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ABSTRACT

Cold dark matter haloes are expected to be triaxial and so appear elliptical in projection. We use weak gravitational lensing from
the Canada—France Imaging Survey (CFIS) component of the Ultraviolet Near-Infrared Optical Northern Survey (UNIONS) to
measure the ellipticity of the dark matter haloes around Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey
Data Release 7 (DR7) and from the CMASS and LOWZ samples of the Baryon Oscillation Spectroscopic Survey (BOSS),
assuming their major axes are aligned with the stellar light. We find that DR7 LRGs with masses M ~ 2.7 x 103 Mg k™!
have halo ellipticities e = 0.46 & 0.10. Expressed as a fraction of the galaxy’s ellipticity, we find f;, = 2.2 £ 0.6. For BOSS
LRGs, the detection is of marginal significance: e = 0.20 £ 0.10 and f;, = 0.7 £ 0.7. These results are in agreement with
other measurements of halo ellipticity from weak lensing and, taken together with previous results, suggest an increase in halo
ellipticity of 0.10 &£ 0.06 per decade in halo mass. This trend agrees with the predictions from hydrodynamical simulations,
which find that at higher halo masses, not only do dark matter haloes become more elliptical, but that the misalignment between
the major axis of the stellar light in the central galaxy and that of the dark matter decreases.

Key words: gravitational lensing: weak — galaxies: haloes —cosmology: dark matter.

1 INTRODUCTION

In the standard ACDM cosmological model of our Universe, dark
matter accounts for over 80 percent of the matter content and
plays a dominant role in the formation and evolution of large-scale
structure. Dark matter haloes, in which galaxies reside, assemble in
a hierarchical manner, with less massive haloes accreting onto more
massive ones. Simulations have revealed that filaments and other
forms of large-scale structure will have an effect on the rate and
direction of the accretion of smaller haloes (Van Haarlem & van de

*E-mail: baileyarobison@gmail.com (BR); mike.hudson@uwaterloo.ca
(MJH)

Weygaert 1993), and that this leads to triaxial dark matter haloes that
appear elliptical in projection (Dubinski & Carlberg 1991; Jing &
Suto 2002; Bailin & Steinmetz 2005), with more massive haloes
tending to be more elliptical (Allgood et al. 2006).

This halo anisotropy has implications for cosmological studies
with weak lensing. Weak lensing operates under the assumption
that galaxies are randomly oriented, while in reality they will have
alignments due to the gravity of surrounding structure. Therefore,
this intrinsic alignment is a significant source of contamination.
Improving our model of halo anisotropy will allow us to develop
a better understanding of these intrinsic alignments, which will
improve the results of future weak lensing studies. Dark matter halo
anisotropy also provides a test to rule out theories of modified gravity
(Milgrom 2013; Khoury 2015) and a method to constrain the cross
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section of self-interacting dark matter (Davé et al. 2001; Peter et al.
2013).

The distribution of satellite galaxies has been used to infer the
shape of dark matter haloes. Studies have focused on the distribution
of satellite galaxies with respect to the shape of the central galaxy
(Brainerd 2005; Azzaro et al. 2007). A preferential alignment of the
satellite distribution with the major axis of the light of the central
galaxy is evidence of a non-spherical dark matter distribution. This
preferential alignment has been confirmed by observations (Yang
et al. 2006) and simulations (Zentner et al. 2005; Libeskind et al.
2007).

Weak lensing is another method of detecting dark matter halo
anisotropy (Schneider & Bartelmann 1997; Brainerd & Wright 2000;
Natarajan & Refregier 2000). This involves measuring the azimuthal
dependence of the shear. Natarajan & Refregier (2000) proposed
splitting the weak lensing shear into monopole and quadrupole terms,
where the quadrupole is aligned with the major axis of the galaxy’s
light. Hoekstra, Yee & Gladders (2004) introduced the measurement
of fi, the ratio of the aligned ellipticities of haloes and galaxy light,
and measurements of f, have been made by Mandelbaum et al.
(2006a) and Schrabback et al. (2015). Recently, this method has
been used by Schrabback et al. (2021) to obtain a 3.8¢ detection of
halo ellipicity, one of the most significant detections of anisotropy of
galaxy-scale haloes. Brainerd & Wright (2000) proposed comparing
the weak lensing signal within 45° of the major and minor axes, a
method implemented by Parker et al. (2007). This method was also
utilised by Van Uitert et al. (2017) to obtain a significant detection
of halo ellipticity in group-scale haloes. The method was extended
and improved by Clampitt & Jain (2016) who found a 40 detection
of the halo ellipticity of luminous red galaxies (LRGs) from the
Sloan Digital Sky Survey (SDSS). This method has also been used to
measure the halo ellipticity of massive galaxy cluster haloes (Evans &
Bridle 2009; Oguri et al. 2010), where the lensing is much stronger.

In this paper, we present a new measurement of halo ellipticity
from weak lensing. In Section 2, we present the source and lens data
used in this paper. In Section 3, we explain our methods of analysis,
including the anisotropic halo model and the various estimators used
to measure quadrupole shear. We present our results in Section 4.
These include results from the monopole shear and the average halo
ellipticity from the quadrupole shear. A discussion of systematic
effects is given in Section 5. Section 6 includes a comparison with
previous results. Finally, in Section 7, we present our conclusions
and prospects for future results.

The adopted cosmology is a flat Universe with ¢ = 0.3 and we
quote all factors that depend on Hy using 2 = Hy/(100km s~ Mpc ™).
There are two conventions for galaxy (or halo) ‘ellipticity’, and in
this paper, for comparison Wit}zl thze literature, we use both. We adopt

a‘—b

the following notation: e = 4,7 and € = %, where a and b are

the major and minor axes, respectively.

2 DATA

2.1 Source galaxies from UNIONS

The sources used in our weak lensing analysis were derived from the
r-band component of the Ultraviolet Near-Infrared Optical Northern
Survey (UNIONS).! UNIONS is a deep wide-field multiband (ugriz)
imaging survey covering the high Galactic latitude sky north of 30°
declination (approximately 4800 deg?). The r-band component of

Thttps://www.skysurvey.cc/
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UNIONS was obtained at the Canada—France—Hawaii Telescope as
part of the Canada—France Imaging Survey (CFIS, Ibata et al. 2017)
with a median seeing of 0.68 arcsec and a 10 limiting magnitude of
24.1 for extended sources in the r-band.

The UNIONS r-band data used in this paper cover 1565 deg? of the
Northern hemisphere, containing roughly 46 million source galaxies.
This coverage can be divided into four contiguous regions, referred
to as ‘patches’. To save computer time and memory, the weak lensing
analysis is performed on each of these individual patches rather than
on the entire source catalogue simultaneously. The patches are large
enough that any effects from being near the edge of the source
catalogue are minimal. Patch 1 is the largest, containing nearly half
of the sources. Patch 4 contains roughly a quarter of the sources,
while Patches 2 and 3 contain roughly an eighth.

