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In presence of long range dispersal, epidemics spread in spatially disconnected regions known as
clusters. Here, we characterize exactly their statistical properties in a solvable model, in both the
supercritical (outbreak) and critical regimes. We identify two diverging length scales, corresponding
to the bulk and the outskirt of the epidemic. We reveal a nontrivial critical exponent that governs
the cluster number, the distribution of their sizes and of the distances between them. We also
discuss applications to depinning avalanches with long range elasticity.

Catastrophic events such as avalanches, material fail-
ure, and initial-stage epidemic outbreaks, often occur as
a chain reaction. Their simplest model was that of Bi-
enaymé and Galton-Watson (BGW)[1, 2], originally con-
ceived for genealogy. In a continuous time version one
starts with a single infected individual. During a short
time lapse dt each infected individual recovers with prob-
ability γdt, and causes a new infection with probability
βdt. On average, each infection generates R0 = β/γ new
ones: R0 determines the fate of the epidemic. When
R0 < 1, it goes to extinction rapidly. When R0 > 1, the
size of the population that has been infected up to time
t grows exponentially, S ∼ e(β−γ)t, as in the initial out-
break stage of an epidemic. At the critical point, R0 = 1,
the probability that the epidemic has survived up to time
t decreases as ∼ 1/t, and in that case it will have infected
∼ t2 individuals. As a result, S has strong fluctuations
and has a power law distribution P (S) ∼ S−3/2 with a
cutoff at Smax ∼ t2. The critical case mimics the scale
free behaviour displayed by avalanches in disordered ma-
terials, i.e. the propagation of an instability which trig-
gers further instabilities via elastic interaction [3].

The BGW model ignores the spatial spreading of the
epidemic. Branching diffusion models consider that in-
fected individuals also perform some random walk in a d
dimensional space, independently of recovery and infec-
tion. Often, one specifies the random walk to be a short-
range Brownian motion. Then the region affected by the
epidemic is a connected set, whose geometric properties
have been characterized [4–10]. For instance, at critical-
ity, the radius ξ of this set grows as ξ ∼ S1/4.

However, Brownian diffusion models cannot capture
the long-range dispersal that ubiquitously occurs in na-
ture, due to e.g. wind, ocean currents, and air traffic [11–
17], spreading an epidemic far from its origin. A similar
situation is observed in disordered materials where long-
range interactions can trigger disconnected avalanches,
e.g., in the propagation of crack fronts [18–21], wetting
lines [22–24] or plasticity [25, 26]. In this work we model
the long-range dispersal of the infected individuals as fol-
lows: during dt, an individual jumps from x to x′ with
probability pα(x − x′)ddx′dt, where pα(x) decays as a
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FIG. 1. Spatial distribution of an critical epidemic started
at the origin, totaling 1000 infections. Due to the long-range
dispersal [(1), α = 1.5] of infected individuals, the points
visited form disconnected clusters. The bulk of radius ξ, con-
centrating a majority of infections, is surrounded by a sparse
outskirt, containing all infections.

power law at large distances:

pα(x) =
θ(|x| − ε)
|x|α+d , α > 0 . (1)

Here |x| is the Euclidean norm, θ is the Heaviside step
function and ε � 1 is a short-distance cutoff. Simi-
lar long-range models have been studied on a lattice,
where the outbreak always displays a sub-exponential
growth [27–33]. Here, we assume an infinite pool of sus-
ceptible individuals everywhere, which ensures an expo-
nential outbreak when R0 > 1.

A typical epidemic obtained from a numerical simula-
tion of our model is shown in Fig. 1. One may distin-
guish two regions characterized by distinct length scales.
The bulk, of radius ξ, contains most of the infections.
Farther away, a sparser outskirt of radius D contains all
the remaining infections. The existence of the outskirt
is a consequence of the long-range jumps. One aim of
this work is to obtain how ξ and D scale with the in-
fected population S. Another fundamental consequence
of long-range dispersal, is the presence of clusters, i.e.
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spatially disconnected regions affected by the epidemic.
As is apparent from Fig. 1, the clusters vary in sizes and
their spatial distribution is not uniform. The second goal
of this Letter is to introduce a method to properly define
the clusters. We then characterize their random geome-
try: how the number of clusters grows with S, how their
sizes are distributed, what are the distances separating
them, etc. Our exact results are obtained by the analysis
of a non-linear ”instanton” equation. We stress that our
methods are applicable to real-world data. As a proof
of principle, we tested our theory against the Covid-19
outbreak data in the US. Remarkably, a prediction of our
model, (12) below, describes well the spatial distribution
of the clusters during the first week of March 2020 [34].

The epidemic model introduced above provides a dis-
crete realization, equivalent, near criticality [35], to the
mean-field theory [36, 37] describing the spatial struc-
ture of the avalanches of slowly driven elastic interfaces
in a disordered medium. In crack experiments, clusters
have been directly observed [38], and their number and
size distribution have been characterized [39, 40]. These
works proposed that these properties are fully encoded
in the global properties of the crack front, e.g., in its
roughness exponent [41–43]. Here, we make a first step
at examining this issue analytically; our results indicate
that the cluster statistics probably involve a new inde-
pendent exponent. In what follows, we report our main
results, and sketch the main points of their derivation,
see [34] for details.
Bulk and outskirt. We first determine the length scales
of the bulk, ξ, and outskirt, D, by simple arguments.
We consider our model with a single infected individual
at the origin initially (t = 0). At criticality (R0 = 1),
the bulk length ξ can be estimated as the typical dis-
placement of a random walk with jump distribution (1).
When α < 2, we have a Lévy flight, and thus

ξ ∼ t 1
α ∼ S 1

2α , α < 2 , (2)

where the last estimate comes from the scaling S ∼ t2.
When α > 2, we recover the short-range behavior ξ ∼√
t ∼ S

1
4 [37, 44]. On the other hand, the outskirt’s

diameter D is estimated as the farthest jump among ∼ S
independent attempts:

D ∼ S 1
α . (3)

Hence, the outskirt is much larger than the bulk if α < 4:
only for α > 4 do we completely recover a short-range
behavior, with D ∼ ξ ∼ S1/4. This is already a surprise,
as naively one would expect a short-range takeover at
α = 2.

