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During atmospheric reentry, flight vehicles are subjected to extreme pressure and temperature conditions. To ensure their physical integrity, carbon thermal protection system are commonly used. Under these conditions, carbon sublimates and oxidizes, leading to the ablation of the heat shield. This gives rise to macroscopic structures on the front tip of the reentry body, known as scallops, which are related to a strong coupling between the turbulent flow and the erodible wall. In order to understand the formation and the spreading of scallops, the turbulent flow over a wavy wall is investigated. The linear stability of a turbulent boundary layer was studied by considering these structures as a small sinusoidal deformation of the wall. Three different regimes of fluid-wall interaction were identified, with respect to the penetration depth of the perturbation, and the failure of the Boussinesq hypothesis to predict the wall-shear stress for a given range of wavelength was highlighted.

INTRODUCTION

Spacecraft entry into the atmosphere is one of the most critical phases of spaceflight missions. For very high speed vehicles, velocities higher than several km.s -1 can be reached, which can lead to extreme pressure and heat fluxes on the surface of the reentry body. To withstand these extreme conditions, encountered in the post-shock environment, carbon-based Thermal Protection Systems (TPS) are commonly used. Numerous physico-chemical reactions, including carbon oxidation and sublimation, occur at the surface of the body, resulting in the ablation of the heat shield. Design of the TPS is then a major issue, between thermal protection efficiency and mass minimization.

During the ablation process, regular waves appear on the surface of the thermal protection. This characteristic pattern, known as scallops [START_REF] Thomas | Size of scallops and ripples formed by flowing water[END_REF], is related to a strong coupling between the turbulent flow and the erodible wall, and modifies the distribution of heat fluxes. Similar structures can be observed in various environments, and may emerge from any erodible wall sheared by a fluid flow. Most studies in the literature investigate sand ripples that may be encountered in a wide range of geophysical environments. This kind of phenomenon may indeed appear as well in river beds as in Earth deserts for example. The wavelength of these patterns can range from the millimeter in the atmospheric re-entry context to the kilometer for the largest eolian dunes. The presented work aims at studying the formation and the spreading of scallops. Following the work by Charru et al. [START_REF] Franc ¸ois Charru | Sand ripples and dunes[END_REF] and Claudin et al. [START_REF] Claudin | Dissolution instability and roughening transition[END_REF], the linear stability of a turbulent boundary layer over a wavy wall with small amplitude was studied. Boussinesq hypothesis is used for the turbulent closure and three eddy-viscosity based models (EVM) were compared to an experimental database from Hanratty and others [START_REF] Daniel P Zilker | Influence of the amplitude of a solid wavy wall on a turbulent flow. part 1. non-separated flows[END_REF], [START_REF] Abrams | Relaxation effects observed for turbulent flow over a wavy surface[END_REF], [START_REF] Arthur | Velocity measurements for a turbulent nonseparated flow over solid waves[END_REF], [START_REF] Cb Thorsness | A comparison of linear theory with measurements of the variation of shear stress along a solid wave[END_REF]. Additional calculations were performed using the CEDRE solver of ONERA. To avoid the shortcomings of zero and two equations turbulence models, a Reynold Stress Model (RSM) was retained. The use of a second moment closure model highlights the failure of the Boussinesq hypothesis to predict the shear stress response at the wall around the critical wavenumbers. Scallops may be observed in various environments. Thomas [START_REF] Thomas | Size of scallops and ripples formed by flowing water[END_REF] noted first how remarkably reproducible they are in given flow conditions and proposed an empirical correlation to predict their characteristic dimension (see Figure 1). Thomas measured several scallop-like patterns in a variety of natural environments such as riverbeds, as well as laboratory experiments, including water channel measurements. The link between the patterns observed in the atmospheric reentry and the scallops described by Thomas is not only the geometric similarity : the characteristic wavelength of scallops measured on the plasma jet experiment from the CEA and on the NASA experimental rocket system TATER [START_REF] Hochrein | Analysis of the tater nosetip boundary layer transition and ablation expe-riment[END_REF] are in good agreement with Thomas correlation.

