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Three-dimensional imaging is at the core of medical imaging and is becoming a standard in
biological research. As a result, there is an increasing need to visualize, analyze and interact
with data in a natural three-dimensional context. By combining stereoscopy and motion
tracking, commercial virtual reality (VR) headsets provide a solution to this critical
visualization challenge by allowing users to view volumetric image stacks in a highly
intuitive fashion.While optimizing the visualization and interaction process in VR remains an
active topic, one of the most pressing issue is how to utilize VR for annotation and analysis
of data. Annotating data is often a required step for training machine learning algorithms.
For example, enhancing the ability to annotate complex three-dimensional data in
biological research as newly acquired data may come in limited quantities. Similarly,
medical data annotation is often time-consuming and requires expert knowledge to identify
structures of interest correctly. Moreover, simultaneous data analysis and visualization in
VR is computationally demanding. Here, we introduce a new procedure to visualize,
interact, annotate and analyze data by combining VR with cloud computing. VR is
leveraged to provide natural interactions with volumetric representations of
experimental imaging data. In parallel, cloud computing performs costly computations
to accelerate the data annotation with minimal input required from the user. We
demonstrate multiple proof-of-concept applications of our approach on volumetric
fluorescent microscopy images of mouse neurons and tumor or organ annotations in
medical images.
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1 INTRODUCTION

Continuous technological advances in optical and electron
microscopy have enhanced our ability to discern three-
dimensional (3D) biological structures via slice-based
tomography (Zheng et al., 2018; Driscoll et al., 2019; Gao
et al., 2019; Hörl et al., 2019; Hoffman et al., 2020). Entire
structures from organelles to whole organisms can be imaged
at the nanometric resolution, allowing the exploration of complex
interplay between 3D geometry and biological activity (Gao et al.,
2019). Furthermore, large-scale recordings capturing entire
organisms provide a new means for understanding biology at
multiple spatial and temporal scales. Three-dimensional medical
imaging has been accessible for many years (typically at the
millimetric resolution), primarily acquired from computed
tomography (CT) scans, magnetic resonance imaging (MRI),
and, more recently, numerically processed ultrasound
recordings. Medical image analysis is based on the specialized
exploration of the slices along the principal axes of recording,
i.e., the sagittal, coronal, and axial planes. These last 10 years have
seen numerous machine learning-based approaches to assist and
automate medical image analysis (Esteva et al., 2021).

Gaining an intuitive understanding from these complex raw
data remains a challenge. Due to noise and statistical variability in
the recordings, biological researchers often encounter difficulties
in probing the geometry of organelles. It is also challenging in the
medical imaging domain, where surgeons and clinicians lacking
radiology training have difficulties in mentally transforming
information in 2D image slices into a 3D representation of an
organ, tumor or region of interest. In addition, natural modes of
3D visualization are missing, as most analyses rely on viewing 3D
data on a computer monitor while simultaneously using a mouse
to interact and extract information from the data.

Virtual reality (VR) technology has recently reemerged, in part
due to low-cost consumer headsets and increasingly powerful
graphics cards. The efficient integration of stereoscopy,
immersion, and motion tracking in VR allows the user to
visualize 3D structures in a physically realistic computer-
generated environment. Interactions in this artificial
environment rely on handheld VR controllers that allow
physically-based actions to be performed on virtual objects.

Numerous initiatives have focused on taking advantage of this
technology in the domains of education and scientific research
(Dede et al., 2017; Balo et al., 2017; O’Connor et al., 2018;
Johnston et al., 2018; Matthews, 2018; El Beheiry et al., 2019;
Safaryan and Mehta, 2021). Recent studies have additionally
highlighted the benefits of immersive viewing for handling 3D
data, including efficiency and enhanced intuition relative to
standard monitor-based visualization (Johnston et al., 2018; El
Beheiry et al., 2019). It is worth pointing out that multiple
companies have focused their efforts on developing state-of-
the-art processes for high-quality image rendering. Examples
of these active initiatives are found in Arivis AG and syGlass
(see Table 1 in El Beheiry et al., 2020). Within the context of
medical applications, initiatives have also focused on education
(Djukic et al., 2013; Fertleman et al., 2018; Bouaoud et al., 2020;
Shao et al., 2020; Venkatesan et al., 2021), surgery planning and

diagnosis (Reitinger et al., 2006; Ong et al., 2018; Pfeiffer et al.,
2018; Ayoub and Pulijala, 2019; Lee andWong, 2019; Pinter et al.,
2020; Wake et al., 2020; Boedecker et al., 2021; Chheang et al.,
2021; Laas et al., 2021; Lau et al., 2021; Raimondi et al., 2021; Ruiz
et al., 2021; Venkatesan et al., 2021).