In the supercritical regime, the argument for the out-
skirt diameter D and the result (3) still hold. The scaling
of the bulk size ξ is different. Indeed, the infected popula-
tion grows exponentially, S ∼ e(β−γ)t. As a consequence,
the density of infected individuals is exponentially large
at the epicenter, x = 0, and decays as ∼ S|x|−α−d (1).
The bulk extent is then determined by the distance,
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FIG. 2. (a) Illustration of an epidemic in 1D. An infection (re-
covery, jump) is indicated by a red star (green square, dashed
line, resp.). The points visited are coarse-grained by an in-
terval of length b. They form Nc = 3 clusters, with total
extension ` =

∑
`c. The gaps g are defined independently of

b. (b) In 2D, a point is coarse-grained by a square of side b,
to define the cluster number Nc(= 3), the area A, and the
perimeter P. Note that in 2D, a cluster can be non-convex
and have holes.

|x| = ξ, at which the density reaches unity:

ξ ∼ S 1
α+d ∼ e β−γα+d t (4)

Note that, when R0 > 1, the separation of scales D � ξ
remains for any α and the short-range behavior with a
linear growth ξ ∝ t is never recovered. This is in contrast
with lattice models [27, 28], where a reduction to short-
range does happen at α = d+ 1.
Defining clusters. In our model, the ensemble of posi-
tions ever occupied by an infected individual up to time
t is a finite set, as only a finite number of jumps have oc-
curred. How do we define its clusters? For simplicity we
focus on one and two dimensions. We introduce a coarse-
graining scale b � ε, and thicken each point by a patch
of size b — an interval of length b in 1D, and a square of
size b in 2D — centered at that point, see Fig. 2. The
patches attached to different points can then overlap and
form clusters. To characterize their spatial distribution,
we introduce the following observables: (i) The number
of cluster Nc; (ii) the length/area of individual clusters,
`c in 1D and Ac in 2D. The sum of all `c (Ac) is the
epidemic’s extension, ` (area, A, respectively). (iii) We
also characterize the distances between clusters. In 1D,
a natural choice is the distribution of gaps (Fig. 2). It is
not hard to see that, the number of gaps larger than g is
related to the cluster number with b = g:

Nc(b = g) = (number of gaps > g) + 1 . (5)
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In 2D, the notion of gaps is not obvious, and we take
Nc(b = g) as a probe of the distances between clusters.
We obtained the b dependence of all the quantities; for
conciseness, we report results with b = 1 unless otherwise
stated.
Clusters at criticality. When R0 = 1, statistical fluctua-
tions are strong, and there are various ways of averaging.
Here, we focus on averages conditioned on a large in-
fected population S (assuming non-extinction), denoted
as 〈O〉S for an observable O. From the S-conditioned
averages, we can obtain the asymptotics of the average
over all realizations up to time t, using

〈O(t)〉 ∼
∫ Smax

P (S) 〈O〉S dS, Smax ∼ t2 . (6)

Thus, if 〈O〉S ∼ Sa, 〈O(t)〉 ∼ tmax(2a−1,0) (See Table I of
[34] for results).

We have seen that when α < 4, the outskirt is much
larger than the bulk, and we expect many clusters. In-
terestingly, the interval α ∈ (0, 4) is divided into sev-
eral regimes, with qualitatively different behaviors of
〈`〉S , 〈A〉S and 〈Nc〉S . Let us start with the most non-
trivial one, α ∈ (d/2, d). There, we find that the aver-
age extension and area are related to the bulk extent in
a rather expected way:

〈`〉S ∼ ξ , 〈A〉S ∼ ξ2 . (7)

It is worth noting that the above quantities are indepen-
dent of b for a large range of b, see (15) below. Now, the
average number of clusters scales with ξ via a new and
nontrivial exponent

〈Nc〉S ∼ ξχ , α < χ < d . (8)

The exponent χ is a function of α and d, and determined
by a transcendental equation given in [34] together with
a plot. It satisfies α < χ < d, which means that the
number of clusters grows with S but remains much lower
than the area or extension. Thus, the cluster areas Ac
and extensions `c must have broad distributions (with
divergent mean as S →∞). Computing them is beyond
the reach of the present techniques. However, assuming
that they follow a single power law in the interval [1, ξd],
we can surmise their exponent [40]:

P (`c) ∼ `−χ−1c , P (Ac) ∼ A−χ/2−1c . (9)

Concerning the gaps between clusters, we found that
〈Nc(b = g)〉S has two regimes with distinct power laws:

〈Nc(b = g)〉S√
S

∼
{

(g/gc)
− d(χ−α)

d−α 1� g � gc

(g/gc)
− αd
d+α gc � g � D

, (10)

where gc = ξ1−α/d is the crossover gap length. The two
gap regimes g � gc and g � gc correspond to gaps in
the bulk and in the outskirt, respectively. To better un-
derstand this result, let us consider one dimension [45].
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FIG. 3. Gap distribution in 1D with α = 0.6, obtained by
numerical solution of (13)[34]. Data points with various sizes
S = 1020, . . . , 1028 are collapsed using (10). The dashed lines
indicate the predicted exponents in two regimes. Inset: The
dependence of the two exponents on α.

Observe that, the total length of the gaps no greater than
gc is exactly the bulk size:∑

(gaps ≤ gc) ∼ gc 〈Nc(b = gc)〉S ∼ ξ . (11)

Now, if we consider all the bulk gaps up to a size g � gc,
their number is almost Nc(b = 1), but their total size is
a negligible fraction of the bulk. On the other hand, the
outskirt gaps of are a minority in number, but their total
size is much greater than the bulk size. Of course, there is
no sharp transition between bulk and outskirt, but rather
a smooth crossover. Indeed, in Fig. 3, we show that to
demarcate the two power laws requires several orders of
g/gc. Otherwise, one may observe a “compromise” of
the theoretical predictions.

So far we focused on the regime α ∈ (d/2, d). The other
ones are simpler. In a nutshell, for strong long-range dis-
persal (α < d/2), the clusters become atomic and have a
finite size in average. Therefore we have 〈Nc〉S ∼ S, and
〈`〉S , 〈A〉S ∼ S as well. For weak long-range dispersal
(α > d), the bulk becomes more compact, and gaps of
size & 1 exist only in the outskirt. See [34] for a detailed
discussion.

Clusters of an outbreak. In the super-critical (R0 > 1)
regime, the statistical fluctuations are weak. We can thus
consider the averages up to t, which are dominated by re-
alizations with an infected population S ∼ e(β−γ)t. Re-
call that the bulk and outskirt diameter grow exponen-
tially as (3) and (4), for any α > 0. Now, the cluster
structure of an outbreak is also simpler, and we found
the same qualitative picture for any α. The bulk is com-
pact and has no large gaps. Its extension/are is 〈`〉 ∼
ξ, 〈A〉 ∼ ξ2, where ξ ∼ S1/(d+α) ∼ e(β−γ)t/(d+α) (4).
The outskirt is sparse, and has an exponential number
of clusters, 〈Nc〉 ∼ ξd. Notably, their spatial structure is
time-independent: the gap distribution is stationary up
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FIG. 4. Traveling wave solution to (13) in the supercriti-
cal regime, (α = 2, β = 1, γ = 0, b = 7). The solution
at t = 20, 40, 80 (upper inset) collapsed onto the front pro-
file F (x, t) = f(x/ξ(b)), f(y) = 1/(1 + y1+α) (black dashed
curve). The front position ξ(b) is defined by F (ξ(b)) = 1/2.
Its time dependence is plotted in the lower inset for 3 val-
ues of b. The collapse confirms the b dependence of the front
position [34].