Galaxy shape measurements, necessary for weak lensing, are
generated using an early version of SHAPEPIPE, a new shape mea-
surement pipeline (Guinot et al. 2022). The pipeline uses the ngmix
package (Sheldon 2015) to perform METACALIBRATION (Huff &
Mandelbaum 2017), which yields the ellipticities €; and €, for each
source. Each source is assigned a statistical weight that quantifies
how well the image is fit by the resulting shape. The weight is given
by

1

W= —F"""7""-.
2 2 2
20'im + Jel + 052

1

The intrinsic shape noise is o, = 0.34 for both components (Guinot
etal. 2022). The two parameters 03( are the variances of measurement
errors on the ellipticities.

To convert the shear into a mass distribution, we need the critical
surface mass density

c? Dq(zs)
4G Dy(z1) Dis(z1, 25)

where the distances are angular diameter distances that depend on
the lens or source redshifts, or both. At present, UNIONS data do
not have complete deep ugriz photometry, and photometric redshifts
of the source galaxies are not yet available. Nevertheless, we can
make a statistical determination of the critical density if the source
redshift distribution is known. We have measured p(zs) using the
method described in Lima et al. (2008), with the implementation
of Hildebrandt et al. (2017, 2020). Full details of the application
of this method to UNIONS are given in Spitzer et al. (submitted);
here we give a brief summary. We match the UNIONS catalogue
with the W3 patch of the deeper Canada—France—Hawaii Lensing
Survey (CFHTLenS), which overlaps with UNIONS to obtain ugriz
photometry for CFIS sources. Then, a spectroscopic sample with
ugriz photometry from CFHTLenS, was used (Hildebrandt et al.
2012; Erben et al. 2013), and galaxies in this sample were reweighted
until their distribution in 5-dimensional colour space matched that
of the ugriz UNIONS catalogue. The resulting reweighted p(z) from
the sample was then adopted as the p(z) for the UNIONS catalogue.
The resulting p(z) is fit by the profile described in equation (3). We
also create versions of the catalogue that are magnitude limited and
fit with the same profile to account for varying depth across the field.
The distribution of parameters as a function of weighted median r-
band magnitude is fit by equations (4) and (5). We fit the data with a
source redshift function of

o ,(%)a (e=w?
= | A(m) - e o + = A@m))- e
P @ p () 2.5046 |’

o o

Derit = (2)

3
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A(m) = —0.4154m* 4 19.1734m — 220.261, “)

Zo(m) = 0.1081m — 1.9417, 5)

where o = 1.79, 0 = 1.3, u = 1 and where m is the median weighted
r-band magnitude. This median r-band magnitude is different for
each of the four patches, so each patch will use a slightly different
p(z) and Zc_rill(zl). The median magnitude for Patch 1 is m = 22.95,
for Patch 2 it is m = 22.944, for Patch 3 it is m = 22.923, and for
Patch 4 it is m = 22.952. The process of fitting p(z) was undertaken
by Spitzer et al. (submitted).

We then calculate the average inverse critical density, following
Viola et al. (2015), by integrating over the probability density
function of the source galaxy redshifts as follows

4nG /°° Dy(z1) Dis(z1, z)
2]

—1 J—
(Zan(@)) = Dq(zs)

= Pz dz. ©)
This can be evaluated for each lens and incorporated into the weighted
average to obtain the excess surface mass density (ESD), AX.

We note, however, that the halo ellipticity is robust to the source
redshift distribution because it depends on a ratio of the quadrupole
moment of the ESD to the monopole of the ESD. Therefore, any
systematic error in the ESD, due to, for example, a systematic error
in the source redshift distribution, will appear in both numerator and
denominator, and hence will cancel.

2.2 Lens galaxies

Luminous red galaxies (LRGs) are used as lenses because they reside
in massive dark matter haloes, with a typical halo mass on the order
of 1013-10'" h~' Mg, (Zheng et al. 2009a). A more massive halo has
a stronger weak lensing signal, which makes it easier to detect the
quadrupole component of the shear. Also, simulations suggest that
more massive haloes tend to be more elliptical (Allgood et al. 2006).
Finally, LRGs provide a reliable method of aligning our lensing
measurements. The distribution of satellite galaxies, which may trace
the dark matter halo, is more aligned with the galaxy light for red
central galaxies (Yang et al. 2006).

We consider two LRG samples in this paper. One lens sample
consists of LRGs from the SDSS DR7 (Abazajian et al. 2009)
catalogue of Kazin et al. (2010). These LRGs span a redshift
range of 0.15 < z < 0.5 with a median redshift z = 0.34 and
a median lens galaxy ellipticity of e = 0.22. This lens sample
has (X71)7! = 6120 Mg hpc ~2. Only LRGs that overlap with the
current UNIONS weak lensing footprint were used, resulting in a
lens sample of approximately 18 000 LRGs.

The second lens sample consists of the LRGs from the CMASS
and LOWZ samples of the BOSS component of SDSS-III (Dawson
et al. 2013). These LRGs are selected within several magnitude and
colour criteria, and span a redshift range of 0.15 < z < 0.7. Only
LRGs that overlap with the current UNIONS footprint were used.
This resulted in a lens sample of approximately 144 000 lenses with
a median redshift of z = 0.51 and a median lens galaxy ellipticity of
e = 0.22. This lens sample has (£_1)~! = 8313 Mg hpc ~2.

In order to measure the anisotropy of the shear signal, the lenses
need to be aligned before stacking. We first matched the SDSS LRG
catalogue with UNIONS photometric catalogues on position. Many
LRGs are too large or bright for our standard-shaped measurement
pipelines, which are designed for small, faint galaxies near the survey
limit. Instead, the shape and orientation of LRG in UNIONS were
obtained from the position angles and axis ratios in the UNIONS r-

MNRAS 523, 1614-1628 (2023)

band SExtractor (Bertin & Arnouts 1996) catalogue. The SExtractor
position angles are not corrected for PSF anisotropy, but the source
galaxy shapes are. So in principle, there should be no correlation
between the shapes of lenses and sources. Nevertheless, as a test,
we also perform the analysis with LRG position angles derived from
independent SDSS photometry in Section 5.

2.3 The effect of satellites of lens galaxies

There is no photometric redshift information for UNIONS source
galaxies yet. As a result, we have no way of knowing which sources
are actually behind the lens and, therefore, which are affected
by weak lensing. Some portion of the sources surrounding the
lenses are actually satellite galaxies. These satellite galaxies are not
affected by lensing, and may introduce bias in the form of coherent
intrinsic alignment. Schneider & Bridle (2010) propose a model for
intrinsic alignments of galaxies. Their model is based on the linear
alignment model, which assumes the alignment of galaxies is linearly
proportional to the tidal field. This model predicts a preferential
radial alignment of satellites with the central galaxy. However,
observational studies have found mixed results. Several studies of
satellite alignment yield results consistent with random alignment
(Schneider et al. 2013; Sifén et al. 2015), although preferential radial
alignment has been observed in others (Singh, Mandelbaum & More
2015; Georgiou et al. 2019).

