF]. In what follows, we consider equations ( 3)-( 5), and we take into account a single mode by setting γ = 1 (corresponding to a physical filter width of γ = γ/ τ c ), so that mode-locking cannot occur. Importantly, a change in the filter width γ induces an effective change of the total photon lifetime τ ph in the cavity. The photon lifetime inherent in the DDE MLL model is defined via exponential decay of the electric field; using E(t) ∼ exp[-t

2τ ph ] in Eq.( 5) without gain, absorption and feedback, which yields the transcendental equation:

τ c = 2τ ph γ 1 - √ κ exp τ c 2τ ph . (8) 
In the limit of large γ this gives τ ph = -τ c / ln(κ). In physical units this gives τ γ=100 ph = 5.9 ps for the values κ = 0.34 and τ c = 6.25 ps considered hereafter; see figure 3. For our smaller filter width γ = 1, this gives τ γ=1;κ=0.34 ph = 12.5 ps, which is the value considered hereafter to rescale the parameters of the Yamada model [START_REF] Ohtsubo | Chaotic optical communication[END_REF]. Overall, keeping τ ph constant when γ is varied implies that one needs to adapt the roundtrip losses, which are modelled through the factor κ and relate to the Q-factor of the cavity modes. Relationships between the pump and linear absorption parameters of both models can be derived analytically and are given in Appendix A.

III. DYNAMICS WITHOUT EXTERNAL FEEDBACK

The dynamics of the Yamada model and the DDE MLL model have been studied extensively in the case without external feedback (given by K = 0 and η = 0) [START_REF] Dubbeldam | Selfpulsations of lasers with saturable absorber: dynamics and bifurcations[END_REF][START_REF] Vladimirov | Model for passive mode locking in semiconductor lasers[END_REF][START_REF] Jaurigue | Dynamics and Stochatic Properties of Passively Mode-Locked Semiconductor Lasers subject to Optical Feedback[END_REF]. Compared to the literature, we consider here a different regime of operation: namely, a Q-switched pulsing regime with γ = 1 for the DDE MLL model, and different timescales Γ G and Γ Q associated with the gain G and absorption Q for the Yamada model. We focus on the existence of Q-switched pulsing regimes, and on the dependence of the pulse 3)-( 5), for a fixed value of the roundtrip time τc. For a small filter width (left), τ ph depends on both the roundtrip losses and the bandwidth of the spectral filter element, while for a large filter width (right), τ ph is constrained only by the roundtrip losses.

width w and pulse period T 0 on both the pump and linear absorption parameters.

In actual experiments, the pump is the main control parameter and it is associated with the amount of energy provided to the gain section of the lasers. Figure 4 shows one-parameter bifurcation diagrams of both models for fixed absorption levels (J q = 1.1 and B = 1.7), when the pump level is considered as a bifurcation parameter. This shows that the qualitative dynamics is identical in the two models. In particular, the same bifurcation scenario is observed when the pump is increased from zero: for low pump, the laser is on a non-lasing equilibrium, which becomes unstable at the laser thresholds through a transcritical bifurcation T . The laser subsequently settles on another stable equilibrium with non-zero intensity, the so-called continuous-wave solution which corresponds to the emission of a constant beam of light. These equilibria almost immediately become unstable through a supercritical Hopf bifurcation H. At this point, a stable periodic orbit emerges, whose amplitude and period grow rapidly when the pump is increased: it then corresponds to the emission of short pulses of light, in between which the light intensity is practically zero. At J g = 0.13 and A = 16.8, this stable periodic orbit collides, in a saddle-node bifurcation, with a periodic orbit of saddle-type which previously emerged from a subcritical Hopf bifurcation of the continuous-wave equilibrium. At this point, the laser settles back on the lasing equilibrium, which is the only stable solution. One can note that the sudden increase of the amplitude of the periodic solution around J g = 0.02 (for the DDE MLL model) and A = 1.7 (for the Yamada model), combined with the large but finite value of the period T 0 , suggests a canard explosion [START_REF] Benoît | Dynamic bifurcations: proceedings of a conference held in Luminy[END_REF]. This phenomenon is typical of slow-fast dynamical systems where variables evolve on different timescales [START_REF] Desroches | Mixed-mode oscillations with multiple time scales[END_REF]. Its investigation is be-yond the scope of this article and will be discussed elsewhere. We now investigate how the bifurcation scenario evolves when the linear absorption parameter is changed. Figure 5 represents the two-parameters bifurcation diagrams of both models when the pump (J g and A) and the linear absorption (J q and B) are considered as bifurcation parameters. In the parameter plane, each curve corresponds to the locus of a specific codimension-one bifurcation. More specifically, one finds:

-a curve S of saddle-node bifurcation, where a stable and a saddle equilibrium bifurcate.