to a normalization and a cutoff,

〈Nc(b = g)〉 ∼ ξdg− dα
α+d , g � D . (12)

In [34], we tested this prediction against Covid-19 data,
finding an encouraging agreement.
Method. We highlight some key points of our analytical
approach. The main object is a function F (x, t|b), which
is the probability that x belongs to the patch of some
point visited before t. A standard backward recursion
argument shows that F satisfies a semi-linear “instanton”
equation [37, 46–49]:

∂tF = DαF + (β − γ)F − βF 2 , F |t=0 = 0 , (13)

for any x outside the patch of the origin; inside that,
F = 1. Here (Dαf)(x) :=

∫
pα(x − y)(f(y) − f(x))ddy

is the “fractional diffusion” term. From the solution F ,
we can obtain the area (extension) by integrating it over
the plane (line). The cluster number is obtained by dif-
ferentiating with respect to b. In 1D, we have

Nc(b) = ∂b`(b) . (14)

A similar trick exists in 2D [34].
Therefore, the problem boils down to the asymptotic

analysis of (13). In the super-critical regime, the expo-
nential spreading of its traveling wave solution follows
from existing rigorous results [50]; for a self-contained
derivation and our results on clusters, see [34]. In Fig. 4,
we plot the front profile. Note that it decays as a power
law, and does not have a characteristic width. In con-
trast, in traveling wave equations with short-range dif-
fusion, the wavefront position has linear growth in time
and its width is of order unity.

The results at criticality follows from the stationary
solution of (13). The solution in the regime α ∈ (d/2, d)

involves a noteworthy feature. To discuss that without
going into technical details, consider the following puzzle,
say in 1D. Recall that the cluster number and the exten-
sion are related by a b-derivative (14). Then, how can
they scale differently: ` ∼ ξ,Nc ∼ ξχ � ξ? The crux is
that, the leading asymptotics of ` is b-independent, while
Nc derives from a subleading term:

〈`(b)〉S = c0ξ + c1(b)ξχ , (b� gc) (15)

where c0 is b-independent. To extract the cluster statis-
tics from the solution of (13), it is necessary to identify
its subleading asymptotics, in addition to the previously
known leading one [51]. This mathematical detail has a
physical interpretation: cluster statistics are associated
with irrelevant perturbations in the sense of the renor-
malization group. During the coarse-graining process,
the clusters merge and information about them is grad-
ually erased.

Conclusion. We have characterized the clusters of an
epidemic model with long-range dispersal, which is equiv-
alent near criticality to the mean-field theory of depin-
ning avalanches with long-range elasticity. We found that
two diverging length scales — the bulk and the outskirt
— emerge in both super-critical and critical regimes.
In the latter, the bulk can have a rich structure with
broadly distributed cluster sizes as well as gap sizes.
Our analytical approach based on the instanton equation
can be extended to study the effect of inhomogeneous
networks [14], realistic mixing patterns [14, 52], super-
spreading events [53], or the regions where the epidemic
is still active at time t [54, 55]. It will be also interesting
to see how much the qualitative features revealed here
appear in other epidemic models, e.g., contact point pro-
cesses [56, 57]. Finally, concerning depinning avalanches,
our model provides a mean-field description which should
be quantitatively correct for realistic long-range systems
when d ≥ 2α. To describe these systems for d < 2α,
loop corrections to mean field theory should be taken
into account. In particular, our results imply a cluster
number distribution P (Nc) ∼ N−µc where µ = α/χ + 1
for α ∈ (d/2, d). At the critical dimension d = 2α, we re-
cover the BGW value µ = 3/2, but in our model µ > 3/2
is a new exponent when d < 2α. Meanwhile, numerical
studies [40] of realistic models suggest that µ ≈ 3/2 for
all d < 2α. It will be interesting to see how to retain
the “dangerously irrelevant” cluster statistics in the field
theory and whether the loop corrections can account for
this numerical observation.
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SUPPLEMENTAL MATERIAL

A. Derivation of the instanton equation

We recall the standard backward recursion argument used to derive the instanton equation. Let the positions of
the infected individuals at time t be x1, . . . , xI(t) where I(t) is the number of infected. Note that at t = 0 we have
one infected individual at x1 = 0. Consider the probability that the b-neighborhood (called a patch in the main text)
around x has not been infected until t:

E(x, t|b) = 1− F (x, t|b) = Prob(‖xi(s)− x‖ > b/2,∀i = 1, . . . , I(s), s < t) (16)

where ‖x‖ = ‖x‖∞ is the infinite-norm of x, defined as ‖(x1, . . . , xd)‖ = max{x1, . . . , xd} (xa is the a-th component
of a point x). In particular, {‖x‖ < b/2} is the box of linear size b centered at the origin.

Since the spatial diffusion is symmetric (the probability of going from x→ y and y → x are the same), it is not hard
to see that E is equal to the probability that the b-neighborhood of the origin has not been visited, if the epidemic
starts at x:

E(x, t|b) = Prob(‖xi(s)‖ > b/2|x0(0) = x) . (17)

Note that if ‖x‖ ≤ b/2, E = 0 by definition. For ‖x‖ > b/2, we can apply a backward recursion of E by considering
what can happen during t ∈ (0,dt).

1. Another individual is infected, with probability βdt. In that case E(x) → E(x)2 (because from that moment,
the two individuals act independently from now on with the same law).

2. The patient 0 recovers with probability γdt. Then E(x)→ 1 (note that we assumed ‖x‖ > b/2).

3. The patient performs a jump to y with probability pα(y− x)ddydt. In that case E(x)→ E(y). Note that pα(x)
is a probability rate, and thus not normalized. With probability 1− dt×

∫
pα(x)ddx, the individual makes no

jump.