We also expect there to be an excess of satellites along the major
axis of the lens light and a deficit along the minor axis, which
will influence our measurement of the elliptical shear signal. This
alignment between the satellite distribution and the alignment of the
central galaxy has been observed by Yang et al. (2006), who found a
stronger alignment for red central galaxies. Our lenses, being LRGs,
are therefore expected to be significantly aligned with their satellite
populations.

Light from the lens will contaminate the shape measurements of
the plentiful sources along the lens major axis. This can lead to
the shape measurement being biased in the radial direction (Sifén
et al. 2018). If there is a significant preferential radial alignment, an
excess of satellites along the major axis will lead to a larger negative
contribution near the major axis. This will have the effect of adding a
negative quadrupole term, or a negative halo ellipticity, to our results.

In order to account for the effect of satellite galaxies on our
results (which will be described in more detail in Section 3.2), we
need to model the anisotropic distribution of satellites. We write the
observed surface number density of source galaxies around a lens
galaxy as

n(R, 0)
ny

=1+ wy(R,6) = [1 + w™(R)][1 + ag(R) cos(20)],  (7)

where n, is the surface number density of background source galaxies
(assumed to be uniform), and wy(R, 6) is the anisotropic projected
cross-correlation of sources with a lens galaxy. In the second equality,
we separate this into a monopole excess wy' and a quadrupolar
angular dependence, where 8 = 0 is aligned with the major axis
of the light, and the amplitude of the quadrupole is denoted aq.

To measure these quantities, the lenses were rotated to a coordinate
system, where the major axis of the lens galaxy light (as measured
in the UNIONS catalogue) is aligned with the x-axis. The region
within 140-4200 kpc 4~! from each LRG was divided into concentric
annular bins. In each of those radial bins weighted source galaxy
counts were binned by azimuthal angle from the major axis. For
each angular bin, the uncertainty is the square root of the number of
sources in the bin.
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Figure 1. Top: Weighted source galaxy counts in 16 azimuthal bins. The
horizontal axis is the angle from the major axis of the DR7 LRG’s stellar
light. Only source galaxies with a projected separation of 110-500kpc /™!
are included. A function of the form cos(26) was fit to determine the
amplitude. The vertical axis is scaled to show deviation from the mean.
Bottom: Amplitude fit to azimuthal source distribution as a function of radius
(black circles). The right-hand scale and the blue squares show the excess
counts above thes background.

For each radial bin, we calculate wy', which is defined as the ratio
of the number density of sources within each bin to the number
density of background sources. We also calculate the amplitude of
quadrupole, aq. To do so, in each radial bin, we fit a function of the
form cos (20) to the angular source distribution. An example of this
fit for DR7 LRGs is shown in the upper panel of Fig. 1. Sources
within 110-500kpc #~! were divided into 16 angular bins, and a fit
was performed to determine the amplitude a,. This was repeated for
each radial bin to obtain aq(R).

The bottom panel displays aq(R) in black and w;'(R) in blue for
several radial bins. A power law was fit to each. We will use these
power law fits to interpolate w;' and aq at any distance from the
centre of the lens. This process was repeated for the BOSS lenses,
and for the DR7 lenses but taking the lens major axes angles from
SDSS (see Section 5).

This radial dependence in the alignment of the satellite distribution
is in agreement with other works (Yang et al. 2006). If satellites trace
the halo, this suggests that the dark matter halo is well aligned with
the lens light. Therefore, we use the lens light as a proxy for the
major axis of the halo when stacking to measure the quadrupole
shear. In addition to their usefulness as a possible proxy for the
shape of the dark matter haloes, satellite galaxies are also a potential
source of contamination for our shear measurements. Satellite galaxy
orientations are expected to be preferentially aligned with the central
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galaxy (Schneider & Bridle 2010; Georgiou et al. 2019), which could
lead to a radial bias in the shear.

Georgiou et al. (2019) observe a radial dependence on satellite
alignment with respect to their group’s BCG. Satellites close to the
BCG experience a radial alignment, which affects the tangential
component of their shape. They observe no effect on the cross
component. In order to measure this radial contamination, we fit
a power law to Fig. 3 in Georgiou et al. (2019). We omit the closest
radial bin from our fit due to potential contamination from the BCG
light. This radial contamination uses the ellipticity notation €, which
is the same notation used in our source shape measurements. This
contamination, €™, can be combined with (£;!)~! to obtain the
contamination in the mass, A ¥;,,. We will discuss the impact of this
on our measurements in Sections 3.2 and 3.3.

3 ANALYSIS

Before measuring the halo ellipticity, we first determine the mass
and concentration of the LRG halo by measuring the monopole
component of the tangential shear. This is commonly calculated as a
weighted average of the source galaxy ellipticities. All sources have
a weight, wy, that describes the quality of the source’s shape mea-
surement. We also weight each lens-source pair by W = (Ec_rilt(a))z
following Sheldon et al. (2004), with (£..!(z))) from equation (6).
The excess mass density is given by

(an(Ry = D (T w W ®)
Z Wy W|

summing over all sources, s, and all lenses, 1, in a given radial

separation.

After measuring the monopole shear, we measure the quadrupole
shear. This process is different, as we need to take the orientation
of the lenses into account. First, the positions of the lens and the
sources are converted from equatorial coordinates into a local 2D
Cartesian coordinate system centred on the lens. All data, including
the positions and shapes of the sources, are rotated so that the
major axis of the light in the lens is aligned with the x-axis of the
coordinate system. This process is repeated for each lens to measure
the azimuthal variation in the shear and the results are stacked.

3.1 Model

Our model, which relates the measured shear to the mass and
ellipticity of the dark matter halo, consists only of the so-called ‘1-
halo’ term, which describes the matter directly attached to the lens
galaxy. One could also include an ‘offset group’ term to account for
lenses that reside within subhaloes inside a larger host halo. However,
few of the LRGs are expected to be satellite galaxies: for example,
from halo occupation modelling, Zheng et al. (2009b) predict satellite
fractions of 2-5 per cent (depending on luminosity) for DR7 LRGs.
The satellite fraction for the BOSS LRGs, which are less massive
than the DR7 LRGs, is somewhat higher but still low: about 10
per cent (White et al. 2011; Parejko et al. 2013). Consequently we
neglect this term in the modelling. A 2-halo term is often included to
account for the lensing signal from neighbouring haloes. This term
is important at large radii, but not within the radial range we are
concerned with in this work.

The 1-halo term is comprised of the contribution from the stellar
mass of the galaxy and the mass of the galaxy’s dark matter halo.
The stellar mass is treated as a point mass,

AX.(R) = M, /TR )
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Figure 2. A visualization of the 2D quadrupole shear pattern, and the regions covered by the CJ estimators. In both panels, the central ellipse reprsents the lens
galaxy, while the smaller surrounding ellipses represent the sources. These sources are experiencing a purely quadrupole shear. The left-hand panel demonstrates
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Figure 3. The monopole tangential shear of the DR7 LRGs with the best
fitting NFW halo fit using bins within 1 Mpch~!. The observed monopole
shear was fit with the corrected model in equation (24). The best-fitting halo
mass and concentration are displayed in the plot.

