
HAL Id: hal-03796079
https://hal.science/hal-03796079

Submitted on 4 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Between Design and Implementation of Multi-Agent
Systems: A Component-Based Two-Step Process

Victor Noël, Jean-Paul Arcangeli, Marie-Pierre Gleizes

To cite this version:
Victor Noël, Jean-Paul Arcangeli, Marie-Pierre Gleizes. Between Design and Implementation of Multi-
Agent Systems: A Component-Based Two-Step Process. 8th European Workshop on Multi-Agent
Systems (EUMAS 2010), EURAMAS, Dec 2010, Paris, France. pp.1-15. �hal-03796079�

https://hal.science/hal-03796079
https://hal.archives-ouvertes.fr


Between Design and Implementation of
Multi-Agent Systems: A Component-Based

Two-Step Process

Victor Noël, Jean-Paul Arcangeli, and Marie-Pierre Gleizes

Institut de Recherche en Informatique de Toulouse
Université de Toulouse

118, route de Narbonne, 31 062 Toulouse Cedex, France
{victor.noel,jean-paul.arcangeli,marie-pierre.gleizes}@irit.fr

Abstract. In order to ease the development of Multi-Agent Systems
(MAS), we propose a two-step process named SpEArAF (Species to En-
gineer Architectures for Agent Frameworks) that aims to facilitate the
transition between design and implementation and to promote reuse. The
idea is to build, in the first step, a specialised and reusable framework
(a programming library) that fits the application requirements, particu-
larly concerning the agents and their interaction abilities. In order to do
that, application-specific “species” of agents are defined, then realised as
architectures in a component-based manner, and finaly implemented by
either programming new components or reusing existing code. This step
defines “how” agents work and is done in order to provide adequate pro-
gramming abstractions depending on the ability and skills of the end-user
developer. In the second step, end-users implement the MAS by defining
application-level behaviours of agents via the dedicated programming
mechanisms at the level of abstraction provided by the framework. This
step defines “what” agents do to realise the functionality of the MAS. In
practice, SpEArAF relies on Make Agents Yourself (MAY), a tool
integrated into Eclipse, supporting the description of species of agents
and their transformation into executable agents implemented in Java.

Keywords: MAS engineering, process, detailed design, implementation,
framework, reuse, separation of concerns, components

1 Introduction

MAS are complex systems that are composed of interacting and possibly hetero-
geneous agents. Their development requires appropriate tools (methodologies,
development environments, programming languages. . . ) in order to cope with
this complexity. The more the development tools fit with the application and
with the developers’ programming abilities, the more developers can concentrate
on “what” their system does instead of “how” it works: in which case development
is facilitated and the produced software is easier to maintain. In complement,
reuse of pieces of code and facilities for code composition are often suitable.



2 V. Noël, J.-P. Arcangeli, M.-P. Gleizes

Motivation. When implementing MAS, developers must fill the gap between
the agent platform they chose and the agents of their application: many plat-
forms (often realised as programming frameworks) have been proposed (Jade,
Jadex, AgentScape, Jason, MadKit, CArtAgO, NetLogo, Repast, PDT. . . ), some
of them specifically for agent-oriented methodologies (Tropos, Prometheus, In-
genias, Passi, SODA, IODA. . . ), or theoretical models (MASQ, A&A. . . ). The
main problem is how the agent concepts (“agent”, “interaction”, “communica-
tion”, “adaptation”. . . ), necessary for the application and used to describe the
agents, are defined and provided by the chosen platform and its programming
model. Most of the time, developing a MAS results in the chosen platform being
tightly coupled to the used design methodology, or worse, in agents designed to
target an existing agent platform. But in reality, depending on the application,
different “species” of agents are needed, whether by the way they perceive, act,
communicate or by the way they are “anatomically” organised to behave, decide
and react to external stimuli: an agent controlling a mobile robot tracking tar-
gets by camera does not need the same capabilities and interaction mechanisms
with its environment than a grid mobile agent solving constraint-based problems
in a distributed computing context.

For example, programming the behaviours of like-ant agents that use coordi-
nation by stigmergy demands high-level mechanisms such as moving, depositing
or scenting pheromones in a virtual space. If the development relies on a platform
like Jade [1], stigmergy must be implemented through message passing, which
can be considered as too low-level in this case. If the chosen platform is NetLogo
[17], implementation of stigmergy is facilitated (through the use of the “patches”)
but no advanced mechanism for direct communication is available. In both case,
the implementation is complicated, the volume of the code is increased, reuse
is made difficult and the gap between the “species of agent” proposed by the
platform and those of the application only burdens the developer with different
concerns mixed together. The same problems appear in the “anatomy” of the
agent: (i) a reactive agent like an ant will need different “organs” than a pro-
active agent with a BDI architecture, but also (ii) managing the execution of
the tasks of a goal-based agent behaviour is different than expressing the goals,
beliefs and reactions to stimuli of the agent.

