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ABSTRACT

For Adaptive Optics (AO) assisted systems, a point spread function (PSF) may have a very complex structure and
therefore be di�cult to predict. An accurate and independent PSF prediction would be beneficial for the scientific
analysis of the data and for quality evaluation of potential observations or even exposure time estimation before
the actual observations. Ideally, one would like to have a tool able to predict the PSF morphology only based
on a few external parameters, including instrument characteristics, given weather conditions, and properties of
a selected target. It can be achieved with analytical PSF prediction tools (e.g., TIPTOP,1 PSFAO2). However,
in real-life scenarios, PSF can still be influenced by multiple e↵ects which are not adequately described by such
analytical models and which can still significantly a↵ect the quality of a predicted PSF. The topic of this work is
to investigate the possible application of machine learning (ML) for PSF prediction. The main idea is not to use
ML blindly but rather to investigate the idea of combining existing analytical approaches with machine learning.
While the analytical model retains physics, the ML part can complement it and learn from data the e↵ects that
the analytical model fails to account for, resulting in higher prediction accuracy. This paper demonstrates the
accuracy of the method when applied to an extensive data set of 700+ PSF from SPHERE and 200+ PSFs from
MUSE-NFM.

Keywords: Adaptive optics, Atmospheric turbulence, Point spread functions, PSF prediction, Machine learning,
Image quality, Telescopes

1. INTRODUCTION

Some major fields of astronomy (exoplanetology, study of bodies in the solar system, study of galaxies/galactic
centers, study of compact objects) heavily rely on observations performed using AO facilities since they require
high angular resolution, precise astrometry, and photometry. In many cases, accurate knowledge of PSF is desir-
able. It is helpful for scientific data analysis and applicable for exposure time estimation and observation quality
evaluation. Ideally, it would be beneficial to have a tool able to accurately predict the PSF morphology only
based on a few external parameters, including instrument characteristics, given weather conditions, properties
of a selected target, and possibly relying on external data collected from supplementary sensors (e.g., wavefront
sensor (WFS) images). Additionally, since scientific PSF is a↵ected by all possible contributors along the optical
path, it provides valuable information about optical system design, calibrations, and diagnostic. Therefore, it
may even assist the existing control strategies to address the e↵ects unseen by the WFSs. However, the complex
design of AO facilities, complicated control strategies, and unseen e↵ects3 lead to the sophisticated morphol-
ogy of AO-corrected PSF. This complexity requires intricate models to be precisely described. The incomplete
representation of PSFs, in turn, leads to the reduced quality of the scientific analysis. One way to address this
problem is to provide an extensive analytical description of each known physical contributor to the structure of
PSF.
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In this work, we investigate the physically accurate Fourier-based PSF modeling tool called TIPTOP,1 which
is suited for generating realistic AO-corrected PSFs. The final goal of this work is to provide an accurate PSF
prediction tool for exposure time estimation, scientific analysis, and possibly AO-system control. We validate
the model on real data and introduce future prospective for improving this approach. The current baseline is to
make it work with actual on-sky data provided by GALACSI NFM and SPHERE. But proposed solutions and
methods can be later successfully adopted by ELT instruments (e.g., the LTAO system of HARMONI).

2. METHODS

TIPTOP is a Fourier-based model4 that generates AO-corrected PSFs based on power spectral density (PSD)
of the pupil plane wavefront spatial frequencies.5 The resulting PSD is summed up from multiple contributors,
each representing a distinct AO-related physical e↵ect (Fig. 1). This approach provides high flexibility since each
component can be easily added or removed from the model. It allows using TIPTOP with various AO systems
(SCAO, LTAO, MCAO). Since it is physics-based, it can represent the PSF morphology with a high degree of
realism once properly calibrated. It also allows using real telescope telemetry as inputs. Being a Fourier-based
model, TIPTOP relies on simple FFTs and matrix multiplication. It allows executing it on modern hardware
with a high level of parallelism.
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Figure 1. Being a Fourier-based model, TIPTOP relies on the analytically derived PSD contributors to simulate long-
exposure AO-corrected PSFs. Each contributor describes one e↵ect. The coupling between them is neglected.

