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Impact of noise on the regulation of intracellular
transport of intermediate filaments

Stéphanie Portet1,�, Sandrine Etienne-Manneville2, Cécile Leduc3, J. C.
Dallon4

Abstract

Noise affects all biological processes from molecules to cells, organisms and pop-

ulations. Although the effect of noise on these processes is highly variable,

evidence is accumulating which shows natural stochastic fluctuations (noise)

can facilitate biological functions. Herein, we investigate the effect of noise on

the transport of intermediate filaments in cells by comparing the stochastic and

deterministic formalizations of the bidirectional transport of intermediate fil-

aments, long elastic polymers transported along microtubules by antagonistic

motor proteins [1, 2]. By numerically exploring discrepancies in timescales and

attractors between both formalizations, we characterize the impact of stochastic

fluctuations on the individual and ensemble transport. Biologically, we find that

noise promotes the collective movement of intermediate filaments and increases

the efficiency of its regulation by the biochemical properties of motor-cargo in-

teractions. While stochastic fluctuations reduce the impact of the initial distri-

butions of motor proteins in cells, the number of binding sites and the affinity of

motor-cargo interactions are the key parameters controlling transport efficiency

and efficacy.
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1. Introduction

Together with actin filaments and microtubules, intermediate filaments (IFs)

are essential components of the cytoskeleton. Intermediate filament proteins

self-assemble into long elastic filaments organized in networks. Network dy-

namics and organization regulate IFs’ fundamental cellular functions such as5

stress-absorbtion, cell division and apoptosis, cell migration, signal transduc-

tion and mechanotransduction [3]. We have previously shown that intracellular

transport of IFs is essential for the dynamic rearrangements of the network and

is regulated by intracellular signals (see, for instance, [4, 5]). Post-translational

modifications of IF proteins influence the assembly, disassembly, organization10

and transport of IFs. Microtubule-dependent transport, one of the modes of

transport of IFs in cells, is driven by processive motors dynein and kinesin-1

[6, 7, 8, 9], which move in opposite directions on microtubules.

Given the complexity of the in vivo study of intermediate filament transport

by motor proteins due to inherent experimental limitations, we use a math-15

ematical modelling framework to identify the key parameters influencing IF

transport. There has been extensive theoretical work on modelling dynein and

kinesin. There are several good review articles which categorize the models into

continuum ratchet [10, 11, 12], discrete stochastic models [10, 11], and mod-

els which consider conformational changes [12]. There are phenomenological20

models [13, 14] and structural models [15, 16, 17]. The models that are most

closely related to the work here are models which consider ensembles of mo-

tors [11, 18, 19, 20, 21, 22]. We are interested in the transport of intermediate

filaments and not in the specific details of the molecular motors. Thus, we

follow the work of [20, 21] and consider load sharing motors which result in a25

tug-of-war which may or may not on average be resolved.

Stochastic and deterministic formulations of the bidirectional transport of
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long elastic filaments driven by antagonistic motors have been proposed in [1]

and [2], respectively. Using the stochastic form, we account for inherent fluctu-

ations in attachment and detachment of motors, which is the intrinsic noise of30

the system. As we are interested in the transport of an ensemble of filaments,

the inherent heterogeneity in motor distributions within the cells is considered,

which defines the extrinsic noise of the system and is described by random ini-

tial conditions. By comparing stochastic and deterministic formalizations, we

investigate here the effect of intrinsic noise.35

In both formulations, the cargo, a long elastic filament representing an in-

termediate filament, is described as a series of nodes connected by springs with

the spring constant describing the elastic properties of filaments. Each node

is assumed to have a maximal number of binding sites for each type of motor,

which can attach and detach with load-dependent off rates. Motors attached40

to the cargo are assumed to be processive. In the stochastic form, two discrete

variables describe the number of opposite motors attached to a node at a given

time, instead in the deterministic form, continuous variables represent the pro-

portion of occupied binding sites for opposite motors. As a driving mechanism

for bidirectional transport by motor proteins of individual IFs, a local tug-of-war45

is assumed at each node between the opposite motors. Furthermore, the models

analyzed in this work consider the drag force and elastic forces between nodes

thus extending the tug-of-war model proposed in [20, 21]. The coordination of

motors and resolution of tug-of-war at each node along the filament result in

motion of the filament. When possible the model is calibrated in an IF context.50

In absence of quantified data, we have chosen to vary parameters values within

biologically plausible ranges.

As observed in cells, both models produce different modes of transport for

IFs; dynein-driven retrograde and kinesin-driven anterograde motions that can

happen at different speeds [7]. The effects of different types of off rates (prop-55

erties of motors) on filament transport were investigated in both formalisms

[1, 2]. Increasing the number of binding sites along the filaments (properties of

filaments regulated by post-translational modifications) is shown to increase the
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coordination of motors along filaments and influence the transport efficiency [1].

The elastic properties of filaments can also optimize the coordination of motors60

along the filaments and transport efficiency or change the direction of transport

[1, 2]. With the deterministic form, we show that the coordination of motors

results from the interplay between the initial conditions, which is related to

intracellular context (distribution of motors in cells), and elastic properties of

filaments [2].65

Biological systems are inherently subject to stochastic fluctuations. Deter-

ministic forms of models when the size of system (number of copies of molecules

or individuals) is large are expected to provide an approximation of the aver-

age behaviour of their stochastic analogues. However, decreasing the number

of copies of molecules or increasing the order or complexity of reactions (non-70

linearity) decrease the quality of the approximation of the mean behavior of

stochastic processes by deterministic formalism. For instance, extinction in a

stochastic logistic model can occur at very long times that is impossible in its de-

terministic version, which reaches and never moves from a positive equilibrium

[23]. Furthermore, it is known that deterministic and stochastic descriptions of75

chemical reactions can predict different long term responses even in large size

systems [24, 25].

Due to inherent stochasticity of motors (intrinsic noise), a more realistic

description of the transport of filaments is to use a stochastic formalism. In

the context of our study, the maximal number of motors able to attach per80

node (that is the size of our system) is small and the nonlinear model consid-

ered exhibits multistability, in which deterministic approximations might differ

from and fail at capturing long-term dynamics of stochastic processes. Here,

comparing results obtained with the deterministic and stochastic formalisms of

the model, we investigate the general effect of the random fluctuations on the85

individual and ensemble transport, which is characterized as the average motion

(collective motion) of 150 filaments initially attached to different numbers of mo-

tors (random initial conditions to describe intracellular heterogenity, extrinsic

noise). The strength of motor-cargo interactions (biochemical properties of the
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system) is then varied. In cells, one might hypothesize that changes in motor-90

cargo interactions are regulated by post-translational modifications of cargo,

changes in motor processivity (such as increased dynein processivity by dyn-

actin recruitment [26]) or decreased processivity due to microtubule crowding

by microtubule-associated-proteins (MAPs) [27, 28]. Thus, using this modelling

framework, we address the following questions: What are the general effects of95

stochastic fluctuations on the speed, direction and collective transport of fil-

aments? Whether the fluctuations cause small or far-reaching changes in the

intracellular transport? How modulating the interactions between processive

motors and filaments affects the filament’s motion and ensemble transport?

