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SHADOWS OF RATIONALS AND IRRATIONALS: SUPERSYMMETRIC CONTINUED FRACTIONS AND THE SUPER MODULAR GROUP

This paper is an attempt to apply the tools of supergeometry to arithmetic. Supergeometric objects are defined over supercommutative rings of coefficients. We consider an integral ring with two odd variables. In this case the even quantities, such as numbers and continued fractions, are dual integers, having both a classical and a nilpotent part. We refer to the nilpotent part as the "shadow". We investigate the notions of supersymmetric continued fractions and the orthosymplectic modular group, and make some initial steps toward studying their properties.

In supergeometry, Lie supergroups and other geometric objects are considered over a Z 2 -graded supercommutative ring R " R0 ' R1 of coefficients. This ring usually remains unspecified, which perhaps accounts for the fact that supergeometry rarely produces concrete numeric sequences. (There are exceptions. For example, in [START_REF] Freed | Five Lectures on Supersymmetry[END_REF], pp. 21-22, the ring Rrη 1 , . . . , η L s with finitely many "auxiliary odd parameters" is considered.)

The idea of the "shadow" of a number arose from supergeometry and cluster superalgebras; see [START_REF] Ovsienko | Shadow sequences of integers, from Fibonacci to Markov and back[END_REF], as well as [START_REF] Ovsienko | A step towards cluster superalgebras[END_REF][START_REF] Ovsienko | Cluster algebras with Grassmann variables[END_REF][START_REF] Ovsienko | Dual numbers, weighted quivers, and extended Somos and Gale-Robinson sequences[END_REF]. Consider the ring R generated over Z by two odd Grassmann variables ξ and η:

(1.1) R :" Zrξ, ηs " Span Z t1, ξ, η, ξηu, ξ 2 " 0, η 2 " 0, ηξ " ´ξη.

Its even and odd parts, R0 and R1, are Z ' Zξη and Zξ ' Zη, respectively. This ring may be thought of as the minimal choice of coefficients for which even variables can have non-trivial nilpotent parts. Indeed, R0 is simply the dual integers. Speaking broadly, certain natural procedures and algorithms acting on integers admit a way to replace Z by R so as to augment the classical output by an even nilpotent part, the shadow. The notion of shadows was recently investigated in [START_REF] Hone | Casting light on shadow Somos sequences[END_REF][START_REF] Veselov | Conway's light on the shadow of Mordell[END_REF], where the idea was applied to sequences of integers in the context of algebraic geometry and number theory.

The main goal of this paper is to introduce a notion of supersymmetric continued fractions, together with the corresponding Farey tree. This gives a way to define shadows of rational numbers. Our main result is a convergence property permitting the extension of this definition to irrationals. In fact, rational numbers have in general two shadows, while irrational numbers have only one.

We do not yet know whether or not supersymmetric continued fractions will have applications, but they do lead to what seem to us to be pleasing properties and formulas. We note that the recent work [START_REF] Musiker | Matrix Formulae for Decorated Super Teichmüller Spaces[END_REF] applies related ideas to hyperbolic geometry and combinatorics.

1.1. Continued fractions. The regular finite continued fraction ra 1 , . . . , a n s is the expression (1.2) ra 1 , . . . , a n s :" a 1 `1 a 2 `1 . . . `1 a n , where a i P Z ą0 for all i ą 1. Every rational number has exactly two finite continued fraction expansions. This is due to the ambiguity ra 1 , . . . , a n s " ra 1 , . . . , a n ´1, 1s for a n ě 2: the length n in (1.2) may be taken to be either even or odd. Consider the triangular generators of the modular group SLp2, Zq:

(1.3) R " ˆ1 1 0 1 ˙, L " ˆ1 0 1 1 ˙.
The continued fraction (1.2) corresponds to the word R a1 L a2 R a3 L a4 ¨¨¨pR or Lq an in R and L, in the following sense. Suppose that p q is a rational number in reduced form, and ra 1 , . . . , a n s is one of its two continued fraction expansions. Then if n is even, say 2m, we have

ˆp q ˙" R a1 L a2 ¨¨¨R a2m´1 L a2m ˆ1 0 ˙, while if n is odd, say 2m `1, we have ˆp q ˙" R a1 L a2 ¨¨¨L a2m R a2m`1 ˆ0 1 ˙.
1.2. The orthosymplectic group OSpp1|2q. As described in [START_REF] Yu | Topics in Noncommutative Geometry[END_REF] (Chapter 2, Section 1), this group plays the same role in supergeometry that SLp2q plays classical geometry. For a general treatment of supergroups from the physical point of view, see [START_REF] Dewitt | Supermanifolds[END_REF]. For presentations close to ours, see [START_REF] Michel | On the projective geometry of the supercircle: a unified construction of the super cross-ratio and Schwarzian derivative[END_REF][START_REF] Morier-Genoud | Introducing supersymmetric frieze patterns and linear difference operators. With an appendix by Alexey Ustinov[END_REF]. OSpp1|2q consists of 3 ˆ3 matrices over a supercommutative ring. The matrix entries have prescribed parity: those in the upper left 2 ˆ2 block and the lower right corner must be even, and the rest must be odd. We will use Roman characters for even entries and Greek characters for odd entries. The orthosymplectic conditions are as follows:

¨a b γ c d δ α β e ‹ ', ad ´bc " 1 ´αβ, e " 1 `αβ, ´aδ `cγ " α, ´bδ `dγ " β.
Definition 1.1.

(i) Write OSpp1|2, Zq for the group OSpp1|2q over the ring R.

(ii) Write R 2|1 for the R0-module of 3-vectors pr, s, τ q T , where r and s lie in R0 and τ lies in R1.

(iii) Consider the set of elements of R 2|1 whose entries are not all nilpotent. Write P 1|1 for the set of equivalence classes of such elements under multiplication by non-nilpotent elements of R0.