Gathering all the possibilities, we have

E(x, t+ dt)− E(x, t) = β(E(x)2 − E(x))dt+ γ(1− E(x))dt+

∫
pα(x− y)(E(y)− E(x))ddydt , ‖x‖ > b/2 . (18)

Now noting that F = 1− E and the definition of the fractional diffusion operator

(Dαf)(x) =

∫
pα(x− y)(f(y)− f(x))ddy , pα(x) = |x|−d−αθ(|x| − ε) , (19)

we obtain the instanton equation, (22) below.
In the main text we mentioned that in 1D, the cluster number can be obtained by deriving the extension with with

respect to b, namely Nc(b) = ∂b`(b). In 2D, deriving the area once gives the perimeter P; deriving twice, we obtain
the difference between cluster and hole numbers:

P(b) = 2∂bA(b) , ∂bP(b) = 4(Nc −Nh) . (20)

Yet, we are able to constrain the asymptotics of Nc using the bounds

P/(4b) ≥ Nc ≥ Nc −Nh . (21)

These geometric formulas are not hard to derive, upon observing Figure 2 of the main text. We also note that
similar formulas (with different prefactors) hold if we replace squares by disks in 2D. So our asymptotic results are
independent of this choice.
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B. Super-critical regime: traveling wave solution

We consider the instanton equation for F (x, t|b), which is the probability that the b-neighborhood of x has been
visited by an infected individual by time t (the epidemic starts with a single infected individual at x = 0, t = 0)

∂tF = DαF + (β − γ)F − βF 2 , ‖x‖ > b/2 (22)

F (‖x‖ < b/2) = 1 , F |t=0 = 0 , (23)

in the super-critical regime (β > γ). Note that the initial condition F |t=0 = 0 is consequence of the strict inequality
s < t in the definition (16): for t = 0, F = 0 because no infected individual exists for t < 0.

Here, we provide a simple self-contained derivation of the traveling wavefront position (including b dependence)
and of front profile. The result applies to any d and α. Very initially, we can neglect the last two terms and solve the
approximate equation ∂tF = DαF |t=0. We get

F ≈ tDα [θ(b/2− ‖x‖)] , (24)

Dα [θ(b/2− ‖x‖)] ≈
{

(‖x‖ − b/2)−α 0 < ‖x‖ − b/2� b

bd|x|−α−d |x| � b .
(25)

The first regime corresponds to points outside the b-neighborhood but very close to it (such that the neighborhood
appears semi-infinite). In that case there can be prefactors in the above formula depending on x/b, but they are
unimportant for what follows. The second regime corresponds to points far away from the neighborhood; the formula
we gave is asymptotically exact.

At t = O(1) (uniformly for all x), the linear in t growth is be overtaken by the exponential growth generated by
the (β − γ)F term. In fact that term dominates the RHS of (22), so that

F ∼ SDα [θ(b/2− ‖x‖)] , where S = e(β−γ)t , (26)

until F ∼ 1 and the nonlinear term −βF 2 stops the growth. If S � bα, e.g. if the scale b is smaller than outskirt
scale D = S1/α, we can obtain an equation for the wave front position ξ(b)

S ∼ b−dξ(b)α+d =⇒ ξ(b) = S
1

α+d b
d

α+d , if D � b . (27)

We remark that ξ(b) is related to the bulk extent ξ by the relation ξ = ξ(b = 1), but they are different quantities.
Recall that in the super-critical regime, we define the bulk extent as the distance from origin at which the density of
the infected population becomes of order one. ξ is thus independent of b, and can be done by a simple argument, as
given in the main text, and does not require analyzing the instanton equation. In contrast, ξ(b) is the b-dependent
wavefront position of the instanton equation.

Now, we can plug the traveling wave ansatz

F (x, t) = f(|x|/ξ(b)) (28)

into (22) to find the front profile. As a result, at large ξ, we find

− (β − γ)yf ′(y)

α+ d
= (β − γ)f(y)− βf(y)2 . (29)

Note that the DαF term gives a negligible contribution. We can explicitly solve for f(y):

f(y) =
β − γ

β + (y/y0)d+α
(30)

where y0 is an unknown constant. Note that f(y → 0) → 1 − γ/β = 1 − R−10 and f(y → ∞) ∼ 1/yd+α. These
predictions are verified in Fig. 4 of the main text.

In summary we have shown that for any b fixed, as t→∞,

F (x, t)→ f(|x|/ξ(b)) , ξ(b) = e
β−γ
α+d t b

d
α+d (31)

with f given by (30). The bulk extent is given by ξ with b = 1. Integrating over x in 1D and 2D, we have

〈`〉 =

∫
Fdx ∼ ξ(b) , 〈A〉 =

∫
Fd2x ∼ ξ(b)2 . (32)
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Both terms have a nontrivial b dependence. So in 1D, the cluster number is

〈Nc〉 = ∂b 〈`〉 ∼ ξ(b)/b , (d = 1) . (33)

In 2D, we have

〈P〉 = 2∂b 〈A〉 ∼ ξ(b)2/b , 〈Nc −Nh〉 =
1

4
∂b 〈P〉 ∼ ξ(b)2/b2 , (d = 2) . (34)

Now since P/(4b) ≥ Nc ≥ Nc −Nh, the above results sandwich the asymptotics of 〈Nc〉:

〈Nc〉 ∼ ξ(b)2/b2 , (d = 2) . (35)

This sandwiching argument will be systematically repeated below to obtain the cluster number asymptotics in 2D,
see (70), (71), (77), (83) below.

C. Application to the Covid-19 outbreak in the United States

As a proof of principle of our method, we test our approach against the real-world on the Covid-19 outbreak in the
United States in March 2020. The long-range dispersal is important for describing the epidemic spreading in human
society. Indeed, it has been shown [14, 15] that human mobility is well described by a Lévy flight with α ≈ 0.6, with
a cutoff of ∼ 103km.

We test the prediction of our model in the supercritical regime, on the distribution of gaps between clusters. We
recall that this is defined as the number of clusters Nc as a function of the coarse-grain distance b. The prediction is
that its average value is time-independent, up to a normalisation that depends on the number of infections S. More
precisely,

〈Nc(b)〉 ∼ S
d

α+d b−
αd
α+d . (36)

We test this prediction against the data on the initial outbreak of Covid-19 in the United States (continen-
tal states) in March 2020. County-level daily infection numbers are made available by The New York Times
(https://github.com/nytimes/covid-19-data). For any given day, we obtain a set of points which are the geographical
center of the counties where infections have been reported, see Fig. 5 (top). Then, for any distance b, we form a
graph by connecting all pairs of infected counties with geodesic distance ≤ b, and compute 〈Nc(b)〉 as the number of
connected components of the graph. We can extract the total infection number S for each day.

The results are shown in Fig. 5 (bottom). We found that in a time window of roughly a week (March 1 - March
5), and for 10km ≤ b ≤ 103km, 〈Nc(b)〉 is time-independent up to a global pre-factor that increases with time. Upon

dividing by S−
d

α+d , see (36), the data for different days are collapsed. Moreover, the b dependence is consistent with a

power law b−
αd
α+d , where α ≈ 0.6 as previously found by independent studies [14, 15] (one of the works measured α by

tracking the displacement of dollar bills). After the first week of March, the epidemic covers almost all the counties
of the United States, see Fig. 5 (top). Thus, the behavior of 〈Nc(b)〉 changes qualitatively and is no longer described
by our theory.