We also require a term to describe the dark matter halo in the 1-
halo term. Normally, an NFW profile is used to describe the density
profile of a dark matter halo. However, the mass of the NFW profile
does not converge when integrated to an infinite radius. Instead, we
use a truncated NFW profile from Baltz, Marshall & Oguri (2009) to
describe the dark matter halo, which has a well defined total mass.
The truncated NFW profile is

MO 1 12
473 x(1 4+ x)? 12 4 x2’

plx) = (10)

MNRAS 523, 1614-1628 (2023)

where x = r/ry and My = 47T,osr3. The truncation factor, T = r/rs,
describes the radius where the truncation term begins to dominate.
For the remainder of this paper, a truncation factor of T = 10 is used.
The scale radius of the halo, s, is related to the virial radius (R5.)
through the concentration (cy0.). The scale density, p, is related to
the critical density and also depends on the concentration.

200 Co0c
3 In(1 4+ c000) — —£200c_

1+c200c

Ps = Pec- (11)

We parametrise the NFW profile using only Mg and cppp.. The
total circularly symmetric model comprised of this truncated NFW
profile and the stellar mass term from equation (9):

AEm = AE* + AZNFW- (12)

Now we can extend this model to account for the halo ellipticity,
following Adhikari, Chue & Dalal (2015) and Clampitt & Jain
(2016). The surface mass density of the anisotropic halo can be
split into a monopole, described by a projection of the truncated
NFW profile, and a quadrupole term:

S(R,6) = Zn(R) [1 - gn(R)cos(ZQ)] , (13)

where 0 is defined as the angle measured counter-clockwise from
the major axis of the mass distribution. The ellipticity of the halo is
represented by e. The function 7n(R) describes how the quadrupole
term is related to the monopole term at different radii. Clampitt &
Jain (2016) use

R dZ.(R)
drR

_ dlog ¥,(R) B

MR = —flogR  ~ Su(R) (14
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It is also useful to separate the tangential shear into a monopole
term and a quadrupole term:

¥+(R.0) = y™(R) + y3(R) cos(26). (15)
The cross-shear has no monopole, and its quadrupole is
yx(R,0) = y{(R)sin(20). (16)

Adhikari et al. (2015) found that the tangential and cross-components
of shear from the quadrupole are given by

Berit Vi = (¢/D[Em(R)N(R) — [I(R) — L(R)]
Berie v = (¢/2[=11(R) + L(R)], a7

where
3 R
L(R) = =i / RP*T(RYN(R)AR’
0

By = [T EEN g, (18)
R R

3.2 Allowing for contamination by satellite galaxies

As discussed in Section 2.2, we need to account for the presence of
satellite galaxies. These satellites have two effects. First, they dilute
the background source galaxies. Second, due to tidal fields, they are
radially aligned with the host halo (a form of ‘intrinsic alignments’),
leading to an underestimation of the weak lensing signal. We need
to adjust our model to account for these effects.

Now suppose that the satellites associated with the lens are
intrinsically aligned with the lens with some tangental ‘shear’ (more
accurately, ellipticity) eﬂf‘. As discussed, recent results (Georgiou
et al. 2019) have shown that these intrinsic alignhments are radial.
Since we adopt the convention that a tangential shear is positive, 631:[
is negative.

The average tangential shear that one would predict for a sample
with satellites is a weighted average of lensing tangential shear of
background sources, contaminated and diluted by satellites in the
lens galaxy’s anisotropic halo:

Y(R) 4+ wy(R, 0)e(R)
1+ wy(R, 0)

Y(R,0) = 19)
To simplify the notation let us drop the R and write the 6 dependence
explicitly as a quadrupole, separating these into cos (260) and sin (26)
terms where necessary, and using equation (7). This gives

Y+ i cos(20) + wielt + (14 wl)aq cos(260)€’

20
(14 wm)[1 + aq cos(20)] (20)

ﬁ =
To simplify this expression, we note that, while wy' can be quite
large, ag is small and so Taylor expanding the denominator, keeping
terms to first order in a4 and separating these into into monopole and
quadrupole terms, we obtain

om _ Y&t wped @1
T 1 4owm
p
for the monopole, and
q int m
Y+ taqlelf — v
71 _ + Q( + +) (22)

14+ wp

for the quadrupole term with cos (20) dependence. For the monopole,
we see there the well known multiplicative ‘boost’ factor (Sheldon
et al. 2004):

B(R) =1+ w](R) (23)
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and an additional correction w?ei’“ due to the intrinsic alignments
of the satellites. Because the satellites are radially aligned, eﬂf‘ <0,
this effect reduces the observed tangential shear.

Our results are expressed in terms of A X, not shear, so multiplying
all terms by ()71, and defining AXj, = (S "1el™, these

crit crit +
become

AT, =B'[AZ, + wy' AZin] (24)
Tei?h = B [Zeird + ag(ATin — AZ)] (25)
TeiVy = B! Ty (26)

In summary, for the quadrupole given by equation (25), apart from
the multiplicative boost factor, there are two new terms: the radial
intrinsic alignment aq A X, and what we refer to as the anisotropic
boost factor —aq AXy,. In practice, both of these corrections have
the same sign, but the latter dominates over the former for R 2
100 kpc h~! for our lenses.

3.3 Halo ellipticity estimators

Here, we consider two different estimators of the halo ellipticity
that differ in how the ellipticity is measured. The purpose of these
estimators is to measure the quadrupole signal, which is proportional
to the halo ellipticity, while cancelling any contribution from the
monopole shear.

The first of the quadrupole estimators used in this paper is
from Clampitt & Jain (2016), and will be referred to as the CJ
estimators. These estimators measure the halo ellipticity directly,
independently of the ellipticity of the galaxy. Moreover, they nullify
the purely tangential monopole lensing signal. They provide four
statistically independent measurements of halo ellipticity that we
combine to calculate the mean halo ellipticity. A potential bias
in the halo ellipticity arises if some effect aligns the major axis
of the BCG in the same sense as the background sources. This
might occur due to cosmic shear from the foreground large-scale
structure that is closer than the BCG. This effect may shear both the
BCG and the background sources in the same sense. Alternatively,
an uncorrected PSF anisotropy may also affect both the BCG and
the background sources. However, this systematic only affects the
AX i” ) estimators and not the A 2;'/ ) estimators (Clampitt & Jain
2016).

