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A semiconductor micropillar laser with delayed optical feedback is considered. In the excitable
regime, we show that a single optical perturbation can trigger a train of pulses that is sustained
for a finite duration. The distribution of the pulse train duration exhibits an exponential behavior
characteristic of a noise-induced process driven by uncorrelated white noise present in the system.
The comparison of experimental observations with theoretical and numerical analysis of a minimal
model yields excellent agreement. Importantly, the random switch-off process takes place
between two attractors of different nature: an equilibrium and a periodic orbit. Our
analysis shows that there is a small time window during which the pulsations are very
sensitive to noise, and this explains the observed strong bias toward switch-off. These
results raise the possibility of all optical control of the pulse train duration that may have impact
for practical applications in photonics and may also apply to the dynamics of other noise-driven
excitable systems with delayed feedback.

Introduction Pulsing regimes arise in many dif-
ferent contexts, from biological systems such as neu-
rons to optical devices. They are key elements in
many applications, for example in photonics and op-
tical communications where they can provide clocks
for optical processing of information. Excitable sys-
tems are of particular interest in this respect. They
exhibit an all-or-none response to external perturba-
tions: above a minimal perturbation amplitude (the
excitable threshold), a characteristic, pulse-shaped
response is elicited. We consider here the effect of
delayed self-feedback on an excitable system: a first
excitable pulse can trigger a new pulse when it comes
back after a fixed delay. In this simple picture,
one obtains a controllable pulsing system, producing
pulses at a fixed repetition rate.

Optical pulse trains can result from temporal self-
localization of light in dissipative optical systems,
generally involving a cavity and a nonlinearity, and
are thus also called trains of temporal dissipative soli-
tons. These can appear spontaneously from noise or
be triggered by a coherent perturbation. They have
also been invoked to explain the formation of soli-
ton molecules [1] or the merging of solitons [2] in
mode-locked lasers. Optical temporal dissipative soli-
tons have been found in a coherently injected fibre
cavity [3], in a driven nonlinear microresonator [4],
and in a face-to-face VCSEL configuration [5]. Self-
localization of light associated with other degrees of
freedom has also been reported in optical cavity sys-
tems in [6] with polarization, and in [7] where the op-
tical phase was considered and excitable pulses con-
sist of 2π phase shifts in the emitted light. An inter-
esting property of temporal dissipative solitons lies in
the possibility to control them [8, 9].

In this letter we investigate an excitable micropil-
lar laser with saturable absorber and delayed optical
feedback. This system is conceptually simpler
and more compact than other systems where
excitable pulse regeneration has been found
because it only consists of a microcavity and
a feedback mirror. We show that it sustains
temporal dissipative solitons in the form of
trains of optical pulses, triggered by an exter-
nal perturbation. In particular, several pulse
trains can be triggered and sustained simul-
taneously in the external cavity; see the inset
of Fig. 1. A rate equation model for a single-mode
laser with saturable absorber subject to incoherent
optical delayed feedback [10] emerges as a natural
minimal model for this laser system and shows
very good agreement with the experimental observa-
tions. We determine the important role of noise for
the observed stochastic switching dynamics and how
it results in the finite duration of pulse trains. We also
unveil the physical reason why this random process
is strongly asymmetric and biased toward switch-off.
Our findings suggest a way to optically con-
trol the pulse train duration, which shows that
an excitable laser with feedback constitutes a
simple system with interesting prospects for
applications in photonics.

Description of device and experiment Fig.1 rep-
resents a sketch of the experiment. A micropillar
laser with intracavity saturable absorber is optically
pumped by a laser diode emitting at ∼800 nm; see
[11]. The micropillar laser includes two gain and one
saturable absorber quantum wells [12, 13] and emits
light at a wavelength close to 980 nm. It is temper-
ature stabilized by a Peltier element to better than
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FIG. 1. Sketch of the micropillar semiconductor laser with
intracavity saturable absorber, optical pumping and de-
layed optical feedback loop; BS: beam splitter, L: lens
with f = 5cm, FB Mirror: high-reflectivity feedback mir-
ror, BS: 70/30 beamsplitter, DM: dichroic mirror. The
inset shows two coexisting trains in the pseudo-
space of time and number of roundtrips.

