
HAL Id: hal-03795941
https://hal.science/hal-03795941

Submitted on 4 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random projections for semidefinite programming *
Leo Liberti, Benedetto Manca, Antoine Oustry, Pierre-Louis Poirion

To cite this version:
Leo Liberti, Benedetto Manca, Antoine Oustry, Pierre-Louis Poirion. Random projections for semidef-
inite programming *. AIRO-ODS 2022, Aug 2022, Florence, Italy. �hal-03795941�

https://hal.science/hal-03795941
https://hal.archives-ouvertes.fr

Random projections for semidefinite
programming∗

Leo Liberti, Benedetto Manca, Antoine Oustry, and Pierre-Louis Poirion

Abstract Random projections can reduce the dimensionality of point sets while
keeping approximate congruence. Applying random projections to optimization
problems raises many theoretical and computational issues. Most of the theoret-
ical issues in the application of random projections to conic programming were
addressed in [1]. This paper focuses on semidefinite programming.

Key words: Johnson-Lindenstrauss Lemma, conic programming, QCQP

1 Introduction

Semidefinite Programming (SDP) problems are linear optimization problems with
a matrix variable X over the cone X � 0 of positive semidefinite (PSD) matrices:

min{〈C,X〉 | ∀i≤ m 〈Ai,X〉= bi∧X � 0}, (1)

where C,Ai (for i ≤ m) are given n× n symmetric matrices, b is a given vector in
Rm, and 〈M,N〉= tr(M>N) is the Frobenius inner product.

Leo Liberti and Antoine Oustry
LIX CNRS Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
e-mail: liberti@lix.polytechnique.fr,antoine.oustry@polytechnique.edu

Benedetto Manca
Dip. Matematica and Informatica, Università degli Studi di Cagliari, Via Ospedale 72, 09124
Cagliari, Italy
e-mail: bmanca@unica.it

Pierre-Louis Poirion
RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
e-mail: pierre-louis.poirion@riken.jp

∗ The second author (BM) was partly supported by grant STAGE, Fondazione Sardegna 2018.

1

Leo Liberti
Accepted in: P. Cappanera et al (eds), Proceedings of AIRO-ODS 2022, Springer, Cham.

2 Liberti, Manca, Poirion, Oustry

A Random Projection (RP) is a k×m matrix T , with k ≤ m and density σ =
|nonzeros|/(km), every component of which is sampled from a normal distribu-
tion Normal(0,1/

√
σk) [2, §5.1]. RPs are interesting because of the Johnson-

Lindenstrauss Lemma (JLL).

Lemma 1 ([3])
Given a finite set of vectors X = {x1, . . . ,xn} ⊂ Rm and an ε ∈ (0,1), there exist

k = O(ε−2 lnn) ∈ N, an affine function φ(k), and constants C ,C2 > 0 such that:

P
[
∀i < j ≤ n (1− ε)≤

‖T xi−T x j‖2

‖xi− x j‖2
≤ (1+ ε)

]
≥ 1−C2e−C φ(k). (2)

Instead of applying RPs to point sets, in this paper we apply them to Mathemat-
ical Programming (MP) formulations (also see [4, 5, 2, 1, 6, 7]). More precisely,
when RPs are applied to the input data, they yield different types of projected MP
formulations. For each such type, one must prove that the JLL implies approximate
feasibility and approximate optimality, which is nontrivial: for example, decision
variables in formulations may well represent uncountable sets of vectors, while the
JLL only applies to finite sets. Moreover, the projected solution (i.e. a solution of
the projected MP) is generally infeasible in the original MP. It was shown in [5] that
Linear Programming (LP) min{cx | Ax = b∧ x ≥ 0} yields a projected formulation
min{cx | TAx = T b∧ x≥ 0} with feasibility and optimality guarantees in probabil-
ity. The results about LP were extended to other Conic Programming (CP) problems
in [1], which also proposes a solution retrieval method for constructing an almost
feasible original problem solution from the projected solution.

The present paper focuses on SDP. Since SDPs are CPs, all of the results in [1]
apply. The new contributions of this paper build on the theoretical results of [1],
and contribute a new computational study. We improve some error bounds from
[1] (Prop. 1 and its corollaries); we propose a new solution retrieval algorithm; we
obtain computational results on random as well as structured instance.