Scallops in various environments

FLOW OVER A WAVY WALL

A first approximation to study the conditions of appearance of scallops is to consider these structures as a twodimensional small sinusoidal deformation of the wall. Hanratty and others [START_REF] Daniel P Zilker | Influence of the amplitude of a solid wavy wall on a turbulent flow. part 1. non-separated flows[END_REF], [START_REF] Abrams | Relaxation effects observed for turbulent flow over a wavy surface[END_REF], [START_REF] Arthur | Velocity measurements for a turbulent nonseparated flow over solid waves[END_REF], [START_REF] Cb Thorsness | A comparison of linear theory with measurements of the variation of shear stress along a solid wave[END_REF] pointed out the existence of perturbations in the flow along the oscillation when a turbulent boundary layer develops over. Of particular interest is the variation of the phase angle θ τw of the wall shear stress τ w with respect to the wavenumber of the undulation. The most interesting aspect of Hanratty's work is the identification of a peak of the wall shear stress phase angle θ τw and a decrease of its amplitude |τ w |/⟨τ w ⟩ along with the wavenumber, for a range of critical oscillations (see Figure 2 and3). Note that |τ w | represents the absolute magnitude of the shear stress and ⟨τ w ⟩ its mean value. 

Linear stability of a turbulent boundary layer over a wavy wall

Following the work from Charru et al. [START_REF] Franc ¸ois Charru | Sand ripples and dunes[END_REF], the linear stability of a turbulent boundary layer developing on a wavy wall with constant pressure gradient was studied. The flow is bidimensional, steady and incompressible. Far enough from the wall, the flow is considered fully turbulent with a logarithmic mean velocity profile (1) :

u + = 1 κ ln y + + C (1) 
In this region, the inertial effects are dominant. In the following equations, u is the flow velocity in the longitudinal direction, κ ≈ 0.41 is the von Kármán constant, y is the distance from the wall and x is the longitudinal direction. Wall quantities are turned dimensionless using the friction velocity u τ and the kinematic viscosity ν. The superscript ≪ + ≫ denotes a non-dimensional quantity. Near the wall, within the viscous sublayer, the velocity profile is linear :

u + = y + (2) 
A good representation of the mean velocity profile of a turbulent boundary layer is shown in Figure 4. In this section, the linear response of such a turbulent boundary layer to a small sinusoidal deformation ζ(x) = ζ 0 cos(αx) of the wall is discussed. Here, α = 2π/λ is the wavenumber of the wall oscillation. For small wave slope (i.e αζ 0 < 0.1 [START_REF] Franc ¸ois Charru | Sand ripples and dunes[END_REF]) the response of the flow is linear and proportional to the small parameter αζ 0 . In order to investigate the flow disturbances, the incompressible, bidimensional and steady Navier-Stokes equations (3) were linearized. Here, p is the pressure and τ ij are the components of the Reynolds stress tensor.

∂ x u x + ∂ y u y = 0 (3a) u x ∂ x u x + u y ∂ y u x = -∂ x p + ∂ y τ xy + ∂ x τ xx (3b) u x ∂ x u y + u y ∂ y u y = -∂ y p + ∂ y τ yy + ∂ x τ xy (3c)
To linearize these equations, each quantity was written as a Taylor expansion at the first order. The zeroth order component is the mean part of the quantity f while the first order component represents its fluctuating part F.

f (x, y) = f (y) + αζ 0 e iαx F(y) (4) 
Each fluctuation is therefore a complex fonction, whose modulus represents the maximum value of the fluctuating component and whose argument represents its phase shift with respect to the wall oscillation.

The turbulent closure was obtained thanks to the Boussinesq hypothesis :

τ ij = ρν t ∂u i ∂x j + ∂u j ∂x i - 2 3 ρkδ ij (5) 
The Reynolds stress tensor τ ij is written thanks to the turbulent viscosity ν t and is proportional to the strain rate tensor S ij = 1 2

∂u i ∂x j + ∂u j ∂x i
. The turbulence closure problem then reduces to the knowledge of ν t and the turbulent kinetic energy k. Therefore, the momentum equation was simplified with ν t , which gives the following equation, for a two-dimensional, fully-developed flow :

(ν + ν t ) ∂u ∂y = u 2 τ ( 6 
)
The turbulent viscosity was calculated with three different EVM, all of them reproducing a linear evolution of the mixing length l m with respect to the wall distance in the logarithmic region : l m = κy.

