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Abstract

“Behavior-blind” risk assessments, mapping, and policy do not account for individual
responses to risks, due to challenges in collecting accurate information at scales relevant to
decision-making. There is useful spatial information in social survey data that is sometimes
analyzed for spatial patterns despite potential biases. This paper explores whether risk
perception and adaptive behavior can be inferred from census and hazard exposure data with a
specifically designed survey. An underlying question is what precautions surveys should take
before mapping the results. We find that an hybrid multilevel regression and (synthetic)
poststratification (MRP-MRSP) model can facilitate the transition from individual survey data
to small-area estimations at different scales, including 200-meter grid cells. We demonstrate
this model using municipal-level survey data collected in the Paris region, France. We find
that model accuracy is not decreased at finer scales provided there is a strong spatial predictor
such as hazard exposure. Our findings show that a wide range of flood risk perception and
evacuation behavior can be estimated with such downscaling techniques. While not yet
commonly used among geographers, our study suggests that this kind of modeling can
improve mapping of survey results and, in particular, can provide spatially-explicit behavioral

information for risk assessment and policy.
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1. Introduction

During the last decade, floods have caused the largest share of economic losses among all disas-
ters and associated with other weather-related hazards they have affected 2 billion people
(IFRC, 2018). This has been attributed to population and economic growth in disaster-prone ar-
eas (Coronese et al. 2019), and the most recent Intergovernmental Panel on Climate Change
(IPCC) report (2021) emphasized that climate change has increased flooding due to more in-
tense rainfall. The costs associated with flood protection continue to rise along European rivers
due to climate change (Bloschl et al. 2019). Despite the substantial public funds allocated to
flood risk reduction, governmental investments in flood protection are often inadequate and
planning policies are failing to reverse the trends of rising risk and the increasing number of ex-
posed people. The evacuation of high-density districts to safer areas before a disaster is proving
increasingly challenging (OECD, 2018). This is leading to a “behavioral turn” in disaster risk
management (Kuhlicke et al., 2020). While studies first highlighted it in the context of flood
protection in the United States (US) and Europe, this is a more global and cross-cutting trend
with recent strategies advocating that less protected households are individually responsible to
look after themselves, as stretched public budgets are deemed unable to carry the costs for up-
grading structural measures (Slavikova, 2018) and policy is increasingly relying on individual
resilience (Begg et al., 2017) — i.e. the ability to individually prepare for, respond to and recover
from disasters (Reghezza-Zitt & Rufat, 2019).

While there have been extensive efforts to model and map proxy indicators of hazard
vulnerability from broad to fine scales — e.g. SoVI (Cutter 1996) and other vulnerability or re-
silience index projects (Beccari 2016), vulnerability indices typically lack relevant self-re-
ported information from residents on topics like risk perception and preparedness behavior
(de Sherbinin et al. 2019). Many previous efforts to measure disaster risk perception and pre-
paredness take place either at broad scales, such as national surveys (Lee et al. 2015), or fine-
scale case studies limited to individual communities or neighborhoods (Rufat et al. 2020).
Spatially disaggregating data from broad-scale surveys has limitations due to lack of represen-
tativeness within geographic subunits (Lax & Phillips, 2009). Comparisons between commu-
nity-scale studies can also be limited by varying times and modes of data collection or ab-
sence of data entirely in certain communities of interest. Furthermore, even data from a study
that is representative at the community level may mask important variations among people
and places within communities.

Recent advances in statistical and spatial modeling for small-area estimation are one
avenue to overcome some of these data and research design limitations. Multi-level regression
and poststratification (MRP) and associated methods combine self-reported data from surveys
with census or other data on population characteristics to systematically estimate responses
across a study area at specified geographic scales. MRP has been widely applied to estimate
responses from national-level surveys to states, counties, or other administrative units
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(Caughey & Warshaw, 2019; Howe, 2018; Howe et al., 2015; Lax & Phillips, 2009; Milden-
berger et al., 2016; Park et al., 2004). It has also been used to map public health indicators at
similar scales (Downes et al., 2018; Howe et al., 2019a; Zhang et al., 2014, 2015). Although
MRP has been typically used to estimate responses in geographic subunits from national data,
it is not limited to these scales and can conceptually be applied to estimate public responses
from any corpus of survey data within a defined study area, as long as appropriate population-
level data are available at the geographic scale of interest.

The aim of this paper is to explore whether risk perception and adaptive behavior can
be inferred from census and exposure data, for the purpose of integrating spatially explicit
data on perceptions and behavior into risk, vulnerability, resilience or adaptation assessments.
The ability to predict risk perception from census data would also be valuable in informing
decision-makers, helping to develop targeted communication, tailoring risk communication
strategies and campaigns. Predicting behavior and evacuation from census data would also
prove critical for emergency management, helping to anticipate the magnitude of shelter and
other special needs, pinpointing the areas and groups most likely to end up refusing to evacu-
ate or coming back too soon, and bring into sharp focus the key role of spontaneous evacua-
tion triggers, degraded living conditions exhaustion, or delayed reactions. Several research
questions arise from such a goal; for example, which risk perceptions or behaviors are possi-
ble to estimate or infer from census data? An underlying question is what precautions users of
survey data should take before mapping the results, not only to disentangle social and spatial
variations but also to assess the relevance of mapping survey results while avoiding ecological
bias and finding the right balance between the fineness of the scale and the robustness of the
estimates. This requires consideration not only of the relevance of MRP to provide accurate
estimates at different scales, including fine-scale uniform geographic units, but also the data
requirements to validate such downscaled survey results.

