Supplementary information for

Regulation of the macrolide resistance ABC-F translation factor MsrD

Corentin R. Fostier¹, Farès Ousalem¹, Elodie C. Leroy², Saravuth Ngo¹, Heddy Soufari^{2,3}, C. Axel Innis², Yaser Hashem^{2,*}, Grégory Boël^{1,4,*}

¹Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France

²INSERM U1212 (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, 33607 Pessac, France

³Current address: NovAliX, Boulevard Sébastien Brant, Bioparc, 67405 Illkirch Cedex, France

⁴Lead contact

*Correspondence:

Grégory Boël, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris,

France, tel. : +33 (0) 1 58 41 51 21; e-mail: boel@ibpc.fr

Yaser Hashem, Institut Européen de Chimie et Biologie, Université de Bordeaux, 33607 Pessac, France, tel. : +33 (0) 5 40 00 88 22; e-mail: yaser.hashem@inserm.fr Supplementary Table 1. Minimum inhibitory concentration (MIC) and half maximal inhibitory concentration (IC₅₀) of *E. coli* DB10 expressing *msrD* variants in presence of erythromycin. See Methods for experimental details. MIC values exceeding control plasmid are shown in bold.

	Erythromycin		
<i>E. coli</i> DB10	MIC (µM)	IC₅₀ (μM)	
pBAD-Control	2	0,179 ± 0,007	
pBAD- <i>msrD</i> wT	16	4,592 ± 0,582	
pBAD- <i>msrD</i> _{EQ2}	2	0,267 ± 0,027	
pBAD- <i>msrD</i> _{E125Q}	4	1,427 ± 0,147	
pBAD- <i>msrD</i> _{E434Q}	2	0,342 ± 0,04	
pBAD- <i>msrD</i> ∆Loop	2	0,209 ± 0,025	
pBAD- <i>msrD</i> ∆PtIM	2	0,295 ± 0,048	
pBAD- <i>msrD</i> _{R241A}	16	3,632 ± 0,316	
pBAD- <i>msrD</i> _{L242A}	8	1,621 ± 0,152	
pBAD- <i>msrD</i> _{H244A}	8	1,492 ± 0,126	
pBAD- <i>msrD</i> _{H244W}	4	0,446 ± 0,057	

	Erythromycin-stalled Escherichia coli 70S ribosome with streptococcal MsrDL nascent chain (PDB 7Q4K, EMD-13805, EMD-13806, EMD-13807, EMD-13808)	
Data collection and processing		
Microscope	FEI Talos Arctica (IECB, Pessac, France)	
Detector	K2 Summit direct electron detector (Gatan)	
Magnification (X)	120,000	
Voltage (kV)	200	
Electron exposure (e ⁻ /Å ²)	64	
Defocus range (µm)	-0.5 to -2.7	
Pixel size (Å)	1.2	
Symmetry imposed	C1	
Initial particle images (no.)	158,200	
Final particle images (no.)	62,093	
Map resolution (Å)	70S ribosome (EMD-13805): 3 50S subunit (EMD-13806): 2.97 30S subunit Body (EMD-13807): 3.08 30S subunit Head (EMD-13808): 3.3	
FSC threshold	0.143	
Model building and refinement		
Initial model (PDB code)	6TC3	
Model resolution (Å)	2.7	
FSC threshold	0.143	
Model resolution range (Å)	2.5 – 8.7	
Model composition	-	
Non-hydrogen atoms	146,618	
Protein residues	5,682	
RNA bases 4,710		

Supplementary Table 2. Cryo-EM data collection and refinement statistics.