(iv) Write the equivalence classes comprising P 1|1 as pr : s : τ q.

The natural action of OSpp1|2, Zq on R 2|1 descends to an action on P 1|1 , which generalizes the usual action of SLp2, Zq on Q. Indeed, there is a projection of algebras from R to Z, which sends ξ, η, and ξη to 0. It defines a projection of groups from OSpp1|2, Zq to SLp2, Zq, as well as a compatible projection from R 2|1 to Z 2 , which descends to a projection from P 1|1 to the rational projective line.

1.3. Supersymmetric continued fractions. Consider the following elements of OSpp1|2, Zq:

(1.4) R " ¨1 1 ξ 0 1 0 0 ξ 1 ‹ ', L " ¨1 0 0 1 1 ´η η 0 1 ‹ '.
These matrices project to R and L, and they seem to be natural superanalogues of R and L. They have frequently appeared in the literature; for instance, R was understood as the translation operator in [START_REF] Rabin | Super elliptic curves[END_REF].

Our construction of finite supersymmetric continued fractions is given in Definition 2.1. It proceeds by replacing the matrices R and L in (1.3) by R and L, applying the resulting words in R and L to the vectors p1, 0, 0q T and p0, 1, 0q T , and taking the quotient of the first two entries of the resulting 3-vector; the two even entries. The result is an element of Q ' Qξη, the rational extension of R0, which we denote by ta 1 , . . . , a n u.

1.4. Shadows. As a consequence of the fact that R and L project to R and L, the supersymmetric continued fraction ta 1 , . . . , a n u projects to the classical continued fraction ra 1 , . . . , a n s. Thus we may write ta 1 , . . . , a n u " ra 1 , . . . , a n s `ra 1 , . . . , a n s S ξη, where the coefficient in the nilpotent part, ra 1 , . . . , a n s S , is some rational number, the shadow of ra 1 , . . . , a n s. Our main result is the following convergence property, which allows us to extend the notion of shadows to irrationals. Theorem 1.2. For any integer sequence a 1 , a 2 , a 3 , . . . such that a 1 ě 0 and a i ě 1 for i ą 1, the rational sequence ra 1 , a 2 , a 3 , . . . , a n s S converges. Furthermore, the limit is positive if and only if a 1 ě 1.

Theorem 1.2 is proven in Section 4.3. Its proof, like its statement, parallels the classical case. It permits us to make the following definition. Definition 1.3. Let x be an irrational number with continued fraction expansion ra 1 , a 2 , a 3 , . . .s. We define its shadow pxq S to be pxq S :" lim nÑ8 ra 1 , a 2 , a 3 , . . . , a n s S .

Consider a rational number with reduced expression p q . As noted earlier, it has two continued fraction expansions:

(1.5) p q " ra 1 , . . . , a n s " ra 1 , . . . , a n ´1, 1s.

The corresponding supersymmetric continued fractions give different shadows:

Definition 1.4. Given a rational p q , its even shadow `p q ˘ES and odd shadow `p q ˘OS are ra 1 , . . . , a n s S and ra 1 , . . . , a n ´1, 1s S , which is which being determined by the parity of n. We write ES and OS for the corresponding functions on Q:

ES : p q Þ Ñ ´p q ¯ES , OS : p q Þ Ñ ´p q ¯OS .
The even and odd shadows have quite different properties; see Sections 2.2 and 4.2. However, speaking heuristically, they appear to share a certain chaotic nature: computer experiments suggest that they are neither continuous nor monotonic. In light of these observations, the convergence of Theorem 1.2 seems surprising. Examples are given in Section 2.2.

It may appear strange that rational numbers have two shadows, while irrationals have only one. In fact, a similar phenomenon occurs for q-deformations, as noticed in [START_REF] Morier-Genoud | On q-deformed real numbers[END_REF] and explained in [START_REF] Bapat | q-deformed rational numbers and the 2-Calabi-Yau category of type A 2[END_REF]. 1.5. Continuants. The classical continued fraction (1.2) may be expressed as a quotient of two polynomials in the variables a 1 , . . . , a n . These polynomials are known as continuants, and they have many remarkable properties; see [START_REF] Graham | Concrete Mathematics: A Foundation for Computer Science[END_REF][START_REF] Berstel | Noncommutative rational series with applications[END_REF] and Section 3.1.

Supersymmetric continued fractions may also be written as quotients of polynomials: ta 1 , . . . , a n u " K n pa 1 , . . . , a n q K n´1 pa 2 , . . . , a n q , where K n pa 1 , . . . , a n q " K n pa 1 , . . . , a n q `K1 n pa 1 , . . . , a n qξη. The "shadow" part, K 1 n , is a weighted version of K n . In Section 3.3 we derive its explicit formula. This allows us to deduce several properties of supersymmetric continued fractions, including our convergence result.

The shadowed continuants connect the present paper to [START_REF] Morier-Genoud | Introducing supersymmetric frieze patterns and linear difference operators. With an appendix by Alexey Ustinov[END_REF][START_REF] Ustinov | Supercontinuants[END_REF]. Indeed, the polynomials K n are special cases of the supercontinuants arising from the notion of frieze patterns.

´1 1 η 1 ' 0 0 1 0 ' 0 1 1 ξ Figure 1.1.
The initial diagram of the super Farey tree 1.6. The Farey tree. The Farey (or Stern-Brocot) tree is a beautiful way to visualize the rational projective line. Each rational appears exactly once, labelling the connected components of the planar complement of the tree. It is related to continued fractions, hyperbolic geometry, and many other subjects.