Existing design methodologies provide guidance to develop MAS by identi-
fying agents and environment, as well as designing their behaviours and inter-
actions: their objective is mainly on the functionality of the MAS through the
definition of agents. They often focus on some specific species of agents and/or
agent platforms (e.g. Passi, Ingenias for FIPA agents, Tropos for Jadex, etc.).
They can also provide tools and models to implement the MAS, but focus on the
implementation of the behavioural part of the agents (goal-based, BDI, subsump-
tion, etc.) that have to be (or is) included in an existing agent platform. When
the resulting implementation is put in a specific software environment (the final
application), more work has to be done by the developer to integrate it with
the domain artifacts such as GUIs (per agent or per MAS), sensors, databases,
schedulers but also domain-specific MAS environment.



A Component-Based Two-Step Development Process for MAS 3

We are missing a way to build, with reusability in mind, these platforms
for the MAS and the agents in order to be able to implement such application-
specific species of agents used in methodologies. Moreover, to be able to separate
the code which uses the high-level (domain-specific) mechanisms from the code
which realises them seems to be a desired advantage in terms of development.
Thus, the following proposition focuses on this orthogonal concerns of building
a platform for specific species of agents that can be completed with behaviours
coming from design methodologies.

Proposition. Bridging the gap between analysis and implementation is a key
challenge for the MAS community [3]. To complete methodologies that focus
on designing the functionality of a MAS and instead of proposing another more
or less generic agent platform, we propose SpEArAF, a development pro-
cess that promotes the engineering of application-specific frameworks to realise
agent platforms for the development of multi-agent applications. Such frame-
works provide what we call “species of agents”: species define sets of agents
with common structural characteristics. By defining species, the idea is to
provide specific types of agents that fit functional requirements: developers can
rely on species both when designing and implementing the MAS (the expression
of “what” agents do), they don’t need to deal with operational concerns (“how”
agents do) and can focus on the agent’s functional behaviours.

Component-based software engineering aims at building software by compos-
ing independently developed and reusable pieces of software, with well-specified
interfaces and dependencies, called software components [14]. It promotes sepa-
ration of concerns and definition of clear, composable, and reusable abstractions.
This work is part of a larger study on the possible links between component and
agent technologies. Here, we aim at assisting framework developers in the use of
component-based technologies for MAS development while taking into account
general and agent-oriented software engineering concerns such as flexibility, au-
tonomy or adaptation. We thus propose a development process that enables the
realisation of species of agents by designing software architectures (“anatomy”)
composed of software components (“organs”) by identifying a species of agent
corresponding to the requirements for the agents of the application and assem-
bling components (implementation or reuse) in architectures for agents to create
a framework. In this way, the level of abstraction and expressiveness of the pro-
duced framework can be adjusted depending on the expertise of the targeted
user of the framework (i.e. the developer of the application).

This work has been used for biological simulation [2] (cells that divide, mu-
tate, die and communicate by exchange of molecules), dynamic ontology con-
struction [13] (self-organising term agents creating ontological relations) and
naval surveillance [8] (agents representing real boats computing a threat level).
It is currently applied in French national projects on distributed robotics for cri-
sis management (Rosace1) and multi-agent simulation for environmental norms
impact assessment (MAELIA2). Early results of integrating this approach with
the ADELFE design methodology already exist [12].
1 http://www.irit.fr/Rosace,737
2 http://www.iaai-maelia.eu/



4 V. Noël, J.-P. Arcangeli, M.-P. Gleizes

The interested reader can find in the present proceedings an illustration of
SpEArAF for the development of a framework for adaptation of workflow ser-
vices composition using an agent-oriented organisation model [9].

Outline of the paper. In Sect. 2, we present the two-step development pro-
cess SpEArAF that aims to describe component-based agent architectures as
a mean to realise species of agents dedicated to an application. Then Sect. 3
presents the µadl description language, the translation from µadl to a class-
based object-oriented programming language to make the implementation of the
architectures possible, and MAY, a set of model-based tools with adequate edi-
tors and generators for Java. In Sect. 4, one simple and one real world examples
are presented. Finally, related work is discussed in Sect. 5, then conclusions and
some interesting perspectives are presented in Sect. 6.

2 SpEArAF: Architectures and Frameworks for Species of
Agents

We now present SpEArAF (Species to Engineer Architectures for Agent Frame-
works) the development process that, as said before, has not for objective of
helping the design of a whole MAS, but precisely to help the realisation of a
framework used to implement the MAS designed.