Ligands	173
B-factor (Å ²)	-
Protein (min./max./mean)	31.70/183.09/69.05
Ligands (min./max./mean)	20.00/458.82/75.79
R.m.s. deviations	-
Bond lengths (Å)	0.015
Bond angles (°)	1.648
Validation	-
MolProbity score	1.49
Clashscore	3.83
Poor rotamers (%)	0.63
Ramachandran plot	-
Favored (%)	95.42
Allowed (%)	4.45
Disallowed (%)	0.13

Bacterial strains	References	
<i>E. coli</i> DB10 (Derived from <i>E. coli</i> PR7)	1	
<i>E. coli</i> K12 MG1655	N/A	
Plasmids	References	
pBAD-Control (pBAD33)	2	
pBAD- <i>msrD</i> _{WT} (pVN50)	2	
pBAD- <i>msrD</i> _{EQ2}	This study	
pBAD- <i>msrD</i> _{E125Q}	This study	
pBAD- <i>msrD</i> _{E434Q}	This study	
pBAD- <i>msrD</i> ∆Loop	This study	
pBAD- <i>msrD</i> _{∆PtIM}	This study	
pBAD- <i>msrD</i> _{R241A}	This study	
pBAD- <i>msrD</i> _{L242A}	This study	
pBAD- <i>msrD</i> _{H244A}	This study	
pBAD- <i>msrD</i> _{H244W}	This study	
pMMB-67EH	3	
pMMB-67EH- <i>yfp</i>	This study	
pMMBpLlacO-1-67EH- <i>yfp</i>	This study	
pMMB- <i>msrDL</i> - <i>msrD</i> ₍₁₋₃₎ : <i>yfp</i>	This study	
pMMB- <i>msrDL</i> _(no_ORF) - <i>msrD</i> ₍₁₋₃₎ : <i>yfp</i>	This study	
pMMB-msrDL _{(no_term})-msrD ₍₁₋₃₎ :yfp	This study	
pMMB-msrDL _(Y2A) -msrD ₍₁₋₃₎ :yfp	This study	
pMMB-msrDL _(L3A) -msrD ₍₁₋₃₎ :yfp	This study	
pMMB-msrDL _(14A) -msrD ₍₁₋₃₎ :yfp	This study	
pMMB-msrDL _(F5A) -msrD ₍₁₋₃₎ :yfp	This study	
pMMB-msrDL _(M6A) -msrD ₍₁₋₃₎ :yfp	This study	
pMMB-msrDL _(UAA>UGA) -msrD ₍₁₋₃₎ :yfp	This study	
pMMB- <i>msrDL</i> _(UAA>UAG) - <i>msrD</i> ₍₁₋₃₎ : <i>yfp</i>	This study	
pMMB- <i>msrDL</i> _(WT-isocodons) - <i>msrD</i> ₍₁₋₃₎ :yfp	This study	
pMMB-msrDL _(MYLIFMA-isocodons) -msrD ₍₁₋₃₎ :yfp	This study	

Supplementary Table 3. Strains and plasmids used in this study.

Cupplana	ntom Table		ala atidaa wa		
Suppleme	intary rable	4. Oligonu	cieolides use	eu m uns	Sluuy.

