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SHADOWS OF RATIONALS AND IRRATIONALS:

SUPERSYMMETRIC CONTINUED FRACTIONS

AND THE SUPER MODULAR GROUP

CHARLES H. CONLEY AND VALENTIN OVSIENKO

Abstract. This paper is an attempt to apply the tools of supergeometry to arithmetic. Supergeometric
objects are defined over supercommutative rings of coefficients, and we consider an integral ring with

exactly two odd variables. In this case the even quantities, such as numbers and continued fractions,

are “doubled”, having both a classical and a nilpotent part. We refer to the nilpotent part as the
“shadow”. We investigate the notions of supersymmetric continued fractions and the orthosymplectic

modular group and make some initial steps toward studying their properties.
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1. Introduction

In supergeometry, Lie supergroups and other geometric objects are considered over a Z2-graded ring
R “ R0̄ ‘ R1̄ of coefficients. This ring, however, usually remains unspecified. This is perhaps the
reason for which supergeometry rarely produces concrete numeric sequences. (There are exceptions. For
example, in [4], pp. 21–22, the ring Rrη1, . . . , ηLs with finitely many “auxiliary odd parameters” was
considered.)

The idea of the “shadow” of a number [15] arose from supergeometry and cluster superalgebras (cf. [14,
16, 17]). Suppose that the odd part of R contains exactly two generators, say ξ and η. One example of
such a ring is the following superextension of the integers, the ring of coordinates on Z1|2:

(1.1) R “ pZ ‘ Zξηq ‘ pZξ ‘ Zηq.

This is the “minimal” choice of the ring of coefficients in which an even variable A may have a non-trivial
nilpotent part: A “ a`a1ξη. In this situation, any natural procedure or algorithm acting on an integer a
will produce a sequence or quantity having not only a classical part, but also an even nilpotent part, the
shadow. The notion of shadows was recently tested in [6, 20], where the idea was applied to sequences of
integers in the context of algebraic geometry and number theory.

The main goal of this paper is to introduce a notion of supersymmetric continued fractions, together
with the corresponding Farey tree. This allows one to calculate the shadows of rational numbers. The
property of convergence of continued fractions then extends the definition of shadows to irrationals. It is
amusing to note that a rational number may have multiple shadows, while an irrational number seems to
have only one. It is difficult to say at this stage if these “super” continued fractions will have applications,
but their properties are quite nice and the explicit formulas are harmonious.

The second goal of this paper, closely related to the first, is to study the notion of the “super modular
group”, by which we mean the supergroup OSpp1|2q with coefficients in the ring (1.1). We denote this
group by OSpp1|2,Zq.

Let us note that the recent work [12] exploits related ideas applied to hyperbolic geometry and com-
binatorics. We were not aware of this reference while working on the present paper.

1.1. Continued fractions. The regular finite continued fraction ra1, . . . , ans is the expression

(1.2) ra1, . . . , ans :“ a1 `
1

a2 `
1

. . . `
1

an

,

where ai P Zą0 for all i ą 1. Every rational number has exactly two finite continued fraction expansions.
This is due to the ambiguity ra1, . . . , ans “ ra1, . . . , an ´ 1, 1s for an ě 2: the length n in (1.2) may be
taken to be either even or odd.

Consider the well-known triangular generators of the modular group SLp2,Zq:

R “

ˆ

1 1

0 1

˙

, L “

ˆ

1 0

1 1

˙

.

The continued fraction (1.2) corresponds to the word Ra1La2Ra3 ¨ ¨ ¨ in R and L in the following sense.
Suppose that p

q is a rational number in reduced form, and ra1, . . . , ans is one of its two continued fraction
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expansions. Then if n is even, say n “ 2m, we have

(1.3)

ˆ

p

q

˙

“ Ra1La2 ¨ ¨ ¨Ra2m´1La2m

ˆ

1

0

˙

,

while if n is odd, say n “ 2m ` 1, we have

(1.4)

ˆ

p

q

˙

“ Ra1La2 ¨ ¨ ¨La2mRa2m`1

ˆ

0

1

˙

.

Now consider the 3 ˆ 3 matrices

(1.5) R “

¨

˚

˝

1 1 ξ

0 1 0

0 ξ 1

˛

‹

‚

, L “

¨

˚

˝

1 0 0

1 1 ´η

η 0 1

˛

‹

‚

,

where ξ and η are Grassmann variables, i.e.,

ξ2 “ ξη ` ηξ “ η2 “ 0.

These matrices belong to OSpp1|2,Zq, and they seem to be the most natural superanalogues of R and
L. They have frequently appeared in the literature; for instance, R was understood as the translation
operator in [18].

In our definition of supersymmetric continued fractions, we replace the matrices R and L in (1.3) and
(1.4) by R and L, apply the resulting words in R and L to the vectors p1, 0, 0qt and p0, 1, 0qt, respectively,
and take the quotient of the two even coordinates. This gives what we call the (finite) “supersymmetric
continued fraction”,

ta1, . . . , anu “ ra1, . . . , ans ` ra1, . . . , ansS ξη.

We refer to the coefficient in the nilpotent part, ra1, . . . , ansS, as the shadow of ra1, . . . , ans. Our main
result is the following convergence property, which allows us to extend the notion of shadows to irrationals.