0.1◦K around −12.1◦C. The pump is sent through
a dichroic mirror DM that reflects light at the laser
emission wavelength. Part of the light is sent back
to the micropillar thanks to a high-reflectivity feed-
back mirror FB after being focused by a lens of 5
cm focal length. A 70/30 beamsplitter extracts part
of the emitted light to a fast avalanche photodetector
(>5GHz bandwidth). The resulting signal is analyzed
by a high-bandwidth oscilloscope (13GHz).

When the pump of the solitary micropillar laser is
increased from below to above the laser threshold to
a power density value of about 7.6kW/cm2, there is a
transition from practically zero emission to emission
of a train of Q-switched pulses with average power
of some tens of microwatts. This behavior indicates
that the system is excitable below threshold [14, 15].
Excitability in lasers with saturable absorbers has
been experimentally investigated in CO2 lasers [16],
solid-state lasers [17, 18], semiconductor lasers with
integrated saturable absorber (planar or micropillar
structures) [11, 19] and graphene fibre lasers [20]. The
details of the response properties of the micropillar
laser depend on the precise perturbation sent to the
system; for either a coherent or incoherent optical
pulse, the excitable pulse duration has been measured
to range below 200 ps. For a coherent perturbation
(at the cavity resonance wavelength), the amplitude
of the excitable pulse only depends on the optical
pump and not on the perturbation strength, as long
as it is greater than the excitable threshold. The re-
sponse is delayed in a nonlinear fashion with respect
to the input perturbation since the system passes near
a stationary point [21, 22].

We now consider the micropillar laser with an addi-
tional delayed optical feedback. An obvious effect of
the feedback is to reduce the laser threshold; however,
the excitable regime remains. The feedback strength

is fixed such that the lasing threshold Ath is reduced
by 14.6 % with respect to that of the solitary laser,
and the delay τ is 4.88 ns.
Finite pulse trains In the experiment, a pulse is

triggered incoherently by a 80 ps duration optical
pulse at a wavelength close to 800 nm [22]. This
response pulse, at the cavity resonance wavelength,
is reinjected after the delay τ and may trigger a new
pulse. Note that the first pulse in a train has a larger
amplitude because it is triggered incoherently. Fig.
2 illustrates the experimentally-observed pulsing dy-
namics. Panel (a) shows a typical temporal trace:
a train of regularly spaced pulses, with significant
variation of the amplitude, stops after approximately
40×τ . Panel (b) shows the same time trace folded at
the feedback delay time τ . In this pseudo-space map,
the vertical axis represents the number of roundtrips
in the external cavity. The straight line of light in-
tensity, with positive slope, highlights a regular pulse
repetition rate. It is slightly larger than τ , due to the
response time of the excitable laser to a perturba-
tion [21, 22]. Panels (c1)–(c3) present, for three dif-
ferent values of the pump A, log-scale histograms of
the number of pulses in each of 20,000 recorded pulse
trains. They clearly unveils an exponential behav-
ior, whose slope of the logarithmic histograms varies
considerably with A. Panel (d) shows that the natu-
ral logarithm of the associated decay rate ν (related
to the reciprocal of the slope) increases linearly with
A. Importantly, once the train has stopped, it never
starts again from noise: an external perturbation is
required to trigger a first pulse. We conclude that the
laser is bistable, and that the pulsing solution has a
small basin of attraction compared to the off-state.