The rest of this paper is organized as follows. Sect. 2 discusses some of the most
interesting properties of RPs. Sect. 3 motivates and introduces the projected SDP
formulation. In Sect. 4 we recall the theory underlying the application of RPs to
SDPs [1]. Sect. 5 presents a computational study on random instances, SDP re-
laxations of the Distance Geometry Problem (DGP), and SDP relaxations of the
Alternating Current Optimal Power Flow (ACOPF) problem. We find that RPs yield
useful SDP approximations.

2 Understanding random projections

The JLL shows that the RP T guarantees approximate congruence between X and
T X with arbitrarily high probability (wahp). This is surprising because we think of
congruence as a dimension-preserving property (e.g. rotations, translations). Allow-
ing an ε error, however, affords approximate congruence. Even so, this RP feature

Random projections for SDP 3

appears mysterious because it is only realized in high dimensional spaces, and hence
it is impossible to “visualize”. This is a consequence of the fact that k = O(ε−2 lnn):
if we want ε to represent a low enough error, say 10%, this requires k ≥ ε−2 = 100
(assuming the O(·) coefficient to be ≥ 1 [10]), meaning that the original space di-
mension m must be larger than 100.

Note that the target dimension k is independent of the original dimension m, and
only depends on n logarithmically. In other words, up to an ε error, the “natural”
choice of the data dimensionality m (e.g. the number of pixels in an image) is imma-
terial: the “correct” dimension only depends on the number of image vectors being
projected. This challenges our comprehension: after all, the reason why the original
dimension is termed “natural” is that there is a natural, real-life interpretation of m
as the most appropriate dimension choice. Another surprising consequence of the
JLL (obtained by re-casting the JLL in terms of angles instead of distances) is that
Rm can host exponentially many “almost orthogonal vectors” [8, §7.3.1(7)].

A different result, that of distance instability [9], says that if Z,X1, . . . ,Xn are
random vectors in Rm sampled independently from any “reasonable” and “well-
behaved” distribution (check [9] for details), then for any ε > 0 we have

max
j≤n
‖Z−X j‖2 ≤ (1+ ε)min

j≤n
‖Z−X j‖2

as m→ ∞: in short, closest neighbors to Z are indistinguishable (up to ε) from any
other point. Intuitively, this suggests that all Euclidean distances are more or less
the same in high dimensions, and so the ε-approximate congruence guaranteed by
the JLL would not be all that surprising. But the proof settings of the JLL and of the
distance instability theorem are very different: the JLL applies to a given finite set
of vectors, while distance instability applies to distributions.

Numerous computational tests on clustering images with the k-means algorithm
(carried out by one of the authors of this papers) show that the clusterings ob-
tained on original and projected image vectors are similar. The tests exhibited in
many JLL-related papers tell a similar story (see e.g. [10]). So, distance instability
notwithstanding, and despite its apparent weirdness, the JLL definitely offers a com-
putational value, which we exploit in this paper by applying it to SDP formulations.

3 Projected SDP: motivation and formulation

SDPs are important because they are routinely used as convex relaxations of
Quadratic Programs (QP) [2], Quadratically Constrained Programs (QCP) [8, §6.1.3],
and Quadratically Constrained Quadratic Programs (QCQP) [11, §4.4]. While con-
vex programming is not necessarily tractable (e.g. MAX CLIQUE, through the
Motzkin-Straus formulation, reduces to linear optimization over the completely pos-
itive cone [12]), we can solve SDPs to any desired accuracy in polynomial time
using the interior point method [13]. Because SDP relaxations are generally tighter
than LP relaxations obtained using standard techniques such as McCormick inequal-

4 Liberti, Manca, Poirion, Oustry

ities [14], there is an expectation that their use within spatial Branch-and-Bound
(sBB) algorithms (e.g. [15]) is beneficial. Unfortunately, however, SDP solvers are
much slower than their LP counterparts, so SDP use in sBB is not mainstream. Be-
cause of their remarkable size decrease, resulting in proportional CPU time savings
during the solution phase, projected SDP formulations might partly address this is-
sue.