Experimental three-dimensional image recordings (e.g.,
microscopy and medical) are typically acquired in limited
quantities (Matthews, 2018). Additionally, these few
acquisitions are subject to variability which make for difficult
streamlining of data analysis. To address this reality we require,
first, the appropriate means to visualize, interact with, and
manipulate data and, second, an ability to rapidly perform
quantitative assessments on these data.

The first challenge can be tackled via visualization with VR. By
rendering image stacks into a VR environment, users can easily
navigate and interact with their 3D data. In turn, VR enables the
user to grasp an intuitive understanding of the dataset being
visualized. However, multiple issues are associated with this task:
1) finding proper ways to represent diverse image stacks
originating from different imaging modalities with varying
signal to noise ratios, 2) providing versatile tools to explore
and interact with the VR representation, and 3) finding
procedures that can handle large data sets.

The second challenge is addressed by employing human-in-
the-loop (Patel et al., 2019) data treatment procedures. The idea
here is to couple user interactions with data analysis for extracting
relevant information from the data. In the context of this work,
this implies 1) defining procedures to select data within the VR
environment, 2) performing the required computations for
analysis without significantly impacting the VR rendering
performance, and 3) allowing corrections to be performed in
an iterative fashion.

In the following sections, we discuss related works involving
VR software for image stack visualization. We introduce our
approach, DIVA Cloud, which allows visualization and
interaction in VR combined with cloud computing. Finally, we
show how this approach can be effectively utilized in data
annotation for microscopy and medical images.

2 QUICK INTRODUCTION TO RELATED
WORKS

Affordable VR headsets, efficient graphics cards and easily
accessible software development platforms (OpenXR, Unity,
Unreal Engine etc.) have widened access to VR developments.
These factors have promoted initiatives combining imaging
techniques with VR in order to address topics in cell biology.
As a result, VR applications are often forecasted to become
essential components of the experimental research
environment (Matthews, 2018; El Beheiry et al., 2019).

Image stack visualization in the VR environment is at the
center of numerous initiatives. These include ConfocalVR
(Stefani et al., 2018) and Scenery (Gunther et al., 2019), which
can generate volumetric reconstructions of microscopy images.
Neuroscience is a domain with a great need to visualize and
manipulate data in 3D. Large images of entire nervous systems
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can now be acquired with optical and electron microscopy (EM).
Tracing complex neuronal structures is essential as there is a link
between structure, connectivity and functions of neural circuits.
Some initiatives already use VR to address this (Peng et al., 2010;
Usher et al., 2017). Applications at the frontiers of microscopy
and neurosurgery have also been demonstrated in literature (de
Mauro et al., 2009; Wang et al., 2019; Wisotzky et al., 2019).

VR interactions from multiple users on the same data have
been introduced in Naviscope (Shattuck, 2018). Additionally,
some projects address topic-specific challenges in microscopy,
such as colocalization (Theart et al., 2017).

Companies developing software for microscopy image
analysis are now adding VR compatibility for visualization and
treatment. Major advances are found with Arivis AG (Dekkers
et al., 2019; Conrad et al., 2020) syGlass, which include an
optimized data interaction interface. Other research
applications focus on biomolecule structural information
visualizations and interactions (Doutreligne et al., 2014; Balo
et al., 2017; Goddard et al., 2018; Cassidy et al., 2020).