These observations strongly suggest that the
laser switch-off is a noise-induced process, following
Kramers’ law [23, 24]. Different sources of noise man-
ifest themselves experimentally: quantum noise be-
cause of spontaneous emission processes, and classical
noise due to parameter fluctuations. While the sys-
tem operates with low powers, pump noise is expected
to be dominant. We have checked that polariza-
tion fluctuations inherent to circularly sym-
metric lasers are not responsible for the ob-
served switch-off phenomenon by testing laser
samples where polarization direction is fixed
at the fabrication stage. Moreover, we never
observe a trend of decreasing pulse amplitudes
during an individual pulse train, but rather an
abrupt switch-off event. Therefore, the exper-
imental measurements cannot be explained in
terms of transient pulse trains. The increasing
duration of pulse trains with A can be understood
by recalling that the excitability threshold decreases
when A is increased [21]: the higher A, the easier it is
for the reinjected pulse to regenerate the pulse, and
the less pronounced is the noise sensitivity.
Yamada model with feedback To test these ideas,

we investigate the Yamada model with incoherent
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FIG. 2. Experimental measurements: (a) Typical pulse
train, with finite duration. (b) Pseudo-space mapping
of the time trace (see text). (c) Log-scale histograms of
the number of pulses in 20,000 recorded trains, for pump
currents of 94.4%, 95.4% and 96.5% of the laser threshold
Ath. (d) Logarithm of the corresponding decay rate ν
(scaled to the feedback delay τ) versus scaled pump A.

feedback [10, 25], and the addition of both sponta-
neous emission and pump noise. This model for Q-
switched pulsing lasers is written, in a dimensionless
form, as a system of three differential equations for
the gain G, absorption Q and intensity I:

Ġ =γG(A−G−GI) + ε(t),

Q̇ =γQ(B −Q− aQI),

İ =(G−Q− 1)I + κI(t− τ)

+Rsp(G+ η)2 + F (t),

(1)

where time has been rescaled to the cavity photon
lifetime. The pump A is the main control param-
eter in the experiment. The parameters describing
the laser’s material are chosen to represent the ex-
perimental conditions; they are B = 2 for the non-
saturable absorption, a = 10 for the saturation pa-
rameter, and γG = 5 · 10−4 and γQ = 10−3 for the
carrier recombination rates in the gain and absorption
media, respectively [11, 19]. The delayed term in the
intensity equation describes the incoherent feedback,
with delay τ and strength κ. The spontaneous emis-
sion noise term is proportional to the factor Rsp, and
F (t) = (G+η)

√
2RspIξ(t) is the associated Langevin

force, with white Gaussian noise ξ(t) and the carrier
density at transparency η = 1 [21]. The effect of spon-
taneous emission noise on the carrier density is not
taken into account since pump noise – described by
white Gaussian noise ε(t) with standard deviation nG
– is dominant. Because pulse reinjection by the
external mirror occurs with a random polar-
ization, and in a state where the electric field is

0.6 G +Q 4.8
0

I

120 5

0
1.07 1.42

FIG. 3. Phase portrait of (1) in the (G+Q, I)-plane, for
A = 2.7, Rsp = 0 and nG = 0. Dots are equilibria and
closed curves are periodic orbits. Stable and unstable pe-
riodic orbits are represented in blue (dark grey) and pink
(light grey), respectively; stable and unstable equilibria
are represented in black and grey, respectively.

practicaly zero, there are no phase effects and
the feedback can be modelled as being incoher-
ent. This was supported by showing theoret-
ically that system (1) and a Lang-Kobayashi-
type model show effectively the same dynam-
ics in the excitable regime [10].