2. Method100

2.1. Model description

The focus of this model is the motion of individual IFs transported as cargos

by motor proteins along microtubules as observed, for instance, in astrocytes

[8, 4], neurons [29] and epithelial cells [30]. In vitro, single IFs have been

stretched to more than 200% of their resting length without breaking [31, 32].105

Therefore, the model of bidirectional transport of individual IFs by motors

proteins represents the cargo, a one-dimensional elongated elastic filament, as a

series of N nodes connected by springs. At each node, which describes a portion

of filament, antagonistic motors, dynein and kinesin, can attach and detach over

time. A maximal number of binding sites at each node is accessible at any time110

for each type of motors, ND and NK (Figure 1A). To the best of our knowledge,

values for these parameters ND and NK stating the maximal numbers of dynein

and kinesin attached along a filament are unknown.

A local tug-of war between antagonistic motors is described at nodes where

opposing motors act as loads and identical motors share the load equally fol-

lowing [20]. The equation of motion of a node balances viscous forces, forces

generated by antagonistic motors and restoring forces due to elastic coupling.
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Figure 1: Modelling framework to study the transport of a single and ensemble of intermediate
filaments driven by antagonistic motors proteins along microtubules (dark gray rectangle). (A)
The cargo, an elastic filament (IF), is composed of two nodes (N � 2) connected by a spring
with spring constant α and resting length `. On each node, there are two binding sites,
which are also the maximal numbers of motors allowed per node, for each type of motors,
N � 2. Hence, the cartoon represents an initial setting for a filament (initial conditions): at
time t � 0, two dyneins and one kinesin are attached to node 1 (nD,1 � 2 and nK,1 � 1)
and one dynein and two kinesins to node 2 (nD,2 � 1 and nK,2 � 2). Over time, motors
can detach and attach to nodes if binding sites are available; that changes the balance of
forces at nodes and their velocities and so the velocity of the filament. The force-dependent
off rates from node i, ε f p�q, is a function of the velocity of the node, vi. The attachment
rates are constant π . (B) To study the collective transport, 150 filaments are defined with
random initial conditions, which are represented in terms of proportion of occupied binding
sites C ,i � n ,i{N (deterministic representation) instead of the number of motors n ,i attached
to a node (stochastic representation) to ease the comparison of results obtained with different
values for N . To give a 2D representation of the 3�2p� Nq-dimensional space, the horizontal
(resp. vertical) axis indicates the difference between proportions of binding sites occupied by
kinesin CK,1p0q (resp. CK,2p0q) and dynein CD,1p0q (resp. CD,2p0q) at node 1 (resp. 2) at
time t � 0. Hence, the position of each dot represents the initial conditions of a filament.
Contour (resp. Colour) of dots indicates the direction (resp. velocity) of the filament in long-
time: retrograde (cyan) or anterograde (red). Colour-bar indicates velocity values ranging
from the no-load velocity of dynein �vfD (cyan) to the no-load velocity of kinesin vfK (red).
With the deterministic formalism, the long-time filament velocity is the stable equilibrium
velocity reached by both nodes. With the stochastic formalism, the filament velocity is the
mean of instantaneous velocities at time T of 50 realizations started with the same initial
conditions. Deterministic model results are shown: there exist three locally stable equilibria
(multi-stable system), regions roughly delimited by clustered dots of the same colour give an
idea of their basin of attraction. The long-time velocities of filaments depend on their initial
conditions. The mean velocity of the 150 filaments is �0.201 µm{s with 33% of filaments
moving anterogradely (positive velocities, via a kinesin-driven transport), 47% retrogradely
(negative velocities, via a dynein-driven transport) and 20% of filaments are stalled (there is
no winner to the local tug-of-war, both types of motors are still attached to nodes).
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For i P t1, . . . , Nu, the dynamics of node i is governed by

µ
dxi
dtloomoon

viscous forces

� nD,iFD,ilooomooon
forces due to dyneins

� nK,iFK,ilooomooon
forces due to kinesins

� Fres,iloomoon
restoring forces

(1)

where xiptq P R is the position of node i at time t, and dxi

dt � vi its velocity.

The parameter µ is the drag coefficient. The variables n ,i are the number of

dynein ( � D) or kinesin ( � K) attached to node i at time t and F ,i are the

forces from individual motors attached to node i at time t. The restoring forces

at time t depend on the spring constant α representing the elastic properties of

the filament

Fres,i �� α

�
rip|xi � xi�1| � `q

xi � xi�1

|xi � xi�1|
� lip|xi � xi�1| � `q

xi � xi�1

|xi � xi�1|




(2)

with ` the distance between two adjacent nodes at rest (Figure 1A). The param-

eters li and ri are equal to 1 for interior nodes; and at the end nodes, l1 � rN � 1115

and r1 � lN � 0. The spring constant value α is estimated from the Young’s

modulus of IFs experimentally measured in [33, 34, 35, 36]. Hence, the motion

of an individual IF is described by the coupled motion of its N nodes.

In the local tug-of-war (1), single dynein and kinesin motors exert forces to

the node they are attached to, in return they experience load forces. Commonly,

a load-velocity relationship defines the velocity of a single motor as a function

of its load force [37]. For a single dynein, we use

vDpFD,iq �

$'''&
'''%

�vfD FD,i ¤ 0

�vfDp1 � FD,i{FsDq 0   FD,i   FsD

�vbDp1 � FD,i{FsDq FsD ¤ FD,i

, (3)
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and for a single kinesin

vKpFK,iq �

$'''&
'''%

vbKp1 � FK,i{FsKq FK,i ¤ FsK

vfKp1 � FK,i{FsKq FsK   FK,i   0

vfK 0 ¤ FK,i

, (4)

where �vfD is the forward or no-load velocity of dynein and vfK is the forward

or no-load velocity of kinesin. Similarly, the parameters vbD and �vbK denote120

the backward velocities of dynein and kinesin. The parameters Fs are the stall

forces with FsD ¡ 0 and FsK   0.