No.	Name	Sequence (5' \rightarrow 3')	Purpose
pBAD) plasmids		-
1	msrD_F	ATGGAATTAATATTAAAAGCAA AAGACATTCGTGTGG	Amplification of msrD _{WT}
2	msrD_R	TTAGTGATGGTGATGGTGATG TTTCAGATTTATTTTCTTATC	
3	pBAD_F	CATCACCATCACCATCACTAAT CTAGAGTCGACCTGCAGGC	Amplification of pBAD backbone
4	pBAD_R	GCTTTTAATATTAATTCCATGG TGAATTCCTCCTGCTAGCC	
5	msrD _{EQ2} _F1	GGTATTTTAGCGGATCAACCTA CGAG	<i>msrD</i> mutagenesis
6	msrD _{EQ2} _R1	GGAAGTTACTGGGTTGATCCA TTATTAG	
7	msrD _{EQ2} _F2	AACCCAGTAACTTCCTTGACAT ACC	
8	msrD _{EQ2} _R2	GATCCGCTAAAATACCATGAAC C	
9	msrD _{E125Q} _F	GGTATTTTAGCGGATCAACCTA CGAGCCATTTAG	
10	msrD _{E125Q} _R	GGCTCGTAGGTTGATCCGCTA AAATACCATG	
11	msrD _{E434Q} _F	CTAATAATGGATCAACCCAGTA ACTTCCTTGAC	
12	msrD _{E434Q} _R	GGAAGTTACTGGGTTGATCCA TTATTAGGATG	
13	msrD _{∆Loop} _F	GGAAAGGGCTGCGGAGGAAA AGGGAGGAGGAAAGATGTATA ATGCTGCTAAAAC	
14	msrD _{∆Loop} _R	GCAGCATTATACATCTTTCCTC CTCCCTTTTCCTCCGCAGCCC TTTCCAATCGGG	
15	msrD _{APtIM} _F	CTGATTATCTTCGTCAGAAAGG AGGAGGACCGGAAGGCATTCG CAGAATTCG	
16	msrD _{∆PtIM} _R	CGAATTCTGCGAATGCCTTCC GGTCCTCCTCCTTTCTGACGA AGATAATCAGAATAG	
17	msrD _{R241A} _F	GAAGACGGAGGGGCTTTAGCT CATCAAAAATC	
18	msrD _{R241A} R	GATGAGCTAAAGCCCCTCCGT CTTCAGTAC	
19	msrD _{L242A} _F	GACGGAGGGCGTGCAGCTCAT CAAAAATCAATAG	
20	msrD _{L242A} _R	GATTTTTGATGAGCTGCACGC CCTCCGTCTTCAG	
21	msrD _{H244A} _F	GCGTTTAGCTGCTCAAAAATCA ATAGGAAGTAAGG	

22	merDucce P	CTATTCATTTTCACCACCTAA	
~~		ACGCCCTCCGTCTTC	
23	msrDuatana F	GCGTTTAGCTTGGCAAAAATCA	
20		ATAGGAAGTAAGG	
24	msrDuseum P	CTATTCATTTTTCCCAACCTAA	
24		ACGCCCTCCGTCTTC	
ьWM	 R plasmids	ACCCCTCCCTCTTC	
		CTATAAATCTCACCCCATAAC	Doplacement of D
25			Replacement of P _{tac}
		ATTGACATTGTGAGCGGATAA	promoter by Placo
		CAAGATACTGAGCACATCACA	
		CAGGAAACAGAATATGTCC	
26	pMMB-PlacO_R	GTTATCCGCTCACATTTATACA	
		GCTCATTTCAGAATATTTGCC	
27	msrDL-msrD ₍₁₋₃₎ :yfp F1	CGCAGGGTTTTCCCTGCATAC	Fusion of <i>msrDL</i> -
	()))	AAGCAAATGAAAGCATGCGAT	$msrD_{(1-3)}$ cistron to
		TATAGACAGGAGGAAATGTTAT	vfn
		GGAATTAATCGTAAAAATCGTG	J.P
		AGCAAGG	
28	merDI -merDu:vfp E2		
20			
		AIGIAACICIICCIGCIAAAAI	
		CGCAGGGTTTTCCCTGCATAC	
		AAGC	
29	yfp_R	TTACTTGTACAGCTCGTCCATG	
		CCGAGAGTGATCCCGGCGGC	
		GG	
30	pMMB-backbone_F	CATGGACGAGCTGTACAAGTA	-
		ATAATTCGAGCTCGGTACCCG	
		GG	
31	pMMB-backbone R	CCTCCAATATTGTTGTGCTCAG	-
	-	ТАТСТТӨТТАТССӨСТСАСААТ	
		GTC	
32	pMMB-control F	CAACAATATTGGAGGAATATTT	-
		TAATTCGAGCTCGGTACCC	
33	nMMB-control R	GGGTACCGAGCTCGAATTAAA	_
55			_
0.4			Deletien of DIT
34	MSrDL _(no_term) F	AIGIAICHAITHCAIGIAACH	Deletion of RI I
		CICCCIGCATACAAGCAAATG	
35	msrDL _(no_term) _R	AGAGTTACATGAAAATAAGATA	
		CATAAATATTCCTCC	
36	msrDL _(no_ORF) _F	CAACAATATTGGAGGAATATTT	Suppression of ORF
		TAGTATCTTATTTTCATGTAACT	msrDL
		CTTCC	
37	msrDL _(no ORF) R	GGAAGAGTTACATGAAAATAA	
		GATACTAAAATATTCCTCCAAT	
		ATTGTTG	
38	msrDL _{V24} F	CAATATTGGAGGAATATTTATG	msrDL mutagenesis
		GCACTTATTTCATGTAACTCT	
		TCC	
20	merDI P		
39			
		AIIG	
40	msrDL _{L3A} _F	TTGGAGGAATATTTATGTATGC	
		AATTTTCATGTAACTCTTCC	