Not all microscopy image analysis software involves raw, full-
stack image analyses but instead a deconvolved output (Betzig
et al., 2006; Manzo and Garcia-Parajo, 2015; Qi et al., 2016). It is
especially the case for single-molecule microscopy, where signals
from individual biomolecules are captured and processed to
deduce their nanometric positions and dynamic behavior. In
these cases, the microscopy image stacks are reduced to point
clouds. Two recent open-source software tools have been
introduced to visualize and interact with single-molecule
experiments: vLUME (Spark et al., 2020) and ours, Genuage
(Blanc et al., 2020). Both software offers interfaces to interact with
the point clouds and to perform various forms of data analysis
(measuring, counting, cropping, etc.). Other initiatives on point
clouds relate to data tagging for machine learning (Berge et al.,
2016; Stets et al., 2018; Ramirez et al., 2019; Wirth et al., 2019; Liu
et al., 2020). Mixed applications can be found involving
astronomy, such as Gaia Sky (Sellés, 2013). General
visualization and interaction software include PointCloud XR
and developments centered on compression to ensure
visualization in VR and Augmented Reality (AR) (Pavez et al.,
2018).

In medicine, VR has found applications in surgery-specific
topics, notably education. While VR may be useful for radiology
(Uppot et al., 2019; Elsayed et al., 2020), radiologists are trained to
perform 3D mental reconstructions of medical images, limiting
their interest in immersive visualization modalities. Craniofacial
trauma education (Bouaoud et al., 2020), neurosurgical training
(Bernardo, 2017), spinal surgery (Pfandler et al., 2017), anatomy
education (Uruthiralingam and Rea, 2020), orthopedic surgery
(Bartlett et al., 2018; Walbron et al., 2019; Yoo et al., 2019; Lohre
et al., 2020) and patient education (Dyer et al., 2018) have been
demonstrated in this regard. Furthermore, clinical results hint
towards uses of VR in surgical applications spanning heart
diseases (Ayerbe et al., 2020; Sadeghi et al., 2020; Hattab et al.,
2021; Raimondi et al., 2021), breast cancer (Tomikawa et al.,
2010; Laas et al., 2021), liver surgery (Reitinger et al., 2006; Quero
et al., 2019; Golse et al., 2020; Lang and Huber, 2020; Boedecker
et al., 2021), pediatric surgery (Wang et al., 2012; Ruiz et al., 2021;

Salvatore et al., 2021) and orthopaedic surgery (Bartlett et al.,
2018; Yoo et al., 2019; Verhey et al., 2020). Multiple new
companies are now investigating the potential of VR for
surgical planning such as ImmersiveTouch®, PrecisionOS or
SurgicalTheater.

3 VISUALIZING AND INTERACTING WITH
IMAGE STACKS WITHOUT
PRE-PROCESSING IN VR
We recently introduced DIVA software (El Beheiry et al., 2020), a
user-friendly platform that generates volumetric reconstructions
from raw 3D microscopy image stacks and enables efficient
visualization, analysis and quantification. The software is
available at https://diva.pasteur.fr.

DIVA was developed using the Unity game engine
(UnityTechnologies), and is based on what we term a lean
mapper software architecture. Furthermore, the software uses
the Windows-based SteamVR standard, making it compatible
with most PC VR headsets, such as the HTCVive and Oculus Rift
S. DIVA renders image stacks and hyperstacks instantaneously as
3D volumes through via GPU-based volume ray-casting (Engel
et al., 2004, 2017). DIVA offers a dual interface allowing the user
to interact both on a standard computer monitor (i.e., desktop
mode) and in an immersive artificial environment (i.e., VR
mode). However, spending a significant amount of time in VR
can lead to discomfort among many users. Therefore, the desktop
mode allows users to set optimal visualization parameters before
switching to the VR mode, which is dedicated to visually
interpreting, analyzing, and navigating the data.

In the desktop interface, the user can modify scaling and
lighting, voxel color and opacity in real-time through a user-
friendly transfer function interface. This transfer function allows
a simple association of color and opacity to visualized voxels
based on their raw intensity values, as shown in Figure 1A.
Configuration of the transfer function and interaction with the
volume (rotation, translation, and scaling) can be controlled with
the mouse. Transfer functions in DIVA can be saved and loaded
in Javascript Object Notation (JSON) format.

In DIVA’s VR mode, the user visualizes image stacks rendered
as live physical objects as a result of stereoscopy. Physical
manipulation of the volume, such as grasping, rotation, or
navigation, can be done with the VR controller, which acts as
a 3D mouse for interaction (see Figure 1B). Hence, the data can
be observed at any arbitrary angle to understand its structure in
detail. To ease the navigation in complex and dense biological
images, a clipping tool, presented in Figure 1C, can be activated.
It dynamically removes a planar portion of the rendered volume
allowing deep structures in the image to be revealed. Tagging,
counting, and distance measurement tools are included for basic
quantitative measurements (see Figures 1D,E). Users can extract
all measurement results in a CSV file as well as through screen
and movie captures.