In order to define a projected SDP, we proceed as follows. We note that, for n×n
matrices M,N, 〈M,N〉 = vec(M)>vec(N), where, for any M, vec(M) is the vec-
tor in Rn2

constructed by stacking the columns of M. We can therefore re-write
〈Ai,X〉 = bi as vec(Ai)

>vec(X) = bi for each i ≤ m. Let A be the m× n2 ma-
trix obtained by stacking the m rows vec(Ai)

>. We define A�X to be the vector
(vec(Ai)

>vec(X) | i≤ m) ∈ Rm. Next, we can reformulate Eq. (1) as follows:

min{〈C,X〉 | A�X = b∧X � 0}. (P) (3)

A projected SDP formulation based on a k×m RP T , where k = O(ε−2 lnn), can
finally be derived as follows:

min{〈C,X〉 | TA�X = T b∧X � 0}. (TP) (4)

4 Theory of projected SDP

The solution X̄ of TP has some interesting approximation properties w.r.t. the orig-
inal SDP P, under a boundedness condition 〈1,X〉 ≤ θ for some appropriate θ > 0.

We note that the dual SDP to P is

max{yb | yA�C}, (D) (5)

where yA = ∑i≤m yiAi, and yA�C means that C− yA is PSD.

Theorem 1 (Approximate feasibility)
Let y∗ be the optimal solution of D, and ‖A‖† = sup‖z‖1=1 ‖zA‖F . Then there

are constants C ,C2 > 0 such that, for 0 < ε < ‖y∗‖2(‖b‖2 + ‖A‖†)
−1 and k =

O(ε−2 lnn), we have

P [P is feasible⇔ TP is feasible]≥ 1−2(m+1)C2e−C ε2k.

Proving that TP is feasible whenever P is feasible simply follows by linearity of
T . The probabilistic statement only refers to proving that TP is infeasible wahp
whenever P is infeasible [1, Thm. 3.2].

Theorem 2 (Approximate optimality)
With the above notation, and assuming strong SDP duality holds,

Random projections for SDP 5

P [val(TP)≤ val(P)≤ val(TP)+ ε‖y∗‖2(‖b‖2 +‖A‖†θ)]≥ 1−(2m+1)C2e−C ε2k.

Again, the proof has an easy part (proving that TP is a relaxation of P, which simply
follows because aggregating equality constraints always produces a relaxation), and
a difficult part [1, Thm. 3.5].

Theorems 1-2 are unsatisfying insofar as the appropriate choice of ε , necessary
to define k and therefore to formulate TP, depends on the norm of the optimal solu-
tion of D. Of course, if one were to solve D, the solution of TP to speed up that of
P would become a moot point (unfortunately, this is a feature of many theoretical
results in RPs applied to MP). What these results really say is that solving projected
formulations is likely to provide good approximations, although the choice of pa-
rameters requires considerable guesswork.

The projected solution X̄ of TP, which satisfies TA�X = T b, has probability
zero of being feasible in A�X = b because the rank of (TA,b) is k, which is smaller
than the rank m of (A,b). On the other hand, [1, Prop. 4.2] gives an upper bound to
the infeasibility error: for any u > 0 we have

P
[
‖A� X̄−b‖2 ≤ εθ‖A‖2(C3w(B)+u∆(B))/

√
ln(n)

]
≥ 1−2e−u2

, (6)

where C3 is a universal constant, B = {X � 0 | tr(X) ≤ 1}, w(B) is the Gaussian
width, and ∆(B) is the diameter of B.

We now estimate the Gaussian width and diameter of B in terms of n in order to
improve the bound in Eq. (6) specifically for SDPs.

Proposition 1 (i) w(B)≤
√

2n; (ii) ∆(B)≤ 2.

Proof About (i), by [16, Thm. 1], we have tr(AB)≤ λmax(A)tr(B). Thus,

w(B) = EG(sup
X∈B
〈G,X〉) by definition of Gaussian width

≤ EG(λmax(G) sup
X∈B

tr(X)) since G does not depend on X

= EG(λmax(G)) because supX∈B tr(X) = 1.