The model assumes that all motors attached to node i move at the same

velocity vi � vDp�q � vKp�q, the force-balance (1) must always be satisfied and

the motor proteins adjust the force to maintain the velocity relations (3) and

(4). Hence, the velocity of a single motor attached to node i depends on the

force on that motor, which by the force-balance follows

�nK,iFK,i � nD,iFD,i � Fres,i � µvi � 0. (5)

Therefore, the node velocity vi and motor forces F ,i are solved explicitly by

combining (5), vi � vDpFD,iq and vi � vKpFK,iq with vDpFD,iq and vKpFK,iq

defined in (3) and (4). The maximum force generated by a single motor is the

stall force �Fs . As vDp�q and vKp�q are piecewise functions, several cases are

considered and four regimes are defined. If Fres,i � nK,iFsK   0 then the force

on the dynein will be negative (when the load is negative, the dynein may oppose

the load to adjust the velocity to the no-load velocity), node i moves at the no-

load velocity of dynein �vfD. When �nK,iFsK�nD,iFsD�Fres,i ¤ 0, the node

velocity vi is negative; dynein wins and node i moves to the left. On the other

hand, if �nK,iFsK�nD,iFsD�Fres,i ¥ 0, the node velocity vi is positive; kinesin

wins the tug-of-war and node i moves to the right. When Fres,i � nD,iFsD ¡ 0

then the force on the kinesin molecules is positive (when the load is positive,

kinesin may oppose the load to adjust the velocity to the no-load velocity), node

i moves at the no-load velocity of kinesin vfK . Therefore, the velocity of node
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i at time t is defined over four different regimes

vi �

�
��������

�vfD   0 Fres,i   nK,iFsK

nK,iFsK � nD,iFsD � Fres,i

nK,iFsK{vbK � nD,iFsD{vfD � µ
  0 nK,iFsK ¤ Fres,i   nK,iFsK � nD,iFsD

nK,iFsK � nD,iFsD � Fres,i

nK,iFsK{vfK � nD,iFsD{vbD � µ
¡ 0 nK,iFsK � nD,iFsD ¤ Fres,i ¤ nD,iFsD

vfK ¡ 0 nD,iFsD   Fres,i,

(6)

as well as the force acting on one dynein attached to node i,

FD,i �

�
����������

nK,iFsKpvfD{vbK � 1q � Fres,i � vfDµ

�nD,i
Fres,i   nK,iFsK

FsDpnK,iFsKp1{vbK � 1{vfDq � Fres,i{vfD � µq

nK,iFsK{vbK � nD,iFsD{vfD � µ
nK,iFsK ¤ Fres,i   nK,iFsK � nD,iFsD

FsDpnK,iFsKp1{vbD � 1{vfKq � Fres,i{vbD � µq

nK,iFsK{vfK � nD,iFsD{vbD � µ
nK,iFsK � nD,iFsD ¤ Fres,i ¤ nD,iFsD

FsDp1 � vfK{vbDq nD,iFsD   Fres,i,

(7)

and the force acting on one kinesin attached to node i

FK,i �

�
����������

FsKp1 � vfD{vbKq Fres,i   nK,iFsK

FsKp�nD,iFsDp1{vbK � 1{vfDq � Fres,i{vbK � µq

nK,iFsK{vbK � nD,iFsD{vfD � µ
nK,iFsK ¤ Fres,i   nK,iFsK � nD,iFsD

FsKp�nD,iFsDp1{vbD � 1{vfKq � Fres,i{vfK � µq

nK,iFsK{vfK � nD,iFsD{vbD � µ
nK,iFsK � nD,iFsD ¤ Fres,i ¤ nD,iFsD

�nD,iFsDpvfK{vbD � 1q � Fres,i � µvfK
nK,i

nD,iFsD   Fres,i.

(8)

To summarize, the motor molecules have constant forward and backward speeds.

When forces try to pull them faster they will resist the forces to maintain the

constant speed until they detach. In turn, the velocity of node i and forces125

acting on single motors partly depend on the number of motors attached to

node i, nD,i and nK,i, that vary over time as described below.

As the focus of our model is the motion of cargo, attachment and detachment
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events are related to the motor-cargo interactions, hypothesizing that motors

are processive. Hence, the attachment and detachment rates used in the present130

work combine the usual part of attachment/detachment of motors to and from

microtubules and the interaction between motors and cargo. Detachments of

motors from microtubules are force dependent [38], so the detachment rates or

off rates take the form of the usual load-dependent functions [18, 39]. Instead,

the attachment rates or on rates, πD and πK , are constant.135

For the stochastic version of the model, numbers of dynein and kinesin bound

to node i, nD,i and nK,i, evolve stochastically over time with

� the effective attachment rate pN � n ,iqπ ,

� and the effective detachment rate ε f pF ,iqn ,i,

where ε f pF ,iq is the force-dependent off rate with F ,i defined by (7) and140

(8). Kramers’ framework is used for the force-dependent part of the off rates,

f pF ,iq � exp
�
|F ,i|
Fd

�
, where the parameter Fd is the detachment force (Table

1). Values for no-load off and on rates, ε and π , are unknown in our context.

Other force-dependent function forms can be used; see, for instance, [1, 39]. For

stochastic simulations, the N�dimensional system formed by (1) is solved nu-145

merically and the attachment and detachment events at nodes are determined

using a modified Gillespie algorithm; see [1] for details. Hence, the stochastic

formalization of the model describes the inherent stochastic nature of attach-

ment and detachment processes of motors from the cargo, which represents the

source of the intrinsic noise in the system [40]. The instantaneous velocities of150

nodes are computed over 50 realizations starting with the same initial condi-

tions. For a realization, the instantaneous velocity of node i is computed as

follows vipT q � pxipT q � xipT � 0.5qq{0.5 with T ¥ 0.

For the deterministic version, real-valued variables are used, which are the

proportions C ,i of occupied binding sites for each type of motors at node i on

the cargo,

C ,i �
n ,i

N
, C ,i P r0, 1s

10



and their evolution equations are, i P t1, . . . , Nu

dC ,i

dt
�

Attachmenthkkkkkikkkkkj
p1 � C ,iqπ �

Detachmenthkkkkkikkkkkj
ε f pF ,iqC ,i .

The force F ,i acting on a motor are written as a function of vi, F ,i � F ,ipviq,

by re-arranging (6) to express Fres,i as a function of vi and substituting back

in (7) and (8). Furthermore, to take advantage of rich theories to study the

asymptotic behaviour of dynamical systems we transform our system to be

able to assess the equilibrium velocities of nodes and characterize the modes of

motion of filaments. Differentiating (6) with respect to time while considering

the explicit expression for Fres,i defined in (2) provides evolution equations for

vi and the model equations for node i P t1, . . . , Nu in the deterministic form.

The deterministic model is a 3N�dimensional system in CK,i, CD,i and vi with

i P t1, . . . , Nu defined over four regimes.