Equations (1) form a system of delay-differential
equations (DDEs), that have an infinite-dimensional
phase-space [26]. We used a dedicated solver [27]
for its numerical integration, and the toolbox DDE-
Biftool [28, 29] for continuation of equilibria, periodic
orbits, and their bifurcations in the parameters space.
Bifurcation analysis Since experimental parame-

ters values cannot be estimated easily, the choice
of parameters is motivated by the agreement of the
model dynamics with the experimental observations.
A bifurcation analysis has shown that a wealth of dy-
namics can be found as A, κ and τ are varied [10].
Fig. 3 represents the phase portrait for realistic val-
ues κ = 0.04 and τ = 1000 (corresponding to a feed-
back loop of approximately one metre, with τ much
larger than the pulse duration), and for a range of A
for which the solitary laser is in the excitable regime.
We observe, as in the experiment, the coexistence of
one stable equilibrium with zero intensity and a sin-
gle stable pulsing periodic solution, with period close
to τ . There are also three unstable periodic solutions
and two unstable equilibria.
Influence of noise In the presence of noise, system

(1) becomes a system of stochastic DDEs, and can
only be investigated in simulation. We fix the noise
parameters at nG = 0.025 and Rsp = 10−5 [30]. A
first pulse is triggered by an incoherent perturbation
∆G = 3 on the gain variable. A typical simulated
temporal trace is represented in Fig. 4(a), showing a
pulse train of finite duration. It corresponds to the
stable periodic orbit in Fig. 3, but subject to the
effect of noise. As for the experiment, the representa-
tion of the same data in the pseudo-space map (panel
(b)) shows a slanted straight line. The histograms in
panels (c1)–(c3) highlight the exponential behavior
of the distribution of number of pulses in 5000 trains.
In panel (d), the natural logarithm of the correspond-
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ing decay rate ν increases linearly with A. Overall,
Fig. 4 shows excellent qualitative agreement with the
experimental observations in Fig. 2.
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FIG. 4. Simulation of system (1) with noise: (a) typical
time trace for A = 2.7, nG = 0.025, κ = 0.04 and τ =
1000 and (b) its representation in the pseudo-space map.
(c) Log-scale histograms of the number of pulses in 5000
simulated trains, for three values of A. (d) Logarithm of
ν versus A.

We checked that in the model the noise-induced
escape phenomenon does not depend on the way the
first pulse is triggered: both the value of ν and its
dependence on A are very similar for both an initial
perturbation ∆G on the gain or ∆I on the intensity.
It demonstrates that the system forgets its initial con-
ditions. Hence, the switch-off is a non-deterministic
process, only driven by noise. Moreover, as expected
in a noise-induced escape process following Kramers’
law, an increase of the pump noise level nG results in
shorter pulse trains. We stress that the noise in-
duced escape process takes place between two
different kinds of attractors: an equilibrium
and a periodic orbit. We thus expect a pecu-
liar behaviour of the escape process with re-
spect to the position on the orbit, as we will
evidence below. Interestingly, the escape is only
triggered by pump noise: even an unrealistically
high level of spontaneous emission noise is not,
alone, sufficient to terminate a train. Once the
laser is off, it is highly unlikely to start pulsing from
noise, and an external perturbation is required to trig-
ger a first pulse.
Bias to switch-off To investigate the bias toward

switch-off, we consider the effect of deterministic gain
perturbations on the switching behavior of system
(1), without noise (Rsp = nG = 0). In Fig. 5 (a), dots
represent the amplitude ∆Goff of the minimal (nega-
tive) gain perturbation required to switch off a train,
with respect to the instant when the perturbation is
applied along the periodic orbit. Conversely, the red

line represents the minimal (positive) gain perturba-
tion ∆Gon that triggers a first pulse when the laser is
initially off. This shows that the pulsing laser is par-
ticularly sensitive to perturbations in a small time
window immediately preceding the pulse reinjection
time tR: for t − tR = −15, ∆Goff is 47% smaller
than ∆Gon. After the reinjection, for t − tR = +15,
∆Goff remains still 7% smaller than ∆Gon. The
fact that ∆Gon is always larger than ∆Goff is
enough to explain an asymmetry in the switch
processes. However, in the small time win-
dow immediately preceding the reinjection, a
small amount of noise is sufficient to terminate
a pulse train, while this level is extremely un-
likely to trigger an initial pulse. This explains
the observed strong asymmetry and time de-
pendance of the switch process.