The second set of estimators assumes that the halo ellipticity is
related to the ellipticity of the lens galaxy’s stellar light, e;. These
estimators were first introduced by Hoekstra et al. (2004), further
developed by Mandelbaum et al. (2006a), and will be referred
to here as Hoekstra—Mandelbaum (HM) estimators. The fAX and

fis AX estimators will both be affected by a systematic shear,

as described above. However, to a good approximation, the two
estimators will both be equally affected by this spurious shear
(Mandelbaum et al. 2006a), and therefore, by subtraction, we can
measure the uncontaminated value (f — fy5) AX. Schrabback et al.
(2015) tested this with ray-tracing simulations and showed that the
cancellation of systematics works well, at least for lenses at low
redshift and for lens-source pairs at low projected galactocentric
radii (see their fig. 6). These estimators are used to calculate the
aligned ellipticity ratio f;, ~ ep/eg.

Because the two sets of halo ellipticity estimators weight and
combine the source shapes in different ways, they are statistically
correlated but not perfectly (nor, of course, are they statistically
independent). We consider both estimators in this paper.

MNRAS 523, 1614-1628 (2023)
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3.3.1 Clampitt—Jain estimators

The first set of estimators are based on those used by Clampitt &
Jain (2016). These estimators use the tangential and cross shear
components of the quadrupole, Xy + and Xy « (Adhikari et al.
2015). These are transformed into a coordinate system aligned with
the major axis of the lens.

Ecrityl = _EcrilVJr cos 20 + Ecrityx sin 20 27N
Ec:rity2 = _ZcrilVJr sin26 — Ecril7/>< cos 26, (28)
where

Zeicv1(R) = (e/HI21N1(R) — Zm(R)n(R)) cos 40
+2L(R) — En(R)n(R)] (29)

Zeicy2(R) = (e/HI211(R) — Zn(R)n(R)] sin46. (30)

We correct for contributions from satellite galaxies by inserting
equations (25) and (26) into equations (29) and (28).

a,
ey = B [Zenn — SHAZi — ATn)(1 +c0s40)| (D)
Sei?2 = B [Zeurs - %‘*(Azm — AX,)sind6 ] (32)

where ¥y and X5y, are equations (9) and (11) from Clampitt &
Jain (2016).

We use four estimators divided into two pairs AE;J’/ o

and
AEEH =) The source galaxies will experience a quadrupole com-
ponent in their shear, which depends on e. These estimators are
designed to measure this quadrupole component in regions, where
y1 (or y,) have the same sign. A visualization of the CJ estimators,
as well as the 2D quadrupole shear pattern is presented in Fig. 2.
In both panels, the central ellipse reprsents the lens galaxy, while
the smaller surrounding ellipses represent sources. These sources
are experiencing a purely quadrupole shear. In the left-hand panel,
sources in the lighter region are counted as part of the AX,
estimator. In this region, sources will experience a purely negative
y1 component of quadrupole shear. Darker regions, where sources
experience a positive y; quadrupole shear, are measured with the
AX estimator. Sources which experience no y; component have
been drawn with a reduced line weight. The right-hand panel
demonstrates the angular regions covered by the AE;’/ ~ estimators.
Sources in the lighter region are covered by A, experiencing a
negative y, quadrupole shear. Those in the darker region are covered
by AX, and experience a positive ¥, quadrupole shear. Sources
which experience no y, component have been drawn with a reduced
line weight.

The first pair of estimators, AZf+> and AEP, depend on the y;

component.
4 7t/8
AT(R) = — / Seit? (R, 8)d8 + 3 rotations by 7t/2  (33)
—/8
4 3m/8
AT(R) = — / Ser?1 (R, 6) d6 + 3 rotations by 71/2, (34)
/8

where each of the bounds have three additional 7t/2 rotations so that
they cover a + or x shape on the sky. The final pair of estimators,
AZEH and AZ%” , depend on the y, component.

4 7t/4
ATS(R) = — / SeitV»(R, 6)d6 + 3 rotations by r/2  (35)
0

4
ATSP(R) = ;/

/4

7t/2
Yuity (R, 0)d6 4+ 3 rotations by t/2, (36)
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In practice, we measure these from the data with a weighted
average of the source ellipticities

AT = 2 Wik Berivs Wi i 37)

Z Wy Wl
where k = 1, 2 refers to which ellipticity component (¢;) is used
in the weighted average. The angular range of the weighted average
changes depending on & and s.

k=1,s=—-: —m/8<60 <m/8

k=1,s=+: mn/8<60 <3m/8

k=2,s=—: 0<6<m/4

k=2s=4+: mn/M4<0<mn/2, (38)

with each of these having three other 7t/2 rotations so that they cover
a + or x shape on the sky (see Fig. 2).

To obtain the halo ellipticity, we compare to the measurements
from equation (37) to our predictions from the model, which are
calculated by inserting equations (31) and (32) into equations (33)-
(36), then evaluating the integrals. We can fit each of the resulting
equations to find e.

3.3.2 Hoekstra—Mandelbaum estimators

The HM estimators assume that the halo ellipticity depends on the
lens galaxy stellar ellipticity, e;. Their model for the anisotropic mass
distribution is slightly different from the one present in equation (13).

AS(R,0) = ASu(R)[1 4 2f(R)eg cos(26)]. (39)

where f is a factor that relates the ellipticity of the galaxy light
(e,) to the ellipicity of the halo (e). This is similar to the model
described by equation (13), with slightly different notation, where
f(R)=— fgn(R). Note that this model differs by a factor of 2 from
the model used by Schrabback et al. (2015), who adopt a different
definition of lens galaxy ellipticity.

This yields two estimators, fAX and fs5s AX, that depend on the
tangential and cross ellipticities (€, and € ).

S €n i (o (@) " w; Wieg ;i cos(26;)

R)AZ(R) = 40
FR)AZn(R) 25, wiWiel, cos(26) @
—1 .
i (San(z)) wiWieg,; sin(26;)
R)AT.(R) = i » cri s i 41

Sas(R) (R) 25, wi Wik, s (26,) 41)
where Wy = (2.1(z1))? and

€, = —€, 0826 — €;8in 20, 42)
€y = +€;sin26 — €, cos 26. 43)

These estimators measure the anisotropic component of the shear, or
the quadrupole. The cos (20) weighting in equation (40) will apply a
positive weighting along the major axis of the lens, where we expect
€ to be positive. However, it will apply a negative weighting along
the minor axis, where we expect €, to be negative. If the lenses
and sources are aligned due to systematic effects rather than the lens
shear, these will affect this estimator. We define a second estimator,
equation (41), which depends on the cross shear, €. This estimator
will experience the same systematic effects experienced by the first
estimator, allowing us to cancel these contributions. Therefore, an
advantage of the HM estimator (f — fis) AX,(R) is that it cancels
systematics.

Itis worth noting that the sign convention for the shears is different
than for the CJ estimators. For example, a source at an angle of
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0 = 0 from the major axis experiencing a purely tangential shear
would have a negative €; component. However, this would be a
positive tangential shear, €.

