
HAL Id: hal-03795867
https://hal.science/hal-03795867

Submitted on 4 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Practical Performance of Random Projections in Linear
Programming

Leo Liberti, Benedetto Manca, Pierre-Louis Poirion

To cite this version:
Leo Liberti, Benedetto Manca, Pierre-Louis Poirion. Practical Performance of Random Projections
in Linear Programming. Symposium on Experimental Algorithms, Jul 2022, Heidelberg, Germany.
�10.4230/LIPIcs.SEA.2022.21�. �hal-03795867�

https://hal.science/hal-03795867
https://hal.archives-ouvertes.fr


Practical Performance of Random Projections in
Linear Programming
Leo Liberti # Ñ

LIX CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France

Benedetto Manca #

Department of Mathematics and Informatics, University of Cagliari, Italy

Pierre-Louis Poirion #

RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

Abstract
The use of random projections in mathematical programming allows standard solution algorithms
to solve instances of much larger sizes, at least approximately. Approximation results have been
derived in the relevant literature for many specific problems, as well as for several mathematical
programming subclasses. Despite the theoretical developments, it is not always clear that random
projections are actually useful in solving mathematical programs in practice. In this paper we
provide a computational assessment of the application of random projections to linear programming.
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1 Introduction

This paper is about applying Random Projections (RP) to Linear Programming (LP)
formulations. RPs are dimensional reduction operators that usually apply to data. The
point of applying RPs to LPs is to obtain an approximate solution of the high-dimensional
formulation by solving a related lower-dimensional one. The main goal of this paper is to
discuss the pros and cons of this technique from a computational (practical) point of view.

1.1 Random Projections
In general, RPs are functions, sampled randomly from certain distributions, that map a
vector in Rm to one in Rk, where k ≪ m. In this paper we restrict our attention to linear
RPs, which are k × m random matrices T . The most famous result about RPs is the
Johnson-Lindenstrauss Lemma [13], which we recall here in its probabilistic form. Given a
finite set X = {x1, . . . , xn} ⊂ Rm and an ϵ ∈ (0, 1), there exists a δ = O(e−Cϕ(k)) (with ϕ

usually linear and C a universal constant not depending on input data) and an RP T with
k = O(ϵ−2 ln n) such that

Prob
(

∀i < j ≤ n (1 − ϵ)∥xi − xj∥2 ≤ ∥Txi − Txj∥2 ≤ (1 + ϵ)∥xi − xj∥2
)

≥ 1 − δ. (1)

If T is sampled componentwise from the normal distribution N(0, 1/
√

k), Eq. (1) holds (note
that other distributions also work). The JLL is not the only result worth mentioning in RP
[22, 11, 19], but it is the object of interest in this paper.
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21:2 Practical Random Projections for LP

The JLL directly applies to all problems involving the Euclidean distance between points
in a Euclidean space of high dimension, e.g. the design of an efficient nearest-neighbor data
structure (i.e. given X ⊂ Rm and q ∈ Rm quickly return x ∈ X closest to q) [12].

More in general, the JLL shows that RPs can transform the point set X to a lower
dimensional set TX such that X and TX are “approximately congruent”: the pairwise
distances in X are approximately the same (multiplicatively) as the corresponding pairwise
distances in TX, even if X has m dimensions and TX only k (proportional to ϵ−2 ln |X|).
Since “approximately congruence” means “almost the same, aside from translations, rotations,
and reflections”, it is reasonable to hope that RPs might apply to other constructs than just
sets of points, and still deliver a theoretically quantifiable approximation. In this paper we
consider LP.

1.2 Applying RPs to Linear Programming
In this paper we are interested in the application of the JLL to LP in standard form:

min
x

c⊤x

Ax = b

x ≥ 0,

 (LP)

where x = (x1, . . . , xn), A is an m × n matrix, and b ∈ Rm.
There are several issues in applying RPs to Mathematical Programs (MP) in general.