For vi � �vfD

dCK,i

dt
� p1 � CK,iqπK � εKfKp�vfDqCK,i, CK,ipt0q P r0, 1s

dCD,i

dt
� p1 � CD,iqπD � εDCD,i, CD,ipt0q P r0, 1s (9)

dvi
dt

� 0, vipt0q � �vfD

For �vfD   vi   0

dCK,i

dt
� p1 � CK,iqπK � εKfKpviqCK,i, CK,ipt0q � ki P r0, 1s

dCD,i

dt
� p1 � CD,iqπD � εDfDpviqCD,i, CD,ipt0q � di P r0, 1s (10)

dvi
dt

�
αp2vi � vi�1 � vi�1q � p1 � vi{vbKq

dCK,i

dt NKFsK � p1 � vi{vfDq
dCD,i

dt NDFsD

CK,iNKFsK{vbK � CD,iNDFsD{vfD � µ
,

vipt0q �
kiNKFsK � diNDFsD

kiNKFsK{vbK � diNDFsD{vfD � µ

11



For 0 ¤ vi   vfK

dCK,i

dt
� p1 � CK,iqπK � εKfKpviqCK,i, CK,ipt0q � ki P r0, 1s

dCD,i

dt
� p1 � CD,iqπD � εDfDpviqCD,i, CD,ipt0q � di P r0, 1s (11)

dvi
dt

�
αp2vi � vi�1 � vi�1q � p1 � vi{vfKq

dCK,i

dt NKFsK � p1 � vi{vbDq
dCD,i

dt NDFsD

CK,iNKFsK{vfK � CD,iNDFsD{vbD � µ
,

vipt0q �
kiNKFsK � diNDFsD

kiNKFsK{vfK � diNDFsD{vbD � µ

For vi � vfK

dCK,i

dt
� p1 � CK,iqπK � εKCK,i, CK,ipt0q P r0, 1s

dCD,i

dt
� p1 � CD,iqπD � εDfDpvfKqCD,i, CD,ipt0q P r0, 1s (12)

dvi
dt

� 0, vipt0q � vfK ,

where t0 ¥ 0 is the initial time. Complete details on the derivation of model

equations and the characterization of their asymptotic behaviour are given in155

[2]. In particular, we have shown that all nodes of a filament converge to the

same stable equilibrium velocity. The equilibrium velocities satisfy a nonlinear

equation and their stability conditions are explicitly expressed as functions of

the parameters. The model has multiple stable equilibrium velocities whose

values depend on parameters. In each of limiting regimes (vi � �vfD or vfK),160

which are positively invariant, there exists a globally asymptotically stable equi-

librium. In the intermediate regimes (�vfD   vi   vfK), there exist up to five

equilibrium values (up to three locally asymptotically stable points co-existing

with up to two unstable saddle points) [2]. For a set of parameter values, the

motion of a filament is then determined by its initial conditions. For instance, a165

filament, which starts with more dynein (resp. kinesin) attached to both nodes

moves retrogradely (resp. anterogradely) (see cyan (resp. red) dots at the bot-

tom left (resp. top right) corner of Figure 1B). To obtain the basin of attraction

of a stable equilibrium (set of initial conditions whose trajectories converge to

12



Parameter (unit) Description Kinesin Dynein
vf (µm/s) Forward speed of motors 0.83 1
vb (µm/s) Backward speed of motors 0.006 0.06
Fd (pN) Detachment force 3 3
Fs (pN) Stall force �6 7
ε (s�1) Free-load dissociation rate 1 0.25
π (s�1q Attachment rate (base value) 5 1.25
κ � ε {π Dissociation constant (base value) 0.2 0.2

N Maximal number of binding sites 4, 16, 32 4, 16, 32

N Number of nodes 2
α (N{µm) Spring constant 3.45 � 10�9{N
` (µm) Rest length of spring 0.5

µ (Ns{µm) Drag coefficient for a node 1.2 � 10�12

Table 1: Base parameter values used unless otherwise mentioned for simulations, is either K
or D for kinesin or dynein. Base values for motor parameters follow [20, 21, 38, 42, 43, 44].

The drag coefficient µ is obtained from Eq. (2) in [45]; µ � 3π`η
lnp`{dq�υ

where d � 0.01µm is

the intermediate filament diameter and υ � 0.312 � 0.565p`{dq�1 � 0.1p`{dq�2. The cytosol
viscosity is set to be η � 1.08 Pa�s, about 1000 times higher than water.

the stable equilibrium), the deterministic model is numerically solved using the170

R package deSolve [41] (Figure 1B).

2.2. Collective motion description

Initial conditions, which are numbers of motors attached to nodes (or propor-

tions of occupied binding sites) at the initial time, can be related to a cellular

context illustrating the compartmentalization and heterogeneity of the intra-175

cellular environment. In the present work, to assess the collective motion of

filaments, we consider an ensemble of 150 filaments of same length, ` � 0.5µm.

Each filament has N � 2 nodes placed at both extremities (Figure 1A). The

150 filaments differ by their random initial conditions; they have different num-

bers of attached motors at the initial time (Figure 1B). The initial conditions180

of the 150 filaments, CD,ipt0q and CK,ipt0q with i P t1, 2u, for the determin-

istic form are uniformly distributed in r0, 1s; and so for the stochastic form

tCD,iNDs � nD,ipt0q and tCK,iNKs � nK,ipt0q are uniformly distributed in

t0, . . . , N u with N � ND � NK . That set-up is adopted to mimick the vari-

ability in spatial and temporal distributions of motor proteins in cells (extrinsic185

noise) [40], and to account for the dependency of filament motion on initial
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conditions. For comparison purposes, the same 150 initial conditions are used

throughout this work (Figure 1B).

Then, the ensemble average transport is characterized by the mean velocity

of the 150 filaments and their distributions over different regimes of motions.190

Mean velocity of the 150 filaments is computed using the velocities of individual

filaments. For the distributions over different regimes of motion, a filament

(initial condition) is categorized as slow S if the final velocity is less than 5% of

no-load velocities (final velocity belongs to r�0.05�vfD, 0.05�vfKs), retrograde

R if the final velocity is negative and smaller than �0.05� vfD, or anterograde195

A if the final velocity is positive and larger than 0.05 � vfK (Figure 1B).

2.3. Model parameter values

Base values for the parameters used for both formalisms are provided in

Table 1. An asymmetric case is chosen for motors; the dynein stall force is

assumed to be larger than the kinesin one |FsD| ¡ |FsK | as well as its forward200

and backward speeds (Table 1). Hence, the dynein stall to detachment force

ratio is the largest; dynein is set to be the strongest motor as demonstrated in

vitro [46, 47].

Recall that in our models, attachment and detachment events are related

to the motor-cargo interactions, hypothesizing that motors are processive. In205

this context, attachment and detachment events may be regulated by mod-

ulating interactions between motor proteins and cargo by post-translational

modifications of cargo (for instance, phosphorylation), by changing motor ac-

tivity/processivity via other proteins such as regulating attachments of kinesin

to microtubules with kinesin-binding proteins [48, 49], or by intracellular crowd-210

ing reducing the motor accessibility by cargoes [50]. We have chosen to vary the

on rates πD or πK to determine how regulation of filament attachments with

processive motors affects filament transport (Figure 2). Hence, seven values of

dissociation constants κ � ε {π (or affinities, 1{κ ) for each type of motors are

considered to study the impact of biochemical properties of motor-cargo inter-215

actions on the transport of filaments in cells. Finally, as the number of binding
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Figure 2: Varying dissociation constants from base values κD � εD{πD � 0.25{1.25 � 0.2
and κK � εK{πK � 1{5 � 0.2 by varying the on rate values. Seven values are used for each
dissociation constant, κ {10 � 0.02, κ {5 � 0.04, κ {2.5 � 0.08, κ � 0.2, 2.5κ � 0.5, 5κ � 1
and 10κ � 2. Hence, the dynamics are investigated for 49 pairs of dissociation constant
values. Regions of higher interaction affinities (1{κ ) between cargo and dynein are in blue
and in red for kinesin. White tiles (anti-diagonal tiles) correspond to same affinities for both
types of motors.

sites for motor proteins along IFs is unknown, we consider three different values

for the maximal number of motors per node, ND � NK P t4, 16, 32u.