Prandtl/Van Driest mixing length

The first turbulence model studied was a Prandtl mixing length model with a Van Driest exponential damping as the wall is approached :

l m = κy   1 -exp   - τxy ρ y νA 0     (7)
where τ xy is the shear stress and A 0 = 25 is known as the Van Driest number and characterizes the damping starting in the buffer layer. The turbulent viscosity can then be written

ν t = l 2 m ∂u ∂y
. The Navier-Stokes equations are then made dimensionless and linearised at first order with respect to the small parameter αζ 0 . A closed system of differential equations was then obtained for the fluctuations and solved numerically. The results are presented in part 3 and compared with the experimental database and the other calculations.

Hanratty's correction

As stated in part 1, and as we will see in part 3, the previous model fails to predict the abrupt change of θ τw for a short range of wavenumbers (0.00015 < α + < 0.02). In order to capture this phenomenon, Thorsness and Hanratty [START_REF] Cb Thorsness | A comparison of linear theory with measurements of the variation of shear stress along a solid wave[END_REF], Abrams and Hanratty [START_REF] Abrams | Relaxation effects observed for turbulent flow over a wavy surface[END_REF] and Frederick and Hanratty [START_REF] Arthur | Velocity measurements for a turbulent nonseparated flow over solid waves[END_REF] proposed a correction of the Prandtl/Van Driest mixing length model, at the first order, based on a dependency of the Van Driest number A on a relaxed pressure gradient p + ef f .

A = A 0 1 + k 1 p + ef f (8) 
where A 0 = 25 is the usual Van Driest number. The effective pressure gradient p + ef f is given by a relaxation equation

dp + ef f dx = p + -p + ef f k L (9)
depending only on the dimensionless pressure gradient

p + = ν ρu 3 τ dp dx .
Various pairs of constants k 1 and k L fitting the experimental data can be found in literature. Hanratty and others ( [START_REF] Abrams | Relaxation effects observed for turbulent flow over a wavy surface[END_REF], [START_REF] Arthur | Velocity measurements for a turbulent nonseparated flow over solid waves[END_REF]) proposed k 1 = -35 and k L = 1800 or k 1 = -33 and k L = 1650 while Charru et al. [START_REF] Franc ¸ois Charru | Sand ripples and dunes[END_REF] proposed k 1 = -35 and k L = 2000. The first pair was used for this work. This correction directly affects the fluctuation of the mixing length L (and therefore, of ν t ) in the buffer layer (see Figure 5). The influence of the pressure gradient on the shear stress and on the turbulence production will be discussed in section 3.

Wilcox k -ω turbulence model

The last EVM used for the turbulence closure was Wilcox k -ω model [START_REF] Wilcox | Formulation of the k-ω turbulence model revisited[END_REF]. In this case, the turbulent viscosity is written as the ratio between the turbulent kinetic energy k to the specific dissipation ω : To study the linear stability of a turbulent boundary layer with a k -ω model, one can artificially reduce to a mixing length model :

ν t = k ω (10) 
ν t = k ω = l 2 m ∂u ∂y =⇒ l m = ν t ∂u ∂y (11) 
The fluctuating part of the corresponding mixing length model is then obtained by a Taylor expansion to the first order :

L = - dl m dy .
The k -ω model is compared to both mixing length models, the RSM data and the experimental data in section 3.

Reynolds Stress Model

The SSG model

To investigate the shortcomings of zero and two equations models, additional calculations were performed using the CEDRE solver of ONERA [START_REF] Refloch | Cedre software[END_REF] with the SSG (Speziale Sarkar and Gatski) Differential Reynolds Stress Model [START_REF] Charles G Speziale | Modelling the pressure-strain correlation of turbulence : an invariant dynamical systems approach[END_REF]. In the following, this model will simply refer to as DRSM. The Reynolds stress tensor is calculated from the transport equation :