41	msrDL _{L3A} _R	GGAAGAGTTACATGAAAATTG	
		CATACATAAATATTCCTCCAA	
42	msrDL _{I4A} F	GGAGGAATATTTATGTATCTTG	
	_	CATTCATGTAACTCTTCCTG	
43	msrDL _{I4A} R	CAGGAAGAGTTACATGAATGC	
	_	AAGATACATAAATATTCCTCC	
44	msrDL _{F5A} _F	GGAATATTTATGTATCTTATTG	
		CAATGTAACTCTTCCTG	
45	msrDL _{F5A} _R	CAGGAAGAGTTACATTGCAATA	
		AGATACATAAATATTCC	
46	msrDL _{M6A} _F	ATTTATGTATCTTATTTTCGCAT	
		AACTCTTCCTGCTAAAATCGCA	
		GG	
47	msrDL _{M6A} _R	CCTGCGATTTTAGCAGGAAGA	
		GTTATGCGAAAATAAGATACAT	
		AAAT	
48	msrDL _{TAG} _F	GTATCTTATTTTCATGTAGCTC	
		TTCCTGCTAAAATCG	
49	msrDL _{TAG} _R	CGATTTTAGCAGGAAGAGCTA	
		CATGAAAATAAGATAC	
50	msrDL _{TGA} _F	GTATCTTATTTTCATGTGACTC	
		TTCCTGCTAAAATCG	
51	msrDL _{TGA} _R	CGATTTAGCAGGAAGAGTCA	
52	MSrDL _{MYLIFMA} -	AIGIACCIGAICIICAIGGCCI	
	Isocodons_F	AACICIICCIGCIAAAAICGCA	
50			
53	MSrDL _{MYLIFMA} -		
	ISOCODORS_R		
54	merDL isocodons. E		
54			
55	merDLuz-isocodone R	GCGATTTTAGCAGGAAGAGTT	
55			
In vite	o transcription and trans	slation	
56	T7 pMMB F	GCGAATTAATACGACTCACTAT	-
	· · _p	AGGGAGCGGATAACAAGATAC	
		TGAGCAC	
57	TP msrDL R	GGTTATAATGAATTTTGCTTAT	-
-		TTAATTCCATAACATTTCCTCC	
58	TP NV1 R	GGTTATAATGAATTTTGCTTAT	CY5 chromophore
		Т	modification in 5'
North	ern blot probe		
59	pMMB_3UTR	CAGCCAAGCTTGCATGCCTGC	-
		AGGTCGACTCTAGAGGATCCC	
		CGGG	
Сгуо-ЕМ			
60	cryoEM-msrDL R	GCAGGGAAAACCCTGCG	-

Supplementary Table 5. DNA templates used in this stu

No.	Name	Sequence (5' \rightarrow 3')
1	TP_msrDL _{wT}	GCGAATTAATACGACTCACTATAGGGAGCGGATAACAAGA
		TACTGAGCACAACAATATTGGAGGAATATTTATGTATCTTA
		TTTTCATGTAACTCTTCCTGCTAAAATCGCAGGGTTTTCCC
		TGCATACAAGCAAATGAAAGCATGCGATTATAGACAGGAG
		GAAATGTTATGGAATTAAATAAGCAAAATTCATTATAACC
2	TP_msrDL _{7A-iso}	GCGAATTAATACGACTCACTATAGGGAGCGGATAACAAGA
		TACTGAGCACAACAATATTGGAGGAATATTTATGTACCTGA
		TCTTCATGGCCTAACTCTTCCTGCTAAAATCGCAGGGTTTT
		CCCTGCATACAAGCAAATGAAAGCATGCGATTATAGACAG
		GAGGAAATGTTATGGAATTAAATAAGCAAAATTCATTATAA
		CC
3	CryoEM_msrDL	GCGAATTAATACGACTCACTATAGGGAGCGGATAACAAGA
		TACTGAGCACAACAATATTGGAGGAATATTTATGTATCTTA
		TTTTCATGTAACTCTTCCTGCTAAAATCGCAGGGTTTTCCC
		TGC