To model the expected signal from the HM estimators, we replace
the weighted averages of € in equations (40) and (41) with the models
for y, and ¥, and integrate 6 from O to 27, yielding

27t

F(RIAZL(R) = L StV L(R) cos?(20) (44)
m 27'[Eg crit) +
1 27
Sas(R)AEW(R) = — Zerit % (R) sin®(20), (45)
27T€g 0

where e, is the average ellipticity of the lens galaxy light. We
correct for satellite contamination by using Ecm?‘i and Ty x
from equations (25) and (26). We continue to use the a4 and wgl
as described in Section 2.3 and Fig. 1. Dividing the lens sample into
different e, bins did not significantly affect the fits of aq and w;'. So
we treat the fits as valid for all lenses, regardless of e;.

After inserting equations (25) and (26) into equations (44) and
(45), and performing the integrals, we find

fAS, =B {E(Emn 5L —Dh)+ ij(Azim - AEm):| (46)
4 2e,

fisAZm = %B“[—h + Dl. (47)
To reduce the effect of systematics, we subtract fis AX from fAX
giving
(f = fi)ASm = B | L (sn — 20 + 29 (Axi — A%
45 m — 4 m?] 2) + e ( m) .
g

(43)

In summary, we measure fAX, and fy5 AX,, in radial bins using
the equations (40) and (41). Then we subtract these to obtain (f —
f15)A X, which we fit using equation (48) to obtain f;.

3.3.3 Misalignment between the position angles of the stellar light
and the dark matter halo

We expect the light of the LRGs to be aligned with their dark matter
haloes, making the major axis of the light a proxy for the major axis
of the dark matter halo. The alignment, however, is not perfect and
has been studied by a number of authors.

If the probability density function of misalignment angles is
P(61is), then the aligned ellipticity ee; will be reduced from the
halo ellipticity by a factor (Clampitt & Jain 2016)

@ = <C05(29mis)) = /Cos(zemis)P(emis)demis- (49)
e

For example, if one assumes P(0 ;) is a Gaussian distribution with
width o ;s in radians, then

Ceff
- = exp (

~202,). (50)

One way to assess the degree of misalignment is through hydrody-
namical simulations of galaxy formation that predict the distribution
of misalignment angles, P(0mis). A number of authors have studied
the misalignment angle between the projected stellar distribution
and the projected total matter distribution in various halo mass bins.
They find the misalignment angle tends to be smaller in more massive
haloes. In Appendix A, we compute relevant quantities for the case
of Velliscig et al. (2015). We return to the topic of misalignment in
the discussion in Section 6.
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4 RESULTS

4.1 Weak lensing monopole

Before fitting the elliptical model to the quadrupole shear, we require
the monopole of the shear. The monopole of the tangential shear was
measured in radial bins and scaled using X for each lens galaxy.
Then an NFW profile was fitted with halo mass and concentration as
free parameters. Only bins within 1 Mpc h~! from the centre of the
lens were included in the fit, as beyond this radius, effects from other
haloes and surrounding structures become significant. A sample of
10000 000 random lenses was created, and the lensing signal around
these random lenses was measured. Before fitting, we subtract the
results of the random lenses from the measured signal.

The results of the stacking and the fit for the DR7 LRGs are
shown in Fig. 3. Both parameters are quite well constrained, and
there is good agreement between the data within 1 Mpc A" and the
NFW model. We obtain a halo mass of My = (2.67 & 0.19) x
10"* Mg h~! and a concentration of ¢y = 4.26 & 0.55.

The mass is consistent with that found by Mandelbaum et al.
(2006b), for which a lens-weighted average over their bright and
faint DR4 LRG subsamples yields (3.04 4+ 0.39) x 10> Mg A~!,
after conversion to our mass definition. Similarly converted, their
concentration is 2.8 £ 0.4, which is lower than our fit. We note,
however, that while Mandelbaum et al. (2006b) used photometric
redshifts for lenses and bright sources to reduce the contamination
of satellite galaxies, this may not eliminate contamination entirely.
Indeed, the fact that they have a boost factor B > 1 implies there is
some contamination. They do not model the effects of radial intrinsic
alignments or an anisotropic boost factor. If we had ignored these
corrections, we would have found a concentration of 3.0 £+ 0.3,
consistent with their results.

The concentration from the fit is in agreement with the concen-
tration predicted by mass-concentration relations. For a halo of this
mass, Duffy et al. (2008) predict a concentration cyp. ~ 4, while
Dutton & Maccio (2014) predict cpo ~ 5.

For the BOSS LRGs, we obtain a halo mass of M,y =
(1.15 £ 0.09) x 10"*Mgh~! and a concentration of cypp. =
2.97 £ 0.48.

4.2 Weak lensing quadrupole

Results for the CJ estimators applied to the DR7 LRGs are displayed
in Fig. 4. A model based on the halo mass and concentration
for the monopole but with free ellipticity e was fit to each of
the four quadrupole estimators independently. Only radial bins
within 600 kpc 2~! were included in the fit, as surrounding structure
contributes a significant amount of anisotropy at large radii. The
region not included in the fit is shaded in gray. The best fit of e for
each CJ estimator is displayed in the appropriate panel.

We can quantify the significance of the agreement between these
ellipticity values from the fits. A weighted average of the halo
ellipticity is taken using the uncertainty in the value of e from
the fit (w = 07%). The four ellipticities from the CJ estimators
are independent of each other because they cover different angular
ranges around the lens and different components of the ellipticity.
From the four CJ estimators, the mean halo ellipticity is e =
0.46 £ 0.10. If we assume these four values of ellipticity are fit
with a constant e, we can calculate the x> of this hypothetical
fit, which is XZ = 5.79. This is dominated by the AX; estimator,
which contributes 3.27. Thus the deviation from these points is at a
level less than 20-. We can then evaluate the cumulative distribution

MNRAS 523, 1614-1628 (2023)
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Figure 4. Quadrupole shear around DR7 LRGs aligned with the major axis of the LRG light. Results obtained after correcting for systematics are shown. The
left-hand panel displays the negative CJ estimators, while the centre panel displays the positive CJ estimators. The first estimator is represented in black with
circles and a solid line. The second estimator is represented in green with triangles and a dashed line. Points plotted in green have been shifted slightly to the
right for clarity. The best fit of e for each estimator is displayed in each panel. The right-hand panel displays the halo ellipticity values from the four independent
CJ estimators. The weighted average halo ellipticity (e = 0.46) is plotted as a dashed black line. The range of 1o uncertainty in the mean is shaded in blue

(Ae = 0.10). No ellipticity is represented with a dotted black line at e = 0.

function for a x? with three degrees of freedom. We find a 12
per cent chance of obtaining a value of x> = 5.79 or higher, which is
acceptable.

We show the constant model and the data in Fig. 4. When these
estimators are fit with an ellipticity of e = 0, the value raises to x> =
26.19, with a probability of 0.0008 per cent.

Results for the HM estimators are displayed in Fig. 5. For the DR7
LRGs, we find f;, = 2.2 &+ 0.6. These results are consistent given
the mean ellipticity of the galaxy light for the lens sample, ¢, =
0.22 predicts a halo ellipticity e = 0.48 £ 0.08. This is a significant
detection of a non-zero f;,.