Now, by [17, Lemma 2.8], for a symmetric n× n random matrix variable G dis-
tributed like Normal(0,1)n(n+1)/2, we have EG(λmax(G)) ≤

√
2n⇒ w ≤

√
2n as

claimed. As for (ii), by definition of B we have:

∆(B) = sup
X ,Y∈B

‖X−Y‖F ≤ 2 sup
X∈B
‖X‖F ≤ 2 sup

X∈B
‖X‖1 = 2 sup

X∈B
tr(X) = 2. �

Corollary 1 For A,b as defined above, and X̄ the solution of TP, we have:

∀u > 0 P
[
‖A� X̄−b‖2 ≤ εθ‖A‖2(C3

√
2n+2u)/

√
ln(n)

]
≥ 1−2e−u2

. (7)

Proof By application of Prop. 1 to Eq. (6). �

6 Liberti, Manca, Poirion, Oustry

The solution retrieval method proposed in [1] consists in constructing a solution
X̃ which is a projection of X̄ onto A�X = b:

X̃ = X̄ +A>(AA>)−1(b−A� X̄). (8)

This may easily cause X̃ 6� 0, but [1, Thm. 4.4] and Prop. 1 show that this “negativity
error” is bounded.

Corollary 2 With A,b, X̄ , X̃ as above and κ(A) the condition number of A, we have:

∀u > 0 P
[
λmin(X̃)≥ λmin(X̄)− εθκ(A)(C3

√
2n+2u)/

√
lnn
]
≥ 1−2e−u2

.

4.1 A new solution retrieval method

The issue with the solution retrieval method in Eq. (8) is that it yields a solution X̃
which has some (hopefully small) eigenvalue negativity, which stems from a projec-
tion of X̄ onto A�X = b. We note that this eigenvalue negativity can be “projected
away” by zeroing all of the negative eigenvalues of X̃ , a technique known as clas-
sic Multidimensional Scaling (MDS) [18], which essentially yields a projection of
X̃ on the PSD cone X � 0. Every time we project on A� X = b we may leave
the PSD cone, and every time we project back into the PSD cone we may leave
the subspace A�X = b. This suggests using the well-known Alternating Projection
Method (APM) [19, Thm. 13.10] based on the two convex sets A�X = b and X � 0.
For two closed convex sets S1,S2 with non-empty intersection, the APM converges
(possibly in infinite time) to a point in the intersection S1 ∩ S2. The new retrieval
method is presented in Alg. 1. The loop in Alg. 1 is executed at most a given number

Algorithm 1 APM(A,b, X̃ ,δ)

X̂ ← X̃
for i≤MaxIterations do

X̂ ← X̂ +A>(AA>)−1(b−A� X̂)
if X � 0 then

return X̂ // X̂ feasible
end if
X̂ ←MDS(X̂) // perform Multidimensional Scaling on X̂
if ‖A� X̂−b‖2 ≤ δ then

return X̂ // X̂ almost feasible
end if

end for
return X̂ // X̂ is closer than X̃ to being feasible

MaxIterations of times. It alternates between achieving feasibility w.r.t. A�X = b
and w.r.t. X � 0. Alg. 1 returns a solution X̂ ← APM(A,b, X̂ ,δ) which is closer to
the feasible set of P than the initial matrix X̃ was.

Random projections for SDP 7

5 Computational results

The Mosek 9.1.5 [20] SDP solver was used in all experiments, carried out on a
2.1GHz Intel Xeon E5-2620 with 32 8-core CPUs and 64GB RAM running Linux.
Most code was written in Python 3. The number of iterations for the APM Alg. 1
was set to 50 for DGP instances (Sect. 5.2) and 20 otherwise.

A computational validation of projected SDPs was carried out in [1, §5]. RPs
were sampled as in [21]. Fourty random SDPs were generated, ten of which in-
feasible and thirty feasible. In all cases, C = In and A ∼ Uniform(0,1)m×d , where
d = n(n+1)/2 are the degrees of freedom of the linear system. In infeasible cases,
b ∼ Uniform(0,1)m (all candidate infeasible instances were verified to be infeasi-
ble). In feasible cases, X0 ∼ Uniform(−1,1)n×n so that X was diagonally dominant
(DD) and hence PSD, and b = A�X . The actual SDP formulation tested in infeasi-
ble cases was min{tr(X) | A�X = b∧X0−θ1 ≤ X ≤ X0 +θ1∧X � 0}, to make
sure instances were not unbounded, and take the θ bound into account explicitly.
Infeasible tests were all successful with ε = 0.13 (every infeasible P mapped to an
infeasible TP), and all unsuccessful with ε = 0.2. Feasible tests yielded very poor
values of val(TP). The retrieved solutions had excellent quality, although we later
discovered a bias in the random generation process.