Supplementary figure 1. In vivo characterization of MsrD. (a) Dissemination of the mefA/msrD macrolide resistance operon among a wide range of non-pathogenic and pathogenic bacterial species. The mefA/msrD operon (Genbank accession No. FR671415) was blasted and identified in indicated species, integrated to the genome. Species where the operon was found on plasmid are underlined. Species where msrD was found to disseminate alone with msrDL are indicated by an asterisk. Corresponding Genebank accession numbers are indicated between brackets. To generate the tree, 16S rRNA sequences were retrieved, aligned using Clustal W⁵, and resulting cladogram was adapted on iTOL (https://itol.embl.de/). Colored zones indicate bacterial phyla. (b) Schematic of MsrD illustrating main features of ABC-F translation factors and the position of ATP hydrolysis Site I and Site II whose catalytic residues are respectively E125 and E434. Colors are the same as Fig. 1b. (c) Growth curves, polyribosomes analysis and western blotting of E. coli DB10 strain expressing msrD (pBADmsrD_{WT}), msrD_{EQ2} (pBAD-msrD_{EQ2}) or a control (pBAD-Control) unexposed or exposed to 25 µM of ERY during one hour (Cells were treated after 330 min as indicated by "Shot ERY 25 µM"). "L" stands for total lysate. Note that these sample were precipitated with trichloroacetic acid (d) Polyribosomes analysis and western-blotting of E. coli K12 MG1655 expressing msrDWT (pBAD-msrDWT), msrDEQ2 (pBAD-msrDEQ2) or a control (pBAD-Control). As no erythromycin was added, 100 µg.ml⁻¹ chloramphenicol was added to stabilize translating ribosomes. (e) Solubility assay shows that MsrD_{WT} tends precipitate in insoluble fraction while MsrD_{EQ2} tends to stay more soluble. E. coli DB10 strain containing pBAD-Control ("C"), pBADmsrD_{WT} (WT) or pBAD-msrD_{EQ2} ("EQ2") was inoculated at OD₆₀₀=0.1 and grew in presence of 0.4 % Glucose or 0.2 % L-Arabinose at 37 °C under vigorous shaking for 6 hours. Cultures were normalized, centrifuged and resuspended (1 ml at OD₆₀₀=1 was resuspended in 30 µL Laemmli 1X). In total, 5 µL of whole cell extract were loaded on SDS-PAGE gel. In parallel, cultures similar to those realized for polyribosome analysis presented in Fig. 1c and 1d were done. Briefly, cells were inoculated at OD_{600} =0.1 and grew in presence of 0.2 % L-Arabinose at 37 °C under vigorous shaking. During mid-exponential phase, 25 µM ERY was added or not. Cells were harvested and lysed after 1 h, lysate being clarified by centrifugation from insoluble fraction. After normalization of lysate, a total of 10 µg of RNAs were load on SDS-PAGE gel. Western-blotting was performed as explained in Methods. (f) Steric occlusion mechanism by MsrD is incompatible with its resistance profile. A homology model of MsrD was generated using SWISS-MODEL⁶ and aligned to ribosome-bound MsrE structure (PDB 5ZLU) ⁷. Antibiotics to which MsrD provides resistance (ERY PDB: 6ND6, red; AZI PDB: 4V7Y, gray; TEL PDB: 4V7Z, yellow) or not (TYL PDB: 1K9M, green; SPI PDB: 1KD1, violet; LNC PDB: 5HKV, dark teal; LNZ PDB: 3CPW, khaki; RTP PDB: 20GO, purple) were aligned based on domain V of 23S rRNA ⁸⁻¹³. Density for MsrE is shown in pale blue, and conserved residues R241A, L242A and H244A are indicated.