-950 t− tR 200 -950 t− tR 200

-100

I

100

-1

G̃

1

(a)

(b) (c)

-650 t− tR 0 200
0.16

∆
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FIG. 5. Evaluation of noise bias: (a) Minimal gain pertur-
bations ∆Goff (blue dots) and ∆Gon (red line) required
to terminate a pulse train and trigger a first pulse, respec-
tively, versus t − tR, with tR the reinjection time of the
previous pulse. (b)–(c) Net gain G̃ (green lower line) and
intensity I (blue upper line) versus t− tR, for a perturba-
tion ∆G = −0.2 at t − tR = −35 and at t − tR = −850,
respectively.

Physically, this bias toward switch-off can be un-
derstood by considering the effect of perturbations
∆G on the cavity net gain G̃ = (G − Q − 1). The
solitary laser in the excitable regime has been shown
to release a pulse if the applied external perturbation
brings G̃ to a positive value [11]. Although the dy-
namics of the laser with feedback is more complex,
the initiation of a first pulse follows the same rule.
As panels (b) and (c) of Fig. 5 show, a perturba-
tion is then more likely to inhibit the pulse regenera-
tion when introduced just before the reinjection, than
when introduced earlier when the gain G has time to
recover. Once the short time window during which
reinjection occurs has been missed, G̃ is well below
zero and the noise alone is highly unlikely to bring it
above zero. This is of practical interest because the
switch-on process can be controlled reliably even in
the presence of noise.

The amplitude variations observed in Fig. 2(a) and
Fig. 4(a) can be explained similarly. In the solitary
excitable laser, the response amplitude increases with
the energy of the incoherent perturbation [11]. With
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feedback, what is important is the gain recovery when
at reinjection time. If G̃ is increased by noise at that,
even small pulses observed in experiment and simu-
lation can still regenerate the pulse and, hence, not
interrupt the pulse train. The amplitude of the rein-
jected pulse also has an influence on the timing of the
next pulse [22], but this effect makes a small contri-
bution to the timing jitter; see Fig. 2(b) and Fig.
4(b).
Conclusions We have shown that an excitable

micropillar laser with delayed optical feedback sus-
tains trains of optical temporal dissipative solitons.
We demonstrated both experimentally and in simu-
lation that the observed finite duration of pulse trains
results from a noise-induced escape from a stable
periodic solution to a stable equilibrium, following
Kramers’ law. Investigating the underlying dynamics
of the Yamada model provides a theoretical expla-
nation for the strong bias toward switch-off in the
escape process, arising from a pronounced time-
dependence of the noise sensitivity along the
periodic orbit. This work has impacts in the fast
optical control of pulse train duration and for neu-
romorphic regenerative memories [5, 31]. Since the
mechanism for self-pulsations we reported is very gen-
eral and relies only on excitability and self-
feedback, our results might also be of interest to
more general pulsing systems beyond the particular
device studied.



6

[1] P. Grelu and J. Soto-Crespo, “Temporal soliton
“molecules” in mode-locked lasers: Collisions, pulsa-
tions, and vibrations,” in Dissipative Solitons: From
Optics to Biology and Medicine (Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2008) pp. 1–37.

[2] S. Chouli and P. Grelu, Opt. Express 17, 11776
(2009).

[3] F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit,
and M. Haelterman, Nat Photon 4, 471 (2010).

[4] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M.
Kondratiev, M. L. Gorodetsky, and T. J. Kippen-
berg, Nat Photon 8, 145 (2014).

[5] M. Marconi, J. Javaloyes, S. Balle, and M. Giudici,
Phys. Rev. Lett. 112, 223901 (2014).

[6] M. Marconi, J. Javaloyes, S. Barland, S. Balle, and
M. Giudici, Nat Photon 9, 450 (2015).

[7] B. Garbin, J. Javaloyes, G. Tissoni, and S. Barland,
Nat Commun 6, (2015).