5.1 New tests on random instances

The differences of the new benchmark w.r.t. [1] are as follows. (a) We only test
feasible instances. (b) We use k×m sparse RPs T with given density σ , sampled
componentwise from Normal(0,1/

√
σk). (c) Instead of taking C = In, we sample

C∼Uniform(0,1)n2
. (d) We do not artificially change the instance with X0 and θ as

in [1], since neither are actually available in practice. Instead, we impose a doubly
non-negative (DNN) constraint on X , yielding

min{〈C,X〉 | A�X = b∧X ≥ 0∧X � 0}. (9)

We test SDPs with different densities σ ∈ {0.05,0.1,0.4} in the constraint matrix
A (sampled as in [1]), and sample the RP T with the same density. We chose instance
sizes (m,n) ∈ {(1000,50),(1500,57),(2000,65),(2500,72),(3000,80)}, yielding
degrees of freedom d ∈ {1275,1653,2145,2628,3240}; we fixed k = 0.001m for
the whole benchmark. We tested 6 random instances per size and density. Average
results are given in Table 1. RPs appear to provide best results on sparse instances.
Given that projection on A�X = b very often preserved X � 0, the solution retrieval
method was adapted to only alternate between A�X = b and X ≥ 0, terminating
on the former, and limited to 20 iterations to prevent excessive CPU time usage,
but clearly more iterations would have further decreased the error w.r.t. X ≥ 0. The
objective values follow a trend to [1]: val(TP) provides a poor relaxation, but 〈C, X̃〉
is a good approximation of val(P).

8 Liberti, Manca, Poirion, Oustry

Instance Objective Feasibility CPU

σ m k n d F̄/F∗ F̃/F∗ ‖A�X̃−b‖1
m

∑ X̃−i j
n2 λmin(X̃) t̃/t∗

0.05 1000 10 50 1275 0.0614 0.8131 0.000 0.640 0.668 0.73
0.05 1500 15 57 1653 0.0621 0.8748 0.001 0.446 0.002 0.70
0.05 2000 20 65 2145 0.0882 0.9356 0.001 0.397 0.000 0.70
0.05 2500 25 72 2628 0.0837 0.9458 0.001 0.391 0.000 0.79
0.05 3000 30 80 3240 0.0784 0.9396 0.001 0.529 0.000 0.71
0.10 1000 10 50 1275 0.0520 0.7676 0.000 0.618 0.570 0.69
0.10 1500 15 57 1653 0.0740 0.9425 0.001 0.475 0.001 0.79
0.10 2000 20 65 2145 0.0795 0.9278 0.001 0.457 0.000 0.83
0.10 2500 25 72 2628 0.0721 0.9381 0.001 0.361 0.000 0.85
0.10 3000 30 80 3240 0.0879 0.9217 0.001 0.521 0.000 0.85
0.40 1000 10 50 1275 0.0542 0.7702 0.001 0.591 0.385 0.92
0.40 1500 15 57 1653 0.0736 0.9155 0.002 0.427 0.000 1.01
0.40 2000 20 65 2145 0.0707 0.9341 0.002 0.417 0.000 1.12
0.40 2500 25 72 2628 0.0866 0.9549 0.003 0.367 0.000 1.06
0.40 3000 30 80 3240 0.0963 0.8953 0.003 0.491 0.000 0.95

Table 1 Computational results on random SDPs. F∗, F̄ , F̃ are the objective function values of the
original, projected, retrieved (X̃) solution; t̃ is the CPU time taken to sample T , compute TA,T b,
construct and solve TP, retrieve X̃ ; t∗ is the time taken to solve P. Best objective ratios should
approach 1; best CPU time ratios should approach 0.