It may seem concerning that the prediction works only for a few days. However, this is consistent with the rapid
growth of the outskirt diameter D predicted by our model. Indeed, the daily infection data we used indicate that the
total number of infections doubles every two days in the beginning of March 2020, S ∼ 2ndays/2. By the scaling law
D ∼ S1/α, the diameter of the epidemic doubles every day. The distance resolution in our analysis is about 10km, and
the Lévy nature of human mobility is valid up to ∼ 103km [14, 15], giving us a window of two orders of magnitude.
Therefore the number of days where our theory is expected to work is

ndays =
ln(102)

ln(2)/(2α)
≈ 5.5 ,

which is approximately a week.
To summarize, we tested the prediction on the gap distribution against real-world epidemic data and obtained an

encouraging agreement in the initial stage of the outbreak. The quantitative prediction (36) appears to be robust
despite many real-world factors that are not taken into account. This is a demonstration of universality in statistical
physics.

https://github.com/nytimes/covid-19-data
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FIG. 5. Top. The purpose dots are the geographical center of the counties of the continental US where Covid-19 infections
have been reported. The grey dots are all other counties. Bottom. The number of connected components of the graph obtained
by connecting infected counties with distance ≤ b, as a function of b, for several days in March 2020. The data in early March
is compared to the prediction (36), with d = 2 and α = 0.6 (dashed line).

D. Critical regime

1. General strategy

We approach criticality from the sub-critical side, where the epidemic always goes to extinction. Thus we shall
always consider the t→∞ limit. For simplicity, we may let

β = 1 , γ = 1 +m2 , (37)

where m2 is a small positive number (“mass squared” in the avalanche context) that controls the distance to criticality.
We can obtain averages conditioned on the total infection number S by deriving with respect to m2. Indeed, this

is because the distribution of the total infection number, S, follows a power law P (S) ∼ S−3/2 with a cutoff at
Sm = m−4. Therefore, for any observable O, we have

〈O〉 ∼
∫ Sm

S−3/2 〈O〉S dS (38)
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d = 1 α < 1/2 1/2 < α < 1 1 < α < 3 3 < α < 4 α > 4

〈`〉S ∼ S? 1 1/(2α) 1/(1 + α) 1/4

〈Nc〉S ∼ S? 1 χ/(2α) 1/(1 + α) 1− α/4 0

〈`(t)〉 ∼ t? 1 (1− α)/α 0

〈Nc(t)〉 ∼ t? 1 (χ− α)/α 0

d = 2 α < 1 1 < α < 2 2 < α < 4 α > 4

〈A〉S ∼ S? 1 1/α 1/2

〈Nc〉S ∼ S? 1 χ/(2α) 1− α/4 1

〈A(t)〉 ∼ t? 1 (2− α)/α 0

〈Nc(t)〉 ∼ t? 1 (χ− α)/α 0

TABLE I. Summary of the main asymptotic results in the critical regime. Scaling exponents are displayed for both the time
average and conditioned average on a large infection number S. In two dimensions, the perimeter’s scaling is identical to the
cluster number.

where 〈O〉S is the average at criticality and conditioned on S, while 〈O〉 is the (non-conditioned) average over the
near-critical ensemble (37). Differentiating both sides with respect to m2, we obtain

〈O〉S ∼ −
∂ 〈O〉
∂m2

∣∣∣∣
m2→S− 1

2

. (39)

Most often, 〈O〉 contains a term that is proportional to a power of m2. Then, 〈O〉S is proportional to that term,

multiplied by m−2 ∼
√
S.

We can also directly obtain finite time averages at criticality from the t =∞, sub-critical one, by simply substituting
m2 → 1/t. This is because the critical and near-critical dynamics are indistinguishable until t ∼ m−2, after which
the sub-critical one saturates.

In view of the above considerations, we shall concentrate on the the stationary instanton equation in d dimensions,
d = 1, 2:

DαF = F 2 +m2F , ‖x‖ > b/2 , F (‖x‖ < b/2) = 1 . (40)

Indeed, we verified numerically that the time-dependent instanton equation always converges (point-wise) to a sta-
tionary solution as t → ∞ in the subcritical regime. The integral of F , and its b-derivative provides the sub-critical
averages. To analyze the asymptotic behavior of the solution, we shall consider a few approximate solutions to it.
Each of them is dominant in some range of parameters. Then we show how to assembly them in various regimes. In
what follows, we shall assume α < 2, until Section D 8, where the competition with short-range physics is discussed.

The main results of the analysis below are summarized in Table I.
Note. Unless otherwise stated, we assume that b ≥ 1, and restrain from considering smaller values of b. Considering

b ≥ 1 is enough for deriving the results of the main text. We will comment on situations where considering b � 1
might be useful (see Section D 8 below).

2. Extent of the bulk and the outskirt

Before proceeding with the analysis of the instanton equation, we recall the simpler calculation, of the average
density S(x) of infected individuals at distance x from the origin [the size of the infected population is is the integral
of S(x)]. By a similar backward recursion argument as above, we can show that it satisfies a linear equation

DαS(x) = m2S(x)− δ(x) . (41)

Therefore, S(x) is nothing but the Green function of a fractional Gaussian free field with mass m2 and a kinetic term
∝ |k|α when α < 2 (and |k|2 when α > 2, see (79) below) in the momentum space. The bulk extent is the correlation
length of this field: {

ξ = m−
2
α α < 2

ξSR = m−1 α > 2
. (42)

(Here, in the Supplemental Material, to avoid confusion, we shall use the subscript SR to denote the short-range
bulk extent. The symbol ξ without subscript is always equal to m−2/α even when α > 2.) Beyond the correlation
length, S(x) ∼ |x|−α−d has a fast-decaying tail. Therefore most of the infections happen inside the bulk. Identifying
m2 = S−1/2 according to (39) gives the expressions in the main text: ξ = S1/(2α) for α < 2 and ξSR = S1/4 for α > 2.

We also recall the simple argument leading to the scaling law of the outskirt radius D ∼ S1/α, Eq. (3) of the main
text. Indeed, consider S independent jump distances r1, . . . , rS , each distributed according to Eq (1) of the main text.
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It is not hard to see that Prob(|ri| < x) ∼ 1 − Cx−α for any i. By independence, Prob(max(|r1|, . . . |rS |) < x) ∼
(1 − Cx−α)S ∼ exp(−Cx−αS). Thus, the typical value of the maximal jump size is rmax max(|r1|, . . . |rS |) ∼ S1/α.
Now, assuming that the radius of the outskirt is dominated by rmax, we obtain Eq. (3) of the main text. Although
this argument seems heuristic, Eq. (3) is exact, as confirmed by the systematic analysis below, see remarks around
Eq. (61).