Our definition of the super (or "shadowed") Farey tree begins with the initial "fishbone" diagram given in Figure 1.1. In Section 5 we discuss a symmetry of this diagram described by the following elements of OSpp1|2, Zq:

(1.6) U " ¨0 1 0 ´1 ´1 η 0 ´η 1 ‹ ', V " ¨´1 1 ξ ´1 0 0 ´ξ 0 1 ‹ '.
These matrices are related to R and L via (1.7) V " RS, U " L ´1S, where S "

¨0 1 0 ´1 0 0 0 0 1 ‹ '.
Let us mention that in [START_REF] Morier-Genoud | Introducing supersymmetric frieze patterns and linear difference operators. With an appendix by Alexey Ustinov[END_REF], matrices of this form played the role of superanalogues of the discrete Sturm-Liouville operator.

1.7. Alternative definitions. Our construction of supersymmetric continued fractions and the super Farey tree is "seeded" by the initial vectors p1, 0, 0q T and p0, 1, 0q T . Replacing them by any other pair of vectors projecting to p1, 0q T and p0, 1q T would produce alternative definitions of the shadows of the classical continued fraction and Farey tree. Taking into account projective equivalence, one finds that the most general seed vectors are

(1.8) p1 `aξη, bξη, αq T , pcξη, 1 ´aξη, βq T ,
where a, b, and c are integers, and α and β lie in R1. It is natural to ask how the supersymmetric continued fraction and the super Farey tree vary as the seed vectors vary, and in particular, if there is a distinguished choice. We investigate two particular alternatives in Section 6.

Supersymmetric continued fractions

In this section we give the precise definition of the supersymmetric, or "shadowed", continued fraction, and investigate even and odd shadows of rationals.

2.1. The definition. Consider a classical continued fraction, ra 1 , . . . , a n s " p q , where as usual the a i are positive integers for i ą 1 and p q is given in reduced terms. The supersymmetric continued fraction ta 1 , . . . , a n u is defined in terms of the matrices R and L given in (1.4): Definition 2.1. Define integers p 1 , q 1 , λ, and µ via the following equations. For n " 2m even, set

(2.1) R a1 L a2 ¨¨¨R a2m´1 L a2m ¨1 0 0 '" ¨p `p1 ξη q `q1 ξη λξ `µη '.
For n " 2m `1 odd, set

(2.2) R a1 L a2 ¨¨¨L a2m R a2m`1 ¨0 1 0 '" ¨p `p1 ξη q `q1 ξη λξ `µη '.
For all n, set (2.3) ta 1 , . . . , a n u :" p `p1 ξη q `q1 ξη " p q `p1 q ´pq 1 q 2 ξη.

The coefficient of ξη is the shadow of the supersymmetric continued fraction:

(2.4) ra 1 , . . . , a n s S :"

p 1 q ´pq 1 q 2 .
2.2. Even and odd shadows. Recall `p q ˘ES and `p q ˘OS from Definition 1.4.

Example 2.2. To give a simple example, consider 5 2 " r2, 2s " r2, 1, 1s. One finds that

R 2 L 2 ¨1 0 0 '" ¨5 `4ξη 2 4ξ `2η ', R 2 L R ¨0 1 0 '" ¨5 `4ξη 2 `ξη 5ξ `η '.
The two quotients

t2, 2u " 5 `4ξη 2 " 5 2 `2ξη, t2, 1, 1u " 5 `4ξη 2 `ξη " 5 2 `3 4 ξη
give the shadows `5 2 ˘ES " 2 and `5 2 ˘OS " 3 4 . The even and odd shadows of all rationals 1 ď p q ď 2 with denominators q ď 12 are depicted in Figures 2.1 and 2.2, respectively. Note that the values seem to be increasingly chaotic as q grows. It turns out that the even shadow is translation-invariant, but the odd shadow is not: Proposition 2.3. One has `p q `1˘E S " `p q ˘ES `1. Proof. Consider the operator R. On an arbitrary vector, (2.5)

¨1 1 ξ 0 1 0 0 ξ 1 ‹ ' ¨p `p1 ξη q `q1 ξη λξ `µη ‹ '" ¨p `q `pp 1 `q1 `µqξη q `q1 ξη pλ `qqξ `µη ‹ '.
Recall the quotient (2.3) defining the supersymmetric continued fraction. The quotient corresponding to the right hand side of (2.5) is p `q q `pp `qqq 1 ´pp 1 `q1 `µqq q 2 ξη " p `q q `p1 q ´pq 1 q 2 ξη `µ q ξη.

Thus applying R leaves q and µ unchanged, and modifies the even shadow `p q ˘ES by adding µ q . Now consider the action of L. If q and µ are equal before applying L, they remain equal afterward:

¨1 0 0 1 1 ´η η 0 1 ‹ ' ¨p `p1 ξη q `q1 ξη λξ `µη ‹ '" ¨p `p1 ξη p `q `pp 1 `q1 `λqξη λξ `pp `µqη ‹ '.
It follows by induction that in all the partial products of (2.1), the coefficients µ and q are equal. In particular, the even supersymmetric continued fractions ta 1 , a 2 , . . . , a 2m u and ta 1 `1, a 2 , . . . , a 2m u indeed differ by 1. □ Coupling Proposition 2.3 with Theorem 1.2 gives the following corollary.

Corollary 2.4. If x is any positive irrational, then px `1q S " pxq S `1.

Translation-invariance does not hold for odd shadows. For instance, `5 2 ˘OS " 3 4 , but `7 2 ˘OS " 5 4 . As regards integers, a short computation gives (2.6) pnq ES " n ´1, pnq OS " 0.

Analytic formulas

Our next goal is to give an explicit formula for supersymmetric continued fractions. As in the classical case, the main ingredient is the continuant polynomial. We calculate the "shadowed continuant" arising from supersymmetric continued fractions.