∂u ′ i u ′ j ∂t + u l ∂u ′ i u ′ j ∂x l Advection = -u ′ i u ′ l ∂u j ∂x l -u ′ l u ′ j ∂u i ∂x l P roduction + p ′ ρ ∂u ′ i ∂x j + ∂u ′ j ∂x i Redistribution -2ν ∂u ′ i ∂x l ∂u ′ j ∂x l Dissipation + ∂ ∂x l ν ∂u ′ i u ′ j ∂x l -u ′ i u ′ j u ′ l - p ′ ρ u ′ i δ jl + u ′ j δ il Dif f usion (12) 
In this equation, only the advection, production and viscous diffusion terms are exact. The others must be modeled. Speziale et al. [START_REF] Charles G Speziale | Modelling the pressure-strain correlation of turbulence : an invariant dynamical systems approach[END_REF] proposed a global modelling approach for the redistribution term, to reproduce homogeneous flows. The SSG model is then coupled to the classical isotropic model for the dissipation and a diffusion model is required for the SSG to be applicable to inhomogeneous flows. A Simple Gradient Diffusion Hypothesis (SGDH) may be used to this end. See Speziale et al. [START_REF] Charles G Speziale | Modelling the pressure-strain correlation of turbulence : an invariant dynamical systems approach[END_REF] for more information.

The main interest of such a model for our problem is that the Reynolds stress tensor is fully computed. The Boussinesq hypothesis is therefore not necessary and the Reynolds stress tensor is no longer considered aligned with the strain rate tensor. Part 3 will highlight the shortcomings of this assumption for the zero and two equations models.

Computational domain

The computational domain is a bidimensional channel of height h = 1 m, with a wavy bottom of wavelength λ = 2 m and amplitude ζ 0 = 0.005 m. A force is imposed to drive the flow so that the targeted friction velocity u τ is equal to 2 m.s -1 . The density is ρ = 1.177 kg.m -3 . ν is the kinematic viscosity of the fluid. The dimensionless wavenumber of the oscillation is then :

α + = 2πν λu τ = π 2 ν ( 13 
)
As ν is the only free parameter (u τ is fixed by the force driving the flow and λ is fixed by the geometry), the kinematic viscosity can be adjusted to target the dimensionless wavenumber of the wall oscillation. A list of the wavenumbers targeted and the corresponding dynamic viscosity µ = ρν is given in Table 1. 

α +-1 µ (kg.m -1 .s -

RESULTS AND DISCUSSION

In this section, the results of the linear stability study and the DRSM calculations for the phase angle of the wall shear stress θ τw and its amplitude |τ w |/⟨τ w ⟩ are compared with the experimental data from Hanratty and others. Results show the failure of the k -ω and the Prandtl/Van Driest mixing length models to predict the peak of θ τw and the damping of the amplitude of the wall shear stress for a range of critical wavenumbers. For α + < 0.02, the k -ω model and the classical mixing length model fail to predict the correct phase shift of the wall shear stress. Three regimes of fluidwall interaction were identified, depending on the penetration depth of the perturbation within the boundary layer. For very low wavenumbers, the flow regime is denoted as the inviscid regime as the inertial effects are dominant. This regime will not be discussed in this paper.

Shallow viscous regime

For α + > 0.02, the perturbation is confined into the viscous sublayer of the boundary layer (see Figure 7), where the velocity profile of the flow is linear. As the viscous effects are dominant near the wall, Charru et al. [START_REF] Franc ¸ois Charru | Sand ripples and dunes[END_REF] define the penetration depth δ i of the perturbation as the balance of longitudinal advection and transverse viscous diffusion :

δ i ∼ ν 2 u 2 * α 1/3 (14a) δ + i ∼ 1 α + 1/3 (14b) 
In this region, the phase shift of the wall shear stress is a viscous response of the flow to the perturbation, and the inertial effects can be neglected. It can be derived from the momentum equation in a two dimensional channel :

∂τ xy ∂y = 1 ρ ∂P ∂x (15) 
With p the pressure perturbation and δτ the shear stress perturbation, the momentum equation reads, for a small sinusoi-dal perturbation ζ 0 e iαx of the wall :

∂ τ xy + ζ 0 e iαx δτ ∂y = 1 ρ ∂(P + ζ 0 e iαx p) ∂x (16) 
Integrating this equation over the channel implies the introduction of a phase shift for the shear stress perturbation. Indeed, if not, the pressure gradient perturbation δp is null, which is not physically acceptable : the undulation causes first a widening and then a narrowing of the channel, meaning that the pressure gradient increases then decreases by Venturi effect (see Figure 8).