However, flexibility and physical meaningfulness come with a cost. The resulting analytical model behind
TIPTOP is defined by a large set of parameters. Meanwhile, on-sky analogs of these parameters can be measured
imprecisely and be subjected to biases, meaning that the real telemetry does not one-to-one correspond to the
inputs of TIPTOP. In other words, for the same telemetry, TIPTOP produces PSFs that look di↵erent from
associated on-sky PSFs (Fig. 2). It is a severe obstacle to the direct prediction of the PSF. Thus, the model
first must be calibrated to enable a reliable PSF prediction framework.

Data TIPTOP prediction Difference

Figure 2. When existing telemetry parameters are directly passed to TIPTOP, the resulting prediction does not provide
desirable accuracy, meaning that model calibration is needed.

To calibrate the model and find correlations between the telemetry and model inputs, we validate the model by
fitting it to the real on-sky PSFs. However, some parameters have virtually the same e↵ect on the morphology of
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the PSF. Therefore, their structural influence may be hard to disentangle, even though very di↵erent phenomena
produce them. It introduces ambiguity into the fit and prevents the determination of reliable correlations. One
of the objectives of this work is to address this problem. It will be further discussed in the next section.

3. CURRENT RESULTS

The first step towards validating the model is to fit it to real data provided by SPHERE and MUSE instruments
of the VLT facility (Fig. 3). The dataset contains isolated PSFs with associated telemetry data. Both datasets
contain approximately 750 SPHERE PSFs and 240 MUSE NFM PSFs. The current version of TIPTOP can fit
these MUSE NMF PSFs (Fig. 3a) and SPHERE (Fig. 3b) with an error of only 0.5%. This extreme level of
accuracy validates TIPTOP capacities as a PSF modeling tool, showing that it can represent the shape of a PSF
with great precision.

104

103

102

0.6

0.5

0.4

0.3

0.2

0.1

0.5 1.0 1.5 2.0

104

103

102

0.0
Off-axis angle [asec]

In
te

ns
ity

 [a
.u

] /
 D

iff
er

en
ce

 [%
]

In
te

ns
ity

 [a
.u

]

105

104

103

102

0 5 10 15 20 25 30

105

104

103

102In
te

ns
ity

 [A
D

U
] /

 D
iff

er
en

ce
 [%

]

0.7

0.6

0.5

0.4

0.3

0.2

0.1

In
te

ns
ity

 [A
D

U
]

Distance from on-axis [pixels]

TIPTOP
SPHERE data
Relative difference

Data

TIPTOP

Difference

Data

TIPTOP

Difference

2.5

TIPTOP
MUSE data
Relative difference

(a)

(b)

Figure 3. (a) An example of the accurately fitted on-sky MUSE NFM PSF. (b) Fitted SPHERE PSF. It demonstrates
the high accuracy of the model (< 1% of error). These results clearly show the capabilities of TIPTOP.

Additional to fitting, the comparison was made between simulated data and direct predictions of TIPTOP
(Fig. 4). Simulated data were obtained using PASSATA end-to-end (E2E) AO simulator6 with the same inputs
as for TIPTOP predictions. The results showed a good correspondence meaning that the physical model behind
TIPTOP is accurate and consistent with other physics-based PSF simulators.