-a curve T of transcritical bifurcation, corresponding to the lasing threshold, where the zero-intensity equilibrium changes stability.

-a curve H of Hopf bifurcation, where the lasing equilibrium changes stability and a periodic solution emerges, which is locally stable (unstable) when the Hopf bifurcation is supercritical (subcritical).

-a degenerate Hopf point DH where the Hopf bifurcation changes criticality.

-a curve SN of saddle-node bifurcation of periodic orbits emerging from the point DH, where one stable and one saddle-type periodic orbits collide and disappear.

The different bifurcation curves divide the parameter plane into regions where the dynamics is qualitatively different. In region 1, the only solution is a stable zero-intensity (i.e. non-lasing) equilibrium. In region 2, the stable non-lasing equilibrium coexists with one additional stable (continuous-wave) equilibrium and one saddle-type equilibrium. Entering region 3 from region 2, the non lasing equilibrium becomes unstable so that the continuous-wave regime is the only stable solution. In region 4, all the equilibria are unstable, and the only stable solution is a periodic solution.

In region 5, all the solutions of region 4 remain, and coexist with an additional saddle-type periodic orbit.

In regions 4 and 5, the width of the stable pulsing periodic solution estimated at half the maximum of the intensity (|E| 2 for (3)-( 5) and I for (1)) is represented in figure 5 by the colormap. The values differ slightly between both models; however the order of magnitudes are similar and the same trend is observed with respect to both continuation parameters. In particular, the width increases dramatically for small values of the absorption parameter. For a given value of this parameter, the pulse width is almost constant on a large range of the pump parameter, and increases dramatically for small values of the pump. This trend was already highlighted in figure 4 for a single value of the linear absorption parameter.

Importantly, the range of parameters represented in figure 5 corresponds to identical non-dimensionless values for both models (see the conversion given in Appendix A). With no feedback, both models thus show very good qualitative and quantitative agreement for identical values of the physical parameters. In particular, the same stable regimes (continuouswave or Q-switched) are observed and, for the Qswitched regime, the pulse width and pulse repetition rates have similar values. 

IV. MATCHING THE MODELS IN THE PRESENCE OF FEEDBACK

We consider now the effect of delayed feedback on the dynamics when the solitary laser is in the Qswitched pulsing regime. We focus on Hopf bifurcations, which are of particular interest since they correspond to the emergence of (pulsing) periodic solutions. An important motivation is to understand the conditions under which the DDE MLL model ( 3)-( 5) can be approximated accurately by the Yamada model ( 1), which may considerably simplify numerical and theoretical investigation.

We consider fixed values J g = 0.063 and J q = 1.1 for (3)-( 5), which corresponds to A = 9.34 and B = 3.36 in (1); see the analytical expressions in the Appendix. Figure 6 represents the Hopf bifurcation curves of both models in the plane of feedback delay τ and feedback strength (η for (1) and K for (3)-( 5). Some common features are observed: in both models, a single curve H is found, which displays the generic repeating property of delay systems [START_REF] Yanchuk | Delay and periodicity[END_REF], and self-intersects in codimension-two Hopf-Hopf bifurcation points [START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF]. However, more self-intersections of H are observed for model [START_REF] Ohtsubo | Chaotic optical communication[END_REF]; in particular, one observes secondary self-intersections, where the loops generated by the primary self-intersections overlap. Generally, branches of torus bifurcation, associated with the emergence of quasiperiodic oscillations and the change of stability of periodic solutions, emanate from Hopf-Hopf bifurcation points [START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF]. As such, more selfintersections of the Hopf bifurcation curve strongly suggest that the overall bifurcation diagram is more complex.