3.1. Euler's continuants. Recall that the classical continued fraction (1.2) may be expressed in terms of the continuant polynomial K n pa 1 , . . . , a n q, defined as the n ˆn determinant (3.1)

K n pa 1 , . . . , a n q :" det

¨a1 1 ´1 a 2 1 . . . . . . . . . ´1 a n´1 1 ´1 a n ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' .
The first few continuants are

K 0 " 1, K 1 pa 1 q " a 1 , K 2 pa 1 , a 2 q " 1 `a1 a 2 , K 3 pa 1 , a 2 , a 3 q " a 1 `a3 `a1 a 2 a 3 , K 4 pa 1 , a 2 , a 3 , a 4 q " 1 `a1 a 2 `a1 a 4 `a3 a 4 `a1 a 2 a 3 a 4 .
The continuant satisfies the recurrence relation (3.2) K n pa 1 , . . . , a n q " a 1 K n´1 pa 2 , . . . , a n q `Kn´2 pa 3 , . . . , a n q, which is equivalent to the fact that classical continued fractions are quotients of continuants:

(3.3) ra 1 , . . . , a n s " K n pa 1 , . . . , a n q K n´1 pa 2 , . . . , a n q .

The continuant has been studied since the time of Euler [START_REF] Euler | Introductio in Analysin Infinitorum[END_REF], and has many beautiful properties [START_REF] Graham | Concrete Mathematics: A Foundation for Computer Science[END_REF][START_REF] Berstel | Noncommutative rational series with applications[END_REF].

3.2. The shadowed continuant. Henceforth it will be convenient to write n for n modulo 2, i.e., n :" 0 if n is even, 1 if n is odd.

We will frequently encounter the continuant without its constant term, which we denote by K 0 n : K 0 n pa 1 , . . . , a n q :" K n pa 1 , . . . , a n q ´Kn p0, . . . , 0q " K n pa 1 , . . . , a n q ´p1 ´nq. Note that by (3.2), K 0 n satisfies the recurrence relation K 0 n pa 1 , . . . , a n q " a 1 K n´1 pa 2 , . . . , a n q `K0 n´2 pa 3 , . . . , a n q.

(ii) S is an order 4 operator with square ´I.

(iii) The entry-wise action of τ on vectors over Zrξ, ηs defines an adjoint action of τ on matrices over Zrξ, ηs, which is again simply the entry-wise action. (iv) Ad τ is an outer automorphism of OSpp1|2, Zq of order 4.

The proof of Lemma 3.6 is immediate. We will need to work in the group OSpp1|2, Zq ¸xτ y. Keep in mind that neither S nor ´I is in OSpp1|2, Zq. Notation 3.7. In order to improve legibility, we will frequently use the following abbreviations: ' K r,s denotes K s´r`1 pa r , . . . , a s q, ' K 0 r,s denotes K 0 s´r`1 pa r , . . . , a s q, ' K 1 r,s denotes K 1 s´r`1 pa r , . . . , a s q, ' K r,s denotes K s´r`1 pa r , . . . , a s q.

Proof of Theorem 3.4. Recall the quantities (2.1) and (2.2) leading to the definition (2.3) of ta 1 , . . . , a n u. The important point for us is that Ad S pLq " R ´1.

Using this fact, verify that (2.1) and (2.2) may be expressed in the following unified way, regardless of the parity of n:

(3.10) p´1q p n`1 2 q ´n ź j"1 `SL p´1q j aj ˘¯¨1 0 0 '" ¨p `p1 ξη q `q1 ξη λξ `µη '.
Again, the operator SL a is not in OSpp1|2, Zq. It may be expressed as

SL a " R ´aS " R ´aSτ " ¨a 1 ´aξ ´1 0 0 aξ 0 1 ‹ '˝τ.
An inductive argument based on Lemma 3.2 shows that p´1q p n`1 2 q ś n j"1 `SL p´1q j aj ˘may be written as M n pa 1 , . . . , a n qτ n , where M n is the matrix

¨K1,n p´1q n K 1,n´1 ´τ n pξK 0 1,n´1 `ηK 0 1,n q K 2,n p´1q n K 2,n´1 ´τ n pξK 0 2,n´1 `ηK 0 2,n q ξK 0 1,n `ηK 0 2,n p´1q n pξK 0 1,n´1 `ηK 0 2,n´1 q M n pa 1 , . . . , a n q 33 ‹ ',
the p3, 3q-entry being given by p´1q p n`1 2 q M n pa 1 , . . . , a n q 33 " 1 ´p´1q n ξη

" p1 ´nqpK 0 1,n `K0 2,n´1 q ´npK 0 1,n´1 `K0 2,n q ‰ .
The result now follows from the fact that (3.10) is the first column of M n . □ Remark 3.8. The matrix p´1q p n`1 2 q M n is in OSpp1|2, Zq. Moreover, it has the property that its second row is its first row with the index 1 replaced by 2, and its second column is its first column with n replaced by n ´1. These are immediate consequences of the definitions.

Remark 3.9. The coefficient 1 `ξη appearing in (3.7) is reminiscent of the coefficient 1 `ξi ξ j in the exchange relation (2) of [START_REF] Ovsienko | Cluster algebras with Grassmann variables[END_REF]. It would be interesting to establish a direct relation between (3.7) and the version of cluster superalgebras developed in [START_REF] Ovsienko | Cluster algebras with Grassmann variables[END_REF].

Positivity and convergence

In this section we apply Theorem 3.4 to prove various properties of supersymmetric continued fractions. Throughout, we maintain the abbreviations adopted in Notation 3.7.

4.1.

Positivity. Here we present a theorem describing the positivity of the shadows of non-integral positive rationals. (For the integral case, see (2.6).) Its proof begins with a technical lemma. (i) For p q ą 1 and non-integral, both `p q ˘ES and `p q ˘OS are positive rationals. (ii) For 0 ă p q ă 1, both `p q ˘ES and `p q ˘OS are negative rationals.