The first attempt to calibrate TIPTOP to real telemetry was made by performing the massive fitting to
the dataset of SPHERE IRDIS PSFs (Fig. 5). As mentioned in the previous section, the motivation was to
reveal correlations between fitted model parameters and telemetry data. The results show that some parameters
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Figure 4. (b) Synthetic MAVIS-like PSF using end-to-end AO simulator. (c) Direct TIPTOP prediction of the PSF from
simulated telemetry parameters. (a) Corresponding PSF profiles.
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Figure 5. (a) Good correspondence of on-sky SR to the fitted SR shows that TIPTOP accurately describes the shape of
the PSF. (b) Correlation between fitted r0 and telemetry r0 (from SPARTA7) is still weak. It demonstrates the fitting
ambiguity due to the coupling of model parameters.

correlate almost linearly. Others, in turn, demonstrate more of a stochastic dependency. For example, good
correlations are observed for characteristics that represent the general shape of PSF, like FWHM and Strehl ratio.
Meanwhile, parameters responsible for specific morphological features, like r0, correlate weakly. The reason is
that the fitting forces the model parameters to change so that the shape of the modeled PSF best matches the
data. Meanwhile, the physical validity of fitted values is disregarded. Therefore, with no boundaries introduced,
model parameters may converge to physically meaningless values even though the shape of a resulting PSF
matches the data. Thus, introducing some regularization strategies is crucial to preserve the physical relevance
and provide a basis for reliable calibration and, consequently, for PSF prediction in the future.

4. FUTURE WORK

As mentioned before, some parameters can cross-couple during fitting due to their similar e↵ect on PSF mor-
phology. It means that one parameter can absorb the impact of another, suppressing the latter from being fitted.
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It is important to understand this degeneracy between the parameters and study its origin, which may be due
to a non-atmospheric e↵ect but phenomena not included in the current model (Fig. 6).

(a)

(b)

Data TIPTOP Difference

Data TIPTOP Difference

Figure 6. TIPTOP most accurately describes atmospheric-related e↵ects. However, realistic data may be subject to
e↵ects that are not yet included in the model. During optimization, the lack of an adequate analytical description can
lead to incorrect fits and parameters degeneration.

The next step is introducing approaches to resolve these degeneracies. For example, the model can also be
pre-fitted to WFS PSFs (e.g., from IRLOS) to obtain initial parameter estimates, which facilitates convergence.
The telemetry itself can also serve as a valuable source of information for this task. We hypothesize that
correlations existing inside the telemetry data may help disentangle model inputs of TIPTOP. These correlations
can be determined and exploited by applying machine learning techniques. For this sake, a simple multilayer
perceptron may be used with TIPTOP attached to its outputs (Fig. 7). The perceptron preceding the TIPTOP
will learn to be a universal function approximator that relates telemetry to model inputs. The TIPTOP, in turn,
will serve as a regularizer in this scheme. This also might be seen as injecting the knowledge about the physics
directly into the model, essentially creating a physics-informed neural network (PINN).8
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Figure 7. The proposed approach explores the ways to combine the existing analytical PSF model with a machine
learning part to create a PINN. It will learn to correspond telemetry to model inputs to provide more accurate predictions
directly from the telemetry. The exact choice of the telemetry set is yet to be studied and specified.

Another possible advantage of the proposed technique is that it might help to overcome the scarcity of
available on-sky data. Injecting a priori physics knowledge into the model may help train it on fewer data
samples and significantly reduce the number of trainable parameters. However, the proposed idea is yet to be
implemented and tested. Moreover, the currently available datasets might still not be enough to learn reliable
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correlations. This situation might change in the future if the technique is applied on-sky, so it will have a chance
to learn online.

5. CONCLUSION

The proposed model proved its capability to describe the morphology of the AO-corrected long-exposure PSF
with very high precision. We validated the model by fitting it to actual on-sky data and comparing the direct
TIPTOP prediction with E2E simulation. However, the result demonstrated that real telemetry could not be
straightforwardly fed to TIPTOP to provide accurate predictions. So, the model must be first calibrated with
on-sky data to identify the correlations between the actual data and model inputs. For this sake, we performed
the massive fitting to the large set of IRDIS PSFs and some MUSE PSF samples. Results showed that some
correlations are still not determined with the desired degree of precision, so the problem must be approached
di↵erently. To address this problem, we propose to use machine learning-based techniques based on PINNs.
However, a massive amount of data should be exploited in any case to provide more reliable results. So, more
technical data and telemetry must be collected during future observations to make this approach e�cient and
accurate.
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