Species of Agents
Requirements
(from Design)

Framework
Developer

Framework
Implementation

MAS
Developer

MAS Implementation
Using Framework

Dedicated
Framework

Final
Application

Dedicated
Framework

Framework
Developer

Framework
Implementation

Framework
Developer

Species of Agents
Requirements
(from Design)

Abstract Architecture
(Java)

Component Descriptions
(Java)

Dedicated Framework
(Jar)Extraction From

Requirements

Architecture Description
(µADL)

Architecture Code
Generation

Operational Components
Implementations

(Java)

Species of Agents
Implementation

Agent Factory
(Java)

Packaging

Components Descriptions
(µADL)

Agents
implementation

Functional Components
Implementations

(Java)

Application
(Java)

MAS
Developer

Packaging

Component Description
Code Generation

Final Application
(Jar)

Fig. 1. A Simple View of SpEArAF

Figure 1 shows the proposed development process where we distinguish the
following steps: 1) creation of a framework by the framework developer and
2) use of this framework to develop the MAS by the framework user. Indeed,
when programming the MAS, hotspots in a produced frameworks can be in-
stantiated (possibly with sub-architectures) by the framework user to define the
behaviour of the agents. For that, he uses a set of agent-oriented and application-
specific programming primitives defined by the framework developer.

In order to do that, the main concern is to build a framework answering the
requirements of the stakeholders to describe the agents of the application. Here
stakeholders are the framework users, i.e. the MAS designers (define the species
of agents and design the system as a whole) and final developers (implement the
agent behaviours), as well as the different persons involved with the application
itself as in classical architectural approaches. Such requirements (the species of
agents) will be expressed as:
1. the description of theMAS infrastructure, environment and interaction means;
2. the description of the dynamics of the agent, such as the way external stimuli

are handled internally and how to interpret, process, decide and act;



A Component-Based Two-Step Development Process for MAS 5

3. the set of programming primitives — or dedicated language — that will be
used to express the behaviour, with respect to the dynamics of the agent.
Thus, such requirements could possibly come from the analysis and design

phase of an agent-oriented software engineering methodology where the environ-
ment, the agents and their behaviours would have been identified.

2.1 Building a Dedicated Agent Framework
As said in the introduction and in line with previous works on the Agentϕ ap-
proach [10], in order to enable easy reuse and composition of the developed
artifact, SpEArAF relies on component-oriented architectures and code genera-
tion. Here, software components are a way to provide different mechanisms, the
organs of our agents, to framework developers in a reusable and composable way.
Practical realisation of these components and architectures is detailed Sect. 3.

Based on the targeted species of agents, the production of a framework can
be divided in the following steps:
1. identifying action-perception means (communication included) used by the

agent to interact with its environment and other agents
→ a set of action-perception components that immerse agents into the MAS

2. identifying the programming primitives that the framework user will use to
program its agents
→ a set of behaviour components with high-level and dedicated required and
provided interfaces that will hide the implementation of the services

3. building the anatomy realising the species and enabling the execution of the
previously identified behaviour components
→ a set of organ components implementing the dynamics of the agent
→ an architecture with organ, action-perception and behaviour components

4. building an infrastructure for executing the agents and connecting them to
their (runtime and MAS) environment

Typically, organ components implement lifecycles, adaptation, GUI, capabilities,
knowledge management etc. Action-perception components implement sensors,
actuators, messages passing and other interaction means. Infrastructure imple-
ment environment such as 2D plan, extra-agent organisation dynamics, but also
scheduling, distribution, visualisation GUI, etc. Finally, behaviour components
are left to be implemented to express behaviours, interpretation of perception. . .

2.2 Exploiting a Dedicated Agent Framework
At the end of the previous phase, we end up with new reusable components
and an application-specific framework composed of reused and produced com-
ponents. The framework user is responsible of using the produced framework
and components to implement the behaviours of the agents based of the design
of the MAS. The idea being that this phase can only focus on defining behaviours
without being bothered with low-level technical mechanisms.

Moreover, an important point of this approach is developing for reuse and
not only by reuse. In particular, an objective is to be able to produce frameworks
(i.e. species or architectures) that can be reused completely or partly to produce
different applications relying on the same species of agents. For example reusable
components could be produced and reused by the designers and developers of a
specific methodology.



6 V. Noël, J.-P. Arcangeli, M.-P. Gleizes

3 Applying SpEArAF: Languages and Tools
In this section, we present the µadl description language to describe components
and architectures, the translation from µadl to Java and tools such as an edi-
tor for this language and a generator implementing the translation. Integrating
all of this results in the complete development process for detailed design and
implementation of MAS shown Fig. 2.