As shown in Figures 2A–C, users can utilize DIVA for various
microscopy modalities with up to four different channels
associated with individual transfer functions. The user can
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reveal structures of interest by modulating the voxel transparency
and colors in the transfer function. He can also discard undesired
voxels without losing information, which can happen when using
segmentation techniques. For example, users can easily remove
the significant background noise of EM images. DIVA can also be

used to compare raw and segmented data by merging the image
stacks together as TIFF files with multiple channels.

With VR, the perception of 3D structures in complex data
(e.g., EM images) is enhanced, and measurements are performed
quicker than in standard 2D stack viewers. Examples of

FIGURE 1 | The DIVA dual interface presented on an example of a light-sheet microscopy image of a human fetus lung with pulmonary alveoli (in red), trachea (in
blue) and vascular system (in green) (Belle et al., 2017). (A)Desktop interface with raw data in the bottom right corner and transfer function interface in the top right corner
with curves for voxel opacity (white arrow) and color (red arrow). (B) VR interface with VR controller in orange. (C)Clipping tool with the VR controller to navigate inside the
volume. (D) Flashlight tool with the VR controller to highlight a spherical area of interest. (E) Counter tool with the VR controller to enumerate elements of interest.

FIGURE 2 |DIVA application examples on the desktop interface with their corresponding raw image in the bottom left corner. (A–C) TIFF image stacks of (A)Mouse
hippocampus imaged by two-photon serial endblock imaging (SEBI, Thy-1-GFP mouse) (Sun et al., 2013). (B) Mouse embryonic brain slices from spinning disk
microscope (Brault et al., 2016). (C) Focused ion beam scanning EM of components of an adult mouse neuron: Golgi apparatus and mitochondria (Gao et al., 2019).
(D–F) DICOM images of (D) Post CT-scan of craniofacial fractures (Bouaoud et al., 2020). (E) MRI of an adult heart with ventricular D-loop and septal defect
(Raimondi et al., 2021). (F) CT-scan of lung with COVID-19 infection (Cohen et al., 2020).
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advantages in 3D perception of VR are found for histological
sample examination (Lobachev et al., 2021), surgery simulation or
planning (Seymour, 2008; Guerriero et al., 2018; Thomsen et al.,
2017; Chen et al., 2020), motion or gaze precision (Martirosov
et al., 2021; Pastel et al., 2021), and 3D data labeling prior to
machine learning training (Ramirez et al., 2020). Medical experts
and undergraduate students have reported better visualization of
3D anatomical structures in VR using DIVA, when compared
with typical 3D renderings, see Table 1 in Bouaoud et al. (2020)
and Raimondi et al. (2021).

Medical images are most often stored in the Digital Imaging
and Communications in Medicine (DICOM) format and
analyzed through a 2D interface (i.e., a DICOM Viewer). In
Figures 2D–F, we show examples of medical images visualized
within DIVA. As DIVA is data agnostic, the user can experience
both medical and microscopy images.

4 IMPLEMENTATION

In this work, we seek to use the DIVA VR visualization context
with 3D image analysis. We focused on the acceleration of image
annotation with the objective of exploit new data without prior
information or a pre-trained model. We aimed at reducing the
burden of data tagging, which can require a large amount of user
interaction. Our procedure consists of rapid 3D tagging in VR,
simple classifier training and inference on the entire dataset with
iterative corrections performed within VR. The complete
procedure, Voxel Learning, is described schematically in
Figure 3A and in the included Supplementary Video S1.

4.1 Annotation in VR and Feature Extraction
In this updated version of the DIVA software, we implemented a
VR tagging functionality which allows voxel annotation
i.e., associating an identifier (ID) to individual voxels.
Tagged voxels appear in different colors, in a transparent
wireframe mesh around the tagged voxel, allowing
simultaneous visualization of the voxel and its tag. In the
application shown in Figure 3B, the two colors are cyan and
magenta as they highly visible in most situations. Tags can be
updated or erased if necessary. The clipping plane tool (CPT)
(El Beheiry et al., 2020) is also available to ensure more
precision in ambiguous situations (see Figure 1C) and
fluid tagging within the volume. Most importantly, the
CPT allows annotating data at the frontier between
different domains with geometries that do not align along
the natural axis of data acquisition. Inside the VR
environment, the properties of the interface and the
transfer function are instrumental in accelerating the
annotation process. We demonstrate the tagging procedure
in Supplementary Video S2 on a medical example.