3. Scale invariant solution and subleading term

We now come back to the analysis of the time-independent instanton equation (40) and consider its first approximate
solution. The “scale invariant” approximation ignores the mass term and the boundary condition at ‖x‖ < b/2, and
focuses on power law type solutions of the equation

F 2 = DαF . (43)

The mass introduces a cutoff of this equation when F ∼ m2 (since that is where m2F ∼ F 2 in (40)).
To solve this equation we recall the classic formula on the Fourier transform of power laws:

F [|x|−a] :=

∫
|x|−aeix.kddx = B(a)|k|a−d ,where B(a) =

πd/22d−aΓ
(
d−a
2

)
Γ
(
a
2

) . (44)

Note that B also depends on d but we omitted this argument to keep notations concise. Then, for α < 2, the fractional
diffusion term Dα acts on a power law in the following way:

Dα(|x|−h) = |x|−h−αD(h, α) , (45)

D(h, α) :=
1

(2π)d
B(h)B(d− h− α)B(d+ α) . (46)

This can be shown by performing the convolution by Fourier transform: Dαf = F−1 (F [p]F [f ]).
From (45), it follows immediately that (43) admits a power law solution, which we shall call the scale-invariant

approximation:

Fsc = D(α, α)|x|−α . (47)

Comparing this to m2, we find the mass cutoff

ξ = m−2/α , (48)

which is the same as the bulk extent. When |x| � ξ, Fsc ∼ |x|−α−d decays fast and its contribution can be ignored
for all purposes. Plotting D(α, α), one may find that it is positive when α ∈ (d/2, d). It has a zero at α = d/2 and a
pole at α = d. Therefore the scale invariant solution is valid as a dominant asymptotic behavior only in the interval
α ∈ (d/2, d). A similar solution was found in 1D in [51].

Remark. We have swept some (well-known) technical details under the rug. Indeed, F [p] is the regularized Fourier
transform, with an ε-dependent constant removed, and to which the formula (44) applies. Also, the RHS of (45) also
misses δ terms at the origin, which are unimportant since our analysis concerns large x.

4. Correction to scale invariant solution

It will be important to consider admissible perturbations of the scale invariant solution Fsc. That is, we consider

F = Fsc + δF , δF � Fsc . (49)

Such an F satisfies (43) if δF satisfies its linearized version

Dα(δF ) = 2FscδF . (50)

This also admits a power-law solution at large distances

δF ∝ |x|−η , where η satisfies 2D(α, α) = D(η, α) . (51)
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Anticipating what follows, we note that the exponent η is related to χ in the main text by

χ = d+ α− η . (52)

See Fig. 6 for a plot of χ. The explicit form of the transcendental equation 2D(α, α) = D(η, α) (51), in terms of χ, is
the following:

D(η, α)

2D(α, α)
=

Γ
(
α
2

)
Γ
(
χ−α
2

)
Γ
(
1
2 (d− 2α)

)
Γ
(
1
2 (d+ 2α− χ)

)
2Γ(α)Γ

(
1
2 (χ− 2α)

)
Γ
(
d−α
2

)
Γ
(
1
2 (d+ α− χ)

) = 1 . (53)

This equation determines χ as mentioned in the main text. Note that for each d, α there are several branches of
solutions to this equation (generically an infinity, but only two for α = 2, 4, ..). The branch relevant to this study is
the unique one such that χ ∈ (α, d) (or η ∈ (α, d)) as α ∈ (d/2, d). We justify this choice by observing that χ→ d as
α→ d/2, which is expected from the continuity to the α < d/2 regime (see below).

Remark. A similar analysis of the linear perturbation of the instanton equation around the self-consistent solution
FSR(x) = 2(4− d)/x2 was performed for the short-range Brownian model (in the continuum setting of the Brownian

force model) [58] (Section VIII) and led to two possible values for the exponent η = 3,−4 in d = 1, η = ±2
√

2 in

d = 2 and η = 1
2 ±

√
17
2 in d = 3. Similar exponents also appeared in calculations of the fractal dimension of the

boundary of the super-Brownian motion [59].
One can ask how the equation (53) recovers the SR case. This happens by setting α = 2, while keeping d, η generic.

In that case (53) simplifies and one obtains two branches of solutions:

D(η, 2)

2D(2, 2)
=
η(d− η − 2)

4(d− 4)
⇒ η =

1

2

(
d±

√
(d− 20)d+ 68− 2

)
, (54)

which recover the above cited values.
It is interesting to note however that the α → 2 limit of the transcendental equation (53) is quite subtle in 2D.

First of all, the α→ 2 and d→ 2 limits do not commute. We have the following series expansion of the LHS of (53):

D(η, α)

2D(α, α)

∣∣∣∣
d=2−ε
α=2−rε

=
η2(r − 1)

16r − 8
+ O(1) , ε→ 0. (55)

The short-range model is obtained by taking r = 0, i.e., sending α→ 2 before d→ 2 as noted above (indeed, equating

the above equation to 1, we obtain η = ±2
√

2 in agreement with above). On the other hand, taking r = ∞, i.e.,
sending d→ 2 before α → 2, we obtain η → ±4 as α → 2. By tuning r, i.e. the angle of approach to (α, d) = (2, 2),
we can obtain any other value of η as a limit. However, the solution that is useful for the cluster statistics in this
work is a different branch, and invisible from the series expansion (55). This is because at d = 2, the limits η → 2
and α→ 2 do not commute either. We have

D(η, α)

2D(α, α)

∣∣∣∣ d=2
α=2−ε
η=2−rε

=
1 + r

4r
+ O(1) , ε→ 0. (56)

Equating the RHS to 1 gives r = 1/3, or 2 − η = (2 − α)/3 +O((2 − α)2) at d = 2. We note in passing that in 1D,
1− η = (1− α)/2 +O((1− α)2).

5. The plateau approximation

We now consider another approximate solution: the “plateau approximation”. It consists in replacing the LHS of
(40) by DαF ≈ Dα [θ(b/2− ‖x‖)], which is calculated in (25). Equating that to F 2, we obtain

Fpl = b
d
2 |x|−α+d

2 , b� |x| � Xm (57)

where the mass cutoff scale can be again determined by Fpl(Xm) = m2:

Xm = b
d

α+dm−
4

d+α . (58)

Beyond that Fpl ∼ |x|−α−d decays fast and its contribution can be neglected.
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FIG. 6. Solid curve: The exponent χ as a function of α for d = 1 and d = 2. The dashed line is α.