2.4. Assessing the impact of noise

Comparing the long-time dynamics obtained with each formalism gives the220

framework to assess the effects of stochastic fluctuations on the transport of

intermediate filaments. In the stochastic formalism, the stochastic fluctuations

are not an added feature to the system, they are inherent in the model and due

to the motors attaching and detaching. They describe an intrinsic noise [40]. A

basic random variable represents the number of motors of each type attached225

to a node. It is a discrete random variable that changes in time depending on

the states of the system and is constrained to be an integer between 0 and N .

Thus, the parameter N , which is also the size of the system, plays an important

role in determining the magnitude of the random fluctuations of the number
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of attached motors. As an intrinsic noise, the stochastic fluctuations dominate230

when the size of the system is small [40]. With more attached motors the tug-of-

war between motor types is more easily resolved. Thus, in terms of the filament

motion, lower values of N result in more random filament motion and higher

values result in more stable filament motion. Of course other parameters such

as filament length, elasticity, and off and on rates also affect the stochastic235

fluctuations [1]. Therefore, the motion of 150 filaments with distinct initial

conditions are solved using both the stochastic and deterministic formalism

when dissociation constants of motor-cargo interactions κ vary as described in

Figure 2 and the maximal number of motors per node, N , takes the values 4,

16 and 32.240

The long-time behaviour with the deterministic formalism is characterized

by the stable equilibrium velocities whose values do not change over time and

that are approached by trajectories started from the 150 initial conditions as

time grows. With the stochastic formalism, the instantaneous velocity for an ini-

tial condition (mean of 50 realizations started with the same initial conditions)245

is computed at T= 10, 50, 100 and 550 seconds. Several times are considered

to detect stationary behaviour in this formalism as we do not have a formal

characterization of the long-time dynamics as with the deterministic formalism.

The observation timescale is restricted under 10 minutes as phenomena of inter-

est are short-lived in cells (convergence of deterministic dynamics to equilibria250

occurs under 1 minute).

3. Results

We compare the model responses obtained with the deterministic and stochas-

tic formalisms varying the dissociation constants κ and number of binding sites

N to evaluate the effects of the presence of noise on the transport of filaments for255

distinct biochemical conditions for the motor-filament interactions. The impact

on individual filament motions is first deciphered to then elucidate consequences

on the ensemble average transport.
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Individual filament transport. Figure 3 shows the velocities of 150 filaments

as displayed in Figure 1B to assess the individual dynamics and the effects of260

initial conditions on the filament motion. With the stochastic formalism, the

long-time behaviour for some initial conditions differ from the one observed with

the deterministic description (Figure 3). With the deterministic formalism (Fig-

ure 3A-C), for any pairs of dissociation constants, there are initial conditions

resulting in retrograde or anterograde motions. Instead, with the stochastic for-265

malism (Figure 3D-O), there exist pairs of dissociation constants for which only

one type of motion is observed; all filaments move retrogradely or anterogradely.

In Figure 3A-C, in absence of noise, initial conditions dictate the final out-

come of individual dynamics. Dissociation constants κ affect equilibrium values,

stability conditions and basin of attraction. Depending on the proportions of270

occupied binding sites at the initial time, filaments move retrogradely (cyan)

or anterogradely (red); varying the dissociation constant values modulates pro-

portions of retrograde and anterograde filaments (Figures 3A-C). In presence

of noise with a small number of binding sites (N � 4), comparing panels A

to D, G, J and M in Figure 3 shows that the effects of initial conditions on275

the dynamics of individual filaments are annihilated. Motors with the lowest

dissociation constant (or the largest affinity, 1{κ ) win the tug-of-war.

To understand discrepancies between deterministic and stochastic results,

Figure 4 shows the distributions of stable equilibrium velocities reached from

the 150 initial conditions with the deterministic formalism and the distributions280

of the 150 instantaneous velocities at 10 and 550 seconds with the stochastic

formalism. When the number of binding sites is small N � 4 and both types of

motors have distinct affinities, distributions of velocities at 10 and 550 seconds

do not differ much (orange and blue distributions in off anti-diagonal tiles of Fig-

ure 4A); stochastic dynamics converges in a few seconds to distributions centered285

at one of the locally asymptotically stable equilibria reached in the determinis-

tic dynamics (black dots co-located with white distributions in off anti-diagonal

tiles of Figure 4A). Random fluctuations perturb significantly the deterministic

equilibrium situations by allowing the trajectories to visit the entire state space
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Figure 3: Velocities of the 150 filaments - (Column 1,2,3)N � 4, 16, 32. (Row 1) Deterministic
results (Rows 2, 3, 4 and 5) Stochastic results at 10, 50, 100 and 550 seconds. Each 49-tile
panel displays the results obtained when dissociation constants of motor-cargo interactions κ
vary as in Figure 2. Other parameter values used for simulations are provided in Table 1. In
each tile, position of dots indicates the initial conditions of filaments and colors their velocities
as in Figure 1B.
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(jump to different basins of attraction); finally only one of deterministic locally290

stable equilibrium velocities is robust to fluctuations (the ”global” stable situ-

ation – see for example off anti-diagonal tiles of Figure 4A) [51]. Furthermore,

when dissociation constants are the same and take large values (short-lived

attachments, top right anti-diagonal tile in Figure 4A), the tug-of-war is not

resolved when stochastic fluctuations are considered, the stochastic dynamics295

approach distributions centered at the deterministic small velocity equilibrium

(the unstable saddle equilibrium). Increasing the attachment time of motors

(going down along the anti-diagonal to bottom left tile in Figure 4A) shifts the

center of distributions at 10 and 550 seconds to a negative velocity (tug-of-war

is then resolved) whereas, in the deterministic case, a bifurcation has occurred300

and two more equilibria of small values have appeared (in the bottom left anti-

diagonal tile of Figure 4A, the black dot co-located with the white bar at the

zero velocity is the superposition of three dots representing three equilibria of

very small values; from negative to positive values, the first and last of the three

equilibria are unstable saddle points and the equilibrium with the intermediate305

value is locally asymptotically stable). When dissociation constants are the

same for both types of motors and take small values (longer-lived attachments),

there exists an extra locally stable equilibrium with the deterministic case, slow

motions are then observed resulting from the non-resolution of tug-of-war (white

bar at the zero velocity in the bottom left anti-diagonal tile of Figure 4A). This310

occurs for any value of binding sites (white bar co-located with black dot close

to the zero velocity in the bottom left anti-diagonal tile of Figures 4A-C).