We additionally integrated the ability to calculate image
features with the DIVA software. An efficient feature
evaluation was implemented for each voxel, using a small
subset of features (Arganda-Carreras et al., 2017). It includes a
wide variety of spatial filters (Gaussian, median, mean, etc.) with
different kernel sizes for gathering simple multi-scale features in
the vicinity of the voxels. Features are then associated with a
unique voxel ID, and the list of annotated voxels is stored. In the
case of iterative tagging, the iteration number is also stored and
associated with the voxel IDs.

FIGURE 3 | Voxel Learning and its application on a confocal image stack of mouse olfactory bulb interneurons. (A) Schematic of the analysis pipeline. After having
set visualization parameters, the user performs the VR tagging and selects the model to be used. Training and inference steps are performed on the cloud, as indicated
by the pictogram. (B)Data tagging step with the VR controller in orange. The positive and negative tags are colored in cyan andmagenta, respectively. (C) Voxel Learning
interface in DIVA with the output probabilities overlaid on the original image (0 corresponds to blue; 1 to red).
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4.2 Training and Inference
Our application here consists of accelerating data annotation
using a simple one-shot learning procedure based on a few VR
controller “strokes” performed by the user on the image stack.We
follow the same principles as those used in ilastik (Berg et al.,
2019), Weka (Arganda-Carreras et al., 2017) or behavior
detection in larva (Masson et al., 2020), by tagging limited sets
of data and stacking simple learners in order to train a collectively
stronger classifier. Specifically, features are associated with tagged
voxels, and learning is performed using robust classifiers in
limited amounts of data. Furthermore, data tagging iterations
allow the correction of anomalies in the learning to process
the data.

We updated the DIVA desktop user interface to allow users to
create quickly, load, and export classifiers. Basic classification
approaches were used since they are known to provide robust
classification on small datasets, such as Random Forest
Classification (RFC), Multi-Layer Perceptron (MLP), Gradient
Boosting (XGB), Support Vector Machine (SVM), and Naive
Bayes (NBC) as implemented in the Scikit-learn (Pedregosa et al.,
2011) Python package. In addition, hyperparameters were tuned
to adapt to the problem being investigated and set to ensure rapid
learning. Note that in this application, the usual problem of
overfitting (Mostafa, 2012) is less present, as the goal is to
annotate the data being explored and not to find a general
learning scheme. Once the user has finished the annotation
step, features associated to voxels are evaluated locally. They
are then transferred in JSON format to the cloud, where a model
is trained to classify all voxels in the 3D data stack. The models
and their associated parameters are saved locally in a Pickle
(Python) format. They can afterwards be loaded to perform
inference on the entire dataset or, if found robust, provide
initial annotations on new, previously unseen, data. The
resulting inference is then broadcasted back from the cloud
for local rendering in DIVA.

VR provides a significant advantage in the data annotation
task by properly overlaying the classification result on the raw
data in a volumetric representation. The representation of both
the raw data and the annotated data provided by the classifiers
helps correct errors and ensures proper annotation. We
integrated a channel-based representation to DIVA in which
raw data and classifier-generated data are associated with
different channels allowing separate and fused views of both
raw and classified data. A transfer function interface is associated
for each channel. In most of our applications, the raw data was
fused with the voxel probability (or log-probability) of belonging
to a specific class. An example is shown in Figure 3C and in
Supplementary Video S3.

Overall classifier robustness can be improved by using an
ensemble of weak classifiers, whose resulting probabilities are
added to the list of features before final model training. In
addition, classifiers may also be iteratively updated with
additional tagging rounds to correct for sub-optimal
performance and false detection. Stacked learners are efficient
in performing intuitive segmentation (Sommer et al., 2011). We
denote here the gradient boost classifier with four weak learners
as the strong learner.