Figure 6 demonstrates that considering identical values of the parameters does not capture the essence of the feedback-induced dynamics. We showed in figure 5 that the pulsing characteristics of both models without feedback match for a range of pump and absorption levels. As we shown now, the key is to choose the parameters of ( 1) and ( 3)-( 5) such that the pulse width and period of the Q-switched solutions are identical for the solitary lasers (i.e. without feedback). Figure 7 represents the pulsing solution of ( 1) and ( 3)-( 5), without feedback, for (A, B) = (7.9, 1.7) and (J g , J q ) = (0.063, 1.1), respectively, chosen to yield similar laser outputs. In both models, the pulse width is close to 24.5 ps, and the pulse period T 0 is 35 times as large. Although the match is not perfect, figure 7 shows that in both models the pulse shape is strongly asymmetrical, and the dynamics mainly takes place in two planes close to (G, Q, 0) and (G, Q 0 , I) for (1) and to (G, Q, 0) and (G, Q 0 , E) for ( 3)-( 5), where Q 0 and Q 0 are constants. This is related to the different timescales on which the variables evolve, represented by γ g and γ . The exact nature of the influence of these timescales on the lasers dynamics is beyond the scope of this paper; it will be discussed elsewhere.

For these matched values of (A, B) and (J g , J q ), figure 8 shows the curves of Hopf bifurcations of ( 1 and ( 3)-( 5) in the plane of feedback parameters. The two models now show very good agreement on the level of Hopf bifurcations: not only a single curve H is observed in both models, but they also self-intersect in a very similar manner. In particular, the primary self-intersections occur for very similar values of τ , and no secondary self-intersection is observed. 3)-( 5) (right) in the plane of feedback parameters, for (A, B)=(7.9,1.7) and (Jg, Jq)=(0.063, 1.1), respectively, chosen such that without feedback (η = 0 and K = 0), both systems are pulsing with pulse width w = 24.5 ps and pulse period T0 = 850 ps.

A. Influence of the pulse width and period

We now demonstrate that the good agreement of (1) and ( 3)-( 5) on the level of H exists over a wide range of other parameters, provided that the pulse width and pulse period are identical in the solitary laser. The results of figure 8 were obtained for a pulse width w = 24.5ps in the solitary laser. We now investigate the feedback-induced dynamics when w = 22.5ps and w = 26.5ps, which is achieved for B = 1.9 and B = 1.5 in (1) and J q = 1.5 and J q = 0.8 in (3)-( 5), respectively. The values of the pump parameters A and J g are chosen such that the period-to-width ratio remains, as before, close to 35. For these parameters, figure 9 represents the curves of Hopf bifurcation in the plane of feedback parameters. Although the exact values of τ at which H self-intersects do not match perfectly, the results are very similar in terms of number of both primary and secondary self-intersections of H. Overall, figures 8 and 9 show that a wider pulse (corresponding to a smaller absorption level; see figure 5), is associated with more self-intersections of H. We now investigate the influence of the pulse period T 0 of the solitary laser on the feedback-induced dynamics. We consider the same three values of the pulse width w as in figures 8 and 9 (that is, same values of the absorption parameters), but we now choose the pump level such that the period-to-width ratio is close to 50 in the solitary laser. Figure 10 wider pulse (that is, a smaller absorption level) results in more self-intersections of H. Moreover, the comparison of figure 10 with figures 8 and 9 shows that a larger period-to-width ratio in the solitary laser (i.e. a smaller pump level; see figure 5) also results in more self-intersections of H. We checked that these results are robust to a change of the roundtrip time τ c in the DDE MLL model. Considering τ c = 3.125ps (i.e half of the value considered here) and adjusting the ratio κ (associated with roundtrip losses) such that the photon lifetime remains equal to 12.5ps, the curve H in the plane of feedback parameters is practically unchanged from the one in figure 8, provided that the solitary laser features identical pulse width and pulse period.

The very good agreement between both models on the level of the curve H strongly suggests that the feedback-induced dynamics in models ( 1) and ( 3)-( 5) can be matched for a large range of parameters. The clear conclusion is that what matters is indeed maintaining the value of the pulse width and pulse period in the solitary laser.