5.2 Tests on SDP relaxations of the DGP

The DGP is the following decision problem: given an integer K > 0 and a simple
edge-weighted graph G = (V,E,d), decide whether there is a realization x : V →RK

such that ∀{i, j} ∈ E ‖xi− x j‖2
2 = d2

i j. This is a pure-feasibility, NP-hard noncon-
vex QCP [22]. Its SDP relaxation is based on the identity ‖xi− x j‖2

2 = 〈xi,xi〉+
〈x j,x j〉−2〈xi,x j〉. By replacement of the 〈xi,x j〉with new variables Xi j, we have the
SDP: min{tr(X) | ∀{i, j} ∈ E (Xii +X j j − 2Xi j = d2

i j)∧X � 0} (†). The objective
function aims at (heuristically) reducing the rank of X , since, by spectral decompo-
sition, tr(X) = tr(PΛP>) = tr(ΛPP>) = tr(Λ) = ∑v∈V λv. By minimizing the sum
of (non-negative) eigenvalues of X , we hope that at least some of them will be set to
zero.

The tested instances were taken from the Protein Data Bank (PDB): each re-
alization was transformed into a distance-weighted ball graph with radius 5.5Å, as
discussed in [23, 3.1]. The resulting linear system A�X = b in (†) is very sparse and
loosely constrained. We chose k = 0.01m for this benchmark. The results in Table
2 show a good trend in the CPU times, at the expense of the sizable approximation
errors (optimality and feasibility w.r.t. the PSD cone). Despite the errors, further
tests (not included in this paper) show that good quality solutions of the DGP can
nonetheless be obtained by using X̃ , after dimensionality reduction (which loses
the negative eigenvalues), as a starting point for a local descent using a nonlinear
optimization solver on a standard primal DGP formulation.

Random projections for SDP 9

Instance Objective Feasibility CPU
name σ m k n d F̄/F∗ F̃/F∗ ‖A�X̃−b‖1

m λmin(X̃) t̃/t∗

tiny 0.00540 335 58 38 741 0.0190 0.4999 0.000 0.730 0.62
names 0.00104 849 67 87 3828 0.0122 0.2182 0.000 1.007 0.45
1guu 0.00004 955 69 427 91378 0.0000 0.1290 0.000 0.203 0.23
1guu-1 0.00035 959 69 150 11325 0.0025 0.1152 0.000 0.574 0.42
2kxa 0.00007 2711 79 333 55611 0.0020 0.1718 0.000 0.765 0.22
100d 0.00003 5741 87 491 120786 0.0013 0.0692 0.000 1.217 0.26

Table 2 Computational results on SDPs derived from DGP instances.

5.3 Tests on SDP relaxations of the ACOPF

The ACOPF is a QCQP with parameters and decision variables over C [11], which
can be reformulated to a QCQP over R four times the size. It relies on Ohm’s and
Kirchhoff’s laws adapted to AC, plus some technical constraints. We test an ACOPF
variant of the form min{〈C,X〉 | A�X = b∧L ≤ X ≤U ∧X � 0} that minimizes
‖X −X0‖∞ with fixed generating power levels, where X0 is a target solution. See
[24] about the tested instances. We chose k = 0.001m for this benchmark.

Instance Objective Feasibility CPU
name σ m k n d F̄/F∗ F̃/F∗ ‖A�X̃−b‖1

m rng λmin(X̃) t̃/t∗

case57 ieee 0.00366 3363 3 114 6555 0.0002 0.9152 0.000 0.007 0.092 0.74
case73 ieee 0.00205 5475 5 146 10731 0.0028 0.8228 0.000 0.018 0.094 0.58
case89 pegase 0.00377 8099 8 178 15931 0.0001 0.0147 0.000 0.281 0.022 0.14
case118 ieee 0.00136 14160 14 236 27966 0.0006 0.8456 0.000 0.010 0.092 0.35
case162 ieee 0.00072 26568 27 324 52650 0.0015 0.8868 0.000 0.012 0.099 0.32
case179 goc 0.00059 32399 32 358 64261 0.0010 0.0632 0.000 0.261 0.017 0.28

Table 3 Tests on SDPs derived from ACOPF instances; rng is the average range error.

The results in Table 3 show good trends in optimality and feasibility (especially
in the ieee instances), as well as CPU time (across the benchmark).

5.4 Closing remarks

Although X̃ is supposed to be approximately feasible, the ratios F̃/F∗ in the results
tables are ≤ 1 because X̃ is obtained by applying a heuristic (Sect. 4.1) to the solu-
tion X̄ of an SDP relaxation. That the ratios t̃/t∗ are sometimes ≥ 1 does not mean
that RPs are useless: the point of RPs is to solve instances so large they cannot be
solved any other way. Here we are interested in comparing the performances, so
instances are small enough so we can also solve them exactly. But the trend given
by k = O(lnn) is that t̃/t∗ decrease with increasing n.