Theorem 1.1. For any integer sequence a1, a2, a3, . . . such that a1 ě 0 and ai ě 1 for i ą 1, the rational
sequence ra1, a2, a3, . . . , ansS converges. Furthermore, the limit is positive if and only if a1 ě 1.

Let x be an irrational number with continued fraction expansion ra1, a2, a3, . . .s. We define the shadow
pxqS of x to be

pxqS :“ lim
nÑ8

ra1, a2, a3, . . . , ansS .

Theorem 1.1 is proven in Section 4.3. Its proof, like its statement, closely parallels the classical case.

1.2. Two shadows of rationals. Consider a rational number with reduced expression p
q . As noted

earlier, it has two continued fraction expansions:

(1.6)
p

q
“ ra1, . . . , ans “ ra1, . . . , an´1 ´ 1, 1s.

The corresponding supersymmetric continued fractions give two different shadows, ra1, . . . , ansS and
ra1, . . . , an´1 ´1, 1sS, which we call the even and odd shadows of p

q , according to their length. We denote

them by
`

p
q

˘

ES
and

`

p
q

˘

OS
. Both are rational numbers, but they have quite different properties; see

Sections 2.3 and 4.2.
One heuristic property the even and odd shadows appear to have in common is a certain “fractal

nature” of the functions ES : Q Ñ Q and OS : Q Ñ Q. Computer experiments suggest that they are
neither continuous nor monotonic. Some examples are given in Section 2.2. In view of these observations,
the convergence of Theorem 1.1 seems particularly surprising.

It may appear strange that rational numbers have several different shadows, while irrationals seem to
have only one. In fact, a similar phenomenon occurs for q-deformations, as noticed in [9] and explained
in [1].
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1.3. Continuant polynomials. Classical continued fractions are related to certain remarkable polyno-
mials in several variables, Knpa1, . . . , anq, known as continuants. Indeed, taking a1, . . . , an in (1.2) as
variables, the continued fraction is given by the quotient of two continuants; see [5, 2] and Section 3.1.

Supersymmetric continued fractions may also be written as quotients of polynomials:

ta1, . . . , anu “
Knpa1, . . . , anq

Kn´1pa2, . . . , anq
,

where Knpa1, . . . , anq “ Knpa1, . . . , anq ` K 1
npa1, . . . , anqξη. The “shadow” part, K 1

n, is a weighted
version of Kn. In Section 3.3 we derive its explicit formula. This allows us to deduce several properties
of supersymmetric continued fractions, including our convergence result.

The shadowed continuants connect the present paper to [10, 19]. Indeed, the polynomials Kn are
special cases of the supercontinuants arising from the notion of frieze patterns.

1.4. The Farey tree. The Farey (or Stern-Brocot) tree is a beautiful way to visualize the set of rational
numbers, completed with infinity, represented by 1

0 . Each rational appears exactly once, labelling the
connected components of the planar complement of the tree. In addition to continued fractions, the Farey
tree is related to hyperbolic geometry and many other subjects.

Our definition of the super (or “shadowed”) Farey tree begins with the following initial “fishbone”
diagram:

(1.7) ´1
1
η

1 ‚ 0
0 1
0 ‚ 0

1
1
ξ

This is justified by the fact that OSpp1|2q acts 3|2-transitively on the projective line P1|1; see [8]. Therefore
any three points of P1|1 may be sent to the set

␣

p1 : 0 : 0q, p0 : 1 : 0q, p1 : 1 : ξq
(

,

where ξ an odd, or Grassmann, parameter. We introduce the second parameter η in a symmetric manner.
It turns out that the diagram (1.7) has a symmetry described by the matrices

(1.8) U “

¨

˚

˝

0 1 0

´1 ´1 η

0 ´η 1

˛

‹

‚

, V “

¨

˚

˝

´1 1 ξ

´1 0 0

´ξ 0 1

˛

‹

‚

.

They are related to R and L via

(1.9) V “ RS, U “ L´1S, where S “

¨

˚

˝

0 1 0

´1 0 0

0 0 1

˛

‹

‚

.

Let us mention that the matrices of this form were understood in [10] as superanalogues of the discrete
Sturm-Liouville operator.
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2. Supersymmetric continued fractions and their simplest properties

In this section we give a more detailed definition of the supersymmetric, or “shadowed”, continued
fraction. We then define the even and odd shadows of a rational number and describe some of their
general properties.

2.1. Definitions and notations. Consider a classical continued fraction, ra1, . . . , ans “
p
q , where as

usual the ai are positive integers for i ą 1 and p
q is given in reduced terms. We define the supersymmetric

continued fraction ta1, . . . , anu in terms of the matrices R and L given in (1.5):

Definition 2.1. Define integers p1, q1, λ, and µ via the following equations. For n “ 2m even, set

(2.1) Ra1La2 ¨ ¨ ¨Ra2m´1La2m

¨

˝

1
0
0

˛

‚“

¨

˝

p ` p1ξη
q ` q1ξη
λξ ` µη

˛

‚.