[8] J. K. Jang, M. Erkintalo, S. Coen, and S. G. Mur-
doch, Nat Commun 6, (2015).

[9] J. Javaloyes, P. Camelin, M. Marconi, and M. Giu-
dici, Phys. Rev. Lett. 116, 133901 (2016).

[10] S. Terrien, B. Krauskopf, and N. G. R. Broderick,
SIAM Journal for Applied Dynamical Systems 16,
771 (2017).

[11] F. Selmi, R. Braive, G. Beaudoin, I. Sagnes,
R. Kuszelewicz, and S. Barbay, Phys. Rev. Lett. 112,
183902 (2014).

[12] T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes,
R. Kuszelewicz, and S. Barbay, Eur. Phys. J. D 59,
91 (2010), 10.1140/epjd/e2010-00079-6.

[13] S. Barbay, Y. Ménesguen, I. Sagnes, and
R. Kuszelewicz, Appl. Phys. Lett. 86, 151119 (2005).

[14] E. Izhikevich, Dynamical Systems in Neuroscience:
The Geometry of Excitability and Bursting. (The
MIT press, 2007).

[15] B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek,
and M. Wolfrum, Optics Communications 215, 367
(2003).

[16] F. Plaza, M. G. Velarde, F. T. Arecchi, S. Boccaletti,
M. Ciofini, and R. Meucci, Europhys. Lett. 38, 85

(1997).
[17] A. M. Yacomotti, M. C. Eguia, J. Aliaga, O. E. Mar-

tinez, G. B. Mindlin, and A. Lipsich, Phys. Rev.
Lett. 83, 292 (1999).

[18] M. A. Larotonda, A. Hnilo, J. M. Mendez, and A. M.
Yacomotti, Phys. Rev. A 65, 033812 (2002).

[19] S. Barbay, R. Kuszelewicz, and A. M. Yacomotti,
Opt. Lett. 36, 4476 (2011).

[20] B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Ro-
driguez, B. Wu, and P. R. Prucnal, Scientific Reports
6, 19126 (2016).

[21] J. L. A. Dubbeldam, B. Krauskopf, and D. Lenstra,
Phys. Rev. E 60, 6580 (1999).

[22] F. Selmi, R. Braive, G. Beaudoin, I. Sagnes,
R. Kuszelewicz, T. Erneux, and S. Barbay, Phys.
Rev. E 94, 042219 (2016).

[23] H. A. Kramers, Physica VII (1940).
[24] P. Hanggi, Journal of Statistical Physics 42, 105

(1985).
[25] B. Krauskopf and J. J. Walker, “Bifurcation study of

a semiconductor laser with saturable absorber and
delayed optical feedback,” in Nonlinear Laser Dy-
namics (Wiley-VCH Verlag GmbH & Co. KGaA,
2012) pp. 161–181.

[26] D. Roose and R. Szalai, in Numerical continuation
methods for dynamical systems (Springer, 2007) pp.
359–399.

[27] L. F. Shampine and S. Thompson, Applied Numerical
Mathematics 37, 441 (2001).

[28] K. Engelborghs, T. Luzyanina, and G. Samaey,
DDE-BIFTOOL v. 2.00: a Matlab package for bifur-
cation analysis of delay differential equations, Tech.
Rep. (Department of Computer Science, KU Leuven,
Leuven, Belgium, 2001).

[29] J. Sieber, K. Engelborghs, T. Luzyanina, G. Samaey,
and D. Roose, DDE-BIFTOOL v. 3.1 manual—
bifurcation analysis of delay differential equations,
Tech. Rep. (http://arxiv.org/abs/ 1406.7144, 2015).

[30] G. P. Agrawal and N. K. Dutta, Semiconductor
Lasers, Electrical Engineering (Van Nostrand Rein-
hold, 1993).

[31] B. Romeira, R. Avó, J. M. L. Figueiredo, S. Barland,
and J. Javaloyes, Scientific reports 6 (2016).