Species of Agents
Requirements
(from Design)

Framework
Developer

Framework
Implementation

MAS
Developer

MAS Implementation
Using Framework

Dedicated
Framework

Final
Application

Dedicated
Framework

Framework
Developer

Framework
Implementation

Framework
Developer

Species of Agents
Requirements
(from Design)

Abstract Architecture
(Java)

Component Descriptions
(Java)

Dedicated Framework
(Jar)Extraction From

Requirements

Architecture Description
(µADL)

Architecture Code
Generation

Operational Components
Implementations

(Java)

Species of Agents
Implementation

Agent Factory
(Java)

Packaging

Components Descriptions
(µADL)

Agents
implementation

Functional Components
Implementations

(Java)

Application
(Java)

MAS
Developer

Packaging

Component Description
Code Generation

Final Application
(Jar)

Fig. 2. A Complete View of SpEArAF

3.1 µadl: Components and Architectures
In µadl, agent architectures are described using two constructs using:
– components, at description and implementation, for separation of concerns;
– two levels, operational and applicative, respectively what will be part of

the dedicated agent framework (mainly organ and action-perception compo-
nents) and what will need to be implemented to program the agents (be-
haviour components).

In this section, the µadl language is presented, then we show how it answers
software engineering requirement such as re-usability, evolution, safety but also
agent concerns such as autonomy or self-adaptation.

Components. Our proposition introduces a simple component model where
components are specified using a description (what is achieved by the compo-
nent) and can have several implementations (how it is achieved). Furthermore,
they are kept decoupled (in terms of implementation) from any architecture and
are the units of adaptation.

More technically, a component has a name and is living in a flat global names-
pace (hierarchical naming based on the Internet domain names as in Java). A
component description provides operations, which are identified by a name, a



A Component-Based Two-Step Development Process for MAS 7

return type and typed parameters. It also has requirements over the architec-
ture into which it will be used: currently a component can require that some
operations must be present or that it must be able to change at runtime the im-
plementation of another component of the architecture (see Sect. 3.2). Finally, it
can specify a persistent (typed) state that must be kept when its implementation
is dynamically changed.

In all these descriptions, we consider that components and operations names
as well as types denotes the specification of their semantics (like with interface
and methods names and types in Java).

Some descriptions for the example components from Sect. 4 are shown Figs. 3(b),
3(c) and 3(d).

architecture SimpleAgent {
package my.archs.simple

operational {
Message
LifeCycle
Executor

}

application {
changeable Behaviour

}

visibility {
external receive(m: Msg)
application send(a: Agent, m: Msg)
application me(): Agent
application suicide()

}
}

(a) Architecture

component Behaviour {
package my.comps.simple

provided step(m: Msg)
required send(a: Agent, m: Msg)

}

(b) Behaviour Component

component LifeCycle {
package my.comps.simple

required step(m: Msg)
required getNextMsg(): Msg
required execute(r: Runnable)

}

(c) LifeCycle Component

component Stigmergy {
package my.comps.ants

provided deposit(quantity: Int)
provided scent(): Int
required myPosition(): Position

}

(d) Stigmergy Component

Fig. 3. Descriptions in µadl

Architectures. An agent architecture realises a species of agents by connecting
components. It is separated in two levels: operational and applicative.

In each of the two levels, used components are referenced by their name.
It must be noted that contrary to most of component models, components op-
erations are not connected together by hand but autowired by the architecture
(conflicts are not currently handled, aliasing of operations is a possible solution).
In the architecture, it is specified if components are replaceable at runtime (with
the construct changeable), if some operations are available at the application
level, and if some operations are available from outside of the agent (with the
construct external).

Description for the architecture of the species of agents of the example in
Sect. 4 is shown Fig. 3(a).

Infrastructure. The infrastructure where the agents are executed results from
the action-perception components of the agents and the use of the external



8 V. Noël, J.-P. Arcangeli, M.-P. Gleizes

operations of their architectures. This special construct is used to access to an
agent from the infrastructure and can be considered as an interface provided
by the agent. Thus, the infrastructure itself (infrastructure and environment
components) as well as the glue between the agents and the infrastructure has
to be implemented in an ad-hoc way, i.e. hidden in the implementation of the
action-perception components.

So, currently, only the agent level is addressed from an architectural point of
view, but our next step is to consider environments and mechanisms for inter-
action as first class entities (components) in the spirit of [16].

3.2 Software Engineering Concerns

Benefiting from the advantages of component-based architectures, we are able
to check that every required operation is provided by exactly one component in
the architecture, i.e. that the architecture is consistent. So, when implementing
components, the required operations are always provided. More generally, to use
architectures allows to reason on the built system, which is not our concern here.

Flexibility. Moreover, components enable adaptation at development time (soft-
ware evolution) by choosing different component implementations for different
needs. The simplest example is to use the same agent architecture for different
behaviours, but more interesting application of static adaptation is for prototyp-
ing (simplified implementation of components), simulation (before deployment
on real hardware: only the operational components implementations change),
debugging (components with and without tracing). . .