Under the plateau approximation, the area or the extension is given by∫
Fpl(x)ddx =

{
c0(b)− c1Xd

mm
2 α > d

c1X
d
mm

2 α < d
(59)

where c1 is some positive constant independent of b, while c0(b) depends on b but not on m2. When α < d, the above
formula leads to the large gap power law of the gap distribution, see (71) below. When α > d, the integral of Fpl

remains of order one as m2 → 0. Yet, the subleading term c1X
d
mm

2 is m2 dependent, and can be used to calculate
the conditioned average on a large S, via (39):

∂m2

∫
Fpl(x)ddx ∼ Xd

m , α > d . (60)

Remark. When the point is near the b-neighborhood, ‖x‖− b/2� b, the plateau approximation has a slower decay:

Fpl ∼ |‖x‖ − b/2|−
α
2 , 0 < ‖x‖ − b/2� b (61)

However, this regime is important only if Xm . b, which is equivalent to b & D = m−4/α. To make the following
discussion less cumbersome, we shall always assume b� D and ignore the near-plateau regime (61), unless otherwise
stated. (Larger values of b no longer probe the gap distribution but rare instances of gaps greater than D.)

6. Solution for d/2 < α < d

We are now ready to build the solution for the most interesting regime d/2 < α < d, using the above pieces. Since
α < d, (α+ d)/2 > α, we expect that the solution is dominated by the plateau approximation (57) at small distances
and by the scale invariant one (47) at large distances. Comparing them we obtain a crossover scale

Fpl(xb) = Fsc(xb)⇒ xb = b
d

d−α . (62)

However, recall that the scale-invariant solution has a cutoff at |x| ∼ ξ, and can exist if and only if xb � ξ. Otherwise,
the plateau approximation dominates everywhere, up to a larger mass cutoff Xm & ξ. The crossover value of b is the
crossover gap scale

xb ∼ ξ ⇒ b ∼ gc = ξ1−α/d (63)

we referred to in the main text. In summary we have:

F =

{
Fpl |x| � xb

Fsc + δF xb � |x| � ξ
, if b� gc (64)

F = Fpl , |x| � Xm , if b� gc . (65)
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Above, δF is the subleading correction to the scale invariant solution. We have seen that it must be proportional
to |x|−η (51). It remains to fix the prefactor, which will turn out to be b-dependent. To do this, we argue that a
separation of the scales b� xb � ξ imposes a single-parameter scaling of F near xb:

F (x|b) = x−αb F̃ (x/xb) , (66)

for some scaling function F̃ (y) such that F̃ (y →∞) ∼ y−α and F̃ (y → 0) ∼ y−(α+d)/2. This scaling form is fixed by
the leading terms in (64). We verified this ansatz with extensive numerical solution of the instanton equation, see
Fig. 7. Imposing this scaling form to the subleading term fixes its prefactor

δF ∼ |x/xb|−ηx−αb ∼ b
d(η−α)
d−α |x|−η . (67)

It indeed has a nontrivial b-dependence, which will allow us to obtain the number of clusters and the bulk gaps
distribution, see below.

We now have the complete solution in the regime α ∈ (d/2, d) (we keep all the dependence on x, m2 and b, but
drop out all other prefactors):

F ∼
{
Fpl = b

d
2 x−

α+d
2 |x| � xb = b

d
d−α

Fsc + δF = |x|−α + xη−αb |x|−η xb � |x| � ξ = m−2/α
, if b� gc = ξ1−α/d

F ∼ Fpl = b
d
2 x−

α+d
2 , |x| � Xm = b

d
α+dm−

4
d+α , if b� gc . (68)

When |x| � ξ or |x| � Xm, F decays as |x|−α−d and can be ignored.
To find the mean area and extension, we take b� gc, and integrate over F . From (68) we can see that the integral

is dominated by Fsc + δF at its mass cutoff scale |x| ∼ ξ, so that:

〈`(b)〉 , 〈A(b)〉 ∼
∫
|x|<ξ

F (x)ddx ∼ ξd−α + xη−αb ξd−η . (69)

(Here and below, the RHS with d = 1 applies to `, and d = 2 applies to A.) Note that the first term in the RHS is
dominant but b-independent; only the subdominant one is b-dependent. Applying (39), setting b = 1 and neglecting
the subdominant term, we obtain the S-conditioned mean extension/area of the main text.

The mean cluster number and the bulk gap (b� gc) distribution is dominated by the subleading term of F involving
η, |x| ∼ ξ, since the leading term is b-independent. The result can be written in a nice way using gc:

〈Nc(b = g)〉 ∼ ∂db
∫
|x|<ξ

Fddx ∼ (g/gc)
− d(d−η)d−α = (g/gc)

− d(χ−α)
d−α , g � gc . (70)

Here we recall that χ = α + d − η by definition. Upon applying (39) we find the small-gap result and the cluster
number (with b = 1) result of the main text. We also recall that in 2D, we need to use the sandwiching argument
〈P〉 & 〈Nc〉 ≥ 〈Nc −Nh〉, as discussed below (34).

Similarly, the outskirt gap distribution is dominated by the b� gc case of (68). We have

〈Nc(b = g)〉 ∼ ∂db
∫
|x|<Xm

Fddx ∼ (g/gc)
αd
α+d , g � gc . (71)

The S-conditioned result in the main text is then found by applying (39). Note that, we can see clearly from the
calculation above that these gaps are in the outskirt, by noticing that the integral of F is dominated by the scale Xm,
which is larger than ξ.

In Fig. 3 of the main text, we verified the gap distribution prediction by extensive numerical solution of the instanton
equation. The derivative with respect to b an m2 are evaluated numerically as finite differences.

7. α < d/2: The linear approximation

When α < d/2, the scale invariant solution is no longer viable in the long distance because its prefactor would
be negative. In fact, at large distances, the nonlinearity becomes irrelevant and the linear approximation applies,
F ≈ Flin where Flin is such that

(Dα −m2)Flin = fast decaying term =⇒ Flin ∼ c(b)|x|−(d−α) , |x| � ξ = m−
2
α (72)
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FIG. 7. Verification of the scaling ansatz (66), which is equivalent to F (x|b) = F̂ (x/xb)x
−α such that F̂ (y → ∞) = D(α, α)

and F̂ (y → 0) ∼ y(α−d)/2. We solved the instanton equation numerically at m2 = 10−19 and for b/ε = 6×103, . . . , 2×109 (from
red to blue), and plotted Fxα against x/xb (for x > b); the data collapse near x ∼ xb confirms the scaling ansatz. For x� xb
and x� xb the solutions are in good agreement with the scale-invariant (Fsc) and plateau (Fpl) approximations, respectively.
Note that the dashed lines have the exact prefactors; no fit is performed. The large distance and small distance deviations from
the collapse are due to the mass cutoff and the near plateau behavior (61), respectively.