For n “ 2m ` 1 odd, set

(2.2) Ra1La2 ¨ ¨ ¨La2mRa2m`1

¨

˝

0
1
0

˛

‚“

¨

˝

p ` p1ξη
q ` q1ξη
λξ ` µη

˛

‚.

For all n, set

(2.3) ta1, . . . , anu :“
p ` p1ξη

q ` p1ξη
“

p

q
`

p1q ´ pq1

q2
ξη.

The coefficient of ξη is then the shadow of the supersymmetric continued fraction:

(2.4) ra1, . . . , ansS :“
p1q ´ pq1

q2
.

We also define the even and odd shadows of the rational p
q , written as

´p

q

¯

ES
,

´p

q

¯

OS
.

They are the shadows of the even and odd supersymmetric continued fractions coming from (1.6): one
of them is ra1, . . . , ansS, and the other is ra1, . . . , an´1 ´ 1, 1sS, which is which being determined by the
parity of n. In general, they are different.

Example 2.2. To give a simple example, consider 5
2 “ r2, 2s “ r2, 1, 1s. One finds that

R2L2

¨

˝

1
0
0

˛

‚“

¨

˝

5 ` 4ξη
2

4ξ ` 2η

˛

‚, R2LR

¨

˝

0
1
0

˛

‚“

¨

˝

5 ` 4ξη
2 ` ξη
5ξ ` η

˛

‚.

The two quotients

t2, 2u “
5 ` 4ξη

2
“

5

2
` 2ξη, t2, 1, 1u “

5 ` 4ξη

2 ` ξη
“

5

2
`

3

4
ξη

give the shadows
`

5
2

˘

ES
“ 2 and

`

5
2

˘

OS
“ 3

4 .

2.2. Small examples. The even and odd shadows of all rationals 1 ď
p
q ď 2 with denominators q ď 12

are depicted in Figs. 2.1 and 2.2, respectively. Note that the values seem to be increasingly “fractal” as
q grows.
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Figure 2.1. Even shadows of small rationals.

Figure 2.2. Odd shadows of small rationals.

2.3. Translation invariance and shadows of integers. The even shadow is translation-invariant, but
the odd shadow is not.

Proposition 2.3. One has
´p

q
` 1

¯

ES
“

´p

q

¯

ES
` 1.
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Proof. Let us calculate how the operator R changes the shadow of a rational. Apply it to an arbitrary
vector:

(2.5)

¨

˚

˝

1 1 ξ

0 1 0

0 ξ 1

˛

‹

‚

¨

˚

˝

p ` p1ξη

q ` q1ξη

λξ ` µη

˛

‹

‚

“

¨

˚

˝

p ` q ` pp1 ` q1 ` µqξη

q ` q1ξη

pλ ` qqξ ` µη

˛

‹

‚

.

Recall the quotient (2.3) defining the supersymmetric continued fraction. The quotient corresponding to
the right hand side of (2.5) is

p ` q

q
`

pp ` qqq1 ´ pp1 ` q1 ` µqq

q2
ξη “

p ` q

q
`

p1q ´ pq1

q2
ξη `

µ

q
ξη.

Thus R changes the shadow
`

p
q

˘

ES
by adding µ

q . The equation (2.5) also shows that R does not change
q or µ.

Now consider the action of L. Check that if q and µ are equal before applying L, they remain equal
afterward:

¨

˚

˝

1 0 0

1 1 ´η

η 0 1

˛

‹

‚

¨

˚

˝

p ` p1ξη

q ` q1ξη

λξ ` µη

˛

‹

‚

“

¨

˚

˝

p ` p1ξη

p ` q ` pp1 ` q1 ` λqξη

λξ ` pp ` µqη

˛

‹

‚

.

It follows by induction that in all the partial products of (2.1), the coefficients µ and q are equal. In
particular, the even supersymmetric continued fractions ta1, a2, . . . , a2mu and ta1`1, a2, . . . , a2mu indeed
differ by 1. □

Coupling Proposition 2.3 with Theorem 1.1 gives the following corollary.

Corollary 2.4. If x is any positive irrational, then px ` 1qS “ pxqS ` 1.

Translation-invariance does not hold for odd shadows. For instance,
`

5
2

˘

OS
“ 3

4 , but
`

7
2

˘

OS
“ 5

4 . As
regards integers, a short computation gives

(2.6) pnqES “ n ´ 1, pnqOS “ 0.

2.4. Accordance between even and odd continued fractions. Suppose that ra1, a2, . . . , a2ms and
ra1

1, a
1
2, . . . , a

1
2m˘1s are even and odd continued fractions representing the same rational. Under our choice

of the initial vectors in Definition 2.1, the corresponding even and odd supersymmetric continued fractions
may differ. However, as demonstrated by the following proposition, there is a different choice of the initial
vectors under which the even and odd supersymmetric continued fractions are the same.

Proposition 2.5. If ra1, a2, . . . , a2ms “ ra1
1, a

1
2, . . . , a

1
2m˘1s, then

Ra1La2 ¨ ¨ ¨Ra2m´1La2m

¨

˝

1
0

´η

˛

‚“ Ra1
1La1

2 ¨ ¨ ¨La1
2mRa1

2m˘1

¨

˝

0
1

´ξ

˛

‚.