Self-Adaptation. Furthermore, providing self-adaptation mechanisms to the
agents can be accomplished by using the replacement of component implemen-
tations at runtime (dynamic adaptation). A simple case is when several possible
behaviours for an agent are managed by the agent itself; but it can consist in
the self-replacement of the reasoning process depending on the context, or the
upgrade of a component with bugs.

Because architectures are consistent, self-adaptation is safe and the archi-
tecture consistency can’t be disturbed as long as component implementations
respect their description (which is what they can only do to be compilable).

Autonomy. Two aspects of the autonomy of agents are addressed by this ap-
proach. First, because the architectures encapsulate the components, agents keep
the control of their inside, which is made accessible only through external opera-
tions. Besides, autonomy of execution is answered by the fact that the scheduling
of the agents is implemented by components: it allows to choose, depending on
the species to be realised, how agents are executed and thus what are their life-
cycles. For example, a thread could run inside the agent, but on the opposite,
scheduling could also be done by an external engine (e.g. for simulation purpose).

Usability. Programming the agent relies on dedicated agent framework, which
is a set of classes corresponding to the implementation of the architecture and
the components of the operational level forming together a specialised architec-
ture (frozenspots). Using a framework consists in implementing the remaining



A Component-Based Two-Step Development Process for MAS 9

components (hotspots) at the convenient level of abstraction (application level)
and plug them in the provided specialised architecture. Finally, at runtime, an
agent is an executable instance of a µadl architecture where all components
have been implemented.

3.3 Generating Dedicated Agent Frameworks
We detail here how architectures and components are translated to Java to
answer the previously presented soft-engineering concerns.

Translation. Our approach relies on the following automatisable translation
from µadl to a class-based object-oriented programming language. This exploits
the type system of the language and well-known design patterns [6].

The basic principle of this translation is that an architecture description is
translated to a class that links the implementations of its components without
preventing their independence from any architecture.

Technically, each component description is translated to an abstract class
with abstract public methods corresponding to the provided operations. This
class will be extended to write an implementation of the component description.
Each class also has an attribute that gives it access to the required operations,
without connecting them directly (Bridge Pattern). To handle persistent state,
a class representing a common data structure for the state is generated and ab-
stract methods to get and set the state are added to the component description.

Each agent architecture is translated to a class that contains an attribute
for each of its components: it connects them and is responsible for applying the
dynamic adaptation (Mediator Pattern). In particular, dynamic replacement of
component implementation is automatically done by getting the persistent state
of the old component and setting it in the new one. Finally, a class, which
represents the agent in theMAS, provides external methods using public methods
(Facade Pattern).

To create an agent, a framework provides a factory for the specialised ar-
chitecture (Factory Pattern) with some fixed component implementations and
holes (hotspots) for the others.

Consistency Preservation. Always with safety in mind, the properties and
advantages of agent architectures descriptions are preserved at the code level, in
particular for adaptation and safe calls to required operations. Our solution does
not use error-prone solutions such as XML or string interpretation at runtime to
define architectures but relies on the type system of the host language. It insures
that, at every step of development, consistency of the architecture is preserved
(see also Sect. 3.2). The agent architecture is set at compile time and the only
possible runtime modification are architecturally safe.

3.4 Make Agents Yourself
To validate these propositions and experimentally apply them, we developed and
released Make Agents Yourself (MAY)3. It provides textual and graphical
editors for the µadl language to define components and architectures, a tool to
3 http://www.irit.fr/MAY



10 V. Noël, J.-P. Arcangeli, M.-P. Gleizes

generate the corresponding classes needed to implement agents in Java and a
factory creator to automatise the creation of dedicated framework. The textual
editor also features error highlighting and completion, while the graphical focus
on drag-and-drop architecture building. From the tool users point of view, all
these pieces are integrated in the Eclipse IDE around a new file type recognised
by Eclipse and its facilities to program Java classes.

Technically, descriptions and their transformation to other representations
are typical applications of model-driven engineering. Thus, we used a meta-
model to define the way components and agent architectures are described, model
editors to instantiate it and model transformation to generate the code. All of
this is relying on the Eclipse Modeling ecosystem. The textual editor was realised
using TMF Xtext, while the graphical is based on GMF. Constraints to check
the consistency of the descriptions are developed with TMF Xcheck and code
generation with TMF Xpand.

4 Examples

We show here two examples. The first one is simple and has for objective to show
how the µadl language is used andhow components are developed to produce a
dedicated agent framework. The second one is taken from a real research project
and is focused on illustrating the process itself. The website of MAY provides
other complete examples.

4.1 Simple Stigmergic Agent

We show now a simple example of communicating agent then complicate it by
adding movement and stigmergy in a virtual space. We build common agent
components from scratch to show how our proposition handles MAS concerns.
We want to build agents complying to the following species of agent: capable
of sending and receiving messages, processing them one at a time to react. The
behaviour should be implementable by defining a method that takes a message
as input and that can use the send primitive.