When there is a small number of binding sites N � 4, the effects of stochas-

tic fluctuations are observed from 10 seconds and persist over time (Figures 3D,

G, J and M), the stochastic velocities approach rapidly stationary distributions315

(Figure 4A). With N �16 and 32, for some pairs of dissociation constants κ ,

stochastic distributions of velocities vastly differ from 10 to 550 seconds (or-

ange and blue distributions in Figure 4B-C). For instance, when dissociation

constants are the same and take large values with N �16, the 550 seconds

stochastic velocities (blue distribution in top right anti-diagonal tile of Figure320
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4B) are approaching the stationary distribution that is centered to the small

velocity equilibrium similarly to N � 4. However, at 10 seconds (orange dis-

tributions in top right anti-diagonal tile of Figure 4B), the stochastic velocity

distributions are centered at locally stable equilibria of the deterministic descrip-

tion; hence, in short timescale, velocity distributions first reach quasi-stationary325

distributions then stochastic fluctuations continue to perturb the dynamics that

will slowly converge to the stationary distribution centered at the unstable equi-

librium. With N � 32, at 10 and 550 seconds, the distributions are similar and

centered at deterministic locally stable equilibria (orange and blue distributions

in top right anti-diagonal tile in Figure 4C). It seems that for several cases of330

dissociation constant pairs when the number of motor binding sites is high, at

least on a timescale relevant for our problem, the stochastic velocities have not

converged to a distribution with a small deviation about one velocity yet.

All together, results of individual motions show that stochastic dynamics ap-

proach very rapidly distributions with means close to deterministic locally stable335

equilibria (quasi-stationary distributions); and then stochastic fluctuations con-

tinue to perturb dynamics that reach on a slower timescale a stationary distri-

bution centered at one of the deterministic locally stable or unstable equilibria

or a value not described by the deterministic formalism [52]. The times to reach

these quasi-stationary and stationary distributions vary with parameters and in340

particular with the maximal number of binding sites per node N . Eventually,

the long-time behaviour with the stochastic formalism does not depend on the

initial conditions (ergodic system). The presence of noise annihilates eventually

the effects of initial conditions. Instead the dynamics of transport is essentially

driven by the biochemical properties (motor-cargo interaction affinities). The345

smaller the maximal number of binding sites, the faster and stronger are the

noise effects.

Finally, to quantify the effect of noise on individual dynamics, we categorize

the deterministic equilibrium velocity values and the velocities reached at the

four time points with stochastic dynamics of the 150 filaments as anterograde350

(A), slow (S) or retrograde (R). Figure 5 represents the distributions of changes

20



Figure 4: Distributions of the individual velocities reached by the 150 filaments with the
deterministic formalism (white bars), with the stochastic formalism after T � 10 seconds (in
orange) and T � 550 seconds (in blue) for the 9 pairs of dissociation constants κ indicated by
grey dots in the first panel. Distributions obtained with N �4 in (A), 16 in (B) and 32 in (C).
Black dots are the (stable and unstable) equilibrium values computed from the deterministic
formalism [2]. In the bottom left anti-diagonal tile of (A-C), the black dot located at the zero
velocity is in fact the superposition of three dots representing three equilibria of very small
values. White bars co-located with black dots indicate the stable equilibria of the deterministic
formalism. Results for the 49 pairs of dissociation constants are given in Appendix in Figure
A.9.
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in regimes of motion of filaments due to the addition of noise. We observe that

the presence of noise can slow down (RÑ S or AÑ S, in light colors), speed up

(S Ñ R or S Ñ A, in bright colors), reverse (RÑ A or AÑ R, in dark colors)

or unaffect (in grey) the motion of individual filaments. Important changes first355

appear in regions of high dissociation constants; see, for instance, at 50 seconds

for N � 16 (right corner of Figure 5E) and at 550 seconds for N � 32 (right

corner of Figure 5L). When both types of motors have distinct biochemical

properties (off anti-diagonal tiles in Figure 5), noise can reverse the direction

of transport. Slow-down or speed-up of motion are only observed when both360

types of motors have same biochemical properties (tiles on the anti-diagonal). In

particular, for small dissociation constants (lower segment along anti-diagonals

in A, D, G or J in Figure 5), the presence of noise speeds up or reverses the

direction of filament motion and helps the strongest motor (dynein in this work)

to win the tug-of-war. However, with large dissociation constants, the presence365

of noise stalls filaments (upper segment along anti-diagonals in A, D, G or J in

Figure 5) and helps the weakest motor (kinesin in this work).

Ensemble average transport. The collective transport then is assessed in phase

diagram style figures representing the mean velocity of 150 filaments and their

distribution over different regimes of motion in Figures 6 and 7, respectively.370

As a first observation, a small mean velocity for the ensemble average transport

can correspond to different situations (Figure 6): a population of mainly slow

filaments (corresponding to whitish tiles in Figure 6G, J or M and tiles with

a majority of S in Figure 7G, J or M), a population of mainly one type (cor-

responding to light colors tiles in Figure 6J or M and cyan tiles in Figure 7J375

or M) or a balanced population of anterograde and retrograde filaments (corre-

sponding to light colors tiles in Figure 6N or K and half red and half cyan tiles

in Figure 7N or K).

The presence of noise results in the motion of all filaments in the same direc-

tion (Figure 7) and in a more efficient transport with an increased mean velocity380

of the filament ensemble (Figure 6) when motors have different affinities. For
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Figure 5: Distributions of changes in regimes of motion of filaments due to addition of noise -
Differences between model responses obtained with the deterministic and stochastic formalism
(Column 1,2,3) N � 4, 16, 32. (Row 1, 2, 3 and 4) Stochastic at 10, 50, 100 and 550 seconds.
In each panel, a tile is a stacked bar-plot showing the proportion of each type of change.
No change induced by noise is coded in gray. When the presence of noise slows down the
filament, light blue (R Ñ S) and red (A Ñ S) are used. When the filament is faster in the
stochastic description, bright blue (S Ñ R) and red (S Ñ A) are used. When the direction of
the filament is changed (opposite direction in deterministic and stochastic descriptions) dark
colors are used (dark red for R Ñ A and dark blue for A Ñ R). Parameter values used for
simulations are provided in Table 1.
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motors with same affinities, the presence of noise slows down the ensemble aver-

age transport. Hence, the presence of noise organizes/homogenizes the transport

of filaments, the direction of collective motion is determined by the motors with

the highest affinity. As previously observed with the individual dynamics, the385

homogeneization effect of noise on the net transport takes more time when the

maximal number of motors per node increases.