The proof reduces to the observation that Lpe1 ´ ηe3q and Rpe2 ´ ξe3q are equal: both are e1 ` e2.
(Here we write ei for the standard basis vectors.) But although the argument is simple, we do not yet
have a conceptual understanding of the result. It may be that these new initial vectors and the associated
accordance of the even and odd supersymmetric continued fractions have a deeper significance.

3. Analytic formulas for continued fractions

Our next goal is to give an explicit formula for supersymmetric continued fractions. As in the classical
case, the main ingredient is the continuant polynomial. We calculate the “shadowed continuant” arising
from supersymmetric continued fractions.
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3.1. Euler’s continuants. Recall that classical continued fractions (1.2) may be expressed in terms of
the continuant polynomial Knpa1, . . . , anq, defined as the n ˆ n determinant

(3.1) Knpa1, . . . , anq :“ det

¨

˚

˚

˚

˚

˚

˚

˚

˝

a1 1

´1 a2 1

. . .
. . .

. . .

´1 an´1 1

´1 an

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

The first few continuants are

K0 “ 1,

K1pa1q “ a1,

K2pa1, a2q “ 1 ` a1a2,

K3pa1, a2, a3q “ a1 ` a3 ` a1a2a3,

K4pa1, a2, a3, a4q “ 1 ` a1a2 ` a1a4 ` a3a4 ` a1a2a3a4.

They satisfy the recurrence formula

(3.2) Knpa1, . . . , anq “ a1Kn´1pa2, . . . , anq ` Kn´2pa3, . . . , anq,

which is equivalent to the fact that their quotients are the classical continued fractions:

(3.3) ra1, . . . , ans “
Knpa1, . . . , anq

Kn´1pa2, . . . , anq
.

Continuants have been studied since the time of Euler [3] and have many beautiful properties [5, 2].

3.2. The shadowed continuant.

Definition 3.1. The shadowed continuant Kn is the polynomial in n commuting variables a1, . . . , an
and two Grassmann variables ξ, η given by

(3.4) Knpa1, . . . , anq “

# `

1 ` ξηpE ´ 1q
˘

Knpa1, . . . , anq ` ξη, n even,
`

1 ` ξηpE ´ 1q
˘

Knpa1, . . . , anq, n odd.

Here E is the Euler operator:

(3.5)
ÿ

i

E “ ai
B

Bai
.

Equivalently,

(3.6) Knpa1, . . . , anq “ Knpa1, . . . , anq ` ξηK 1
npa1, . . . , anq,

where the “shadow part” is

(3.7) K 1
npa1, . . . , anq “

#

pE ´ 1qKnpa1, . . . , anq ` 1, n even,

pE ´ 1qKnpa1, . . . , anq, n odd.
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In degree k ě 2, the shadow part contains the same monomials ai1 ¨ ¨ ¨ aik as the classical continuant,
but with coefficient pk ´ 1q. For example,

K 1
0 “ 0,

K 1
1pa1q “ 0,

K 1
2pa1, a2q “ a1a2,

K 1
3pa1, a2, a3q “ 2a1a2a3,

K 1
4pa1, . . . , a4q “ a1a2 ` a1a4 ` a3a4 ` 3a1a2a3a4,

K 1
5pa1, . . . , a5q “ 2a1a2a3 ` 2a1a2a5 ` 2a1a4a5 ` 2a3a4a5 ` 4a1a2a3a4a5.

Remark 3.2. The shadowed continuant Knpa1, . . . , anq is a special instance of the supercontinuant
K
` a1

β1 β1
| . . . |

an

βn βn

˘

of Ustinov [10, 19], obtained by substituting

β2i`1 “ p´1qia2i`1ξ, β2i “ p´1qi`1a2iη.

Therefore, Ustinov’s determinant formulas and combinatorial algorithm can be applied to Knpa1, . . . , anq.

3.3. Continued fractions, explicitly. An analogue of the classical formula (3.3) holds for both even
and odd shadowed continued fractions:

Theorem 3.3. The supersymmetric continued fraction is a quotient of shadowed continuants:

(3.8) ta1, . . . , anu “
Knpa1, . . . , anq

Kn´1pa2, . . . , anq
.

Proof. We will need the following linear recurrence relation. Its proof is a short exercise combining (3.2)
with the definition of Kn.

Lemma 3.4. One has

(3.9) Knpa1, . . . , anq “

#

a1Kn´1pa2, . . . , anqp1 ` ξηq ` Kn´2pa3, . . . , anq, n even,

a1Kn´1pa2, . . . , anqp1 ` ξηq ` Kn´2pa3, . . . , anq ´ a1ξη, n odd.

In order to give an alternate formulation of this lemma, let n denote n modulo 2, i.e.,

n :“
!

0 if n is even,
1 if n is odd.

The shadow part of (3.9) is equivalent to

(3.10) K 1
npa1, . . . , anq “ a1Kn´1pa2, . . . , anq ` a1K

1
n´1pa2, . . . , anq ` K 1

n´2pa3, . . . , anq ´ a1n.

We will outline the proof of the theorem in the case that n “ 2m is even, leaving the remaining details
to the reader. Consider the matrices

Ak “

¨

˚

˝

k 1 kξ

1 0 0

kξ 0 1

˛

‹

‚

, Bℓ “

¨

˚

˝

ℓ 1 ´ℓη

1 0 0

ℓη 0 1

˛

‹

‚

, S̃ “

¨

˚

˝

0 1 0

1 0 0

0 0 1

˛

‹

‚

.