Here we provide an example application of MRP using a large survey dataset on flood
risk perceptions and behavior collected in Paris, France. We further model responses at very
high spatial resolution using population data at the municipality, census tract and the 200m
grid scale. The remainder of the article is organized as follows. Section 2 present the current
issues of risk assessments and mapping and how applying MRP to risk perception and behav-
ior survey data could lead to a model improvement. Section 3 describes the context of our
case study, while Section 4 details the methods to produce small-area estimation at different
scales. The results are compared across scales and validated in Section 5. The discussion in
Section 6 includes recommendations for using MRP and downscaling techniques to infer re-
sults from survey data while considering some precautions before mapping surveys results,
and conclusions are provided in Section 7.
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2. Literature review

2. 1 “Behavior-blind” risk assessments and mapping

Whilst the perception and behavior of individuals, businesses, and public services before, dur-
ing and after a crisis has a significant impact on damages, recovery and resilience, current as-
sessments fail to include such critical factors because they are not well understood (Ward et
al., 2020). The current focus on structural measures, monetary impacts and cost-benefit analy-
ses (Hudson & Botzen, 2019) leave aside social inequalities, actual behavior, underlying mo-
tivations and capacities that can lead to significant differences in resilience across society
(Rufat et al.,, 2020). The new European Union (EU) Strategy on Adaptation to Climate
Change is relying on the same “behavior-blind” assumptions (citizens will be aware, capable,
motivated, abiding, etc.) and investing mostly on digital transformation and resilient infra-
structure. A similar focus is present in recent US government investments in the Federal
Emergency Management Agency’s new Building Resilient Infrastructure and Communities
program (Mendelsohn et al., 2021). Such a focus runs the risk of overlooking the perception,
knowledge, capacity, motivation, and behavior of citizens (Kuhlicke et al., 2020). This hin-
ders the movement towards more inclusive climate change adaptation (CCA) and disaster risk
reduction (DRR) called for by the United Nations (UN) Sendai Framework (2015-2030) and
the UN Sustainable Development Goals (SDGs 2030). They require a robust knowledge base
for action on behavior, resilience and adaptation to inform the prioritization of actions, test
policies and measure progress (Michel-Kerjan, 2015). This situation highlights the importance
of bridging disaster risk vulnerability and resilience quantification and mapping — relying on
census data — with risk perception and adaptive behavior studies (Rufat et al., 2019). It is pre-
cisely because these indices and maps usually lack perception and behavior data (Beccari,
2016) that scaling-up from a household survey of risk perception to aggregated units and pro-
viding estimates at different scales is required to reintegrate these perception and behavior di-
mensions into risk indices and maps.

2.2 Risk perception and census data

One of the key challenges in risk, vulnerability and resilience is how to address the role of risk
perceptions and how perceptions influence behavior (Siegrist & Arvai, 2020). Previous contra-
dictory evidence on behavior hampers giving recommendations for policy and risk management
(Lechowska, 2018), such as the design of targeted risk communication strategies (Hoppner et
al., 2012). Although numerous theoretical frameworks have been developed (Kuhlicke, 2019),
no definitive explanation has yet been found (Siegrist & Arvai, 2020) and opposite conclusions
can be reached from different case studies (Wachinger et al., 2013). As they focus in turn on
different dimensions (sociological, economical, psychological, etc.), either on internal or per-
sonal factors (gender, age, education, income, values, trust, etc.), external or contextual factors
(vulnerability, institutions, power, oppression, cultural backgrounds, etc.), risk or environmental
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factors (perceived likelihood, experienced frequency, etc.), or informational factors (media cov-
erage, experts, risk management, etc.), they rely on hardly compatible qualitative and quantita-
tive approaches, diverging sets of variables, and different methods.

Whilst most theories assume that high risk perception will lead to personal prepared-
ness and then to risk mitigation behavior, the opposite has been repeatedly verified
(Wachinger et al., 2013). The main sources of uncertainty include the many drivers beyond
demographic, social, and cultural factors (Rufat et al., 2020), awareness, underestimation of
risk (Poussin et al., 2014), place attachment (De Dominicis et al., 2015), previous hazard ex-
perience (Botzen et al., 2015) or the use of short-term horizons by households (Haer et al.
2017) and decision-makers in planning and risk management (Hartmann & Driessen, 2017).
However, it is still challenging to disentangle which factors drive risk perception in a specific
area or among specific groups (Rufat, 2014). One of the reasons stems from the interdiscipli-
nary nature of the field, shaped by different sets of assumptions, theories, methodologies, the
lack of consideration for the spatial dimension, leading in turn often to diverging results (Ru-
fat et al., 2015). A final challenge is the fact that risk perception, motivations, capacity and
behavior are rarely linked; the number of studies that address them in a spatially explicit man-
ner is limited (Ge et al., 2021; O’Neill et al., 2015; Ruin et al., 2007), and studies often over-
look scale-dependency issues. This situation is hindering the production of spatially explicit
risk perception and evacuation baseline data that would be essential to emergency manage-
ment. As a result, contemporary flood management (among other hazards) is inadequately in-
formed by risk perception (Birkholz et al., 2014).

2.3 Evacuation behavior, risk perception and census data

The evacuation of high-density districts to safer areas before or during a disaster is proving in-
creasingly challenging, as demonstrated by the misplaced trust in public preparedness
(Baubion, 2015) and misleading lessons drawn from recent experiences, such as before the
2016 flood in Paris (OECD, 2018), or the discarding of the evacuation plan of London when
Operation Sassoon was deemed unfeasible (Fekete & Fiedrich, 2018). While the importance
of social and behavioral determinants of vulnerability and resilience has been addressed by a
wide range of disciplines (Fuchs & Thaler, 2018), predicting the actual behavior of citizens is
still a major challenge (Poussin et al., 2015). It is equally difficult to appreciate how disputed
factors in risk perception influence households’ or individuals’ choices to take protective ac-
tion or the non-actions that may exacerbate the risk (Bamberg et al., 2017), as well as the trig-
ger of the evacuation decision or non-compliance (Kreibich et al., 2017). An especially broad
gap can be observed between risk perception and behavior leading to a disconnection between
decision-makers and affected people with respect to risk communication, risk management
and risk knowledge (Kellens et al., 2013). People can have complex and sometimes risk-tak-
ing attitudes (Lazrus et al., 2016), and such a multidimensional issue is quite challenging to
implement in the current single-number indices and aggregative assessment methods (Rufat,
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2013). In addition, while most assessments assume that vulnerability remains constant over
time and some evacuation plans suppose fixed behaviors, perception and behavior dynamics are
influencing each other, interacting with the flow of events, past experience and other’s deci-
sions, sometimes in unpredictable ways (Wang et al., 2021).