10 Liberti, Manca, Poirion, Oustry

References

1. L. Liberti, P.-L. Poirion, and K. Vu. Random projections for conic programs. Linear Algebra
and its Applications, 626:204–220, 2021.

2. C. D’Ambrosio, L. Liberti, P.-L. Poirion, and K. Vu. Random projections for quadratic pro-
grams. Mathematical Programming B, 183:619–647, 2020.

3. W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In
G. Hedlund, editor, Conference in Modern Analysis and Probability, volume 26 of Contem-
porary Mathematics, pages 189–206, Providence, RI, 1984. AMS.

4. M. Pilanci and M. Wainwright. Randomized sketches of convex programs with sharp guaran-
tees. IEEE Transactions on Information Theory, 61(9):5096–5115, 2015.

5. K. Vu, P.-L. Poirion, and L. Liberti. Random projections for linear programming. Mathematics
of Operations Research, 43(4):1051–1071, 2018.

6. L. Liberti and B. Manca. Side-constrained minimum sum-of-squares clustering: Mathematical
Programming and random projections. Journal of Global Optimization, accepted.

7. C. Cartis, E. Massart, and A. Otemissov. Global optimization using random embeddings.
Technical Report 2107.12102, arXiv, 2021.

8. L. Liberti. Distance geometry and data science. TOP, 28:271–339, 220.
9. K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest neighbor” meaning-

ful? In C. Beeri and P. Buneman, editors, Proceedings of ICDT, volume 1540 of LNCS, pages
217–235, Heidelberg, 1998. Springer.

10. S. Venkatasubramanian and Q. Wang. The Johnson-Lindenstrauss transform: An empirical
study. In Algorithm Engineering and Experiments, volume 13 of ALENEX, pages 164–173,
Providence, RI, 2011. SIAM.

11. D. Bienstock, M. Escobar, C. Gentile, and L. Liberti. Mathematical programming formula-
tions for the alternating current optimal power flow problem. 4OR, 18(3):249–292, 2020.

12. I. Bomze, M. Dür, E. De Klerk, C. Roos, A. Quist, and T. Terlaky. On copositive programming
and standard quadratic optimization problems. Journal of Global Optimization, 18:301–320,
2000.

13. C. Helmberg, F. Rendl, R. Vanderbei, and H. Wolkowicz. An interior-point method for
semidefinite programming. SIAM Journal on Optimization, 6(2):342–361, 1996.

14. K. Anstreicher. Semidefinite programming versus the reformulation-linearization technique
for nonconvex quadratically constrained quadratic programming. Journal of Global Optimiza-
tion, 43:471–484, 2009.

15. P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds tighten-
ing techniques for non-convex MINLP. Optimization Methods and Software, 24(4):597–634,
2009.

16. Y. Fang, K. Loparo, and X. Feng. Inequalities for the trace of matrix product. IEEE Transac-
tions on Automatic Control, 39(12):2489–2490, 1994.

17. D. Song and P. Parrilo. On approximations of the psd cone by a polynomial number of smaller-
sized psd cones. Technical Report 2105.02080v1, arXiv, 2021.

18. T. Cox and M. Cox. Multidimensional Scaling. Chapman & Hall, Boca Raton, 2001.
19. J. von Neumann. Functional Operators. Volume II: The geometry of orthogonal spaces. Num-

ber 22 in Annals of Mathematics Studies. Princeton University Press, Princeton NJ, 1950.
20. Mosek ApS. The mosek manual, Version 9, 2019.
21. D. Kane and J. Nelson. Sparser Johnson-Lindenstrauss transforms. Journal of the ACM,

61(1):4, 2014.
22. J. Saxe. Embeddability of weighted graphs in k-space is strongly NP-hard. Proceedings of

17th Allerton Conference in Communications, Control and Computing, pages 480–489, 1979.
23. L. Liberti, C. Lavor, N. Maculan, and A. Mucherino. Euclidean distance geometry and appli-

cations. SIAM Review, 56(1):3–69, 2014.
24. IEEE PES PGLib-OPF Task Force. The power grid library for benchmarking ac optimal power

flow algorithms. Technical Report 1908.02788, arXiv, 2019.