Note that Ak “ RkS̃ and Bℓ “ S̃Lℓ. These two sequences of matrices encode the recurrence (3.9).

Because S̃2 “ I, we have RkLℓ “ AkBℓ, and so

Ra1La2 ¨ ¨ ¨Ra2m´1La2m “ Aa1
Ba2

¨ ¨ ¨Aa2m´1
Ba2m

.
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Using (3.9), one proves by induction that Aa1
Ba2

¨ ¨ ¨Aa2m´1
Ba2m

is equal to
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

K2mpa1, a2, . . . , a2mq K2m´1pa1, a2, . . . , a2m´1q
´pK2mpa1, a2, . . . , a2mq ´ 1qη

`K2m´1pa1, a2, . . . , a2m´1qξ

K2m´1pa2, . . . , a2mq K2m´2pa2, . . . , a2m´1q
pK2m´2pa2, . . . , a2m´1q ´ 1qξ

´K2m´1pa2, . . . , a2mqη

pK2mpa1, a2, . . . , a2mq ´ 1qξ

`K2m´1pa2, . . . , a2mqη

K2m´1pa1, a2, . . . , a2m´1qξ

`pK2m´2pa2, . . . , a2m´1q ´ 1qη
1 ´

pK2mpa1, a2, . . . , a2mq

`K2m´2pa2, . . . , a2m´1q ´ 2qξη

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

This leads to the statement of Theorem 3.3. □

Remark 3.5. The coefficient 1 ` ξη appearing in (3.9) is reminiscent of the coefficient 1 ` ξiξj in the
exchange relations formula in [16]; see Eq. (2). It would be interesting to establish a direct relation
between (3.9) and the version of cluster superalgebras developed in [16].

4. Positivity, localization, and convergence

In this section we apply (3.8) to prove various properties of supersymmetric continued fractions.

4.1. Positivity. This section concerns the positivity of the even and odd shadows
`

p
q

˘

ES
and

`

p
q

˘

OS
of

non-integral positive rationals p
q . (For the integral case, see (2.6).)

Theorem 4.1. (i) For p
q ą 1 and non-integral, both

`

p
q

˘

ES
and

`

p
q

˘

OS
are positive rationals.

(ii) For 0 ă
p
q ă 1, both

`

p
q

˘

ES
and

`

p
q

˘

OS
are negative rationals.

Proof. We will need the following technical lemma.

Lemma 4.2. For all positive integers a1, . . . , an, n ě 2, the following determinant is positive:

Dnpa1, . . . , anq :“ det

˜

K 1
npa1, . . . , anq Knpa1, . . . , anq

K 1
n´1pa2, . . . , anq Kn´1pa2, . . . , anq

¸

.

Proof of the lemma. In this proof, let Kn´r denote Kn´rpar`1, . . . , anq, and similarly for Dn´r. For
n ě 2, (3.2) and (3.10) imply that

(4.1) Dn “ a1Kn´1pKn´1 ´ nq ´ Dn´1,

where n denotes n modulo 2, as earlier. This gives the alternating sum

Dn “ a1Kn´1pKn´1 ´ nq ´ a2Kn´2pKn´2 ` n ´ 1q ` a3Kn´3pKn´3 ´ nq ´ ¨ ¨ ¨ ,

the last term in the sum being D2 if n is even and D3 if n is odd. Note that both D2 and D3 are positive:

D2 “ a1a
2
2, D3 “ a2a3

`

a1 ` a3pa1a2 ´ 1q
˘

.

We will show that each pair of consecutive terms in this alternating sum is positive, proving the lemma.
It suffices to treat the first two terms. If n is even, they are

a1K
2
n´1 ´ a2K

2
n´2 ` a2Kn´2 “ a1pa2Kn´2 ` Kn´3q2 ´ a2K

2
n´2 ` a2Kn´2.

The ai are all positive integers, so this is positive. On the other hand, if n is odd, the first two terms are

a1Kn´1pKn´1 ´ 1q ´ a2K
2
n´2 “ a1pa2Kn´2 ` Kn´3qpa2Kn´2 ` Kn´3 ´ 1q ´ a2K

2
n´2,

which is again positive, because n ´ 3 even implies that Kn´3 ´ 1 is non-negative. □
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We now prove Theorem 4.1. For n ě 2, it follows from (3.8) that the shadow of an arbitrary continued
fraction ra1, . . . , ans is given by

ra1, . . . , ansS “
Dnpa1, . . . , anq

Kn´1pa2, . . . , anq2
.

Therefore Part (i) is a direct consequence of Lemma 4.2. For Part (ii), observe that 0 ă ra1, . . . , ans ă 1
implies a1 “ 0, and so (4.1) becomes Dnpa1, . . . , anq “ ´Dn´1pa2, . . . , anq. This completes the proof. □

4.2. Localization. For even shadows, the following strengthening of Theorem 4.1 is immediate from
Proposition 2.3. Note that it does not extend to odd shadows; for example,

`

7
2

˘

OS
“ 5

4 .