The three foremost are:
1. RPs project vectors rather than decision variables and constraint functions;
2. RPs ensure approximate congruence of the input vectors in the lower-dimensional output:

but approximation arguments in LP must instead be based on optimality and feasibility
(unrelated to the ℓ2 norm);

3. RPs only apply to finite point sets, whereas LP decision variables represent infinite point
sets.

These issues pose nontrivial theoretical challenges, and the proof techniques vary consid-
erably depending on the MP subclass being considered. The first issue mentioned above is
addressed by applying RPs to the problem parameters (the input data); in the LP case, we
project the linear system Ax = b. We speak of the original formulation P and the projected
formulation TP . This yields a fourth issue: the solution of TP may be infeasible in P : in
such cases, a solution retrieval phase is necessary in order to construct a feasible solution of
P from that of TP .

The second and third issues are addressed in [25], leading to statements similar to the
JLL, but concerning approximate LP feasibility and optimality. If E(P, T ) is a statement
about the feasibility or optimality error between the LP formulations P and TP , the general
structure of these results is similar to the probabilistic version of the JLL:

Prob
(

E(P, T )
)

≥ 1 − δ, (2)

where δ usually depends on ϵ, k and possibly even the solution of P . We shall recall the
statements of these results more precisely in Sect. 2.

1.3 Relevant literature
The main reference for RPs and LP in standard form is [25], which presents the theory
addressing the above issues, and a computational study focussing on dense random LP
instances. RPs were also applied to some specific LP problems: PAC learning [20] and
quantile regression [26], with dimensional reduction techniques tailored to the corresponding
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LP structure. Other works in applying RPs to different types of MP subclasses are [24]
(quadratic programs with a ball constraint), [4] (general quadratic programs), [18] (conic
programs including second-order cone and semidefinite programs).

1.4 Contributions of this paper
Although some of the relevant literature carries computational results, we think that, compu-
tationally, the application of RPs to LPs is still experimental: in practice the output on a
given instance can range from accurate all the way to catastrophic.

One of the difficulties is that, in writing k = O(ϵ−2 ln n), we are neglecting a constant
multiplicative coefficient C related to the “big oh”, the appropriate value of which is usually
the fruit of guesswork. Another difficulty is that the the theoretical results in this area apply
to “high dimensions”, without specifying a minimum dimension above which they hold. In
catastrophic cases, the theory ensures that results would improve for larger instance sizes,
but just how large is unknown. At this time, in our opinion, no-one is able to justifiably
foresee whether RPs will be useful or not on a given LP instance. The only existing work
about practical RP usage is [23], which only focusses on computational testing of different
RP matrices.

This paper will provide a computational analysis of LP cases where RPs work reasonably
well, and others where they do not, and attempt to derive some guidelines for choosing
appropriate values for the most critical unknown parameters. On the theoretical side, we
tighten two results of [18] when applied to the LP case.

The rest of this paper is organized as follows. In Sect. 2 we recall the main theoretical
results relative to the application of RPs to LP, and state the two new tightened results. In
Sect. 3 we illustrate the benchmark goal, the LP structures we test, and the methodology. In
Sect. 4 we discuss the benchmark results.

2 Summary of theoretical results

We apply RPs to the original formulation (LP) by reducing the number m of constraints.
Let T be a k × m RP matrix. The projected formulation is:

min{c⊤x | TAx = Tb ∧ x ≥ 0} (TLP).