First we write a component description for the behaviour (Fig. 3(b)): it pro-
vides step(m: Msg) and requires send(a: Agent, m: Msg); and a component for
lifecycle (Fig. 3(c)): it requires getNextMsg(): Msg, step(m: Msg) and execute(r:
Runnable). Then, we write an architecture description stating that it must have
a component behaviour in its application level as well as a component lifecy-
cle in its operational level. Using the editors provided by MAY, an error in-
forms us that the dependencies getNextMsg(): Msg, send(a: Agent, m: Msg) and
execute(r: Runnable) are not present in the architecture. We thus write a de-
scription for a messages component providing both first and an executor compo-
nent providing the latter. We add it in the operational level of the architecture:
the architecture is now consistent. Lifecycle and executor are organ components
and messages is action-perception component.

We generate the corresponding Java classes (component description and
agent architecture) using MAY. First we implement the lifecycle, see Fig. 4,
implementing the definition of the dynamics of the species of agent: in a loop
executed by the executor, take a message in the mailbox (which blocks if there



A Component-Based Two-Step Development Process for MAS 11

is no message) and treat it with the behaviour. The executor component im-
plements the execute(r: Runnable) by running a task in a thread. Then, for
the messages component, we first need to write the class Agent: its purpose is
to encapsulate a reference to an agent architecture to keep it hidden from the
user of the framework. To pass a message to an agent from the outside, it needs
an entry point: we add receive(m: Msg) to the message component description
and specify it as external in the architecture. We regenerate the corresponding
classes and implement the method send(Agent ag, Msg m) with ag.receive(m).

class LifeCycle extends CompLifeCycle {
private boolean alive = true;
public void start() {

execute(new Runnable() {
public void run() {

while (alive) {
Msg m = getNextMsg();
step(m);

}}});
}
public void suicide() { alive = false; }

}

Fig. 4. Implementation for LifeCycle

Finally, we create a factory that spe-
cialises the agent architecture with the
implementation of these two components.
We can export this set of classes to make
a deliverable framework for this species of
agent. To program this species of agent,
one needs to create a class implement-
ing the behaviour component using the
required operations, and create an agent
using the factory.

Evolution. Now we want to add move-
ment and stigmergy in a virtual 2D space. This requires to add a compo-
nent for movement (in 4 directions) and a component for stigmergy (deposit
and scenting of pheromones) to the architecture and required operations to
the behaviour. The movement component provides move(d: Direction) and
myPosition(): Position. The stigmergy component provides deposit(qty: Int)
and scent(): Int and requires myPosition(): Position. In the architecture only
move(d: Direction), deposit(qty: Int) and scent(): Int are available to the
application level while the behaviour component now requires these 3 opera-
tions. The implementation of the movement component will be given an object
shared by agents representing the 2D space, while the stigmergy component will
have its own. Stigmergy and movement are action-perception component and en-
capsulates the infrastructure that will be made of the 2D plan and pheromones
dynamics.

Implication for Reuse. The executor, message and movement components
can be used in any architecture, the lifecycle component can be used in any ar-
chitecture with any components providing getNextMsg(): Msg and step(m: Msg)
and the stigmergy component only needs myPosition(): Position to be provided.
At description and development time, the only software dependency between the
movement and stigmergy components is the class Position, and between message
and lifecycle the class Msg. Of course, the produced framework itself is usable in
different applications that use this species of agents.

4.2 Real World Example

We show now an example of the application of SpEArAF to answer the require-
ments expressed in the Rosace project. The objective of one of the subgroup of



12 V. Noël, J.-P. Arcangeli, M.-P. Gleizes

the project is to evaluate different multi-agent strategies for dynamic task allo-
cation between a group of autonomous robot. The chosen solution relies on the
use of the Morse OpenRobots simulator4 where robots are controlled by agents.
After dialogue with the partners, the expressed requirements were the following:
1. build a framework to allow agents to control simulated robots;
2. build different anatomies of agents depending on the strategies;
3. deliver theses to the different research groups for them to experiment their

strategies with different parameters and behaviours.
We will cover here the first requirement. From this point of view, the dedicated
language (with its dynamics) to program the agent contains the following:
– primitives to consult the reachable robots by radio, send them messages as

well as consult the received messages;
– primitives for consulting the objects visible by the robot with its camera, its

GPS position, its orientation;
– primitives to move the robot following a path as well as events to be notified

of the arrival at the different point of the path (using callback);
– primitives to execute concurrent tasks;
– a queue to store the received messages by radio.