Repeating the analysis for the BOSS LRGs, we obtain a mean halo
ellipticity of e = 0.20 & 0.10. Using the HM estimators, we obtain
fo = 0.7 £0.7. The results for the CJ estimators are shown in Fig. 6,
while the results for the HM estimators are displayed in Fig. 7. The
mean ellipticity of the galaxy light for this lens sample is e, = 0.22,
so the HM fit predicts e = 0.15 £ 0.15. Therefore, the values of e
and f;, are consistent.

The BOSS haloes appear to be less elliptical than the DR7 LRG
haloes, but in fact neither the difference in e (0.26 = 0.14) nor in f;
(1.5 £ 0.9) is statistically significant. Note that the BOSS LRGs are
slightly less massive than the SDSS DR7 LRGs, which may cause
them to be less elliptical (see discussion in Section 6). Moreover, the
BOSS LRG sample is more distant (Zmegian = 0.51) than the SDSS
DR7 LRGS (Zmedian = 0.34). At these redshifts, there is a loss of
surface brightness, not only due to cosmological (1 4 z)* dimming
but also because the CFHT r-band probes the rest-frame ultraviolet
below the 4000 A break, where the flux from old, red galaxies is much
suppressed. This may lead to less accurate measurements of the LRG
ellipticity and of the major-axis position angle of the galaxy light,
leading to greater misalignment when stacking. Also, for the above
reasons, photometry may be more sensitive to the inner regions of
the BOSS LRGs, whereas for the SDSS DR7 LRGs, it may be more
sensitive to the outer regions. In an elliptical galaxy with isophote
twists, the latter may be better aligned with the DM halo. Finally,
Schrabback et al. (2015), in their fig. 6, have shown that the HM
estimators of f;, are biased low due to cosmic shear when the data
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extend to high galactocentric projected radii for lenses in the redshift
range of the BOSS LRGs, whereas this bias is negligible for the
lower redshift SDSS DR7 LRGs.

5 SYSTEMATIC TESTS: LENS MAJOR AXIS
POSITION ANGLES FROM SDSS

When using lens position angles from UNIONS, the shape mea-
surements of the sources and lenses are both derived from the same
imaging. It is possible that issues with the shape measurements,
for example, inadequate PSF correction, could lead to a correlation
between the lens and source shapes. This correlation could lead to
an observed alignment that could affect our weak lensing results.
To provide an alternate test and an independent source of lens
position angles, we can perform the quadrupole shear measurement
using position angles from the SDSS data base. First, all LRGs
were selected from the DR16 release of SDSS. The resulting list
of LRGs was then matched in equatorial coordinates to our list of
LRGs that overlap with UNIONS. In SDSS, these LRGs were fit
with both an exponential and a de Vaucouleurs profile. The angle
from the fit with the highest likelihood was chosen. It is worth noting
that the SDSS imaging is considerably shallower than UNIONS,
so we might expect their position angles to be less accurate than
the position angles from UNIONS. A histogram of the differences
in position angle from UNIONS and SDSS is displayed in Fig. 8.
Most position angles are similar; however, there are a significant
number of LRGs that have substantially different major-axis position
angles in SDSS photometry versus UNIONS photometry. The semi-
interquartile range of the difference is 31.4° and the standard
deviation is 33.6°.

The process of calculating the quadrupole shear was repeated
using the major axis light position angles from SDSS. Results for the
quadrupole shear using the SDSS lens position angle are displayed
in Fig. 9. We can repeat the process used for the UNIONS major
axis position angles and calculate the mean halo ellipticity and 2
of the fit. The mean halo ellipticity is ¢ = 0.34 + 0.10 and x?2 =
0.68. This is larger than the ellipticity obtained by Clampitt & Jain
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Figure 5. The left-hand panel displays the HM estimators from equations (40) and (41) for DR7 lenses. AR)AX(R) is represented by black circles, while
fas(R)AZn(R) is represented by green triangles. The right-hand panel displays the difference (f — fa5) AXn(R). The black line represents a fit with equation

(48). From this fit we obtain f;, = 2.2 & 0.6.
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Figure 6. CJ estimators were applied to lenses from CMASS and LOWZ samples of BOSS. The left-hand panel displays the negative CJ estimators, while the
centre panel displays the positive CJ estimators. The first estimator is represented in black with circles and a solid line. The second estimator is represented in
green with triangles and a dashed line. Points plotted in green have been shifted slightly to the right for clarity. The best fit of e for each estimator is displayed in
each panel. The right-hand panel displays the halo ellipticity values from the four independent CJ estimators. The weighted average halo ellipticity (e = 0.20)
is plotted as a dashed black line. The range of 1o uncertainty in the mean is shaded in blue (Ae = 0.10). No ellipticity is represented with a dotted black line at

e=0.

(2016), e = 0.24 £ 0.06, who used SDSS photometry to study the
same set of LRGs. However, they applied no correction for intrinsic
radial alignments or for the anisotropic boost. If we neglect these
corrections, we find e = 0.25 £ 0.09, in good agreement with the
results of Clampitt & Jain (2016). From the HM estimators, we
obtain f;, = 1.9 £ 0.6 (Fig. 10). The mean ellipticity from the SDSS
position angles is lower than for the UNIONS position angles. This
is not surprising: as mentioned before, the imaging from SDSS is
shallower than it is for UNIONS, so we expect the position angles to
be less accurate. This could lead to a higher degree of misalignment,
which would yield a rounder stacked shear.

To assess this effect, we note that the misalignment between
the UNIONS major axis and the SDSS major axis will obey some
probability distribution, P(6 ), which describes how likely the two

axes will be separated by a given misalignment angle, as shown in
Fig. 8. In Section 3.3.3, we discussed the effect of a misalignment
between the stellar light and the DM halo. However, observational
errors due to signal to noise when measuring the major axis of
the stellar light will also contribute to the misalignment. Moreover,
differences may also arise because elliptical galaxies have isophote
twists, and so deeper photometry may probe the outer regions of the
galaxies, which may have a different ellipticity and position angle
than the inner regions.

If the SDSS light angles are misaligned, they will yield a lower
e than the ellipticity, which we measure from the UNIONS light
angles, e, as given by equation (50). In Fig. 8, we found a standard
deviation between the UNIONS and SDSS angles of o = 33.6°. If
we attribute all of the misalignment in the lens positions to errors
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Figure 8. Comparison of the position angles of the major axis of light in
lens galaxies measured in UNIONS and in SDSS.

in the SDSS photometry, using the standard deviation from Fig. 8,
we should obtain an effective ellipticity of e.s = 0.230 for SDSS.
This is somewhat lower than the observed value. In reality, there will
be some measurement uncertainty in both the UNIONS and SDSS
major axis position angles, although we expect the latter to be larger
due to the shallower depth of the photometry.