We first discuss feasibility. We note that the geometric interpretation of the feasible
set F = {x | Ax = b ∧ x ≥ 0} of (LP) is that F is the set of conic combinations of the
columns Aj of A, i.e. F = cone(A). We also let conv(A) the convex hull of the columns of
A, and ∥x∥A = min{

∑
j λj | x =

∑
j λjAj} be the A-norm of x ∈ cone(A). Is F is invariant

w.r.t. the application of T to (LP)? If x ∈ F then TAx = Tb by linearity of T . On the
other hand, it is generally false that if x ≥ 0 but x ̸∈ F , then TAx ̸= Tb. The following
approximate feasibility statement

b ̸∈ cone(A) ⇒ Prob
(

Tb ̸∈ coneTA
)

≥ 1 − 2(n + 1)(n + 2)e−C(ϵ2−ϵ3)k (3)

is proved in [25, Thm. 3] for all ϵ ∈ (0, ∆2/(µA + 2µA

√
1 − ∆2 + 1)), where C is the universal

constant of the JLL, µA = max{∥x∥A | x ∈ cone(A) ∧ ∥x∥2 ≤ 1}, and ∆ is a lower bound to
minx∈conv(A) ∥b − x∥2.

Let val(·) indicate the optimal objective function value of a MP formulation. The
approximate optimality statement for (LP) derived in [25, Thm. 4] is conditional to the LP
formulation being feasible and bounded, so that, if x∗ is an optimal solution, there is θ

(assumed w.l.o.g. ≥ 1) such that
∑

j x∗
j < θ. Given γ ∈ (0, val(LP)),

Prob
(

val(LP) − γ ≤ val(TLP) ≤ val(LP)
)

≥ 1 − δ, (4)

SEA 2022



21:4 Practical Random Projections for LP

where δ = 4ne−C(ϵ2−ϵ3)k, ϵ = O(γ/(θ2∥y∗∥2)), and y∗ is an optimal dual solution of (LP).
Like other approximate optimality results in this field, some quantities in the probabilistic
statement depend on the norm of a dual optimal solution. This adds a further difficulty to
computational evaluations, since they cannot be computed prior to solving the problem.

Let x̄ be a projected solution, i.e. an optimal solution of the projected formulation. In [25,
Prop. 3], it is proved that x̄ is feasible in the original formulation with zero probability. We
therefore need to provide a solution retrieval method. A couple were proposed in [25], but
the one found in [18, Eq. (6)] comes with an approximation guarantee and a good practical
performance. The retrieved solution x̃ is defined as the projection of x̄ on the affine subspace
Ax = b, and computed using the pseudoinverse:

x̃ = x̄ + A⊤(AA⊤)−1(b − Ax̄). (5)

The fact that we only project on Ax = b without enforcing x ≥ 0 is necessary, since otherwise
we would need to solve the whole high-dimensional LP. On the other hand, it causes potential
infeasibility errors w.r.t. x ≥ 0. A probabilistic bound on this error is cast in general terms
for conic programs in [25]. Let κ(A) be the condition number of A; applying [25, Thm. 4.4] to
LP, we obtain the following result, which bound the (negativity of) the smallest component
of x̃ in terms of that of x̄.

▶ Proposition 1. There is a universal constant C2 such that, for any u ≥ 0, we have:

Prob
(

min
j≤n

x̃j ≥ min
j≤n

x̄j − ϵθκ(A)(C2 + u
√

2/ ln(n))
)

≥ 1 − 2e−u2
.

The proof is based on an improvement of [18, Eq. (7)] based on computing the Gaussian
width and diameter of {x ≥ 0 | ⟨1, x⟩ ≤ 1}. As a corollary, we also have the following
result about the difference between objective function values of the retrieved and projected
solutions.

▶ Corollary 2. Let f̃ be the objective function value of the retrieved solution x̃, and f̄ be the
optimal objective function value of the projected formulation. There is a universal constant
C2 such that, for any u ≥ 0, we have:

Prob
(

|f̃ − f̄ | ≤ ϵθκ(A)∥c∥2(C2 + u
√

2/ ln(n))
)

≥ 1 − 2e−u2
.

3 What we establish and how

Upon receving an LP instance to be solved using RPs, one has to at least know how to decide
k (the projected dimension) so that the solution of the projected formulation is reasonably
close to that of the original one.