B. Feedback-induced dynamics

The motivation for matching the Hopf bifurcation curves of both models was the fact that they organise the overall pulsing dynamics. We now investigate in more details this feedback-induced dynamics for a particular set of the laser parameters. Figure 11 represents the overall bifurcation diagrams of both models in the plane of feedback parameters, for the same pump and absorption levels as considered in figure 8. We now represent the criticality of the Hopf bifurcation: along bold parts of the curve H, the Hopf bifurcation is supercritical, meaning that the emerging periodic solution is locally stable, while it is locally unstable when the Hopf bifurcation is subcritical [START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF]. The points DH at which the Hopf bifurcation changes criticality are degenerate Hopf bifurcation points, from which curves SN emerges [START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF]. These curves form the locus of saddle-node bifurcations of periodic orbits, where one stable and one saddle-type periodic orbits collide and disappear. Curves TR of torus bifurcation are also represented, which emerge from Hopf-Hopf bifurcation points where the Hopf bifurcation curve self-intersects. Torus bifurcations can lead to stable quasiperiodic dynamics; this is discussed in [START_REF] Jaurigue | Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback[END_REF] for the DDE MLL mode and in [START_REF] Terrien | Bifurcation analysis of the yamada model for a pulsing semiconductor laser with saturable absorber and delayed optical feedback[END_REF] for the Yamada model. Finally, one finds curves PD of period-doubling bifurcations:, which emerge from 1:2 resonant points along curves TR [START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF].

In figure 11, the curve H changes criticality in a similar manner for (1) and ( 3)- [START_REF] Vladimirov | Dynamical regimes in a monolithic passively mode-locked quantum dot laser[END_REF], and the curves SN cross the curve H for similar values of τ . In both models, these curves SN interact in pairs at cusp bifurcations points when the feedback strength becomes close to zero. Since Hopf bifurcations and saddle-node bifurcations correspond to the emergence and the disappearance of periodic solutions, respectively, these similarities strongly suggests that the different peri-odic solutions exist and are stable for similar ranges of τ in both models. The torus bifurcation curves also show similar qualitative behaviour in (1) and ( 3)- [START_REF] Vladimirov | Dynamical regimes in a monolithic passively mode-locked quantum dot laser[END_REF]; in particular, one finds isolated closed curves TR, that do not connect to a point HH. The torus bifurcations are of practical interest beyond the possible emergence of quasiperiodicity: although most parts of the curves H correspond to subcritical Hopf bifurcations, meaning that the emerging periodic solution is unstable, several of these unstable periodic solutions stabilise via a torus bifurcation when the delay τ is increased. As a consequence, there is a high degree of multistability in different regions of the plane of feedback parameters, with the coexistence of several stable pulsing periodic solutions [START_REF] Jaurigue | Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback[END_REF][START_REF] Terrien | Bifurcation analysis of the yamada model for a pulsing semiconductor laser with saturable absorber and delayed optical feedback[END_REF].

Although both models show an overall good qualitative agreement, differences are observed in the finer details of the dynamics. The DDE MLL model ( 3)-( 5) features multiple cusp points along the curves SN and 1:1 resonances where curves TR connect with SN. Nevertheless, overall the bifurcation diagrams of the DDE MLL model and the Yamada model show good qualitative and quantitative agreement, considering the modelling approaches are very different from each other. 

• • • • •DH • • • 0 τ 850 0 η 0.7 SN H HH TR PD • • • • 1:2 • • • • • • • • 0 τ 850 0 K 0.6

V. INFLUENCE OF THE NUMBER OF MODES

When a single cavity mode is considered (γ = 1), we showed that the dynamics of the DDE MLL is represented accurately by the simpler Yamada model. We now investigate the influence of a higher, but still small, number of cavity modes on the dynamics of the DDE MLL model without feedback. Our focus is on the properties of the Q-switched pulsing solution, which are the key for matching both models. We consider γ = 8, and set κ = 0.58 such that the photon lifetime remains τ ph = 12.5 ps (see figure 3). Figure 12(a) shows the bifurcation diagram of model ( 3)- [START_REF] Vladimirov | Dynamical regimes in a monolithic passively mode-locked quantum dot laser[END_REF] in the (J g , J q )-plane, when no feedback is considered (K = 0). As for the single-mode case in figure 5, one finds a curve H of Hopf bifurcation where the Q-switched pulsing periodic solution is born, and a curve SN of saddle-node bifurcation of periodic orbits emanating from a degenerate Hopf bifurcation point DH . Compared to figure 5, an additional curve H f is found, where the fundamental mode-locked periodic solution is born: this is a pulsing solution with a period close to the roundtrip time τ c of the device [START_REF] Jaurigue | Dynamics and Stochatic Properties of Passively Mode-Locked Semiconductor Lasers subject to Optical Feedback[END_REF].