The literature on evacuation is focused on compliance with protective action recom-
mendations and mandatory evacuations, when decision-makers consider the risk to the popu-
lation too great to permit them to remain at their place, and re-entry management (Lindell et
al., 2019). Compliance behavior plays a key role in the success of emergency management
and response operations (Kuhlicke, 2019). Previous studies found inconsistent and inconclu-
sive results on the determinants of evacuation-related decisions; some empirical studies point
towards highly hazard-specific and context-specific factors (Wang et al., 2021). Past hazard
experience, affects and efficacy beliefs were also found to influence evacuation intentions
(Demuth et al., 2016). Conversely, spontaneous or voluntary evacuation refers to people leav-
ing their location because of perceived risk without being directed to do so (Lindell et al.,
2011). This dimension is less often empirically studied (Kim & Oh, 2015), just as other criti-
cal factors are overlooked in models and simulations because of the lack of empirical knowl-
edge (Aerts et al., 2018). These factors include people refusing to evacuate, weariness to stay
in degraded living conditions after a few days, and bursts of spontaneous evacuation that can
overwhelm or even defeat the rescue, safety and recovery operations. Tackling the interplay
between risk perception, motivations, capacity or social vulnerability and individual behav-
ioral dynamics including evacuation is challenging, especially across space (O’Neill et al.,
2015). Digital technologies have recently prompted high expectations about their ability to fa-
cilitate evacuation (Wang et al., 2019; Zou et al., 2018). However, with the exception of hurri-
canes in the US (Kim & Oh, 2015), little empirical knowledge has been collected on warning,
communication and actual evacuation behavior, especially in large cities (Kreibich et al.,
2017). A final challenge stems from risk-taking behavior during an emergency (Rufat et al.,
2015). During floods most studies highlight the fatalities associated with the use of motor ve-
hicles (Hamilton et al., 2020), the lack of trust in warnings and forecasts, and/or getting out to
move a car, prevent or limit its immersion (Debionne et al., 2016).

2.4 Statistical and spatial modeling for small-area estimation (MRP)

Hazard vulnerability and resilience are highly dependent on individual and household-level
perceptions and behaviors, yet acquiring data on these topics typically requires household sur-
veys that are resource-intensive. Survey samples are typically designed to achieve representa-
tiveness of a target population, and disaggregating these data across geographic subunits can
result in highly uncertain estimates, particularly across many units of varying population sizes
(Lax & Phillips, 2009). Small-area estimation techniques like MRP can overcome these limi-
tations to accurately estimate individual responses at subnational scales, and also inform un-
derstanding of the processes that influence geographic variation in responses (Howe et al.,
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2015). Survey sampling is often not perfectly representative due to overrepresentation of cer-
tain sociodemographic groups or geographic clustering in sample design (Groves et al., 2004).
MRP can address these issues, and it can even provide accurate population-level estimates
from highly non-representative polls (W. Wang et al., 2015). Researchers in political science,
sociology, geography, and public health have adopted and validated MRP methods (Allan et
al., 2020; Fowler, 2016; Hamilton et al., 2015; Howe et al., 2015, 2019a; Lax & Phillips,
2009; Mildenberger et al., 2016; Pacheco, 2011; Tausanovitch & Warshaw, 2013; Warshaw
& Rodden, 2012; Zhang et al., 2014, 2015).

MRP takes place in two steps. First, a multilevel regression model is fit to an individ-
ual-level dependent variable using a combination of individual-level demographic predictors,
grouped random effects, and group-level predictors across geographic or other groupings of
individuals within the dataset. In addition to using fixed effects as in classical regression, the
multilevel model uses random effects for grouping predictors. Random effects are related to
each other by their hierarchical structure and thus are partially pooled towards their group
mean. Greater pooling occurs for smaller groups and when group-level variance is low.
Group-level predictors are also used to improve model fit (Buttice & Highton, 2013). Group-
level predictors can be extracted from external datasets based on respondents’ geographic lo-
cation. Examples include county- or district-level census aggregated data (Howe et al., 2015;
Tausanovitch & Warshaw, 2013), or even finer resolution tract-level climate or land cover
data (Howe et al., 2019b). In the second step, the fitted model is poststratified to the popula-
tion of the study area across each demographic-geographic type within the population, using
census data cross-tabulated across each type. Estimates for each demographic-geographic type
can then be aggregated by their population to produce estimates for every geographic unit.
Importantly, poststratification can correct for differences in representativeness between the
survey sample and the population.

Recent examples applying MRP in the domain of climate change and hazards include
Mildenberger et al. (2016) and Howe et al. (2015), which produce estimates of climate change
opinion within Canada and the U.S., respectively, by fitting a multilevel model to a dataset of
multiple national surveys. In addition, the MRP models of climate opinion in Howe et al. (2015)
were shown to be unbiased when compared to a set of independent county-level surveys
(Hamilton et al., 2015). Recent work has also validated MRP estimates of U.S. disaster pre-
paredness behavior in metropolitan areas against American Housing Survey data and found the
estimates to be unbiased and similar in accuracy to representative surveys (Howe, 2018). Ex-
tending MRP to fine spatial scales within urban areas, another recent study applied and vali-
dated MRP to map risk perceptions of extreme heat hazards at the U.S. census tract level (Howe
et al., 2019a). MRP requires population-level data with joint distributions (i.e. crosstabs) across
individual-level predictors. However, recent advances using multilevel regression with synthetic
poststratification (MRSP) can eliminate the need for joint distributions and instead rely on mar-
ginal distributions to generate synthetic population crosstabs (Leemann & Wasserfallen, 2017).
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3. Context

Two flood events in 2016 and 2018 and one major European flood exercise in 2016 occurred
in rapid succession in the Paris metropolitan area in France. Each one was salient enough to
receive international coverage for days. On the flood plain of the Seine River with an oceanic
climate, Paris is exposed to river lowland floods, urban floods with drainage issues paralyzing
the historical core and other weather-related hazards (Reghezza-Zitt & Rufat, 2015). Shortly
before the floods, a study raised the alarm about the fading flood memory and recommended
the intensification of risk awareness (Baubion, 2015). After the 2016 and 2018 floods, a study
by the Organization for Economic Co-operation and Development (OECD) estimated that a
major flooding of the Seine River could affect up to 5 million residents and cause up to €30
billion worth of damage (OECD, 2018). In March 2016, the EU funded the Sequana flood
simulation, an international field exercise replicating the 1910 Great Flood in the Paris metro-
politan area, with the civil protection from over twenty-five countries, about a hundred public
and private operators and the local population over the course of two weeks (Reghezza-Zitt,
2019). Not long after, the June 2016 flood affected 486 municipalities over the course of sev-
eral weeks, causing €1 billion damages when the Seine River reached a 6.3m level in Paris:
18,000 were evacuated, 750 refused to evacuate and 4 people died (Richert et al., 2017). In
January 2018, the Seine River reached a 5.9m level in Paris, causing €200 million damages
and affecting 242 municipalities over the course of several weeks: 2,500 people were evacu-
ated and over 300 refused to evacuate (OECD, 2018).