Ideally, one would like to estimate all unknown parameters: k, ϵ, C, C in function of γ

and δ. This is theoretically hopeless because the theoretical bounds derived for “all LPs”
are far from tight. We shall see below that it is also computationally hopeless. In practice,
moreover, one might be much more interested in finding a good retrieved solution (i.e. almost
feasible in the original problem), rather than finding a good approximation to the optimal
objective function value, since a feasible solution can be improved by local methods, while
an approximate optimal value may at best be useful as an objective cut.

Our approach will accordingly be based on solving sets of uniformly sampled LP instances
(from different applications) using a standard solver, and analyse the output in terms of how
the feasibility and optimality errors of the retrieved solution vary with problem size and ϵ.
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3.1 The RP matrix

All componentwise sampled sub-Gaussian distributions [7] can be used to ensure the results
cited in this paper. Some sparse variants also exist, along the lines of [1, 15]. We use the
sparse RPs described in [4, §5.1]. For a given density σ ∈ (0, 1) and standard deviation√

1/(kσ), with probability σ we sample a component of the k×m RP T from the distribution
N(0,

√
1/(kσ)), and set it to zero with probability 1 − σ. In our computational study, we set

σ = dA/2, where dA is the density of the constraint matrix A.

3.2 LP structures

We consider randomly generated LPs of the following four classes: Max Flow problems [8],
Diet problems [6], Quantile Regression problems [16], and Basis Pursuit problems from
sparse coding [3]. This choice yields a set of LP problems going from extremely sparse (Max
Flow) to completely dense (Basis Pursuit), with the Diet and Quantile Regression
providing cases of various intermediate densities. These four test cases arise from a diverse
range of application settings: combinatorial optimization, continuous optimization, statistics,
data science.

3.2.1 Maximum flow

The Max Flow formulation is defined on a weighted digraph G = (N, A, u) with a source
node s ∈ N , a target node t ∈ N (with s ̸= t) and u : A → R+, as follows:

max
x∈R|A|

+

∑
i∈N∖{s}
(s,i)∈A

xsi −
∑

i∈N∖{s}
(i,s)∈A

xis

∀i ∈ N ∖ {s, t}
∑

j∈N
(i,j)∈A

xij =
∑

j∈N
(j,i)∈A

xji

∀(i, j) ∈ A 0 ≤ xij ≤ uij .

 (MF)

We generate random weighted digraphs G = (N, A, u) with the property that a single
(randomly chosen) node s is connected (through paths) to all of the other nodes: we first
generate a random tree on N ∖ {t}, orient it so that s is the root, add a node t with the same
indegree as the outdegree of s, and then proceed to enrich this digraph with arcs generated at
random using the Erdős-Renyi model with probability 0.05. We then generate the capacities
u uniformly from [0, 1]. Finally, we compute the digraph’s incidence matrix A, which has
m = |N | − 2 rows and |A| columns. Instances are feasible because the graph always has a
path from s to t by construction, and the zero flow is always feasible.

Although (MF) is an LP, it is not in standard form, because of the upper bounding
constraints x ≤ u. But, by [25, §4.2], we can devise a block-structured RP matrix that only
projects the equations Ax = b, leaving the inequalities x ≤ u alone. In this case, A is a flow
matrix with two nonzeros per column, one set to 1 the other to −1, aside from columns
referring to source and target nodes s, t that only have one nonzero; and b = 0. The density
of A is dA = 2|A|−2

(m−2)|A| ≈ 2/m.
For our random (MF) instances, θ = |A| is a valid upper bound to

∑
(i,j)∈A x∗

ij , since
0 ≤ xij ≤ uij ≤ 1 for all (i, j) ∈ A.

SEA 2022



21:6 Practical Random Projections for LP

3.2.2 Diet problem

The Diet formulation is defined on an m × n nutrient-food matrix D, a food cost vector
c ∈ Rn

+, and a nutrient requirement vector b ∈ Rm, as follows:

min
q∈Rmn

+

c⊤q

Dq ≥ b.