Regulating the biochemical properties of motor-cargo interactions allows the

regulation of the collective transport. In absence of noise, modulating dissoci-

ation constants from their base values (defined as biologically plausible) affects390

the ensemble transport (Figures 6A-C and and 7A-C). However, changing ki-

nesin or dynein dissociation constants does not have a symmetrical effect with

the parameter values considered. To reverse the direction of transport, kinesin

dissociation constant must be changed from its base value; changing dynein’s

constant does not reverse the direction of transport (Figures 6A-C and 7A-C).395

The presence of noise allows a switch in the transport of filaments between

different regimes of motions by varying either kinesin or dynein dissociation

constants (Figures 6D-O and 7D-O).

In an attempt to recapitulate the impact of the presence of noise and bio-

chemical properties on the ensemble transport, mean velocities obtained with400

both the deterministic and stochastic formalisms are plotted as functions of ra-

tios of dissociation constants κK{κD in Figure 8. That figure aggregates data

from Figure 6 for four cases: distinct strong affinities for both motors, one type

with a strong affinity and the other with a weak one, distinct weak affinities

for both motors and same affinity for both types. With a concomitant reg-405

ulation of both types of motors (changing simultaneously properties of both

motors), the presence of noise always minimizes the differential between disso-

ciation constants allowing a change in the ensemble average transport direction;

the intersections of stochastic responses with the horizontal line denoting the

change in transport direction in Figure 8 is always closer to zero (same affinities410

for both motors) than with deterministic responses. Note that with weak affini-

ties motors (G, K and O in Figure 8), varying the ratio of dissociation constants
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Figure 6: Mean velocities of the 150 filaments - Rows and columns are as in Figure 3 and
parameter values used for simulations are provided in Table 1.
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Figure 7: Distributions of filaments over different regimes of motion. In each panel, tiles are
stacked bar-plots in which proportions of anterograde (in red), slow (in white) and retrograde
(in cyan) filaments are represented. Rows and columns are as in Figure 3 and parameter
values used for simulations are provided in Table 1.
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does not allow the reversal of transport direction in the deterministic case for

the parameters considered. However, the presence of noise allows it, even with

large numbers of binding sites (N � 32), it will just take more time. Presence415

of noise facilitates the regulation of transport by biochemical properties.

With a small number of binding sites (N � 4), the presence of noise rapidly

makes the biochemical properties the main driver of the dynamics by annihilat-

ing the effects of initial conditions. Differential in dissociation constants sets the

direction of net transport (E-H of Figure 8). A slight variation for one type of420

motors from its affinity base value allows a very efficacious regulation of trans-

port, permitting reversing the collective direction of filaments. When motors

have the same biochemical properties and no strong affinities (affinities lower

than the base value indicated by the vertical line in Figure 8H and A.10H), the

ensemble average transport is very slow, the majority of filaments is stalled; the425

presence of noise hinders the resolution of the tug-of-war as previously observed.

The presence of noise is the least impactfull for the ensemble average trans-

port when both types of motors have strong affinities (E, I and M in Figures 8

and A.10) and the most influential with weak affinities (G, K and O in Figures

8 and A.10). Systems with large dissociation constants for both types of motors430

are more prone to perturbations as attached stages are short-lived that makes

more sensitive to noise. The smaller the maximal number of motors allowed

per node, the stronger and faster the regulation of transport by motor-cargo

interactions (Figures 6D-O, 8 and A.10). Strength and timescale of effects of

noise on the transport depend on the biochemical properties.435

4. Conclusion

We show that the regulation of motor-filament interactions can modulate and

reverse the collective transport. The presence of noise (a more realistic descrip-

tion of the stochastic nature of attachment and detachment processes of motors

– intrinsic noise) contributes to the regulation of transport by motor-filament440

interactions diminishing the impact of initial conditions (spatial distributions of
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Figure 8: Mean velocities of the 150 filaments as functions of dissociation constants ratios.
(A-D) Grey arrows indicated from which regions dissociation constant are taken to compute
ratios for each column. Row 2, 3 and 4 show results for N �4, 16 and 32. (E, I and M) Both
types of motors have dissociation constants smaller than their base values (strong affinities
for both motors). (F, J an N) One type with κ smaller than its base value and the other
with κ larger than its base value (one type with a strong affinity and the other with a weak
one). (G, K and O) Both types of motors have dissociation constants larger than their base
values (weak affinities for both motors). (H, L and P) Both types have the same affinity (from
smaller to larger affinities). Dotted lines with squares represent results from the deterministic
description and plain lines with dots are results from the stochastic description at different
times from 10 seconds (the darkest tone) to 550 seconds (the lightest tone). Parameter values
used for simulations are provided in Table 1.
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motors in cells – extrinsic noise) on the filament motions. Our finding goes in

the same direction as [37], which shows that stochastic effects are found to dom-

inate the dynamics when a small number of motors is attached to the cargo. In

[37], the cargo is a single bead. Furthermore, the presence of noise increases the445

performances of the weakest motor as random events allow the strongest motors

to detach giving the weaker motors a chance to attach again and establish.

Our model is another illustration of Keizer’s paradoxe [24, 25], which refers

to the existence of discrepancy between the long-time behaviour obtained with

the deterministic and stochastic description. This discrepancy results from the450

differences in timescales and types of “attractors” existing between both for-

malisms. Stochastic fluctuations can perturb significantly the deterministic

equilibria, slowing down the stabilization process and allowing to find global

attractors amongst the local ones found with the deterministic description [51].

The biological interpretation of our conclusions is that the initial distribution455

of motors in cells does not play an important role in the intracellular transport

as the stochastic fluctuations related to motors attachment and detachment pro-

cesses will make their effects fade. In other words, the intrinsic noise annihilates

the extrinsic noise. The presence of the intrinsic noise makes the motor-cargo

interaction affinities the main regulators of the filament ensemble transport and460

organizes it by synchronizing the direction of motions of all filaments. The

fewer binding sites, the most efficient is the synchronization. Furthermore, no

strong motor-cargo interactions for both types are preferable for a more effi-

cient regulation allowing small differentials in motor-cargo affinities to switch

the net transport direction. Hence, a “good strategy” for an efficacious trans-465

port of intermediate filaments in cells, easy to regulate, would be to maintain a

few binding sites on intermediate filaments with no strong affinities to motors.

These qualitative predictions will have to be tested experimentally.
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Appendix A. Additional computational results

Figure A.9 gives complete results of Figure 4 for the 49 pairs of dissociation

constants as described in Figure 2.