Figure 12 also shows the intensity profile of the Q-switched solution for two different sets of (J g , J q ). Compared to the case γ = 1, the pulse shape is not affected for low values of J q . On the other hand, it deforms when one approches the curve H f : one observes a multipulse profile with several intensity peaks within one period. This strongly suggests that the feedback-induced dynamics of the DDE MLL model can still be represented accurately by the Yamada model for small values of J q , but no longer for larger absorption levels, close to the second curve H f in the (J g , J q )-plane. When the number of modes γ is increased further, several additional curves of Hopf bifurcation, associated with mode-locked regimes of higher order (the so-called harmonic mode-locked regimes), move toward smaller values of J q in the (J g , J q )-plane. As a result, from about γ = 10, the Yamada model cannot be considered as a valid representation of the DDE MLL model, neither for the solitary laser nor for the system with feedback.

We remark that decreasing the filter width γ below 1 in the DDE MLL model also induces a change in the pulse shape of the Q-switched solution, which then differs significantly from the one observed in the Yamada model. In that case, the feedback-induced dynamics is similar to the case γ = 1 when the values of J g and J q are chosen such that the area under the pulse (associated with the pulse energy) is kept constant, although this corresponds to a different pulse width. In this case, the dynamics of (3)-( 5) in the plane of feedback parameters can still be represented accurately by [START_REF] Ohtsubo | Chaotic optical communication[END_REF].

VI. CONCLUSIONS

The effect of optical self-feedback on the dynamics of self-pulsing semiconductor lasers with gain and absorber sections was investigated. We compared two different modelling approaches, the well known Yamada model and the ring-cavity DDE MLL model, and characterised their bifurcation structure. We focused on the single-mode limit and on the Q-switching dynamics, even though the DDE MLL model is designed to describe the multi-mode effects of mode-locking.

Our results showed very good qualitative agreement between both modelling approaches over wide parameter regions. The bifurcation structures in the plane of feedback parameters show good qualitative and quantitative agreement as long as the pulse width and pulse period of the Q-switched solution are equal in both models without feedback. This is robust with respect to changes of the parameters, suggesting that the physical principles ruling the feedbackinduced dynamics are caught by the properties of the Q-switched pulsing solution. The fact that the dynamics of the DDE MLL model is represented accurately by the simpler Yamada model in the singlemode limit is of practical interest, since this might simplify considerably numerical and theoretical investigations of self-pulsing lasers subject to delayed feedback.

Interestingly, these results are robust to a moderate increase of the number of modes in the DDE MLL. However, when the number of modes is too large, additional instabilities, in particular, mode-locked solutions, emerge. The region of stable Q-switched emission thus shrinks, and more complex pulse shapes of the Q-switched emission are observed in the vicinity of the new instabilities.

in the DDE MLL model ( τ ph ∼τ c / ln(κ) = 5.8 ps) and the one including the filter induced losses ( τ γ=1;κ=0.34 ph = 12.5 ps as given by Eq.( 8)) differ, the factor τ ph ln(κ)/ τ c in the third equation can deviate from 1. In our case of a small filter width γ = 1 this factor is 2.158. This may be a reason why the dynamics observed after direct conversion of the pump parameters does not match perfectly between Yamada and DDE MLL model.
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 3 FIG. 3. Schematic representation of the relative contributions of the filter width γ and the roundtrip losses (modelled through the ratio κ) to the photon lifetime τ ph in the delay model (3)-(5), for a fixed value of the roundtrip time τc. For a small filter width (left), τ ph depends on both the roundtrip losses and the bandwidth of the spectral filter element, while for a large filter width (right), τ ph is constrained only by the roundtrip losses.
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 4 FIG.[START_REF] Elsass | Control of cavity solitons and dynamical states in a monolithic vertical cavity laser with saturable absorber[END_REF]. Bifurcation diagrams of model[START_REF] Ohtsubo | Chaotic optical communication[END_REF] (top) and model (3)-(5) with γ = 1 (bottom), with respect to the pump parameter. Left: amplitude of the intensity variable, where equilibrium and periodic solutions are in dark and light blue, Solutions are stable along bold parts of the curves. T and H are transcritical and Hopf bifurcations, respectively and SN are saddle-node bifurcations of periodic orbits. Right: period T0 (blue) and pulse width w (red dotted line) along the branch of periodic solutions. The inset represents the evolution of T0 near the left-most Hopf bifurcation.
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 5 FIG. 5. Bifurcation diagrams of models (1) (top) and (bottom) in the (A, B)-plane and (Jg, Jq)-plane, respectively. Displayed are curves S of saddle-node bifurcation, T of transcritical bifurcation, H of Hopf bifurcation, and a curve SN of saddle-node bifurcation of periodic orbits emerging from a degenerate Hopf bifurcation point DH. Along bold parts of the curve H the Hopf bifurcation is supercritical. In regions 4 and 5, the pulse width w is represented by color.
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 6677 FIG. 6. Hopf bifurcation curves of models (1) (left) and(3)-(5) (right) in the plane of feedback delay τ (in ps) and feedback strength η and K. The parameter values (A, B) = (9.34, 3.36) and (Jg, Jq) = (0.063, 1.1) agree according to the conversion given in Appendix A but yield different pulse profiles without feedback.
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 58 FIG.8. Hopf bifurcation curves of (1) (left) and (3)-(5) (right) in the plane of feedback parameters, for (A, B)=(7.9,1.7) and (Jg, Jq)=(0.063, 1.1), respectively, chosen such that without feedback (η = 0 and K = 0), both systems are pulsing with pulse width w = 24.5 ps and pulse period T0 = 850 ps.
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 59 FIG.9. Hopf bifurcation curves of (1) (left) and (3)-(5) (right) in the plane of feedback parameters. From top bottom: B = 1.9 and B = 1.5 (left); and Jq = 1.5 and Jq = 0.8 (right). The values of A and Jg are chosen so that, without feedback, the pulse period to pulse width ratio is 35.