<<component>>
Robot

<<component>>
GPS

<<component>>
Compass

<<component>>
Movement

<<component>>
Camera

<<component>>
Radio

<<component>>
Executor

<<component>>
MessageQueue

<<component>>
Behaviour

follow path

neigbours

get visible objects

get position

get orientation

get

execute task

put

send

get msg

receive

Visual Paradigm for UML Community Edition [not for commercial use] 

Fig. 5. Architecture of the Species of Robot

This species of agents requirements corresponds to the definition of a set of
interfaces as well as the definition of the anatomy of agent depicted Fig. 5. The
action-perception components are GPS, Compass, Camera, Movement and Radio.
They implements the bindings between the agents and the simulator. The inter-
nal anatomy (organ components) is made of the MessageQueue and Executor.
Finally Behaviour is a behaviour component that will contains the behaviour of
the robot exploiting the presented primitives.

This architecture can then be used by the different research groups to imple-
ment their specific species with their anatomy by replacing Behaviour.

5 Related Work
In this section, we focus on works at the same level than ours, i.e. the gap
between design and implementation, not on methodologies, specific species of
4 http://morse.openrobots.org



A Component-Based Two-Step Development Process for MAS 13

agents or behavioural models: indeed, as said before, design methodologies and
their associated tools help the developer to design and implement the behaviours
of its agents in one continuous way by relying on an (eventually) existing agent
framework. Inversely, our approach focuses on building an agent framework it-
self by explicitly separating this step from the behaviour definition in order to
produce a framework adapted to the problem and the developer. In this sense,
our approach is orthogonal to the focus of current agent-oriented methodologies.

Modular and implementation-independent design at the agent level has been
proposed with the Generic Agent Model (GAM) [4]. The GAM is an high-level,
abstract, and component-oriented pattern of agent that defines the essential
generic parts of an agent: six interaction and internal components. The GAM
can also be reused by specialisation and refinement, but entirely at the charge
of the designer. In some sense, the authors propose a very generic agent model
(without separation of level) while we advocate for the description of a very
specialised one that is delivered after generation.

Several research works concern implementation of agents by means of soft-
ware components. MALEVA [5] is a model of software components for the build-
ing of complex behaviours of agents by composing elementary ones. MALEVA
targets the applicative level while we focus mainly on the operational one. Mag-
ique [11] is a platform which permits the construction of agents by gathering
reusable units of code representing skills. The set of skills of an agent can change
dynamically but the availability of skills at runtime is not guaranteed. In our
current solution, it is not possible to change a component that doesn’t exist:
dynamic adaptation is constrained in exchange for safety.

Closer to our work, authors of [7] propose to use Aspect-Oriented Software
Development as a means to define cross-cutting concerns and provide them
through components to easily integrates different concerns without modifying
the others. Cross-cutting interfaces inverses the dependencies of the component
and enables components to be more flexibly composed. Our work focus more on
building architectures by integrating different mechanisms that would be used by
the framework user of the behaviour than building a behaviour as the result of
the composition of the mechanisms. More globally, we want to build frameworks
by separating its development from its use by non-experts.

For this last concerns, [15] proposes a complete framework to build situated
MAS where holes, called hot-spots, are left to be implemented by the framework
users by relying on provided parts, called frozen spots. In a way this solution is
close to ours by simplifying the development of MAS at the programming level,
but it only provides a more or less generic species of agent. In fact, this frame-
work could exactly be a dedicated framework produced with our proposition:
frozen spots would be operational components and hot-spots applicative compo-
nents. Using our solution would have added the possibility of reuse of existing
components and generation of specialised versions of this framework depending
on the application.

6 Conclusion and Perspectives
The global objective of our work is to facilitate the development of MAS. Our
proposal relies on the use of software components for their advantages in separa-



14 V. Noël, J.-P. Arcangeli, M.-P. Gleizes

tion of concerns, reuse, composability and safety. In order to fill the gap between
design and implementation of MAS, we have introduced a development process
named SpEArAF based on the realisation of species of agents by component-
based software architectures that are specifically designed for an application. Ar-
chitectures are consistent (an operation required by a component is provided by
another one). Organ and action-perception components realise sensors, effectors,
lifecycle, and other basic mechanisms of the agent while behaviour components
realise the logic of the agent.

The development process is split in two steps which can be carried out by
different engineers with different ability and skills. The µadl language as well as
adapted tools are provided to help them to apply the process. Dedicated agent
frameworks that fit requirements of applications can be generated from agent
architectures and delivered to MAS final developers, which can benefit from the
adequacy and clean abstraction that the framework provides. Connecting com-
ponents in an architecture is pretty fast and easy, and can be done each time
a specific species of agent is needed. Additionally, the consistency of the archi-
tectures is preserved at every step of the development process: when generating
a framework, when implementing agents, and at runtime when an agent adapts
itself by replacing one component by one another.

A framework is a set of classes in an object-oriented language, currently Java.
In our opinion, the use of Java and well-tried technology such as components
can foster a smooth integration of the agent-oriented paradigm in the software
industry thanks to the small amount of new programming concepts needed to be
learnt by the final developers. Coupled with a repository of common components,
the development experience of MAS can be improved and the development effort
can focus on the problems it has to tackle, that is on “what” agents do rather
than on “how” they do it. We also hope this approach can enable reuse and share
of works in the MAS community.