4. Methods

4.1 Survey

We surveyed about flood risk perception and evacuation behavior from households six
months after the 2018 flood in Paris, France. The survey was administered face to face in the
Paris metropolitan area from September to December 2018 to a representative sample (n =
2,976) of the population, with a random sampling and a spatial and social stratification to en-
sure the representativeness at different scales. Half of the sample were residents living in the
official 100-years floodplain and one-third were living in the indirect impact zones, indicating
that while their home might not be flooded, they might still face power, water or heating out-
ages, sewer backflow and similar situations lasting several days. Indirect exposure was de-
rived from official data disseminated during the 2016 flood exercise. The rest of the sampled
respondents lived outside the direct and indirect exposure zones (Fig.1). The study partici-
pants were randomly recruited face to face following a quota sampling with three stratified
spatial categories (county, municipality, exposure) and three social categories (age, gender,
education). For each location, the participants were randomly recruited until the place-specific
social quotas were fulfilled. This allowed to achieve a representative sample at all scales (mu-
nicipality, county, metropolitan) and across all exposure levels (none, indirect, direct). The
questionnaire was administered face to face with a geotagging of the place of residence with a



Rufat, S., & Howe, P. D. (2022). Small-Area Estimations from Survey Data for High-Resolution Maps of Urban
Flood Risk Perception and Evacuation Behavior. Annals of the American Association of Geographers,
https://doi.org/10.1080/24694452.2022.2105685

100m buffer to ensure privacy. The full questionnaire comprised 80 questions and required
15-20 minutes to complete.

A Survey sample (n = 2,976)
e ——

I in flood zone n = 1,520
St Denis in indirect impact zone n = 873
outside / control group n = 583

e each geotagged respondent

Versailles

Skm
T

S

Figure 1. Map presenting the sampling method, flood zone and geotagged respondents.

4.2 Variables

We selected the answers to eleven questions representing a wide range of risk perception and
behavior as the dependent variables for this study. Two represent trust and flood predictions,
five represent flood risk perception (worry, awareness, relative exposure, control and preven-
tion of floods, self-assessed preparedness), and five capture flood evacuation behavior (abide
official order, go outside for car, spontaneous evacuation, no evacuation at all) (Table 1).

Variable name Question Response option
[recoded answer]
No, never [0]
trust_forecast Is it possible to rely on flood forecasts? Not really

Yes, sometimes
Yes, all the time [1]
Very easy [0]

In your neighborhood, are floods easy or difficult Easy

to predict? Difficult

Very difficult [1]

No, never [0]

Not really

Yes, sometimes
Yes, all the time [1]

predict_difficult

flood worry Do you worry about flooding?
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flood awareness

Is your home in a flood risk zone?

Much less [0]
Less

More

Much more [1]

more_exposed

Is your home more or less exposed to flooding
than the rest of the Paris metropolitan region?

Much less [0]
Less

More

Much more [1]

Very easy [0]

. In your neighborhood, are floods easy, or Easy
control_difficult difficult, to prevent and control? Difficult
Very difficult [1]
Unprepared [0]
well repared In the event of a flood, how would you assess Not well prepared
-prep your household's level of preparedness? Relatively prepared

Very well prepared [1]

If you received an official evacuation instruction,

evacuation_abide but you couldn't see any floodwater, would you No [0]
- Yes [1]
leave?
In the event of a flood, would you go outside to  |No [0]
get car
get your car? Yes [1]
Consider the event of a flood where the water is
not visible yet and you experience no effects.
evacuation_spontaneous |However, if 1 in 3 families on your street had No [0]
already left (33%) would you spontaneously Yes [1]
evacuate without being instructed to do so?
respondents refusing to evacuate (this is not a
. direct question, but an indicator of responses No [0]
evacuation_refuse . . .
- where no evacuation question was answered with |Yes [1]

a “yes” under any scenario or circumstance)

Table 1. Variables derived from eleven questions representing a wide range of risk perception

and behavior

4.3 MRP-MRSP models at three geographic levels

There is useful spatial information in social survey data that is sometimes analyzed explicitly
for spatial patterns that may not accurately account for biases due to sampling or underlying
demographic variation. Small-area estimation methods like MRP can reveal spatial patterns in
survey data while also accounting for how representative the sample is of the broader popula-
tion (Howe, 2018). However, the transition from individual data to aggregation in administra-
tive units might subject interpretations to ecological bias. The “modifiable areal unit problem”
(MAUP) commonly refers to two separate effects, variation in statistical results between dif-
ferent levels of aggregation and by the regrouping of data into different configurations at the
same scale. In its traditional application MRP can be constrained by the MAUP since it relies
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on existing administrative units. These existing units, due to the way their boundaries are
drawn, may propagate biases into subsequent small-area estimates. For example, U.S. con-
gressional district boundaries are often drawn for partisan advantage (e.g. gerrymandering). In
addition, administrative units at the same scale may vary dramatically in population (such as
U.S. counties or states), which leads to varying uncertainties in small-area estimates for dif-
ferent units at the same scale, if the estimates are based on representative survey data (Howe
et al. 2015). Here we show how MRP can be extended from larger-scale (municipality) to
finer-scale administrative divisions (tracts) and uniform geographic units (grid cells with pop-
ulation counts) to map geographic variation in our outcome variable. The approach also frees
us from relying on data often aggregated in administrative units. Another potential bias could
be the “neighborhood effect averaging problem” (NEAP) referring to the traditional approach
of measuring individual exposure by the static residence or by averaging it at the neighbor-
hood level (Kwan, 2018). The NEAP implies that the geographic contextual variables used as
covariates in small-area-estimation models are inherently uncertain since they only incorpo-
rate data based on where respondents live—not where they work or may otherwise travel—
and do so using arbitrary administrative units to define respondents’ neighborhoods. In ex-
tending our model to uniform geographic units (grid cells), we attempt to address the latter
potential bias described by the NEAP. We do not have data on individual mobility to address
potential uncertainties introduced by people being exposed to flooding beyond their residen-
tial neighborhood. However, we assume that effect of flood exposure on risk perceptions is
likely to be strongest when individuals’ homes or neighborhoods are flooded. We therefore
compute for all scales the share of each geographic unit inside the flood delineation zone as
well as the exposure to indirect effects — i.e. residences that might not be directly flooded but
might still face power, water or heating outages, sewer backflow and similar situations lasting
several days during a major flooding.