}
(DP)

We sample c, D, b uniformly componentwise in [0, 1], and set the density of D to dD = 0.5.
Instances are feasible because one can always buy enough food to satisfy all nutrient
requirements. If ∥Di∥0 = |nonzeros of row Di|, then q̂ =

(
max
i≤m

(bi/(∥Di∥0Dij)) | j ≤ n
)

is a
feasible solution.

Again, (DP) is not in standard form, but the transformation is immediate using slack
variables ri ≥ 0 for i ≤ m. We let A = (D | −I), where I is m × m. The decision variable
vector is x = (q, r). The density of A is dA = (dDmn + m)/(m(n + m)) = (dDn + 1)/(n + m).

For (DP), the upper bounding solution q̂ yields slack values r̂i = Diq̂ − bi for all i ≤ m,
where Di is the i-th row of D. So we let θ =

∑
j q̂j +

∑
i r̂i be an upper bound for

∑
j x∗

j .

3.2.3 Quantile regression

The Quantile Regression formulation, for a quantile τ ∈ (0, 1), is defined over a database
table D having density dD with m records and p fields, and a further column field b. We
make a statistical hypothesis b =

∑
j βjDj , and aim at estimating β = (βj | j ≤ p) from the

data b, D so that errors from the τ -quantile are minimized. Instances may only have nonzero
optimal value if m > p, as is clear from the constraints of the formulation below:

min
β∈Rp

u+,u−∈Rm
+

τ1⊤u+ + (1 − τ)1⊤u−

Dβ + Iu+ − Iu− = b,

 (QR)

where the constraint system Ax = b has A = (D|I| −I), x = (β, u+, u−), and τ (the quantile
level) is given, and fixed at 0.2 in our experiments. The data matrix (D, b) is sampled
uniformly componentwise from [−1, 1], with dD = 0.8. Instances are all feasible because
the problem reduces to solving the overconstrained linear system Dβ = b with a “skewed”
version of an ℓ1 error function.

We note that (QR) is not in standard form, since the components of β are unconstrained;
but this is not an issue, insofar as the problem is bounded (since it is feasible and it minimizes
a weighted sum of non-negative variables), and this is enough to have the results in [25] hold.
On the contrary, the lack of non-negative bounds on β is an advantage, since we need not
worry about negativity errors in the β components of the retrieved solution (Prop. 1). The
density of A is dA = (dDmp + 2m)/(mp + 2m2) = (dDp + 2)/(p + 2m).

For (QR), given that all data is sampled uniformly from [−1, 1], no optimum can ever
have |βj | > 1. As for u+, u−, we note that any feasible β yields an upper bound to the
optimal objective function value, which only depends on u+, u−: we can therefore choose
β = 0, and obtain u+

i − u−
i = bi for all i ≤ m; we then let u+

i = bi ∧ u−
i = 0 if bi > 0, and

u+
i = 0 ∧ u−

i = −bi otherwise. This yields an upper bound estimate θ = p +
∑

i |bi| to
∑

j x∗
j .
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3.2.4 Basis pursuit

The Basis Pursuit formulation aims at finding the sparsest vector x satisfying the underde-
termined linear system Ax = b by resorting to a well-known approximation of the zero-norm
by the ℓ1 norm [3]:

min
x,s∈Rn

1⊤s

Ax = b

∀j ≤ n −sj ≤ xj ≤ sj .

 (BP)

According to sparse coding theory [5], we work with a fully dense m×n matrix A sampled
componentwise from N(0, 1) (with density dA = 1), a random message obtained as z/Z from
a sparse z ∈ (Z∩ [−Z, Z])n (with density 0.2) and Z = 10, and compute the encoded message
b = Az. We then solve (BP) in order to recover the sparsest solution of the underconstrained
system Ax = b, which should provide an approximation of z. Basis pursuit problems undergo
a phase transition as m decreases from n down to zero [2], so it shouldn’t really make sense
to decrease m by using RPs, and yet some mileage can unexpectedly be extracted from this
operation [17].