To apply the process, we presented tools allowing for the description and
implementation of agents in an integrated environment based on Eclipse. Exper-
iments are currently done in the context of several projects in different domains.

For the future, we see different research directions to follow. First, to realise
species of agents and address agent-oriented concerns, our next step will be to
make possible to define and implement environments and mechanisms for inter-
action as components instead of hiding it behind internal components. Then,
we aim at perfecting the component and architecture model we use to allow for
better composition and adaptation, in particular current developments focus on
providing a more advanced description language with hierarchical components
and interface bindings. Finally, more work is needed to be in line with a com-
plete development process, either by integrating our proposition with different
methodologies or by exploiting facilities of programming languages. Of course, in
parallel to these goals, we are willing to improve the tools as well as to propose
a mature library of components for common agent mechanisms.



A Component-Based Two-Step Development Process for MAS 15

References

1. Bellifemine, F., Poggi, A., Rimassa, G.: JADE - A FIPA-Compliant Agent Frame-
work. In: Proceedings of International Conference on the Practical Applications of
Intelligent Agents. pp. 97–108 (1999)

2. Bonjean, N., Bernon, C., Glize, P.: Engineering Development of Agents using
the Cooperative Behaviour of their Components. In: Fortino, G., Cossentino, M.,
Gleizes, M.P., Pavon, J. (eds.) MAS&S @ MALLOW’09, Turin. vol. 494. CEUR
Workshop Proceedings (2009)

3. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.): Multi-Agent
Programming: Languages, Platforms and Applications, Multiagent Systems, Arti-
ficial Societies, and Simulated Organizations, vol. 15. Springer (2005)

4. Brazier, F.M.T., Jonker, C.M., Treur, J.: Compositional Design and Reuse of a
Generic Agent Model. Applied Artificial Intelligence Journal 14, 491–538 (1999)

5. Briot, J.P., Meurisse, T., Peschanski, F.: Architectural Design of Component-
Based Agents: A Behavior-Based Approach. In: Bordini, R.H., Dastani, M., Dix,
J., Fallah-Seghrouchni, A.E. (eds.) ProMAS 2006. LNCS (LNAI), vol. 4411, pp.
71–90. Springer (2007)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements
of Reusable Object-Oriented Software. Professional Computing Series, A. Wesley
(1995)

7. Garcia, A., Lucena, C.: Taming Heterogeneous Agent Architectures with Aspects.
Communications of the ACM 51(5), 75–81 (2008)

8. Georgé, J.P., Mano, J.P., Gleizes, M.P., Morel, M., Bonnot, A., Carreras, D.: Emer-
gent Maritime Multi-Sensor Surveillance Using an Adaptive Multi-Agent System.
In: Cognitive systems with Interactive Sensors (COGIS), Paris. SEE/URISCA
(November 2009)

9. Henrique Cruz Torres, M., Noël, V., Holvoet, T., Arcangeli, J.P.: MAS Organisa-
tion at your Composite Service. In: EUMAS’10 (December 2010)

10. Leriche, S., Arcangeli, J.P.: Flexible Architectures of Adaptive Agents: the Agent-φ
approach. Tech. Rep. RR-2008-11-FR, IRIT (April 2008)

11. Mathieu, P., Routier, J.C., Secq, Y.: Dynamic Skills Learning: A Support to Agent
Evolution. In: AISB’O1, Symposium on Adaptive Agents and Multi-agent Systems
(2001)

12. Rougemaille, S., Arcangeli, J.P., Gleizes, M.P., Migeon, F.: ADELFE Design,
AMAS-ML in Action: A Case Study. In: Post-Proceedings of the International
Workshop on Engineering Societies in the Agents World (ESAW 2008). LNAI, vol.
5485, pp. 97–112. Springer-Verlag (2009)

13. Sellami, Z., Gleizes, M.P., Aussenac-Gilles, N., Rougemaille, S.: Dynamic ontology
co-construction based on adaptive multi-agent technology. In: International Con-
ference on Knowledge Engineering and Ontology Development, Madeira, Portugal.
Springer (2009)

14. Szyperski, C., Gruntz, D., Murer, S.: Component Software - Beyond Object-
Oriented Programming. A. Wesley / ACM Press (2002)

15. Weyns, D., Holvoet, T.: A Framework for Situated Multiagent Systems. In: SEL-
MAS. pp. 204–231 (2006)

16. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30 (2006)

17. Wilensky, U.: Netlogo itself (1999), http://ccl.northwestern.edu/netlogo/.
Center for Connected Learning and Computer-Based Modeling, Northwestern Uni-
versity. Evanston, IL.