We develop a hybrid MRP-MRSP (Leemann & Wasserfallen, 2017) model to estimate
population proportions for our eleven variables at the census tract scale and 200m grid scale
within the Paris metropolitan area (we also develop a municipality-scale model by aggregat-
ing tract-level model estimates). We first acquire tract-level census joint distributions for age
(5 groups) and sex (2 groups) (INSEE, 2017a). We also utilize estimates of total population at
the 200m grid scale across the Paris metropolitan area (INSEE, 2015). At the grid scale, we
estimate synthetic joint population distributions for age and sex for each grid cell by identify-
ing the most-overlapping census tract polygon for each grid cell, and applying the tract’s pop-
ulation proportions for each age by sex combination to the estimated population of the grid
cell. For each tract and associated grid cell we extract a variable termed exposure indicating
whether the polygon has (0) low flood exposure; (1) indirect flood exposure; and (2) direct
flood exposure (IIBRBS, 2013). We also extract a numeric variable termed share flood indi-
cating the proportion of the polygon in the zone of direct exposure to flooding. At the tract
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level we also use additional census data on income, poverty and living standards as potential
covariates (INSEE, 2017b).

We next fit a multilevel logistic regression model to the individual-level survey data
for each dependent variable. The model includes random effects for the individual demo-
graphic variables (age, sex, and sex by age). It also includes nested geographic random effects
for the census tract, municipality, and department. We then include census tract-level fixed ef-
fects (or covariates) for exposure and share.flood. To determine these tract-level covariates,
we iteratively tested sets of models using tract-level fixed effects for flood exposure (exposure
and share_flood), per capita income, poverty rate, educational attainment (proportion with a
less than high school education and proportion with at least a university-level education), na-
tional origin (proportion of immigrants), home ownership (proportion of renters), household
tenure (proportion who moved within the past two years), and family structure (proportion of
households with children under 25 years and proportion of single-parent households). Starting
with a base “null” model using only individual-level predictors and geographic random ef-
fects, we fit subsequent models using each possible geographic covariate individually and in
combination. We selected sets of covariates that resulted in a lower Bayesian Information Cri-
terion (BIC) for the respective model, relative to the null model. Across all dependent vari-
ables, the only models that consistently returned lower BIC values were those that included
our two flood exposure variables.

Our model estimates the probability Pr that a given respondent i had one of two possi-
ble responses to the question being modeled, represented by y;;. The model for each depen-
dent variable is specified as follows at the individual level:

Pr(yl:l):logit_1
aN(0,0%,),forj=1,...,5
a*N|(0,02,),fork=1,...,3

@™ N(0,0%,.0 ), forl=1,...,15

sex:age

Each variable is indexed over individual 7 and over response categories j, &, [, m, n,
and o for age, gender, the interaction of age by gender, and geography (census tract) respec-
tively. Each variable is modeled as drawn from a normal distribution with mean zero and esti-
mated variance ¢°. The census tract geography variable, m, is modeled as follows:

i hare . flood 2
a N (O(;"['j,fﬁﬁexpos”m -exposure, + B " share . flood _, Gm[) ,form=1,...,1023

Exposure is a three-level ordinal variable indicating whether the census tract has low,
indirect, or direct flood exposure, and share.flood is the proportion of the census tract in the
zone of direct flooding exposure. Muni indicates the municipality within which the census
tract is nested, and is modeled as:

O N (ol 0%, ), forn=1,...,111

n o[n] >~ muni
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Each municipality is further nested within eight broader departement-level (county)
administrative areas in the Paris metropolitan region, which are modeled in turn as:

agepN(O,Giep),foro=1,...,8

Models for each dependent variable were fit in R using the Ime4 package’s GLMER
function (Bates et al., 2014).

In the next step, poststratification, we apply our fitted regression model to every popu-
lated census tract and grid cell, resulting in estimated proportions for each age by sex popula-
tion cell. We then weight these proportions by their population within each geographic unit,
resulting in a total estimated proportion for each geographic unit (census tract or grid cell) for
the modeled dependent variable. Municipal-level results are then calculated by aggregating
proportions across census tracts by municipality.

Finally, we compare the model estimates at different scales by creating three new geo-
graphical variables for each dependent variable. Each time, we subtract the estimates from the
top level to the bottom level estimates in order to highlight the discrepancies: the delta be-
tween municipal-level and tract-level estimates for each of the eleven dependent variables, the
delta between municipal-level and grid cells, and the delta between tract-level and grid cells.
Positive values indicate that the upper-level estimates are higher than the lower-level esti-
mates, negative values represent the opposite situation, while values close to zero indicate that
the two estimate converge for these geographical units. This allows to assess the convergence
or discrepancies of the results between the three geographical levels.

4.4 Validation

We validate our model estimates at the grid, tract, and municipality level using two cross-vali-
dation approaches. We first cross-validate at the municipality level by randomly selecting
groups of sampled municipalities with at least 100 respondents across three urban-periurban
categories with varying levels of flood exposure: downtown Paris (3 groups), inner counties
(2 groups), and outer counties (3 groups). We chose municipalities within these categories for
validation with the goal of representing a diverse set of neighborhoods with varying popula-
tion densities and flood exposure, under the assumption that these contextual factors may be
associated with flood risk perceptions. For each group, we create a new simulated dataset by
removing all respondents from that group, then fitting and poststratifying our MRP model to
the simulated dataset. We then compare these MRP estimates for the selected group of munic-
ipalities to the actual proportion of responses from the selected area.