Fig. 8 -Integration of the momentum equation : the pressure gradient perturbation is not null but the integration of a cosine on half a wavelength is null, without phase shift (left). By introducing a phase angle for the stress, the shear stress perturbation is not null and can balance the pressure gradient (right).

Deep viscous regime

As the wavenumber decreases, the perturbation diffuses further in the boundary layer. The viscous effects and the inertial effects are in competition. For α + < 0.02, the perturbation reaches the buffer layer (see Figure 9). The linear stability analysis highlights the unability of the k -ω and the unmodified mixing length models to predict the peak of θ τw under such conditions. To fit the experimental data with the mixing length model, Hanratty proposed the correction given by equation [START_REF] Hochrein | Analysis of the tater nosetip boundary layer transition and ablation expe-riment[END_REF]. It modifies the Van Driest number A in the damping function of the mixing length, which is known to characterize the buffer layer of the inner region. As shown by Figure 5, Hanratty's correction, based on a relaxed pressure gradient, modifies the turbulent viscosity in the buffer layer and fits the experimental data remarkably well. The relaxation phenomenon of the shear stress will be referred to as the Hanratty effect in the following.

Origins of the Hanratty effect

In order to investigate the Hanratty effect, DRSM calculations were performed using the ONERA solver CEDRE, as presented in section 2. DRSM models, by definition, are not based on the Boussinesq hypothesis (equation ( 5)), contrary to the mixing length and the k -ω models. Figure 6a shows that such a model succeeds in predicting the phase shift of the shear stress at least for α + > 0.001. A consequence of the Boussinesq hypothesis is to assume that locally, ν t is a constant : the Reynolds stress tensor is aligned with the strain rate tensor S ij . Therefore, by continuity, for incompressible flows, the turbulent transverse Reynolds stresses u ′2 and v ′2 are considered equal. It is commonly known that this is not true in a turbulent boundary layer but it is of no consequence as long as the mean flow is parallel to the wall. As soon as the wall is deformed, the anisotropy of turbulence is enhanced in the flow and the assumption u ′2 = v ′2 can no longer be acceptable. Particularly, Hanratty introduced a relevantly relaxed pressure gradient to account for this anisotropy reinforcement. This pressure gradient extends beyond the inner region of the boundary layer and modifies the peak of production of turbulent kinetic energy in the inner region. It then produces a gradient of longitudinal velocity along the x-direction ∂u ∂x , which increases the difference between u ′2 and v ′2 .

Energy is then redistributed between the Reynolds stresses u ′2 , v ′2 and u ′ v ′ , altering the peak of production of turbulent kinetic energy. This phenomenon cannot be predicted by any model based on the Boussinesq hypothesis, unlike the Reynolds Stress Models.

Consequence on the structure of the inner region of the boundary layer

As assumed by Hanratty, the region mainly affected by the Hanratty effect is the buffer sublayer. The mean velocity profiles given by DRSM calculations are in good agreement with the experimental measurements of Hanratty, while k -ω cal-culations show some differences. The influence of the adverse pressure gradient is quite clear, with a change in the slope of the log-law as one moves along the oscillation. Note that the slope of the log-law is usually 1/κ, with κ the von Kármán constant. An interesting observation is to note the shift in the beginning of the buffer layer. Figure 10 exhibits the mean velocity profiles calculated with the DRSM for different x positions, and compares them with the velocity profiles predicted by the k -ω model. 

Limitations of the DRSM model

Although the DRSM calculations are in better agreement with the experimental data than the EVM, some differences are still noticeable. Particularly, one can notice two phenomena which are not correctly predicted by the DRSM. For α + < 10 -3 , the DRSM calculations fail to predict the abrupt collapse of θ τw observed by Hanratty. Moreover, the magnitude of the wall shear stress is overestimated, and, although we find the correct tendency to decrease, the damping for α + around 10 -3 is not clearly captured. The origins of these limitations are still under investigation. A promising hypothesis is that it comes from the influence of the outer layer on the inner layer, a phenomenon that cannot be accounted for with RANS turbulence models so far.