Corollary 4.3. For every rational p
q in the interval rn, n ` 1s, the even shadow

`

p
q

˘

ES
is in rn ´ 1, ns.

4.3. Convergence. We are now prepared to prove Theorem 1.1. Let a1, a2, . . . be a sequence of integers
such that a1 ě 0 and ai ě 1 for i ą 1, and let

Xn “ ta1, a2, . . . , anu “ ra1, a2, . . . , ans ` ξηra1, a2, . . . , ansS

be the nth convergent of the corresponding supersymmetric continued fraction. Write Xn “ xn ` x1
nξη,

where xn “ ra1, a2, . . . , ans is the classical continued fraction and x1
n “ ra1, a2, . . . , ansS is its shadow.

We must prove that the sequence px1
nq converges. Recall the Euler vector field E defined in (3.5).

Lemma 4.4. One has

ra1, a2, . . . , ansS “ E
ˆ

Knpa1, . . . , anq

Kn´1pa2, . . . , anq

˙

`
1 ´ n

Kn´1pa2, . . . , anq
´

nKnpa1, . . . , anq

Kn´1pa2, . . . , anq2
.

Proof. By (3.8) and (3.6),

ra1, . . . , ansS “
K 1

npa1, . . . , anq

Kn´1pa2, . . . , anq
´

Knpa1, . . . , anqK 1
n´1pa2, . . . , anq

Kn´1pa2, . . . , anq2
.

From here, compute using (3.7) and the quotient rule. □

Now consider x1
n ´ x1

n´1. It is well-known that the classical continuants satisfy the identity

Knpa1, . . . , anqKn´2pa2, . . . , an´1q ´ Kn´1pa1, . . . , an´1qKn´1pa2, . . . , anq “ p´1qn.

Therefore the difference of the two terms involving E simplifies:

(4.2) E
ˆ

Knpa1, . . . , anq

Kn´1pa2, . . . , anq
´

Kn´1pa1, . . . , an´1q

Kn´2pa2, . . . , an´1q

˙

“ E
ˆ

p´1qn

Kn´1pa2, . . . , anqKn´2pa2, . . . , an´1q

˙

.

Lemma 4.5. There is a constant C such that |x1
n ´ x1

n´1| ď Cpa1 ` 1qφ´n, where φ is the golden ratio.

Proof. First let us prove that there is a constant C such that (4.2) ď Cnφ´2n. Rewrite it as

p´1qn´1 E
`

Kn´1pa2, . . . , anqKn´2pa2, . . . , an´1q
˘

`

Kn´1pa2, . . . , anqKn´2pa2, . . . , an´1q
˘2 .

Recall that a2, . . . , an are positive integers. Because Kn is of degree n,

E
`

Kn´1pa2, . . . , anqKn´2pa2, . . . , an´1q
˘

ď p2n ´ 3qKn´1pa2, . . . , anqKn´2pa2, . . . , an´1q.

Let Fn be the Fibonacci sequence, beginning from F0 “ 1. Elementary arguments show that Kn is a
sum of Fn monomials. Therefore

Kn´1pa2, . . . , anqKn´2pa2, . . . , an´1q ě Fn´1Fn´2,

giving the stated bound for (4.2).
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Next, note that the term in x1
n with denominator Kpa2, . . . , anq is of order φ´n. Finally, apply (3.2)

to deduce that the term in x1
n with denominator Kpa2, . . . , anq2 and numerator containing Kpa1, . . . , anq

is of order pa1 ` 1qφ´n. The lemma follows. (We add 1 to a1 here because a1 may be 0.) □

Theorem 1.1 follows from this lemma and Theorem 4.1.

Remark 4.6. The same argument used in the classical case shows that the difference x1
n ´ x1

n´2 is
positive if n is odd and negative if n is even.

4.4. Concrete examples. Here we give numerical approximations of two shadows of irrationals.

Example 4.7. The simplest infinite continued fraction is the golden ratio,

φ “
1 `

?
5

2
“ r1, 1, 1, . . .s.

Computation suggests that its shadow is

pφqS “
5 `

?
5

10
“

1

1 ` φ
.

Compare this prediction to Corollary 5.2.

The shadows of the convergents are presented in Fig. 4.1. The sequence converges quickly and appar-
ently monotonically, in contrast with the (rather fractal) figures 2.1 and 2.2.

Figure 4.1. Golden ratio shadow convergence.

Example 4.8. The second most simple example is the number

δ “ 1 `
?
2 “ r2, 2, 2, . . .s,

often called the silver ratio. Computation suggests that its shadow is

pδqS “ 1 `

?
2

2
“

1 ` δ

2
.
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5. The shadowed Farey tree

In this section we define a variant of the Farey tree of rationals which contains Grassmann variables
and produces shadows.

5.1. The classical Farey tree. The Farey tree can be constructed inductively, by iterating the “local
branching rule” on the following initial “fishbone diagram”:

1
´1

p´r
q´s

‚ ‚
1
0

0
1 “ 0

´1
p
q

r
s

‚ ‚

1
1

p`r
q`s

The quantity p
q ˚ r

s “
p`r
q`s is called the mediant, or Farey sum.