Similarly to (MF), in (BP) we can partition the constraints into equations Ax = b and
inequalities −s ≤ x ≤ s. Again by [25, §4.2], we devise a block-structured RP matrix which
only projects the equations.

As in Sect. 3.2.3, (BP) is not in standard form, since none of the variables are non-
negative. In this case, moreover, it is not easy to establish a bound θ on

∑
j(x∗

j + s∗
j ), since

A is sampled from a normal distribution. On the other hand, for Aij ∼ N(0, 1) we have
Prob

(
Aij ∈ [−3, 3]

)
= 0.997. By construction, we have b ∈ [−3n, 3n]m, which implies

a defining interval [−n, n] on the components of optimal solutions, yielding θ = 2n2 with
probability 0.997.

3.3 Methodology

The goal of this paper is to provide a computational assessment of RPs applied to LP.
As discussed at the beginning of Sect. 3, the actual determination of all relevant parameters

is theoretically hopeless. We can certainly simplify the task a little by noting that the
coefficient C can be removed since it suffices to decide a value for ϵ in order to decide k.
Ideally we would like to decide γ first (see Eq. (4)), then compute ϵ as O(γ/(θ2∥y∗∥2)),
and sample an appropriate RP. Unfortunately, estimating θ and ∥y∗∥2 prior to solving the
original LP leads to tiny values for ϵ (e.g. 10−i for i ∈ {2, . . . , 11} in some preliminary tests),
which would require the rows of A to be at least O(10i2) in order to yield a useful projection.
Since we are interested in applying RPs to LPs with O(102) and O(103) rows, this “ideal”
approach is inapplicable.

Instead, we repeatedly solve sets of instances of each LP structure. Each projected
instance is solved with different values of ϵ ∈ E = {0.15, 0.2, 0.25, 0.3, 0.35, 0.4} (these values
have been found to be the most relevant in preliminary computational experiments performed
over several years). Moreover, to mitigate the effect of randomness, we solve each instance
with each ϵ multiple times. For each instance and ϵ we collect performance measures on
objective function values, infeasibility errors, and CPU time. This allows us to illustrate the
co-variability of ϵ and instance size with the performance measures.

SEA 2022
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4 The benchmark

The solution pipeline is based on Python 3 [21] and the libraries scipy [14] and amplpy [9]
(besides other standard python libraries). For each problem type, we loop over instances
(based on row size of the equality constraint system, varying in S, see below), over ϵ ∈ E ,
and over 5 different runs for each instance and ϵ in order to amortize the result randomness
depending on the choice of T . We solve all of the original and projected instances using
CPLEX 20.1 [10]. We use the barrier solver, because we found this to be more efficient with
large dense LPs than the simplex-based solvers in CPLEX. Our code can be downloaded
here.1 All tests have been carried out on a MacBook 2017 wih a 1.4GHz dual-core Intel Core
i7 with 16GB RAM.

4.1 Choice of instances

In the case of Diet, Quantile Regression, and Basis Pursuit, we generated instances
so that the number of rows of the equality constraint system Ax = b is in the set S =
{500p | 1 ≤ p ≤ 5 ∧ p ∈ N}. For Max Flow we used S ′ = S ∖ {2500} because the larger
size triggered a RAM-related error in a part of the solution pipeline involving the AMPL [9]
interpreter.

4.1.1 The variable space

The space of original, projected, and retrieved variable values is identical for Max Flow,
Quantile Regression, and Basis Pursuit, since these three structures are originally cast
in an equality constraint form Ax = b. This desirable property fails to hold for Diet, which
deserves a separate discussion.

The original formulation (DP) of Diet is in inequality form Dq ≥ b, but the projected
formulation is derived from the constraints Ax = b in standard form, where A = (D| −I).