We next cross-validate at the grid cell and census tract level using a modified cross-
validation technique that allows us to simulate the presence of an individual grid cell or cen-
sus tract with a large number of responses (n > 50), since our primary survey dataset lacks
such response density in any one small geography. For each dependent variable we extract the
distribution of model predictions across all grid cells (or census tracts). For each distribution,
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we identify values in the distribution where the number of respondents # in the sample who
live in grid cells with the same predicted value, rounded to the nearest whole number, is
greater than 50 (the median number of residents per grid cell). For each value where n > 50,
we iteratively create a simulated survey dataset that randomly sets aside 50 respondents who
live in grid cells with that predicted value. The set-aside respondents then serve as a compari-
son group against grid-level predictions from a model fit to the simulated dataset without
these respondents. After fitting this model, we calculate the mean absolute difference between
the proportion in the set-aside sample and the mean predicted proportion across those respon-
dent’s respective grid cells. For comparison, we also calculate mean absolute difference be-
tween the proportion of respondents in the set-aside sample and the disaggregated proportion
of remaining respondents in the simulated survey dataset as a baseline indicator of model ac-
curacy. We repeat this sampling and cross-validation process 99 times for each dependent
variable at both the grid cell and census tract level.

5. Results

Municipal level Tract level Grid level

evacuation_refuse {— +—% evacuation_refuse n—-- * evacuation_refuse ”—“
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get_car ——[I]——t - get_car Amiu - get_car ——m——
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flood_awareness {D__""' flood_awareness ‘{ ] flood_awareness *|| [

flood_worry ——H '—" L flood_worry flood_worn |
predict_difficult -‘m‘—“ - predict_difficult 4[']——" predict_difficult -—m—_"

trust_forecast L - == ae ._D7“ trust_forecast L ——U]—- trust_forecast - ——ﬂ]——
50 0.75 0.25 5 [ .75 1.

0.00 025 0.5 1.00 0.00

b
=]
=]
e
~
=

0.00 0.25 0.50

Figure 2. Boxplot of the estimates for all questions at the three scales.

5.1 Statistical distribution of the estimates

Overall, the model estimates are well dispersed for all variables at all scales (Fig.2). The re-
sults can be interactively explored at all scales as webmaps at https://perception.labo.cyu.fr/

home.html The only exception is evacuation refuse summarizing the answers on evacuation,
reflecting the fact that there might be no situation in which the respondents would consider to
evacuate. The incidence of this indicator in the population is small as only a slim minority of
respondents to the survey reflected such a behavior (4%). At all scales, the model estimates
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for this variable are both consistently very low and narrowly focused around the median.
Comparing scales, the distributions appear more dispersed and more symmetrical for the other
variables at the tract level, followed by the grid level. The dispersion is lower and dissymme-
try more pronounced at the municipality level (which includes fewer geographic units).

5.2 Estimates at the municipal scale (n = 1,300)

Figure 3 displays the spatial distribution of the estimates for all questions at the municipal
scale. This spatial distribution is both well differentiated and well distributed; it does not re-
main homogeneous throughout the area nor depend too much on the higher administrative
level, except for predict_difficult and evacuation_spontaneous for which a county effect is no-
ticeable. Overall, flood exposure seems to play a critical role in the models as the municipal
level estimates often reflect the river network, especially towards the outskirts. The outlier is
again the model for evacuation_refuse producing almost homogeneous estimates for most of
the metropolitan area, except for some focal points downtown and in the north-east.
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Figure 3. Map of the results for the 11 questions at municipal level.

5.3 Estimates at the tract scale (n = 5,261)

Overall, the estimates at the census tract scale support the previous findings (Fig.4). The
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county effect is less noticeable for predict difficult and evacuation_spontaneous, especially
downtown. The dependence on the hydrographic network is quite noticeable for flood aware-
ness, which is to be expected, whereas evacuation_refuse on evacuation refusal remains an
outlier with little variation and very low estimates except for some focal points downtown and
in the north-east. For all other models, a diversity of factors seems to be at play and the esti-
mates present a well-distributed spatial pattern.
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Figure 4. Map of the results for all questions at census tract level (downtown zoom).

5.4 Estimates at the grid scale (n = 73,166)

Figure 5 displays the spatial distribution of the MRP estimates for all questions at the 200m
grid scale. Only inhabited cells are represented. The spatial distribution of estimates at the
200m grid scale is convergent with the previous results for all questions. Some county and
municipal effects are still apparent, especially for predict difficult and evacuation sponta-
neous, evacuation_refuse on evacuation refusal remains an outlier, whereas hazard exposure
proves to be a more powerful predictor for flood awareness on flood exposure awareness.
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Figure 5. Map of the results for all questions at the 200m grid scale (downtown zoom).

5.5 Comparison between the estimates at the different scales

We compare municipal and tract scale estimates by subtracting the upper level (municipal) re-
sults from the lower level (tract) ones for all questions. Higher estimates at the lower level
(tract) than upper level (municipal) result in positive values represented in red on Figure 6,
higher estimates at the upper level result in negative values and are represented in blue, while
convergent estimates result in values close to zero represented in white. In general, the differ-
ences are quite small, except for flood awareness on flood exposure awareness and more ex-
posed on perceived relative exposure. There is less convergence downtown though, where den-
sities are higher and municipalities are subdivided into a greater number of tracts. Outwards, the
outliers reflect specific places with very low densities, most notably the Fontainebleau forest, a
very large tract with only around 200 residents in the Southeast. For the same tract, these small
differences can be positive for one question and negative for another.
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Figure 6. Map comparing estimates for the 11 questions at the municipal and tract scale.

Figure 7 displays the subtraction of upper level (municipal) estimates from the lower
level (grid) ones for all 11 questions using the same representation modalities, 200m cells in-
tersecting the border of the upper level geographic units are removed to reduce false positives.
Overall, the differences are quite small, except for flood awareness on flood exposure aware-
ness and more_exposed on perceived relative exposure, both of which are heavily impacted
by the flood zone delineation. The flood zone delineation is also apparent in the small differ-
ences for control difficult on perception of flood prevention and control. For the other mod-
els, a diversity of factors seems to be at play and the estimates present varied spatial pattern.
Once again, for the same geographic unit, these small differences can be positive for one
question and negative for another.
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Figure 7. Map comparing estimates for the 11 questions at the municipal and 200m grid scale.
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Figure 8. Map comparing estimates for the 11 questions at the tract and 200m grid scale.