Lemma 4.2. For all positive integers a 1 , . . . , a n , n ě 2, the following determinant is positive:

D n pa 1 , .
. . , a n q :" det ˜K1 n pa 1 , . . . , a n q K n pa 1 , . . . , a n q K 1 n´1 pa 2 , . . . , a n q K n´1 pa 2 , . . . , a n q ¸.

Proof. As in Notation 3.7, write D r,s for D s´r`1 pa r , . . . , a s q. For n ě 2, (3.2) and (3.6) imply that (4.1)

D 1,n " a 1 K 2,n K 0 2,n ´D2,n .
This gives the alternating sum

D 1,n " a 1 K 2,n K 0 2,n ´a2 K 3,n K 0 3,n `a3 K 4,n K 0 4,n ´¨¨¨,
the last term being D n´1,n if n is even and D n´2,n if n is odd, in both cases with a positive sign. Note that D n´1,n and D n´2,n are themselves both positive:

D 1,2 " a 1 a 2 2 , D 1,3 " a 2 a 3 `a1 `a3 pa 1 a 2 ´1q ˘.
We will show that each pair of consecutive terms in this alternating sum is positive, proving the lemma. It suffices to treat the first two terms. If n is even, they are

a 1 K 2 2,n ´a2 K 3,n pK 3,n ´1q " a 1 pa 2 K 3,n `K4,n q 2 ´a2 K 2 3,n `a2 K 3,n .
The a i are all positive integers, so this is positive. On the other hand, if n is odd, the first two terms are

a 1 K 2,n pK 2,n ´1q ´a2 K 2 3,n " a 1 pa 2 K 3,n `K4,n qpa 2 K 3,n `K4,n ´1q ´a2 K 2 3,n ,
which is again positive, because n ´3 even implies that K 4,n ´1 is non-negative. □

Proof of Theorem 4.1. For n ě 2, it follows from Theorem 3.4 that the shadow of an arbitrary continued fraction ra 1 , . . . , a n s is given by

ra 1 , . . . , a n s S " D 1,n K 2 2,n
.

Therefore part (i) is a direct consequence of Lemma 4.2. For part (ii), observe that 0 ă ra 1 , . . . , a n s ă 1 implies a 1 " 0, and so (4.1) becomes D 1,n " ´D2,n . This completes the proof. □ 4.2. Localization. For even shadows, Proposition 2.3 leads to the following strengthening of Theorem 4.1. It does not hold for odd shadows; for example, as we saw in Section 2.2, `7 2 ˘OS " 5 4 .

Corollary 4.3. For every rational p q in the interval rn, n `1s, the even shadow `p q ˘ES is in rn ´1, ns.

4.3.

Convergence. We are now prepared to prove Theorem 1.2. Let a 1 , a 2 , . . . be a sequence of integers such that a 1 ě 0 and a i ě 1 for i ą 1, and write s n for ra 1 , a 2 , . . . , a n s S . We must prove that the sequence ps n q converges. Recall n and the Euler vector field E from Section 3.2.

Lemma 4.4. We have

s n " E ˆK1,n K 2,n ˙`1 ´n K 2,n ´n K 1,n K 2 2,n
.

Proof. By (3.5) and Theorem 3.4,

s n " `K1 1,n K 2,n ´K1,n K 1 2,n ˘LK 2 2,n .
From here, compute using (3.5) and the quotient rule. □

Now consider s n ´sn´1 . It is well-known that the classical continuants satisfy the identity

K 1,n K 2,n´1 ´K1,n´1 K 2,n " p´1q n .
Therefore the difference of the two terms of s n ´sn´1 involving E simplifies:

(4.2) E ˆK1,n K 2,n ´K1,n´1 K 2,n´1 ˙" E ˆp´1q n K 2,n K 2,n´1 ˙" p´1q n´1 EpK 2,n K 2,n´1 q pK 2,n K 2,n´1 q 2 .
Lemma 4.5. There is a constant C such that |s n ´sn´1 | ď Cpa 1 `1qφ ´n, where φ is the golden ratio.

Proof. First let us prove that there is a constant C such that the right hand side of (4.2) is less than or equal to Cnφ ´2n . Recall that a 2 , . . . , a n are positive integers. Because K n is of degree n,

EpK 2,n K 2,n´1 q ď p2n ´3qK 2,n K 2,n´1 .
Let F n be the Fibonacci sequence, beginning from F 0 " 1. Elementary arguments show that K n is a sum of F n monomials. Therefore K 2,n K 2,n´1 ě F n´1 F n´2 , giving the stated bound for (4.2). Next, note that the term in s n with denominator K 2,n is of order φ ´n. Finally, apply (3.2) to deduce that the term in s n with denominator K 2 2,n and numerator containing K 1,n is of order pa 1 `1qφ ´n. The lemma follows. (We add 1 to a 1 here because a 1 may be 0.) □ Theorem 1.2 follows from this lemma and Theorem 4.1.

4.4.

Examples. Here we give numerical approximations of two shadows of irrationals.

Example 4.6. The simplest infinite continued fraction is the golden ratio, φ " 1 `?5 2 " r1, 1, 1, . . .s.

In Corollary 5.2, we prove that its shadow is given by 

(4.3) pφq S " 5 

Farey trees

In this section we define a variant of the Farey tree of rationals which contains Grassmann variables, and so produces shadows.

5.1.