CONCLUSION AND PERSPECTIVES

The failure of the Boussinesq hypothesis for a wavy wall sheared by a fluid flow was demonstrated for a critical range of oscillations wavenumbers by a linear stability analysis and additional calculations, compared with an experimental database. As with many complex engineering flows, the performance of EVM is unsatisfactory. However, although the DRSM offers much better accuracy, its complexity makes it difficult to use in an industrial context. As the prediction of scallops formation is essential to assess the heat fluxes that the TPS will undergo, a modified two equations model is still desirable. A promising area of research is to reconsider the constitutional relation between the coefficients of the k -ω model, following the strategy by Chedevergne and Marchenay [START_REF] Franc | Transpired turbulent boundary layers : a general strategy for RANS turbulence models[END_REF] and Knopp [START_REF] Tobias | A new wall-law for adverse pressure gradient flows and modification of k-omega type rans turbulence models[END_REF]. These coefficients were calibrated by Wilcox [START_REF] Wilcox | Formulation of the k-ω turbulence model revisited[END_REF] to recover the asymptotic behaviour of the velocity profile in the inner boundary layer region. An attempt could be made to find a dependence to a relaxed pressure gradient to recover the velocity profiles from the DRSM calculations.
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 1 Fig. 1 -Thomas correlation [1] between the characteristic wavelength λ of scallops and the flow parameters (the friction velocity u τ and the flow kinematic viscosity ν).

Fig. 2 -

 2 Fig. 2 -Phase angle θ τw of the wall shear stress τ w with respect of the non dimensional wavenumber α + = 2πν λu τ , and (right corner) wall shear stress profile for α + ≈ 2 × 10 -3 . From Abrams and Hanratty [5].
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 3 Fig. 3 -Amplitude |τ w |/⟨τ w ⟩ of the wall shear stress τ w with respect of the non dimensional wavenumber α + . From Abrams and Hanratty [5].
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 4 Fig. 4 -Development of a turbulent boundary layer over a wavy wall.
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 5 Fig. 5 -Real (solid lines) and imaginary (dashed lines) parts of the fluctuation of the mixing length L with (blue) and without (red) Hanratty's correction.
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 1 Figure 6 exhibits the results of the linear boundary layer theory for the three turbulence models of part 2.1, and compares them with the DRSM calculations and the experimental database, for the wall shear stress amplitude and phase shift.

Fig. 6 -

 6 Fig. 6 -Phase shift θ τw (a) and amplitude |τ w |/⟨τ w ⟩ (b) of the wall shear stress as a function of the dimensionless wavenumber α + . The solid lines represent the linear stability of the boundary layer with the Prandtl/Van Driest mixing length model without Hanratty's correction (red), with Hanratty's correction (green) and with the k -ω model (blue). The scatter plot represent the DRSM calculations (skyblue triangles) and the experimental database (red circles).
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 7 Fig. 7 -Penetration depth of the longitudinal velocity disturbance in the shallow viscous regime : the perturbation is confined mainly in the linear sublayer of the velocity for y + < 5. Example for α + = 0.1. The amplitude of the oscillation is willingly exaggerated for clarity.
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 9 Fig. 9 -Penetration depth of the longitudinal velocity disturbance in the deep viscous regime : the perturbation diffuses up to the buffer sublayer of inner region of the boundary layer (y + < 40). Example for α + = 2 × 10 -3 . The amplitude of the oscillation is willingly exaggerated for clarity.

Fig. 10 -

 10 Fig. 10 -Mean velocity profiles predicted by the DRSM calculations (solid lines) and the k -ω model (dashed lines) for different x positions. Gray lines represent the asymptotic behaviour in the logarithmic region and illustrate the change in the slope (1/κ).

Table 1 -

 1 Targeted wavenumbers α + and the corresponding dynamic viscosity µ.

		1 )
	200	0.003747
	275	0.002725
	350	0.002141
	425	0.001763
	500	0.001499
	625	0.001199
	750	0.000999
	1000	0.0007493
	1500	0.000500
	2000	0.0003747
	3500	0.0002141
	5000	0.0001499