The comparison of tract and grid scale estimates with the same representation modalities
in Figure 8 is convergent with the previous results.
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5.6 Validation of the estimates at the different scales

We conducted cross-validation tests of our model estimates at the tract, grid, and municipality
level, as described above. Averaging across each variable, the mean absolute error (MAE)
was 6.7£2.3 percentage points at the municipality level, 6.6+1.4 points at the grid cell level,
and 8.5£1.9 points at the census tract level (Figure 9). The median MAE was 6.8 points at the
municipality level, 7.0 points at the grid cell level, and 8.3 points at the census tract level. For
the majority of variables, the municipality-level estimates had a lower MAE than the grid-
level and tract-level estimates, and the grid-level estimates had a uniformly lower MAE than
the tract-level estimates. The lowest MAE was found for the evacuation refuse variable,
which reflects the highly asymmetric distribution of responses to this variable (with only 4%
of respondents indicating refusal to evacuate).
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Figure 9. Graph of mean absolute error from validation tests for each variable at municipality,
tract, and grid-cell scales.
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6. Discussion

Our main objective was to assess whether survey results on risk perception and adapt-
ive behavior can be inferred from census and exposure data using a small-area estimation
model, and to discuss their possible subsequent implementations in risk, vulnerability, resili-
ence or adaptation models and assessments. We find that an hybrid MRP-MRSP model can
transition from individual survey data to small-area estimation, relying on individual demo-
graphic variables and flood exposure data to provide estimates at different scales, including
fine-scale uniform geographic units (e.g. 200m grid cells of populated areas). While MRP has
been applied to estimate responses from national-level surveys to states, counties, or lower ad-
ministrative units (Caughey & Warshaw, 2019; Downes et al., 2018; Howe, 2018; Howe et
al., 2015; Mildenberger et al., 2016; Zhang et al., 2015), our results show that an hybrid MRP-
MRSP model is not limited to these scales and can be applied to estimate public responses us-
ing survey data for fine scales within municipalities and neighborhoods. Our findings show
that a wide range of risk perception and adaptive behavior can be estimated with this ap-
proach, as the model estimates are well statistically dispersed for all variables at all scales
while the spatial distribution is both well differentiated and well distributed. This remains true
for all scales; estimates do not remain homogeneous throughout the area nor depend too much
on the higher administrative level. Therefore, one promising result of this study is that a care-
fully designed survey within any defined study area allows to infer small-area estimations of
risk perception and adaptive behavior from census data, including for fine-scale uniform geo-
graphic units.

Another aim of our study was to assess the relevance of mapping survey results while
avoiding ecological bias and finding the right balance between the fineness of the scale and
the robustness of the estimates. Our findings show convergence between estimates at different
scales, even if this is less consistent for flood awareness and perceived relative flood expo-
sure. As a result, we suggest that our approach — when using uniform areal units — reduces po-
tential MAUP biases in interpretation of MRP results. In this particular case, the NEAP bias is
less of a concern as flood exposure is more residence-based than mobility-dependent and we
have implemented both direct flood exposure and exposure to indirect effects. The novelty of
our approach is to compare small-area estimations at different scales, allowing to analyze the
sensibility of MRP estimates to MAUP and NEAP biases, which has not been systematically
studied yet. Furthermore, our iterative cross-validation process show that the resulting esti-
mates are robust with a mean absolute error of about 7 percentage points at both the broadest
geographic scale (municipality level) and the finest geographic scale (grid cell level). These
results suggest that small-area estimation models can make robust fine-scale predictions when
using appropriate geographic covariates that exhibit strong associations with the outcome
variable, as is the case with flood exposure in our model. Researchers have validated MRP
methods (Allan et al., 2020; Fowler, 2016; Hamilton et al., 2015; Howe et al., 2015, 2019a;
Lax & Phillips, 2009; Mildenberger et al., 2016; Pacheco, 2011; Tausanovitch & Warshaw,
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2013; Warshaw & Rodden, 2012; Zhang et al., 2014, 2015). MRP models of climate opinion
in were shown to be unbiased when compared to a set of independent county-level surveys
(Hamilton et al., 2015) while MRP estimates of U.S. disaster preparedness behavior were to
be similar in accuracy to representative surveys (Howe, 2018). While we lack external
datasets for comparable direct validation, our MRP model accuracy based on internal cross-
validation was similar to that found in an internal cross-validation of estimates for U.S. coun-
ties and small-population states from a national MRP model (Howe et al., 2015).

Contrary to our expectations, the level of precision of small-area estimations is not de-
creased at finer scales, even as the number of geographic sub-units increases dramatically.
The validation of estimates at grid level (n = 73,166) performed systematically better than es-
timates at the tract level (n = 5,261), and performed similarly to the higher level municipality
estimates (n = 1,300). We suggest one reason may be that population composition is more ho-
mogeneous at finer scales, making prediction easier. Performance at finer scales is less consis-
tent, however, when the initial survey data for a specific question are skewed (as in our case
for trust in forecast), where respondents giving the same answer are spatially clustered (e.g.
flood awareness), or the subpopulation giving a specific answer is low (e.g. evacuation re-
fusal). While small-area estimation techniques like MRP can overcome the uncertainties de-
riving from disaggregating data across geographic subunits (Howe et al., 2015), particularly
across many units of varying population sizes (Lax & Phillips, 2009), our findings suggest
that robust estimates can be achieved at a very fine spatial scale, provided there is a strong
spatial predictor. Further accuracy gains at fine geographic scales may also be achieved if
more detailed census demographic data are available as joint distributions (i.e. crosstabs) at
the geographic scales to be predicted in the poststratification stage, or alternatively through
synthetic crosstabs based on marginal distributions (Leemann & Wasserfallen, 2017). The
choice of individual-level predictors for small-area estimation is context-dependent, and
should be informed by previous research about predictors known to be associated with the
outcome variable. For instance, race/ethnicity was used as an individual-level predictor in
small-area estimates of climate change opinion in the U.S. (Howe et al., 2015), while first lan-
guage was used in a similar model in Canada (Mildenberger et al., 2016). Here, we used joint
distributions of sex by age at the census tract and grid cell level, since more detailed demo-
graphic joint distributions were not available at these fine geographic scales (for example,
data on race or ethnicity are not collected in France).

Small-area estimation techniques like MRP are not commonly used among geogra-
phers. One promising result from our study is that this kind of modeling is a fruitful direction
to improve mapping of survey results. Survey sampling is often not perfectly representative
due to overrepresentation of certain socio-demographic groups or geographic clustering in
sample design (Downes et al., 2018; Groves et al., 2004; Wang et al., 2015). We argue that
small-area estimation models, such as the hybrid MRP-MRSP modeling employed here, can
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address these issues; it can even provide accurate population-level estimates from highly non-
representative surveys (e.g. Wang et al. 2015).