4.3 DIVA Cloud
DIVACloud allows users to interact with data in VR and perform
the analysis via Python scripts (see Section 6) whose calculations
are performed on a remote web server. This development is
motivated by the computational costs required for detailed VR
volumetric rendering, leaving limited calculation bandwidth.
Accordingly, to ensure fluid interactions and precise
annotation dynamics, computationally costly operations are
performed on the remote web server (i.e. cloud). We used
Django, a Python Framework, as an application programming
interface (API) provider for this project. Django features a system
of data models and serializer links to a PostgreSQL database,
enabling the management of jobs and file objects to track the life
cycle of the learning jobs and various input and output files. This
system is instrumental, as it permits performing a limited set of
queries to interact with the cloud component.

The REST web service is used to provide an API with specific
endpoints accessible from DIVA using HTTP methods. Celery, a
task queue intermediate between the web server and the Python
scripts, enables jobs to run asynchronously in a multi-threaded
fashion. At the same time, the broker, Redis, allows
communication with Celery.

We implemented DIVA Cloud within a Docker container to
ensure portability on most platforms since it does not depend on
the user installation. The layers implemented in the container
consist of 1) the Django webserver, 2) the Celery task queue that
integrates learning scripts (with their associated packages), 3) the
Redis broker, and 4) the PostgreSQL database. Note that if the
user runs DIVA Cloud on a powerful computation station, the
entire pipeline can be executed locally on the same computer
already running DIVA. A typical interaction workflow for the
DIVA Cloud application is shown in Figure 4A in the context of
data tagging. A visual representation of the relation between
DIVA and DIVA Cloud is shown in Figure 4B.

5 RESULTS

Our analysis was performed on aWindows 10 based ×64 systemwith
an Intel i7-7700CPUclocked at 3.60 GhZ,with 32 GBof RAMand an
NVIDIA GeForce RTX 2080 Ti graphics card. An HTC Vive headset
with its controller were used through SteamVR to perform the tagging
procedure in VR. This particular VR headset has a total screen
resolution of 2,160 × 1,200 pixels (1,080 × 1,200 for each eye).
Analysis scripts were coded in Python 3.7. The DIVA Cloud
configuration was also tested on a NVIDIA DGX-1 workstation as
the remote server performing the computationally challenging tasks.
The frame rate of DIVA Cloud is highly dependent on the hardware
configuration, image size, interface (Desktop interface in 2D or VR
interface), and the user’s movements in VR. Detailed information on
the frame rate regarding this study can be found in Supplementary
Table S3.

5.1 Metrics
We showed a proof of concept of this approach on various
example image stacks, including a CT-scan, MRI sequence and
various microscopy images applied to neuronal specimens.
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We kept track of different time measurements: the tagging
step in VR never exceeded 2 min. Tagging and subsequent
model training are performed on a small portion of the data.

Inference duration scaled with the size of the 3D image and
depended on the computational bandwidth of the cloud
infrastructure.

FIGURE 4 | (A)DIVACloud interaction workflow through a data tagging experiment to output a classifier that is visualized in DIVA. (B) Interaction between DIVA and
DIVA Cloud in 6 steps: 1) POST request to the/jobs endpoint. It initializes a job entry in Django. Get in return the job ID 2) POST request to the/jobs/jobid/file endpoint with
the inputs files. It creates a file entry and returns the file ID 3) PUT request to the/learning/jobid endpoint with the type of learning. It launches the job on input data 4) GET
request to the/jobs/jobid/status endpoint to know the status of the job. If the status is “running”, the status of the job is requested (Step 4 again). If the status is
“done”, continue. If the status is “error”, it is managed. 5) GET request to the/jobs/jobid/files/endpoint to get the output list 6) GET request to the/jobs/jobid/files/fileid to
download the output.

FIGURE 5 | Distribution of Dice coefficient (A) and computation time (B) when applying our annotation procedure to eight different medical examples images.
Corresponding raw data is available in Supplementary Table S1.
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For medical images, we used raw and annotated images in
order to compare the one-shot annotation to the expert full
tagging. We computed Dice coefficient and Residual Mean
Square Errors (RMSE) between our inferred probabilities and
the given segmentation. The goal here was to evaluate how fast
annotation in VR and quick simple learning can reduce the
tagging of new data to a few complementary VR strokes.
Performance depends on the nature of the features extracted
from the dataset. As features were designed to cover a large
variety of patterns and scales, our method can see use in many
additional applications and data types. Furthermore, the number
and nature of the features can be extended to capture specific

properties of image stacks. All measurements are available in
Supplementary Tables S1 and S2.