FIG. 10 .

 10 FIG.10. Hopf bifurcation curves of (1) (left) and (3)-(5) (right) in the plane of feedback parameters. From top to bottom: B = 1.9, B = 1.7 and B = 1.5 (left); Jq = 1.5, Jq = 1.1 and Jq = 0.8 (right). The values of A and Jg are chosen so that, without feedback, the pulse period to pulse width ratio is 50.

2 FIG. 11 .

 211 FIG. 11. Bifurcation diagram of (1) (top) and (3)-(5) (bottom) in the plane of feedback delay τ (in ps) and feedback strength, for (A, B) = (7.9, 1.7) and (Jg, Jq) = (0.063, 1.1), respectively. The solitary laser is in the Qswitched regime, with a pulse width of 24.5 ps and a pulse period 35 times as large. Displayed are curves H of Hopf bifurcations, SN of saddle-node bifurcations of periodic orbits emerging from degenerate Hopf points DH, TR of torus bifurcations emerging from Hopf-Hopf bifurcation points HH, and PD of period-doubling bifurcations.

FIG. 12 .

 12 FIG.12. Bifurcation diagram (top) of (3)-[START_REF] Vladimirov | Dynamical regimes in a monolithic passively mode-locked quantum dot laser[END_REF] in the (Jg, Jq)-plane, for γ = 8 and κ = 0.58. Displayed are two curves H and H f of Hopf bifurcations, associated with Q-switching and fundamental mode-locking, respectively, and two curves SN of saddle-node bifurcations of periodic orbits, emerging from degenerate Hopf bifurcation points DH. Intensity profile (bottom) of the Q-switched periodic solution for values of (Jg, Jq) indicated by the red and black crosses, respectively, in panel (a).
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Appendix A: relationship between the parameters of the DDE MLL and the Yamada models Starting from Eq. [START_REF] Barbay | Excitability in a semiconductor laser with saturable absorber[END_REF], which followed from the DDE MLL model in the limit of small changes during one roundtrip, one can derive equations for the gain G and the absorption Q, written in the same form as the Yamada model [START_REF] Ohtsubo | Chaotic optical communication[END_REF]. As the first step, we rescale time to change from scaling with the roundtrip time τ c to scaling with the photon lifetime τ ph as in the Yamada model; recalling that τ c = 1, one obtains:

where the decay rates Γ G = γ g τ ph / τ c and Γ Q = γ q τ ph / τ c and time are now scaled as in the Yamada equations. Factorising out Γ G and Γ Q , and defining I(t) = τ ph I(t)/( τ c Γ G ) as in [START_REF] Dubbeldam | Selfpulsations of lasers with saturable absorber: dynamics and bifurcations[END_REF] and η = 2 K √ κ τ ph / τ c , one obtains:

Redefining gain and absorption by G = G/ ln(κ) and Q = Q/ ln(κ), respectively, we arrive at

Finally, defining

gives the Yamada model in the form of Eq. ( 1) and, thus, a conversion between the pump parameters in both models. However, since the photon lifetime resulting from the pure roundtrip losses