6 DISCUSSION

Fig. 11 compares our results for the halo ellipticity e with others
from the literature that are based on aligning the weak lensing signal
with the major axis of red galaxies. Studies included are: the red lens
galaxies from Georgiou et al. (2021) and Schrabback et al. (2021);
the group-centrals from Van Uitert et al. (2017), where we use their
fit over the range of 28-525kpc h~!, which is similar to our fitted
range; the study of DR7 LRGs by Clampitt & Jain (2016), and the
cluster study of Shin et al. (2018), where we use their result for
alignment between the BCG and the cluster halo. We have converted
the results to use our conventions for ellipticity, e, and mass, Mgo.-
We make no attempt, however, to correct for different treatments
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of satellite contamination or different ways in which the major axis
position angle is measured (see discussion in Section 5). Horizontal
error bars, where present, represent approximate lens mass ranges
for each study.

To test whether the apparent trend of increasing ellipticity with
halo mass is statistically significant, we fit a straight line to e as a
function of M. using the data plotted in Fig. 11. The resulting fit
has a X2 of 8.8, which, for five degrees of freedom, is acceptable
(p = 0.11). The best fit parameters are

Moo
e = (0.20 £ 0.03) + (0.10 £ 0.06) log,, (ﬁ) . (5D
©

The increase in ellipticity with halo mass is not statistically signifi-
cant.

The trend above is in agreement with N-body simulations, which
predict that haloes are more prolate with increasing mass. Fig. 12
shows the predicted ellipticity, e, for triaxial DM haloes with
axis ratios 1:g:s, as a function of g and s, after projecting to 2D
using Ryden (1992) and then averaging over random projection
angles. Expected DM halo shapes from Tenneti et al. (2014) for
Mo = 102, 10", 10, 10 ="M, at z = 0.34 (same as DR7
LRGS) are shown in Fig. 12 and overplotted in Fig. 11. These
predict a slope of 0.06 per decade in mass, flatter than the value in
equation (51).

As discussed in Section 3.3.3, we do not expect the major axis
of the stellar light to be perfectly aligned with the major axis of
the projected DM halo. This leads to a lower ‘effective’ elliptic-
ity, e, measured by weak lensing. We consider two models for
misalignment, both based on hydrodynamical simulations. Tenneti
et al. (2014) found low misalignment, leading to high e.g/e ratios of
0.68 and 0.96 at Moy, = 10'? and 3 x 1032~ Mg, respectively.
On the other hand, the typical misalignment measured by Velliscig
et al. (2015) is larger, leading to lower values of e.g/e than Tenneti
et al. (2014) (see Appendix A). Both are shown in Fig. 11. In both
cases, the alignment increases with increasing halo mass, leading
to a steeper slope of e with halo mass, in better agreement with
the observations. Overall, the Tenneti et al. (2014) predictions are
slightly, but not significantly, higher than the observational trend over
the mass range covered by that study. While the Velliscig et al. (2015)
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circles, while fi5(R) AX(R) is represented by green triangles. The right-hand panel displays the difference (f — fi5)(R) AX,(R). From this fitting equation

(48), we obtain f, = 1.9 £ 0.6.

predictions are, on average, lower than the observational fit. However,
there are two important caveats regarding these comparisons. First,
here we focus on red galaxies, whereas the results quoted above
for simulations do not distinguish between red and blue galaxies.
Second, Velliscig et al. (2015) uses the major axis of stars within
the stellar half-mass radius. Our major and minor axes are based
on second moments above an isophotal threshold (Bertin & Arnouts
1996, SExtractor). The position angles determined this way may be
based on light that is more extended than those determined within
the half-mass radius. Velliscig et al. (2015) show that the alignment
improves when using stars at larger radii, so it is possible that if they
had used a larger radius, the alignment would have been better and the
ratio e.g/e higher, bringing their predictions into better agreement. It
is clear that future observational and theoretical studies will need to

pay greater attention to measuring major axes and ellipticities in a
more consistent way.

7 CONCLUSIONS

We studied the anisotropic lensing signal around LRGs from SDSS
with source galaxies from an early internal shape measurement
catalogue from UNIONS covering 1500 deg?. Fitting an NFW profile
to the monopole shear profile of 18 000 DR7 LRGs yields an average
mass of May. ~ 2.7 x 10'* Mg h~'. When aligning our coordinate
system with the major axis of the lens galaxy’s stellar light, we
measure a mean halo ellipticity of e = 0.46 & 0.10 and an aligned
ellipticity ratio of fi, = 2.2 = 0.6. This value is in agreement with other
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measurements of halo ellipticity from weak lensing (Clampitt & Jain
2016; Van Uitert et al. 2017). The 144 000 LRGs from BOSS are
less massive, with an average mass of Mag, = 1.2 x 10" Mg A~
Repeating the analysis for the LRGs from BOSS, we found a mean
halo ellipticity of e = 0.20 = 0.10 and an aligned ellipticity ratio of
fa=0.7+0.7.

Combining our results together with previous measurements of
halo ellipticity yields a trend with ellipticity increasing 0.10 & 0.06
per decade in halo mass.

The prospects for improving halo ellipticity measurements from
weak lensing are very promising. UNIONS is still underway with
the goal of covering 4800 deg? with high-quality multiband imaging,
which will yield photometric redshifts for source galaxies. The
UNIONS survey area has a large overlap with the footprint of the
SDSS-based spectroscopic surveys, and, in the near future, the Dark
Energy Spectroscopic Instrument (DESI Collaboration et al. 2016),
which will allow larger and more comprehensive lens catalogues.
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APPENDIX A: MISALIGNMENTS IN
VELLISCIG ET AL. 2015

Velliscig et al. (2015) propose that the misalignment, 6,;; between
the projected major axis of the stellar light and that of the DM halo
has a probability density that takes the form of the double Gaussian,

2 2
P(Omis) = C exp <— 9'“;) + Dexp (— 9‘"@) +E. (A1)
207 205
They tabulate the parameters of the fit in their table B2. There is, how-
ever, a typographical error in that table. Consequently, we digitised
their fig. 10 and refitted the parameters using the same functional
form: the results are given in Table Al. The LRG lenses studied in
this paper are best described by the 13 < logo(Mag./[Mg h~']) < 14
halo mass bin.
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Table Al. Fit parameters for equation (A1) that describes the probability density function of the misalignment
between the projected stellar distribution and the projected total matter distribution, based on fig. 10 from Velliscig
et al. (2015). The mass bin column gives the range in units logm[Mzooc/(h_1 Mgo)]. Omean and O meq are the mean
and median misalignment angles, respectively. The probability density function is normalized to unity over the
range 0° to 90°.

mass 01 (o) C D E emean Omed eeff/e
bin ©) ©) o) o) ) ) ©)

11-12 5.1 28.3 0.0273 0.0085 0.0058 30 24 0.36
12—13 5.1 31.6 0.0070 0.0118 0.0054 33 28 0.30
13—-14 14.8 329 0.0200 0.0086 0.0030 25 18 0.51
14—15 9.6 25.9 0.0239 0.0142 0.0028 22 15 0.58
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