The theoretical results in Sect. 2 justify a fair comparison only between original and
projected solutions in standard form. Since this paper is about a practical comparison,
however, and since no-one would convert (DP) to standard form before solving it (because the
solver would do it as needed), we chose to compute objective function values and feasibility
errors of the projected formulation on the space of the original formulation variables q. Thus,
for a retrieved solution x̃ = (q̃, r̃) we only considered q̃ in order to compute the objective
function value of x̃.

Considering only the q variables is unproblematic if applied to the optimal solution x∗

of the original formulation in standard form, because s∗ ≥ 0 and A = (D| −I) ensure that
q∗ is a feasible solution in Dq ≥ b. When applied to the projected formulation, however,
TA = (TD| −TI) yields a block matrix TI with both positive and negative entries (since T

is sampled from a normal distribution). Thus, it often happens that the underdetermined
k × m system TI = Tb has solutions. In this case, since the objective tends to minimize c⊤q,
the projected solution x̄ = (q̄, s̄) will have q̄ = 0, yielding zero projected objective function
value. This, in turn, may yield Dq̃ ̸≥ b. The application of RPs to Diet is therefore less
successful than for other structures.

1 The URL is https://mega.nz/file/p8MQhbpT#0TJBUVgaBf4KPVk2fu_5k05cMy2VozJk-0fQ1PZdJ0U.

https://mega.nz/file/p8MQhbpT#0TJBUVgaBf4KPVk2fu_5k05cMy2VozJk-0fQ1PZdJ0U
https://mega.nz/file/p8MQhbpT#0TJBUVgaBf4KPVk2fu_5k05cMy2VozJk-0fQ1PZdJ0U
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4.2 Performance measures
At the end of each solver call we record: the optimal objective function f∗ of the original
problem, the optimal objective function f̄ of the projected problem, the objective function
value f̃ of the retrieved solution x̃, the feasibility error w.r.t. equation constraints Ax = b

(eq) and inequalities x ≥ 0 (in), the CPU time t∗ taken to solve the original formulation,
and the CPU time t̄ taken to solve the projected formulation.

The CPU time t∗ takes into account: reading the instance, constructing the original
formulation, and solving it. The CPU time t̄ takes into account: reading the instance,
sampling the RP, projecting the instance data, constructing the projected formulation,
solving it, and performing solution retrieval.

The benchmark considers: the average objective function ratios f̄/f∗, f̃/f∗, the average
errors avgeq, avgin for Ax = b and x ≥ 0, the ratio k/m, the average CPU ratio t̄/t∗: all
averages are computed over 5 solution runs over a given instance size and ϵ value.

4.3 RP performance on Max Flow
The application of RPs to the Max Flow problem looks like a success story: the ratio
of projected to original optimal objective function value is very close to 1.0 and constant
w.r.t. ϵ (f̄/f∗ ≥ 1 is normal insofar as Max Flow is a maximization problem, and TLP is
a relaxation of LP). The feasibility error of the retrieved solution related to the equality
constraints Ax = b is very close to zero, and the error w.r.t. x ≥ 0 decreases as m increases
(a healthy behaviour in RPs) and also as ϵ increases (implying that maximum negativity
error increases more slowly than the number of variables). The CPU time ratio decreases
proportionally to k/m, as expected. The only issue is that the objective function value at
the retrieved solution is only around 0.5 of the optimum.

4.4 RP performance on Diet
As mentioned in Sect. 4.1.1, the practical application of RPs to the Diet problem is not
successful, as shown by the plots in Fig. 2. The projected cost is almost always zero, because
the constraint projection allowed the solver to satisfy (D| −I)(q, r)⊤ = b using slack variables
only. This causes sizable errors in the retrieved solutions. As expected, the CPU time
taken to solve the projected formulation is a tiny fraction of the time to solve the original
formulation.

We tried to experiment with a modified projected objective (c | 1) so that we would
minimize the sum of the projected slack variables. This yielded quantitatively better results,
as shown in Fig. 3; qualitatively, the results still look like a failure.