Figure 5 compares the Dice coefficient obtained with different
models, along with the corresponding computing time when
applied to medical examples images. The RFC and XGB, when
stacked with 4 weak learners, reached highest performance with
the Dice coefficient. RFC is associated to a shorter computation
time, making it an appropriate candidate for efficient analysis.

5.2 Output Probabilities
In order to compare the results of RFC and the strong learner, we
show in Figure 6 their application to MRI images showing a

FIGURE 6 | Annotation in DIVA on the breast MRI (left panel) and the lung CT-scan (right panel) and tumor (white arrow). (A) Raw data visualized in 3D on DIVA and
as an image stack in the bottom right corner. (B)Overlay of the raw image in gray and tags with positive and negative tags in cyan and magenta, respectively. Tagging is
performed in VR to quickly annotate which voxels belong to the structure of interest and which do not. (C,D) Overlay of the raw image in gray and output probabilities,
respectively for the RFC and the strong learner. (E,F) Overlay of the raw image in gray, output probabilities, and ground truth segmentation in green for RFC and
strong learner, respectively. Colorscale for probabilities is indicated between the two panels.

FIGURE 7 | Annotation in DIVA on confocal microscopy images of mouse olfactory bulb interneurons (white arrow). (A) Raw data visualized in 3D on DIVA and as a
z-stack in the bottom right corner. (B)Overlay of raw data in gray and tagging data with positive and negative tags respectively in cyan andmagenta. (C,D)Overlay of raw
data in gray and output probabilities respectively for RFC and strong learner. Colorscale for probabilities is indicated on the right of the image.
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patient with breast cancer and a CT-scan of a patient with lung
cancer (see Supplementary Figures S1, S2 for more examples).
Figure 6B exhibits the tagging step. We decided to tag the lung
tumor somewhat less completely than the breast tumor in order
to assess the impact of tagging exhaustiveness. Regardless, our
pipeline demonstrates qualitative results, identifying the structures
of interest with precision using both models (see Figures 6C,D).
We note the presence of low probability inferred voxels ranging
from dark to light blue for RFC, whereas the strong learner seems
to classify in a more binary fashion. In this respect, RFC proves to
be more prone to false positive detection. The strong learner was
more stringent and, as a result, may induce more false negative
errors. We observe this tendency in Figures 6E,F, as RFC
predictions exceed ground truth segmentation in volume while
the strong learner predictions appeared smaller.

We also tested our accelerated data annotation procedure on
microscopy images. Mouse olfactory bulb interneurons were
imaged via confocal microscopy, results are shown in
Figure 7. These data were considerably noisier than the CT-
scan and MRI sequences that were previously utilized. The
objective of this analysis was to reconstruct neuronal dendritic
arbors. This was achieved by tagging two neuronal branches (see
Figure 7B) and then applying our pipeline using the RFC and
strong learner (see Figures 7C,D respectively). Almost every
neurite and soma were classified using both learners. The RFC
yielded high probabilities for inner structures and lower ones for
outer structures, allowing isolating tubular structures through
proper adaptation of the transfer function.

The procedure was assessed on a various range of examples:
annotation of pancreas (Supplementary Figures S3, S4) and
hepatic vessels (Supplementary Figures S5, S6) in CT-scans,
annotation of mouse microglia in two-photon fluorescence
microscopy (Supplementary Figure S7) and mouse
hippocampal neurons in SEBI microscopy (Supplementary
Figures S8, S9). With a total size of more than 400 million
pixels, this last example confirms that our pipeline is compatible
with large datasets.

5.3 Feature Importance
The RFC enables a ranking of the features used during model
training through a metric called impurity-based importance. The

importance of a feature is calculated as the reduction in its Gini
criterion. This reduction in impurity is afterward express in
percentages. We show in Figure 8 the eleven most important
features for the three examples previously presented, as well as the
importance of PIXEL VALUE corresponding simply to the
intensity of a given voxel (see Supplementary Figures S10,
S11 for the complete features importance for the 56 features
used). Interestingly, this feature, generally used in thresholding
for crude denoising or segmentation, seems to have almost no
importance in the final prediction.