The classical Farey tree. The Farey tree can be constructed inductively, by iterating the "local branching rule" on the initial fishbone diagram, as indicated in Figure 5.1. The quantity p q ˚r s " p`r q`s is called the mediant, or Farey sum. 5.2. The PSLp2, Zq action. The classical Farey tree has beautiful symmetry under the action of PSLp2, Zq by linear fractional transformations. Corresponding to each vertex of the tree is an order 3 element of the group, whose action rotates the tree by 2π{3 counterclockwise around the vertex, and corresponding to each edge is an order 2 element, whose action rotates the tree by π around the edge. For example, the labels of the initial diagram are given in Figure 5.3, where (using the symbol """ as a reminder that elements of PSLp2, Zq are cosets)

1 ´1 p´r q´s ' ' 1 0 0 1 " 0 ´1 p q r s ' ' 1 1 p`r q`s
´2 1 ' ´1 1 ' ´1 2 ' 1 0 0 1 ' 1 1 1 0 ' 1 1 1 1 ' 0 1 2 1 1 2 ' 1 0 2 1 ' 2 1 1 1 ' 1 1 1 2 ' 1 2 0 1 ' 1 0 3 1 ' 2 1 ' 2 1 3 2 ' 1 1 ' 1 1 2 3 ' 1 2 ' 1 2 1 3 ' 0 1
(5.1) U " ˆ0 1 ´1 ´1˙, V " ˆ´1 1 ´1 0 ˙, S " ˆ0 1 ´1 0 ˙. 
(This definition of S is an abuse of notation, as in (1.7), S was defined to be a 3 ˆ3 matrix, but the meaning will always be clear from the context.) The reader may check that indeed, the linear fractional transformation actions of U , V , and S satisfy The labelled diagram suggests that conjugating U by S gives V , and indeed this is true. The elements corresponding to all vertices and edges of the tree may be obtained from U and S by repeated conjugation, as indicated in Figure 5.4. In fact, the edges and vertices of the tree are in bijection with the order 2 and 3 subgroups of PSLp2, Zq, respectively.

U : 1 0 Þ Ñ 0 1 Þ Ñ ´1 1 Þ Ñ ´1 0 " 1 0 , V : 1 0 Þ Ñ 1 1 Þ Ñ 0 1 Þ Ñ ´1 0 " 1 0 . S : 1 0 Ø 0 1 , 1 1 Ø ´1 1 . 0 1 ´1 1 U S V 1 

5.3.

A shadowed Farey tree. Recall from (1.6) the elements U and V of OSpp1|2, Zq, and from Figure 1.1 the initial diagram of our super Farey tree. Like the elements U and V of PSLp2, Zq in the classical case, U and V are of order 3, and they cycle the vectors of the initial diagram around its vertices. This is depicted in Figure 5.5. Repeated conjugation extends the tree and associates an order 3 subgroup of OSpp1|2, Zq to each vertex, as indicated in Figure 5.6. The edges can also be labelled, in a compatible way: the action of the element S of (3.9) exchanges U and V and rotates the initial diagram by π.

Applying the group elements to the vectors in the initial diagram gives the shadowed Farey tree in Figure 5.7. As noted in Section 1.7, it is possible to construct other Grassmann Farey trees, beginning from different choices of the initial vectors used in (2.1) and (2.2). 

U V U ´1 U SU ´1 V ´1U V U U ´1 SU S V V ´1SV V SV ´1 U ´1V U V U V ´1 Figure 5.
U ´1V U U VU ´1 U V VU V ´1 V ´1U V Figure 5.6.
Determining super labels by conjugation 5.4. Observations. Our Grassmann Farey tree gives yet another version of the shadow of a rational number, which should be compared to the even and odd shadows ES and OS. We will use the notation `p q ˘FS for the Farey shadow of p q . The definition is as follows: if the vector ¨p `pξη q `qξη ¨¨¨' occurs in the tree, then `p q ˘FS is the coefficient of ξη in pp `pξηq{pq `qξηq:

´p q ¯FS :" pq ´pq q 2 .
Because the operators U and V are related to R and L via (1.7), the Farey shadow sometimes coincides with the even or the odd shadow, but not always. The integers, represented in the classical Farey tree by n 1 , appear on its extreme left branch. Their Farey shadows are p1q FS " 0, p2q FS " 1, p3q FS " 2, p4q FS " 2, p5q FS " 2, p6q FS " 3, etc. This is the OEIS sequence A004524 [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF]: 0, 1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 7, . . .

2 `ξη ´1 1 ´1 ' 1 ' ´2 ´ξη ´ξ ´η η ξ ´η 1 ' 0 0 1 0 ' 0 1 ' 1 ' 2 `ξη ξ 1 ' 1 ' ' 2 `ξη ' 3 `2ξη ξ `η 3 `2ξη 2 `ξη ξ ´η 1 ' 1 ' ' 2 `ξη ' ' 3 `2ξη ' ' 3 `2ξη ' η 3ξ `η 3ξ ´η ´η 4 `2ξη 5 `6ξη 5 `6ξη 4 `2ξη 3 `2ξη 3 `2ξη 2 `ξη 1 1 2 `ξη 3 `2ξη 3 `2ξη 4 `2ξη 5 `6ξη 5 `6ξη 4 `2ξη 0 ξ `3η 4ξ `3η 4ξ 4ξ 4ξ ´3η ξ ´3η 0
The "Fibonacci branch" of the classical Farey tree is labelled by quotients of consecutive Fibonacci numbers: Fn`1 Fn . It turns out that the Farey shadow sequence `Fn`1 Fn ˘FS is closely related to the OEIS sequence A054454, which begins with pA054454q 0 " 0: 0, 1, 2, 6, 12, 26, 50, 97, 180, 332, 600, 1076, . . . 