4.5 RP performance on Quantile Regression
The results quality on Quantile Regression is mixed. The ratio f̄/f∗ is rather low, but
we note that it is higher (better) for low sizes and low ϵ values, which is a sign that ϵ should
be further decreased for all (and specially large) sizes. Interestingly, the objective value of
the retrieved solution x̃ has better quality. The feasibility errors of x̃ are zero for Ax = b,
and not negligible (around 0.2, with one outlier) for x ≥ 0: the trend, unfortunately, is not
decreasing, either with ϵ or m increasing. CPU time ratios are good.

To see whether increasing sizes and decreasing ϵ improved performances, we solved an
instance with m = 5000 and p = 100 with ϵ = 0.1, obtaining the following results.

SEA 2022
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Figure 1 Max Flow plots (increasing ϵ on abscissae): instances of growing size on rows, objective
function ratios on the first column, feasibility errors on the second, k/m and CPU time ratio on the
third.

ϵ f̄/f∗ f̃/f∗ avgin avgeq k/m t̄/t∗

quantreg-5000
0.10 0.1460 0.3839 0.1784 0.0000 0.18 4.43

We can see that the objective function ratios of this instance provide a definite improvement
with respect to the three largest instances in Fig. 4 (m ∈ {1500, 2000, 2500}). The negativity
error is, however, of the same magnitude as before.

4.6 RP performance on Basis Pursuit
In the Basis Pursuit problem we see an encouraging trend of the ratio f̄/f∗, which starts
off at 0.8 for m = 500 and ϵ = 0.15, and indicates that ϵ should be decreased for larger sizes.
The retrieved solution was not computed on the “sandwich” variables s (see Eq. (BP)), but
as the ℓ1 norm of x̃. Since there are fewer constraints in the encoding matrix A, it follows
from compressed sensing theory that the sparsest solution is found less often, a fact that
increases the objective value of the retrieved solution. The feasibility errors are always zero
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Figure 2 Diet plots (increasing ϵ on abscissae): instances of growing size on rows, objective
function ratios on the first column, feasibility errors on the second, k/m and CPU time ratio on the
third.

(for Ax = b and x ≥ 0), which happens because the variables x are unbounded. The CPU
time ratio is not as regular as for the other structures, but still denotes a remarkable time
saving when solving projected formulations.

To see whether increasing sizes and decreasing ϵ improved performances, we solved an
instance with m = 5000 and n = 6000 with ϵ = 0.1, obtaining the following results.

ϵ f̄/f∗ f̃/f∗ avgin avgeq k/m t̄/t∗

basispursuit-5000
0.10 0.4925 1.5395 0.0000 0.0000 0.17 0.09

An improvement with respect to the three largest instances in Fig. 5 (m ∈ {1500, 2000, 2500})
is present, which points to the correct trend, albeit not substantial.

SEA 2022
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Figure 3 Diet plots with modified objective attempting to drive the slack variables to zero.

5 Conclusion

In this paper we have pursued a computational study of the application of random projections
to linear program data, based on solving original and projected formulations linear program
instances of various structures and sizes. We found that original formulations only involving
inequalities are particularly challenging, but those that natively involve equations behave
better. The sparsity of the constraint matrix does not appear to pose issues, as long as
sparse RPs are used. Lastly, the sizes we considered here are possibly at the lower end of the
range allowed by RPs: better results should be obtained with larger sizes and smaller values
of ϵ, which in turn imply larger CPU times.
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Figure 4 Quantile Regression plots (increasing ϵ on abscissae): instances of growing size on
rows, objective function ratios on the first column, feasibility errors on the second, k/m and CPU
time ratio on the third.

SEA 2022



21:14 Practical Random Projections for LP

Figure 5 Basis Pursuit plots (increasing ϵ on abscissae): instances of growing size on rows,
objective function ratios on the first column, feasibility errors on the second, k/m and CPU time
ratio on the third.
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