Comparing the RFC impurity-based importance from both
neuroscience microscopy andmedical image types (CT-scans and
MRI), we note a large variety of features that drive the final
classification prediction. Indeed, for medical images, it seems that
large spatial filters with 3D kernel sizes of 9–11 voxels contribute
mainly to the importance, while the typical kernel size seems
closer to 5 or 7 for microscopy. It can be explained by the different
characteristics of the respective structures of interest (bulkier for
the tumors and more tubular for the neuronal branches). While
not surprising, an extended version of this procedure with larger
sets of features can guide machine learning procedures that
attempt to reduce the number of features used for learning.

6 DISCUSSION

Virtual and augmented reality will likely play an increasingly
important role in research and medical applications. More
specifically, leveraging VR as part of analysis pipelines will be
essential in defining algorithms and processes.

This paper focused on performing interaction and analysis in
VR. We developed libraries and toolboxes allowing data
annotation and analysis where computationally intensive
operations are done on servers or the cloud and data fusion
within the VR environment. Our approach combines several
updates of the DIVA platform and a generalist interface
allowing cloud computing from the VR environment. We
showed proof-of-concept results on an accelerated image
annotation task in which new data requires human-in-the-
loop intervention to provide initial results. This provides a
direct process in which limited data annotation is sufficient to

FIGURE 8 | Feature importance for the RFC trained on a confocal image of the mouse olfactory bulb interneurons (A), and the MRI of a breast cancer and CT-scan
of a lung cancer (B). The top eleven features ranked by impurity-based importance are represented, as well as the PIXEL VALUE feature.
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train a simple statistical learning approach to classify voxels in
entire image stacks.

In this work, we demonstrate the usefulness of VR in
ameliorating the efficiency of data annotation tasks. The
ability to grasp the volume of the data in a stereoscopic 3D
viewing context and tag a small portion of it to perform an entire
segmentation task is unique and promising. In contrast, the same
task applied to 2D slices would require significant exploration and
proves to be a tedious process.

We take advantage of the possibility of adjusting the transfer
function to visualize the region of interests and their vicinity
correctly. Rapidly tagging voxels not belonging to the structure of
interest, by a large stroke using the VR controller (e.g., the pink
streaks in Figure 6), will be instrumental in accelerating data
annotation by easing learning. When compared to ground truths,
the inspection of learned results is often a time-consuming task,
especially when dealing with 3D data. Through its capacity to fuse
different volumes in the representation, DIVA offers a suitable
and time-saving environment to perform such a comparison. In
turn, it allows exploring the reliability of the learning procedure
and assess the quality of the ground truth itself when dealing with
ambiguous data. It provides the possibility of re-annotation
where anomalies are detected to feed the re-training procedure.

In this paper, we focused on the handcrafted procedure and
simple ensemble learning approaches. While some of the data
shown were noisy (e.g., Figure 7) or subject to artifacts (e.g.,
Figures 6A–F), they were relatively unambiguous. Local
handcrafted features were sufficient to allow efficient semi-
automated annotation. Furthermore, we limited ourselves to
cases where data were completely new, and the learner would
be mainly used on the explored dataset. However, complex data
or the design of reusable learners may require learned features.
The current pipeline can perform more complex learning. We
showed (see https://github.com/DecBayComp/VoxelLearning)
an example where VR annotation was directly used to capture
a volume of voxels around the annotated ones and where learning
was directly performed on these volumes with learned features.
Finally, large-scale deep convolution-based learning can be
performed by directly transmitting the full data to the cloud
and using DIVA Cloud to link annotation to learning by simply
exchanging voxel identifiers.

Our future initiatives will center on two topics. First, we will 1)
extend DIVA and DIVA Cloud to run on AR headsets and
tablets. AR involves overlaying the visual representation of
the data onto the world while not immersing the user in an
artificial environment. However, AR often involves
representation of lesser quality than VR when used in
glasses or headsets and have limited computational
resources, especially when used in phones or tablets. The
initiative’s core is to reduce the computational burden of
full volumetric rendering to allow visualization and
interaction in an AR environment. Second, we will 2)
extend DIVA Cloud to allow rendering computation on
the cloud and stream to the VR headset. This cloud
extension will pave the way to large dataset rendering
and more computationally involved rendering
approaches, such as path tracing.
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