¨Fn`1 `pA054454q n´1 ξη F n `pA054454q n´2 ξη ¨¨¨' " ¨1 1 ξ ', ¨2 `ξη 1 ξ `η ', ¨3 `2ξη 2 `ξη 3ξ `η ', ¨5 `6ξη 3 `2ξη 4ξ `3η ', ¨8 `12ξη 5 `6ξη 8ξ `4η ', . . . .
Proof. Write F for VU ´1, and u 0 for the standard basis vector e 2 . Then the Fibonacci branch of the Grassmann Farey tree is labelled by the vectors u n :" F n u 0 . Define g n to be the coefficient of ξη in the first entry pu n`1 q 1 of u n`1 . Check that then the coefficient of ξη in the second entry, pu n`1 q 2 , is g n´1 , and that the sequence g n satisfies the recurrence

g n " g n´1 `gn´2 `Fn`1 .
This matches the recurrence of A054454. □

This proposition implies the following statement. To prove it, simply apply the formula for A054454 given in the OEIS.

Corollary 5.2. The sequence of rationals `Fn`1

Fn ˘FS converges to pφq S " 5`?5 10 " 1 3´φ . Proposition 5.1 may also be used to show that the Farey shadows of the convergents of the golden ratio satisfy ˆFn`1

F n ˙FS " $ & % `Fn`1
Fn ˘ES , n even, `Fn`1

Fn ˘OS , n odd. This proves (4.3).

Remark 5.3. The different approaches of [START_REF] Musiker | Double dimer covers on snake graphs from super cluster expansions[END_REF] and [START_REF] Ovsienko | Shadow sequences of integers, from Fibonacci to Markov and back[END_REF] both lead to the sequence A001629, the selfconvolution of the Fibonacci sequence. A054454 is related to A001629 by lacunary summation: pA054454q n " pA001629q n `pA001629q n´2 `pA001629q n´4 `¨¨¨.

Alternative initial vectors

Recall from Definition 2.1 and (3.10) that the supersymmetric continued fraction ta 1 , . . . , a n u is defined for n " 2m and n " 2m `1, respectively, via the quantities

R a1 L a2 ¨¨¨R a2m´1 L a2m e 1 " p´1q p n`1 2 q ´n ź j"1 `SL p´1q j aj ˘¯e 1 , R a1 L a2 ¨¨¨L a2m R a2m`1 e 2 " p´1q p n`1 2 q ´n ź j"1 `SL p´1q j aj ˘¯e 1 ,
where e 1 , e 2 , and e 3 denote the standard basis of the 3-vectors. The second equality holds because SL ´a2m`1 e 1 " R a2m`1 Se 1 " ´Ra2m`1 e 2 .

As discussed in Section 1.7, modifying the initial vectors e 1 and e 2 on the left sides of (2.1) and (2.2) would yield a different definition of ta 1 , . . . , a n u. Recall from Section 1.2 the projection from R to Z. In order to produce alternative candidates for shadows of classical continued fractions, we only permit modifications such that the new ta 1 , . . . , a n u still projects to the classical ra 1 , . . . , a n s. This translates to the requirement that the modified initial vectors in R 2|1 project to e 1 and e 2 in Z 2 . Using projective equivalence to rescale, we arrive at the candidates for initial vectors given in (1.8):

p1 `aξηqe 1 `bξηe 2 `αe 3 , cξηe 1 `p1 ´aξηqe 2 `βe 3 ,
where a, b, and c are in Z and α and β are in R1. There are two particular choices we wish to point out.

We describe what seems to us to be the less important choice first, as it can be dispensed with quickly, and the more important choice involves a restriction of the overall set of candidates.

6.1. Even-odd accordance. We have seen that under our choice pe 1 , e 2 q of the initial vectors, the even and odd shadows of a given rational may differ. However, as demonstrated by the following proposition, they become the same if we take as initial vectors e 1 ´ηe 3 and e 2 ´ξe 3 . Moreover, this seems to be the only choice with this property. Proposition 6.1. If ra 1 , a 2 , . . . , a 2m s " ra 1 1 , a 1 2 , . . . , a 1 2m˘1 s, then

R a1 L a2 ¨¨¨R a2m´1 L a2m pe 1 ´ηe 3 q " R a 1 1 L a 1 2 ¨¨¨R a 1 2m˘1 pe 2 ´ξe 3 q.
Taking into account (1.5), the proof reduces to the observation that Lpe 1 ´ηe 3 q and Rpe 2 ´ξe 3 q are equal: both are e 1 `e2 . 6.2. An elegant choice. Consider now initial vectors pw 1 , w 2 q such that w 2 " ´Sw 1 . Here we find

R a1 L a2 ¨¨¨R a2m´1 L a2m w 1 " p´1q p 2m`1 2 q ´2m ź j"1 `SL p´1q j aj ˘¯w 1 , R a1 L a2 ¨¨¨L a2m R a2m`1 w 2 " p´1q p 2m`2 2 q ´2m`1 ź j"1
`SL p´1q j aj ˘¯w 1 .

Thus we obtain a unified expression for the 3-vector used to define the supersymmetric continued fraction, independent of the parity of n, just as we did in (3.10) for the initial vectors pe 1 , e 2 q. Indeed, (3.10) holds precisely because e 1 and e 2 also satisfy e 2 " ´Se 1 . It seems to us natural to admit only such choices. Among all such choices, the following seems to yield the most elegant definition of ta 1 , . . . , a n u: Let us write ta 1 , . . . , a n u w for the corresponding definition of the supersymmetric continued fraction, the ratio of the first two entries of this vector. Because ξη has square zero, it may be written as ta 1 , . . . , a n u w " p1 `ξηEqK 1,n p1 `ξηEqK 2,n " p1 `ξηEq ´K1,n K 2,n ¯" p1 `ξηEqra 1 , . . . , a n s, E being the Euler operator (3.4). Thus here the supersymmetric continued fraction is simply the operator (6.2) 1 `ξηE " exppξηEq applied to the classical continued fraction. We plan to investigate this further in future work.

w 1 :" e 1 `ξe

Discussion

In conclusion, we formulate a few additional conjectures, questions, and directions for further research.