а

b

Supplementary figure 2. Rho-independent transcription termination regulates *msrD* expression. (a) Conservation of *msrDL*, NusG-dependent RNAP pausing site and its rhoindependent transcription terminator. Sequences corresponding to Fig. 1a were aligned with Clustal W ⁵, and visualized with JalView according to nucleotide ¹⁴. Genbank accession numbers are indicated between brackets. Logo was generated using WebLogo (https://weblogo.berkeley.edu/logo.cgi). (b) Bicyclomycin (BCM) failed to constitutively induce *msrD*₍₁₋₃₎:*yfp* expression in absence of ERY after 17 h, demonstrating that *msrD* is not regulated by a Rho-dependent terminator. Error bars represent mean \pm s.d. for triplicate experiments. (c) Effects of *msrDL* stop codon mutation on the expression of *msrD*_(1:3):*yfp*. Bacteria were grown during 17 h in presence of 1 mM IPTG, in the absence (grey histograms) or in the presence of 100 nM ERY (red histograms). Error bars represent mean \pm s.d. for triplicate experiments.

Supplementary figure 3. Biochemical characterization of MsrDL mode of action. (a) Schematic of the matrix TP_msrDL_{WT} (Supplementary Table 5) used to generate synthetic mRNAs for *in vitro* experiments (RBS, ribosome binding site; NV1, annealing site for CY5-labelled primer). (b and c) Uncropped toe-printing gels presented in Fig. 3a and 3c. Formation of MsrDL-SRC would occlude formation of the Rho-independent transcription terminator (shown in light blue).

Supplementary figure 4. Generation of the cryo-EM sample, data processing and model

building. (a) Workflow for the generation of cryo-EM sample. See Methods for details. (b) Cryo-EM data processing workflow as described in the Methods. EMD accession numbers are indicated for each map. Maps obtained after multibody refinement are shown as transverse sections and colored according to local resolution. (c) Fourier Shell Correlation (FSC) curves of the 70S ribosome and the maps obtained after multibody refinement. (d) Transverse section of the composite map obtained after multibody refinement and isolated densities for MsrDL-tRNA and ERY, colored according to local resolution. The corresponding atomic reconstruction of the nascent chain is shown beside. (e) Details of the mRNA codon-tRNA anticodon interactions and corresponding densities for each nucleotide. (f) Details of clearly identifiable post-transcriptional modifications and corresponding densities.

Supplementary figure 5. MsrDL engages within a universally conserved crevice at the NPET entrance. (a to e) Comparison of the conformation of 23S rRNA bases U2506, U2584 and U2585 for MsrDL-, ErmBL-, ErmCL-, ErmDL-, SpeFL- and TnaC(R23F)-stalled ribosomes structures ^{15–19}(respectively PDB: 5JTE, 3J7Z, 7NSO, 6TC3, 7O1A). Structures were aligned based on domain V of 23S rRNA. (f) Sequence conservation of the proximal crevice between far-related species. The diagram shows a part of 23S rRNA domain V of *E. coli* and the location of proximal crevice at the base of h93. Large subunit rRNAs were aligned using Clustal W ⁵

and visualized with Jalview ¹⁴ (purines, purple; pyrimidines, teal). Bases delimitating the proximal crevice (U2584, U2586, G2608 and C2610) are highlighted in red. Nucleotides numbering is relative to *E. coli* 23S rRNA sequence. (g) Structural conservation of the proximal crevice between far-related species. Top, cartoon representation of h93 and proximal crevice in *E. coli, S. aureus, H. sapiens* 55S mitoribosome and 80S cytosolic ribosome ^{20–22} (respectively PDB: 6YEF, 7A5F, 6OLI). Bases delimitating the proximal crevice are highlighted in red and numbered relative to the considered specie. Bottom, sagittal cut of ribosome tunnel shown on top panels depicted as surface. Ribosomal protein uL4 is shown in pale blue. Structures were aligned based on domain V of 23S rRNA.