The survey results highlight that many people have inaccurate perceptions of the flood
risk they face, which after three major events over the course of the two previous years sug-
gest that risk communication policies can be improved by increasing the frequency of risk
communication campaigns (Rufat & Botzen, 2022). The survey was designed with support
from national and local governments with the perspective of improving risk communication
policies and anticipating evacuations in the Paris metropolitan area. Our model results provide
the ability to specifically pinpoint the municipalities and neighborhoods where authorities
should concentrate their efforts while making it possible to anticipate the magnitude of evacu-
ation rates and evacuees requiring rehousing across the whole metropolitan area. In addition,
it is possible to use the results to improve local vulnerability and resilience metrics and maps
to help inform decision-making.

An underlying question is what precautions surveys should take before jumping to
mapping the results, disentangling social and spatial variations, inferring sample survey re-
sults at different scales, while tackling scale-dependency issues. Our findings suggest that un-
less survey sampling is conducted to be representative at the scale needed, then it is important
to model and adjust for population characteristics before making claims about geographic pat-
terns in survey results.

Therefore, greater efforts to explicitly collect validation data from randomly selected
locations that are set aside for later validation analyses should be considered by future
projects. Survey samples are typically designed to achieve representativeness of a target popu-
lation; however our validation results show that is less straightforward when a respondents’
subgroup is small or clustered. As a result, caution about interpreting model estimates like
those we have produced here is required. An important step is to understand the underlying
survey data and sampling design. The estimates for small-population areas have more inherent
uncertainty because they may not have respondents included in the survey sample, in which
case their estimates are driven entirely by the modeled relationships present in the remaining
data. This could lead to errors in the estimates for some small-population areas if they are dif-
ferent from the remaining region in ways not known to the model. This limitation is why we
indicate data-poor areas in our maps. By contrast, areas with larger populations are likely to
have lower uncertainties because their residents are more likely to be present in a representa-
tively-sampled dataset. We advise thus to increase the sample size for smaller subpopulations
(e.g. vulnerable people or people refusing to evacuate) and/or less dense neighborhoods (e.g.
having a higher sampling ratio in suburban peripheries than in the city center), when accurate
estimates of both high- and low-population areas are needed.
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7. Conclusion

We find that a wide range of risk perception and adaptive behavior can be estimated with an
hybrid MRP-MRSP model combining a specifically designed survey with census and expo-
sure data. The model estimates are statistically well dispersed for all variables and the spa-
tial distribution is both well differentiated and well distributed at all scales, including fine-
scale uniform geographic units. The small-area estimations do not remain homogeneous
throughout the area nor depend too much on information at higher administrative levels.
The primary limiting factor is with low-incidence variables: when only a slim minority of
respondents to the survey display a specific behavior. This limitation is evident in our mea -
sure of refusals to evacuate (4% total incidence), reflecting the fact that for very few respon -
dents was there no situation in which they would consider evacuation.

While our measures of flood risk awareness and perceived flood exposure are, as ex-
pected, highly dependent on location relative to the hydrographic network, questions on
trust, confidence in forecast and control over floods are more challenging to spatially dis -
sagregate since they are less predicted by flood exposure. These variables, especially at the
higher levels with fewer spatial units, display greater dependence on information at higher
administrative levels. Performance at finer scales is less consistent when the initial survey
data for a specific question are skewed (as in our case for trust in forecast), where respon-
dents giving the same answer are spatially clustered (e.g. flood awareness), or the subpopu -
lation giving a specific answer is low (e.g. evacuation refusal). For all other risk perception
and adaptive behavior, a diversity of factors is at play and the estimates have a spatial distri -
bution with complex marquetry. We also find convergence between estimates at different
scales. Furthermore, our iterative cross-validation process demonstrates that the model esti-
mates are robust, with a low error rate (7%) similar to that found for small-area estimates of
U.S. counties from national surveys (Marlon et al., 2020). Contrary to our expectations, the
level of precision of small-area estimations is not decreased at finer scales, even as the num -
ber of geographic sub-units increases dramatically.

One promising result is that a carefully designed survey allows for small-area esti-
mation of risk perception and adaptive behavior from census data, including for fine-scale
uniform geographic units. We advise researchers, however, to consider oversampling
smaller subpopulations (e.g. vulnerable people or people refusing to evacuate) and/or less
dense neighborhoods (e.g. having a higher sampling ratio in suburban peripheries than in
the city center), which will likely improve accuracy of the estimates across the area of inter -
est. The resulting accurate population-level estimates and multilevel estimates of risk per-
ception and adaptive behavior can help overcome current shortcomings in risk, vulnerabil -
ity, resilience or adaptation indices that typically lack relevant information on risk percep-
tion, adaptation or preparedness behavior. The ability to infer perceptions and behavior
from census data would be most valuable for decision-makers and first-responders, helping
to develop targeted communication, tailoring risk communication strategies and campaigns,
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and helping to anticipate the magnitude of shelter and other special needs. For example,
emergency managers could pinpoint the areas and groups most likely to end up refusing to
evacuate or coming back too soon after a disaster.

This study demonstrates that an hybrid MRP-MRSP model is not limited to broad
geographic scales and can be applied to estimate public responses using survey data for fine
scales within municipalities and neighborhoods. We show how small-area estimation can be
extended from existing administrative divisions to uniform geographic units (grid cells with
population counts) to map geographic variation in survey outcome variables. Small-area es -
timation techniques using survey data are not commonly used among geographers. We ar-
gue that this kind of modeling is a fruitful direction to improve mapping of survey results.
We raise the underlying question of what precautions surveys should take before inferring
sample results at different scales or mapping them. We advise specifically designing survey
samples to be representative at the scales needed and to account for biases due to sampling
or underlying demographic variation, i.e. to model and adjust for population characteristics
before making claims about geographic patterns in unweighted survey results. Geographers
and other social scientists should strongly consider using small-area estimation techniques
to infer and map results from survey data to understand underlying spatial patterns in ways
that account for how representative the sample is of the broader population. This opens the
door to other applications that require accurate population-level estimates and spatially dis-
aggregated estimates from polls and survey data. Beyond hazard mitigation and prepared -
ness, additional practical applications could include, for example, mapping health-related
perceptions and behavior for public health campaigns, mapping energy-related behaviors to
optimize transmission infrastructure, or mapping local government policy preferences to in-
form decision-making.
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