7.1. Properties of shadow functions. Recall from Definition 1.3 the shadow function x Þ Ñ pxq S from the irrational reals to the reals. Is it continuous? Based on computer experimentation, we conjecture that it is. On the other hand, it is easy to check that the shadow functions ES : Q Ñ Q and OS : Q Ñ Q are discontinuous. For instance, the sequence `2 `1 n ˘OS tends to 2, but p2q OS " 0.

Another question concerns the iteration of the shadow function S. Given an irrational x, is Spxq again irrational? If so, does the sequence S n pxq converge? 7.2. Even versus odd. We conjecture that for every rational p q , one has ´p q ¯ES ě ´p q ¯FS ě ´p q ¯OS . This is also supported by computer experiments. For instance, for every rational in Figures 2.1 and 2.2, one finds that ´p q ¯ES ą ´p q ¯OS .

We expect that this strict inequality holds for every p q .

7.3. Towards a supersymmetric modular group. The orthosymplectic group OSpp1|2, Zq is the semidirect product of SLp2, Zq acting on an integral Heisenberg group. Indeed, the reader may verify the following lemmas. where E is any integral 2 ˆ2 matrix of trace zero, ν " pν 1 , ν 2 q T is any 2-vector with entries in R1, M is any element of SLp2, Zq, and S is the 2 ˆ2 matrix in (5.1).

Lemma 7.2. The projection OSpp1|2, Zq ↠ SLp2, Zq defined in Section 1.2 has the following properties: (i) It maps (7.1) to M .

(ii) Its kernel H is the set of products of the first two types of factors of (7.1).

(iii) The center ZpHq of H is the set of factors of (7.1) of the first type.

For reference, we describe multiplication in H. Write Opνq for the second factor of (7.1).

Lemma 7.3. For arbitrary 2-vectors ν and ω with entries in R1,

OpνqOpωq " ˆI `1 2 pνω T ´ων T qS 0 0 1 ˙Opν `ωq.

In this article, OSpp1|2, Zq has played the role played by the modular group in the classical setting. We are interested in this analogy. For example, are there distinguished sets of generators of OSpp1|2, Zq? As an initial observation in this direction, we mention that it is generated by the four matrices U, V, S, and Opξe 1 q.
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We will also need the Euler operator E:

(3.4) E :"

Definition 3.1. The shadowed continuant K n is the polynomial K n pa 1 , . . . , a n q :" K n pa 1 , . . . , a n q `ξηpE ´1qK 0 n pa 1 , . . . , a n q. Write K 1 n for the "shadow part" of K n , the coefficient of ξη. Thus K n " K n `ξηK 1 n , where (3.5) K 1 n pa 1 , . . . , a n q " pE ´1qK 0 n pa 1 , . . . , a n q " EK n pa 1 , . . . , a n q ´K0 n pa 1 , . . . , a n q. Lemma 3.2. One has the following recurrence relations for K 1 and K:

n pa 1 , . . . , a n q " a 1 K 1 n´1 pa 2 , . . . , a n q `K1 n´2 pa 3 , . . . , a n q `a1 K 0 n´1 pa 2 , . . . , a n q, (3.6) K n pa 1 , . . . , a n q " a 1 K n´1 pa 2 , . . . , a n q `Kn´2 pa 3 , . . . , a n q `a1 ξηK 0 n´1 pa 2 , . . . , a n q. (3.7)

Proof. It suffices to note that the product rule coupled with (3.2) gives a recurrence for EK n :

EK n pa 1 , . . . , a n q " a 1 K n´1 pa 2 , . . . , a n q `a1 EK n´1 pa 2 , . . . , a n q `EK n´2 pa 3 , . . . , a n q. □ In degree k ě 2, the shadow part contains the same monomials a i1 ¨¨¨a i k as the classical continuant, but with coefficient pk ´1q. For example,

3 pa 1 , a 2 , a 3 q " 2a 1 a 2 a 3 , K 1 4 pa 1 , . . . , a 4 q " a 1 a 2 `a1 a 4 `a3 a 4 `3a 1 a 2 a 3 a 4 , K 1 5 pa 1 , . . . , a 5 q " 2a 1 a 2 a 3 `2a 1 a 2 a 5 `2a 1 a 4 a 5 `2a 3 a 4 a 5 `4a 1 a 2 a 3 a 4 a 5 . Remark 3.3. The shadowed continuant K n pa 1 , . . . , a n q is a special instance of the supercontinuant K `a1 β1 β1 | . . . | an βn βn ˘of Ustinov [START_REF] Morier-Genoud | Introducing supersymmetric frieze patterns and linear difference operators. With an appendix by Alexey Ustinov[END_REF][START_REF] Ustinov | Supercontinuants[END_REF], obtained by substituting

Therefore, Ustinov's determinant formulas and combinatorial algorithm can be applied to K n .

3.3. Explicit formulas. An analogue of the classical formula (3.3) holds for shadowed continued fractions:

Theorem 3.4. The supersymmetric continued fraction is a quotient of shadowed continuants: ta 1 , . . . , a n u " K n pa 1 , . . . , a n q K n´1 pa 2 , . . . , a n q .

Before beginning the proof we introduce an enlargement of OSpp1|2, Zq, and also a convenient shorthand notation for continuants: Definition 3.5. Let τ be the automorphism of the underlying coordinate ring (1.1) defined by (3.8) τ : Zrξ, ηs Ñ Zrξ, ηs, η Þ Ñ ξ Þ Ñ ´η.

Recall from (1.7) the element S of OSpp1|2, Zq, and set (3.9) S :" τ ˝S " S ˝τ.

Lemma 3.6.

(i) τ is the identity on even elements, τ 2 is the sign map, and τ 4 " 1.