SUPPLEMENTARY REFERENCES

- 1. Datta, N., Hedges, R. W., Becker, D. & Davies, J. Plasmid-determined Fusidic Acid Resistance in the Enterobacteriaceae. *Microbiology*, **83**, 191–196 (1974).
- 2. Nunez-Samudio, V. & Chesneau, O. Functional interplay between the ATP binding cassette Msr(D) protein and the membrane facilitator superfamily Mef(E) transporter for macrolide resistance in Escherichia coli. *Research in Microbiology* **164**, 226–235 (2013).
- 3. Fürste, J. P. *et al.* Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. *Gene* **48**, 119–131 (1986).
- 4. Lutz, R. & Bujard, H. Independent and Tight Regulation of Transcriptional Units in Escherichia Coli Via the LacR/O, the TetR/O and AraC/I1-I2 Regulatory Elements. *Nucleic Acids Res* **25**, 1203–1210 (1997).
- 5. Larkin, M. A. *et al.* Clustal W and Clustal X version 2.0. *Bioinformatics* **23**, 2947–2948 (2007).
- 6. Waterhouse, A. *et al.* SWISS-MODEL: homology modelling of protein structures and complexes. *Nucleic Acids Res* **46**, W296–W303 (2018).
- 7. Su, W. *et al.* Ribosome protection by antibiotic resistance ATP-binding cassette protein. *PNAS* **115**, 5157–5162 (2018).
- 8. Bulkley, D., Innis, C. A., Blaha, G. & Steitz, T. A. Revisiting the structures of several antibiotics bound to the bacterial ribosome. *PNAS* **107**, 17158–17163 (2010).
- 9. Davidovich, C. *et al.* Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity. *PNAS* **104**, 4291–4296 (2007).
- 10. Hansen, J. L. *et al.* The Structures of Four Macrolide Antibiotics Bound to the Large Ribosomal Subunit. *Molecular Cell* **10**, 117–128 (2002).
- 11. Ippolito, J. A. *et al.* Crystal Structure of the Oxazolidinone Antibiotic Linezolid Bound to the 50S Ribosomal Subunit. *J. Med. Chem.* **51**, 3353–3356 (2008).
- 12. Matzov, D. *et al.* Structural insights of lincosamides targeting the ribosome of Staphylococcus aureus. *Nucleic Acids Research* **45**, 10284–10292 (2017).
- 13. Svetlov, M. S. *et al.* High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition. *RNA* **25**, 600–606 (2019).
- Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. *Bioinformatics* 25, 1189–1191 (2009).
- 15. Arenz, S. *et al.* Drug Sensing by the Ribosome Induces Translational Arrest via Active Site Perturbation. *Molecular Cell* **56**, 446–452 (2014).
- 16. Arenz, S. *et al.* A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest. *Nat Commun* **7**, (2016).
- 17. Beckert, B. *et al.* Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics. *Nat Commun* **12**, 4466 (2021).
- 18. Herrero del Valle, A. *et al.* Ornithine capture by a translating ribosome controls bacterial polyamine synthesis. *Nature Microbiology* **5**, 554–561 (2020).
- 19. van der Stel, A.-X. *et al.* Structural basis for the tryptophan sensitivity of TnaC-mediated ribosome stalling. *Nat Commun* **12**, 5340 (2021).
- 20. Desai, N. *et al.* Elongational stalling activates mitoribosome-associated quality control. *Science* **370**, 1105–1110 (2020).
- 21. Golubev, A. *et al.* Cryo-EM structure of the ribosome functional complex of the human pathogen Staphylococcus aureus at 3.2 Å resolution. *FEBS Letters* **594**, 3551–3567 (2020).
- 22. Li, W. *et al.* Structural basis for selective stalling of human ribosome nascent chain complexes by a drug-like molecule. *Nat Struct Mol Biol* **26**, 501–509 (2019).