We present here the Farey tree growing downward from the initial diagram. The tree is “doubly
infinite”: the part growing upward contains the negative rationals.

´ 2
1

‚ ´ 1
1

‚ ´ 1
2

‚
1
0

0
1

‚
1
1

1
0

‚ 1
1

1
1

‚ 0
1

2
1

1
2

‚1
0

2
1

‚2
1

1
1

‚1
1

1
2

‚1
2

0
1

‚
1
0

3
1

‚
2
1

‚
2
1

3
2

‚
1
1

‚
1
1

2
3

‚
1
2

‚
1
2

1
3

‚
0
1

4
1

5
2

5
3

4
3

3
4

3
5

2
5

1
4

. . . . . . . . .

5.2. The PSLp2,Zq action. The classical Farey tree has a beautiful symmetry under PSLp2,Zq. Cor-
responding to each vertex of the tree is an element of the group of order 3. For example, in the initial
diagram we have

0
1

´ 1
1 U V 1

1 ,

1
0

where (using the symbol “”” as a reminder that elements of PSLp2,Zq are cosets)

U ”

ˆ

0 ´1

1 1

˙

, V ”

ˆ

1 ´1

1 0

˙

.

The linear fractional transformations by which U and V act rotate the Farey graph by 2π{3 counter-
clockwise around their vertices:

1
0

U // 0
1

U // ´ 1
1

U // 1
0 , 1

0

V // 1
1

U // 1
0

U // ´ 1
0 “ 1

0 .
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Similarly, corresponding to each edge of the tree is an element of order 2. In the initial diagram,

0
1

´ 1
1 ‚ S ‚ 1

1

1
0

where

S ”

ˆ

0 ´1

1 0

˙

.

The linear fractional transformation by which S acts rotates the Farey tree around its edge by π.
Note that conjugating U by S gives V . The elements corresponding to all vertices and edges of the

tree may be obtained from U and S by repeated conjugation:

UV U´1

USU´1

V ´1UV

U

U´1SU

S V

V ´1SV

V SV ´1

U´1V U V UV ´1

In fact, the vertices and edges of the tree are in bijection with the order 3 and order 2 subgroups of
PSLp2,Zq, respectively.

5.3. A Farey tree with Grassmann variables. Recall from (1.8) the elements U and V of OSpp1|2,Zq.
As in the classical case, they are of order 3, and they cycle the vectors around the vertices of the initial
fishbone diagram (1.7). We depict this as follows:

´1
1
η

1 U 0
0 1
0 V 0

1
1
ξ

Repeated conjugation extends the tree and associates an order 3 subgroup of OSpp1|2,Zq to each vertex:

¨ ¨ ¨ ¨ ¨ ¨

U´1VU UVU´1

U

V

VUV´1 V´1UV

¨ ¨ ¨ ¨ ¨ ¨
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The edges can also be labelled, in a compatible way. Recall the element S of OSpp1|2,Zq from (1.9),
and let τ be the automorphism of the underlying coordinate ring (1.1) defined by η ÞÑ ξ ÞÑ ´η. Extend
τ to an outer automorphism of OSpp1|2,Zq, acting entry-wise. Then τ and S commute, and τS is an
order 4 element with square ´I whose action exchanges U and V and rotates the initial diagram by π.

Applying the group elements to the vectors in the initial diagram gives the shadowed Farey tree below.
We note that it is possible to construct other Grassmann Farey trees, for example beginning from the
initial vectors in Proposition 2.5.

2 ` ξη ´1 1

´1 ‚ 1 ‚ ´2 ´ ξη

´ξ ´ η η ξ ´ η

1 ‚ 0

0 1

0 ‚ 0

1

‚ 1 ‚

2 ` ξη ξ 1

‚ 1 ‚ ‚ 2 ` ξη ‚

3 ` 2ξη ξ ` η 3 ` 2ξη 2 ` ξη ξ ´ η 1

‚ 1 ‚ ‚ 2 ` ξη ‚ ‚ 3 ` 2ξη ‚ ‚ 3 ` 2ξη ‚

η 3ξ ` η 3ξ ´ η ´η

4 ` 2ξη 5 ` 6ξη 5 ` 6ξη 4 ` 2ξη 3 ` 2ξη 3 ` 2ξη 2 ` ξη 1

1 2 ` ξη 3 ` 2ξη 3 ` 2ξη 4 ` 2ξη 5 ` 6ξη 5 ` 6ξη 4 ` 2ξη

0 ξ ` 3η 4ξ ` 3η 4ξ 4ξ 4ξ ´ 3η ξ ´ 3η 0

5.4. Observations. Our Grassmann Farey tree gives yet another version of the shadow of a rational
number, which should be compared to the even and odd shadows ES and OS. We will use the notation
`

p
q

˘

FS
for the Farey shadow of p

q . The definition is as follows: if the vector
¨

˝

p ` p̂ξη
q ` q̂ξη

¨ ¨ ¨

˛

‚

occurs in the tree, then
`

p
q

˘

FS
is the coefficient of ξη in pp ` p̂ξηq{pq ` q̂ξηq:

´p

q

¯

FS
:“

pq̂ ´ p̂q

q2
.