Figure A.10 aggregate data from Figure 7 for four cases: different strong480

affinities for both motors, one type with a strong affinity and the other with a

weak one, different weak affinities for both motors and same affinity for both

types. Proportions of retrograde and anterograde filaments obtained with both

the deterministic and stochastic formalisms are plotted as functions of ratios of

dissociation constants κK{κD.485
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Figure A.10: Proportions of filaments moving retrogradely (in cyan tones) and anterogradely
(in red tones) as functions of the ratio of dissociation constants. Proportions of slow filaments
are not represented for figure readability. (A-D) Grey arrows indicated from which regions
dissociation constant are taken to compute ratios for each column. Row 2, 3 and 4 show
results for N �4, 16 and 32. (E, I and M) Both types of motors have dissociation constants
smaller than their base values (strong affinities for both motors). (F, J and N) One type
with κ smaller than its base value and the other with κ larger than its base value (one type
with a strong affinity and the other with a weak one). (G, K and O) Both types of motors
have dissociation constants larger than their base values (weak affinities for both motors). (H,
L and P) Both types have the same affinity (from smaller to larger affinities). Dotted lines
with squares represent results from the deterministic description and plain lines with dots are
results from the stochastic description at different times from 10 seconds (the darkest tone) to
550 seconds (the lightest tone). Parameter values used for simulations are provided in Table
1.

32



[4] C. Leduc, S. Etienne-Manneville, Regulation of microtubule-associated495

motors drives intermediate filament network polarization, Journal of Cell

Biology 216 (2017) 1689–1703.

[5] S. Portet, A. Madzvamuse, A. Chung, R. E. Leube, R. Windoffer, Keratin

dynamics: modeling the interplay between turnover and transport, PloS

One 10 (2015) e0121090.500

[6] F. Gyoeva, V. Gelfand, Coalignment of vimentin intermediate filaments

with microtubules depends on kinesin, Nature 353 (1991) 445–448.

[7] B. T. Helfand, L. Chang, R. D. Goldman, Intermediate filaments are dy-

namic and motile elements of cellular architecture, Journal of Cell Science

117 (2004) 133–141.505

[8] C. Hookway, L. Ding, M. W. Davidson, J. Z. Rappoport, G. Danuser,

V. I. Gelfand, Microtubule-dependent transport and dynamics of vimentin

intermediate filaments, Molecular Biology of the Cell 26 (2015) 1675–1686.

[9] R. E. Leube, M. Moch, R. Windoffer, Intracellular motility of intermediate

filaments, Cold Spring Harbor Perspectives in Biology 9 (2017).510

[10] A. B. Kolomeisky, M. E. Fisher, Molecular motors: a theorist’s perspective,

Annu Rev Phys Chem 58 (2007) 675–95.

[11] A. B. Kolomeisky, Motor proteins and molecular motors: how to operate

machines at the nanoscale, Journal of Physics: Condensed Matter 25 (2013)

463101.515

[12] P. Xie, Insight into the chemomechanical coupling mechanism of kinesin

molecular motors, Communications in Theoretical Physics (2021).

[13] C. M. Johnson, J. D. Fenn, A. Brown, P. Jung, Dynamic catch-bonding

generates the large stall forces of cytoplasmic dynein, Physical biology 17

(2020) 046004.520

33



[14] M. E. Fisher, A. B. Kolomeisky, Simple mechanochemistry describes the

dynamics of kinesin molecules, Proceedings of the National Academy of

Sciences 98 (2001) 7748–7753.

[15] P. J. Atzberger, C. S. Peskin, A brownian dynamics model of kinesin in

three dimensions incorporating the force-extension profile of the coiled-coil525

cargo tether, Bulletin of mathematical biology 68 (2006) 131–160.

[16] S.-K. Guo, P.-Y. Wang, P. Xie, A model of processive movement of dimeric

kinesin, J Theor Biol 414 (2017) 62–75.

[17] L. Trott, M. Hafezparast, A. Madzvamuse, A mathematical understanding

of how cytoplasmic dynein walks on microtubules, Royal Society open530

science 5 (2018) 171568.

[18] A. Kunwar, S. K. Tripathy, J. Xu, M. K. Mattson, P. Anand, R. Sigua,

M. Vershinin, R. J. McKenney, C. Y. Clare, A. Mogilner, et al., Mechani-

cal stochastic tug-of-war models cannot explain bidirectional lipid-droplet

transport, Proceedings of the National Academy of Sciences 108 (2011)535

18960–18965.

[19] A. Kunwar, A. Mogilner, Robust transport by multiple motors with non-

linear force–velocity relations and stochastic load sharing, Physical biology

7 (2010) 016012.

[20] M. J. Müller, S. Klumpp, R. Lipowsky, Tug-of-war as a cooperative mech-540

anism for bidirectional cargo transport by molecular motors, Proceedings

of the National Academy of Sciences 105 (2008) 4609–4614.

[21] M. J. Müller, S. Klumpp, R. Lipowsky, Bidirectional transport by molecular

motors: enhanced processivity and response to external forces, Biophysical

Journal 98 (2010) 2610–2618.545

[22] W. O. Hancock, Bidirectional cargo transport: moving beyond tug of war,

Nature Reviews Molecular Cell Biology 15 (2014) 615.

34



[23] M. Vellela, H. Qian, A quasistationary analysis of a stochastic chemical

reaction: Keizer’s paradox, Bulletin of mathematical biology 69 (2007)

1727—1746.550

[24] P. Childs, J. P. Keener, Slow manifold reduction of a stochastic chemical

reaction: Exploring keizer’s paradox, Discrete and Continuous Dynamical

Systems - B 17 (2012) 1775–1794.

[25] J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes, 1987.

[26] J. R. Kardon, S. L. Reck-Peterson, R. D. Vale, Regulation of the pro-555

cessivity and intracellular localization of saccharomyces cerevisiae dynein

by dynactin, Proceedings of the National Academy of Sciences 106 (2009)

5669–5674.

[27] T. Korten, S. Diez, Setting up roadblocks for kinesin-1: mechanism for the

selective speed control of cargo carrying microtubules, Lab Chip 8 (2008)560

1441–1447.

[28] I. A. Telley, P. Bieling, T. Surrey, Obstacles on the microtubule reduce the

processivity of kinesin-1 in a minimal in vitro system and in cell extract,

Biophysical journal 96 (2009) 3341–3353.

[29] J. D. Fenn, C. M. Johnson, J. Peng, P. Jung, A. Brown, Kymograph565

analysis with high temporal resolution reveals new features of neurofilament

transport kinetics, Cytoskeleton 75 (2017) 22–41.

[30] A. Robert, P. Tian, S. A. Adam, M. Kittisopikul, K. Jaqaman, R. D.

Goldman, V. I. Gelfand, Kinesin-dependent transport of keratin filaments:

a unified mechanism for intermediate filament transport, FASEB Journal570

33 (2019) 00–00.

[31] Z. Qin, L. Kreplak, M. J. Buehler, Hierarchical structure controls nanome-

chanical properties of vimentin intermediate filaments, PLOS ONE 4 (2009)

1–14.

35



[32] Z. Qin, M. J. Buehler, L. Kreplak, A multi-scale approach to understand575

the mechanobiology of intermediate filaments, Journal of Biomechanics 43

(2010) 15–22. Special Issue on Cell Mechanobiology.

[33] J. Block, H. Witt, A. Candelli, E. J. Peterman, G. J. Wuite, A. Janshoff,
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