Because the operators U and V are related to R and L via (1.9), the Farey shadow sometimes coincides
with the even or the odd shadow, but not always.

The integers, represented in the classical Farey tree by n
1 , appear on its extreme left branch. Their

Farey shadows are p1qFS “ 0, p2qFS “ 1, p3qFS “ 2, p4qFS “ 2, p5qFS “ 2, p6qFS “ 3, etc. This is the
OEIS sequence A004524 [13]:

0, 1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 7, . . .

The “Fibonacci branch” of the classical Farey tree is labelled by quotients of consecutive Fibonacci

numbers: Fn`1

Fn
. It turns out that the Farey shadow sequence

`Fn`1

Fn

˘

FS
is closely related to the OEIS
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sequence A054454, which begins with pA054454q0 “ 0:

0, 1, 2, 6, 12, 26, 50, 97, 180, 332, 600, 1076, . . .

Proposition 5.1. The shadowed Farey tree contains the sequence of 3-vectors

(5.1)

¨

˝

Fn`1 ` pA054454qn´1 ξη
Fn ` pA054454qn´2 ξη

¨ ¨ ¨

˛

‚ “

¨

˝

1
1
ξ

˛

‚,

¨

˝

2 ` ξη
1

ξ ` η

˛

‚,

¨

˝

3 ` 2ξη
2 ` ξη
3ξ ` η

˛

‚,

¨

˝

5 ` 6ξη
3 ` 2ξη
4ξ ` 3η

˛

‚,

¨

˝

8 ` 12ξη
5 ` 6ξη
8ξ ` 4η

˛

‚, ¨ ¨ ¨ .

Proof. Write F for VU´1, and u0 for the standard basis vector e2. Then the Fibonacci branch of the
Grassmann Farey tree is labelled by the vectors un :“ Fnu0. Define a sequence an by writing an´1 for
the coefficient of ξη in the first entry punq1 of un. Check that then the coefficient of ξη in the second
entry, punq2, is an´2, and that the sequence an satisfies the recurrence

an “ an´1 ` an´2 ` Fn`1,

which matches the recurrence of A054454. □

It follows from this proposition that the Farey shadows of the convergents of the golden ratio satisfy

ˆ

Fn`1

Fn

˙

FS

“

$

&

%

`Fn`1

Fn

˘

ES
, n even,

`Fn`1

Fn

˘

OS
, n odd.

Proposition 5.1 implies the following statement, which should be compared with Example 4.7. To
prove it, simply apply the formula for A054454 given in the OEIS.

Corollary 5.2. The sequence of rationals
`Fn`1

Fn

˘

FS
converges to pφqS “ 5`

?
5

10 “ 1
1`φ .

Remark 5.3. The different approaches of [11] and [15] both lead to the sequence A001629, the self-
convolution of the Fibonacci sequence. It is worth noting that A054454 is related to A001629 by lacunary
summation:

pA054454qn “ pA001629qn ` pA001629qn´2 ` pA001629qn´4 ` ¨ ¨ ¨ .

6. Open problems and conjectures

In conclusion, we formulate some conjectures and questions.

6.1. Properties of the shadow function. This subject is unexplored. Recall from Theorem 1.1 that
the shadow of an irrational number x the limit of the supersymmetric continued fractions associated to
it. Consider the irrationals, Irr Ă R. Is the shadow function,

S : Irr Ñ R,

continuous? Based on the convergence property, as well as on computer experimentation, we conjecture
that the answer is yes.

On the other hand, it is easy to check that the shadow functions ES : Q Ñ Q and OS : Q Ñ Q are
discontinuous. For instance, the sequence

`

2 ` 1
n

˘

OS
tends to 2, but p2qOS “ 0.

Another challenging question concerns the iteration of the shadow function S. Given an irrational x,
does the sequence Snpxq converge?
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6.2. The even dominates the odd. We conjecture that for every rational p
q , one has

´p

q

¯

ES
ě

´p

q

¯

FS
ě

´p

q

¯

OS
.

This is supported by computer experiments. For instance, for every rational in Figures 2.1 and 2.2, one
finds that

´p

q

¯

ES
ą

´p

q

¯

OS
.

We believe that this strict inequality holds for every p
q .

6.3. Towards the supersymmetric modular group. The supergroup OSpp1|2q plays the same role
in supergeometry as SLp2q does classical geometry; see [7]. It consists of 3ˆ 3 matrices over a supercom-
mutative ring R, satisfying the following conditions:

¨

˚

˝

a b γ

c d δ

α β e

˛

‹

‚

such that

$

’

’

’

&

’

’

’

%

ad ´ bc “ 1 ´ αβ,

e “ 1 ` αβ,

´aδ ` cγ “ α,

´bδ ` dγ “ β.

Here a, b, c, d, and e are even, i.e., elements of R0̄, and α, β, γ, and δ are odd, i.e., elements of R1̄.
Recall that we write OSpp1|2,Zq for OSpp1|2q over the ring (1.1) of coordinates on Z1|2. It contains

the matrices R,L,U ,V and S, and one can prove that it is generated by the four matrices U , V, S, and
¨

˚

˝

1 0 ξ

0 1 0

0 ξ 1

˛

‹

‚

.

We hope to investigate it in more detail in a subsequent paper.
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