(Recall that we assume α < 2 here). Beyond ξ, the solution again decays as |x|−d−α and can be neglected. To fix
the b-dependent prefactor, we can exploit the crossover to the plateau solution at the mass cutoff scale. A smooth
crossover requires that Flin(Xm) ∼ Fpl(Xm) when Xm ∼ ξ. This imposes:

c(b) ∼ b
d(d−2α)
d−α , (73)

and in turn fixes the crossover scale between the linear and plateau regimes: it is still xb = b
d

d−α as in the regime
α ∈ (d/2, d). So the crossover with the plateau approximation works exactly as in the regime α ∈ (d/2, d). In
summary, the instanton solution for the α < d/2 is as follows:

F ∼
{
Fpl = b

d
2 x−

α+d
2 |x| � xb = b

d
d−α

Flin = x−αb |x/xb|α−d xb � |x| � ξ
, if b� gc = ξ1−α/d

F ∼ Fpl = b
d
2 x−

α+d
2 , |x| � Xm = b

d
α+dm−

4
d+α , if b� gc . (74)

The extension and area (for b� gc) are obtained by integrating F , and are dominated by Flin:

〈`(b)〉 , 〈A(b)〉 =

∫
F (x)ddx ∼ ξαxd−2αb , b� gc . (75)

Note that these quantities have a nontrivial b-dependence already at leading order, at variance with the case of
α ∈ (d/2, d). Applying (39) we obtain

〈`(b)〉S , 〈A(b)〉S ∼ Sxd−2αb . (76)

Applying the ∂db derivative we obtain the gap distribution and the cluster number; applying (39) gives us the S-
conditioned average:

〈Nc(b = g)〉 ∼ 1√
S
〈Nc(b = g)〉S ∼

{
(g/gc)

αd
d−α , g � gc

(g/gc)
αd
d+α , g � gc

(77)

In particular we find 〈Nc〉S ∼ ξ2α ∼ S. In other words, the number of clusters is proportional to the total infected
population. So the size of each cluster is of order unity in average: the clusters are atomic.
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Remark. We may understand the α < d/2 regime as a degeneration of the α ∈ (d/2, d) one, in the following
sense. The linear approximation is the continuation of the subleading term in the scale-invariant solution, whereas
the leading term vanishes. Thereby, the gap distribution and cluster number in the regime α < d/2 can be expressed
using the same formulas of the regime α ∈ (d/2, d), upon the following replacements of the exponents:

η → d− α , χ→ 2α , (α < d/2) . (78)

8. Regimes with α > d

When α > d, among the above approximate solutions, only the plateau one can survive. However, when α > 2, the
fractional diffusion operator contains a normal diffusion term: more precisely, in the Fourier space

F [p](k) = Aε|k|2 + · · ·+B(α+ d)|k|α , (79)

where Aε is a constant depending on the short-distance cutoff of pα(x), and . . . denotes further even powers (≤ α) of
|k| that may appear. This implies a new approximate solution: the short-range (SR) scale invariant solution,

FSR = 2(4− d)Aε|x|−2 , |x| � ξSR = m−1 . (80)

Comparing this with the plateau approximation both near the plateau ∼ |x|−α/2 (61), and faraway ∼ |x|−(α+d)/2 (57),
we identify two threshold values: α = 4− d, and α = 4. Hence, there are three cases:

1. α ∈ (1, 3), d = 1. Here, the plateau approximation is valid everywhere up to the cutoff Xm:

F ∼ Fpl = b
d
2 x−

α+d
2 , |x| � Xm = b

d
α+dm−

4
d+α (81)

Then the extension for any b has a nontrivial b dependence, as follows:

〈`(b)〉S ∼ ∂m2

∫
F (x)dx = b

1
1+αS

1
1+α . (82)

The gap distribution has only the large-gap regime (again given by the plateau approximation):

〈Nc(b = g)〉S ∼ S
1

1+α g−
α

1+α ∼
√
S(g/gc)

− α
α+1 , gc = ξ1−α � 1 . (83)

The above results may appear simple formally, but their physical interpretation is rather subtle. Indeed, the
average extension is always much greater than the bulk extent, which is ξ ∼ S1/(2α) for α < 2, and ξSR ∼ S1/4

for α > 2. This transition from a long-range bulk to a short-range one is invisible from the asymptotic behavior
of 〈`〉. This is because the extension is not dominated by the bulk (as is the case for all the other regimes α < d),
but by the many clusters of the outskirt, at a distance Xm � ξ from the origin. Now, concerning the bulk itself,
the above results provide only indirect information. For example, we may infer that the bulk should be compact,
and devoid of gaps of size ≥ 1, because the gap distribution does not have a small-gap regime: indeed, in (83)
gc � 1 for α > 1. If is possible for very small b, b . gc � 1, the asymptotic behavior of the solution might be
different from (81) above, and reveal further information about the bulk in the regime α ∈ (1, 3), d = 1. We
leave this to future study.

2. α ∈ (4 − d, 4). This is a more tricky case, since there is again a crossover from the plateau to the SR scale
invariant approximation. The crossover scales can be worked out in a similar way as in the regime α ∈ (d/2, d),
but their values are different:

F =

{
Fpl = b

d
2 x−

α+d
2 |x| � b

d
α+d−4

FSR ∼ |x|−2 b
d

α+d−4 � |x| � ξSR = m−1
, if b� g′c = ξ

α−4+d
d

SR

F = Fpl = b
d
2 x−

α+d
2 , |x| � Xm = b

d
α+dm−

4
d+α , if b� g′c .

(84)

(85)

(We do not need to calculate any correction to FSR, as we explain below.) As a result, the extension and area
are dominated by the short-range bulk: (89) still holds, as in the regime α > 4. However, in difference with the
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FIG. 8. Cluster number (gap distribution) with α = 3.5, d = 1. We solved the instanton equation for b/ε ∈ [60, 2 × 106], and
m2 = 10−13, 10−15, 10−17, 10−19 as well as 1.5m2, in order to extract S-conditioned averages at S = m−4, using (39). The data
collapse confirms the prediction (87) as well as that of the gap distribution for g > gc.

latter regime, there are many clusters and gaps in the outskirt. Indeed, for b� g′c, we have the gap distribution
given by the plateau approximation:

〈Nc(b = g)〉S ∼
√
S(g/gc)

− αd
α+d , gc = ξ1−α/d , b� g′c . (86)

(Note that ξ = m−2/α ∼ S1/(2α) by definition.) As b further decreases below g′c, the short-range solution
dominates the mass cutoff scale. So we expect that there are no more gaps in the bulk, and therefore the cluster
number no longer grows:

〈Nc(b� g′c)〉S ∼ 〈Nc(b = g′c)〉S ∼ ξ4−αSR ∼ S1−α/4 , (87)

in both dimensions. In particular, the cluster number scales as 〈Nc(b = 1)〉S ∼ S1−α/4. The above predictions
are tested numerically in 1D, see (8).

We note that, in the numerical solution of the instanton equation in 1D, we did not observe the short-range
subleading exponents (54), which is ∝ |x|−3 in 1D. Indeed a c(b)|x|−3 correction to FSR would imply that
〈Nc(b = 1)〉S ∼ O(1), which is inconsistent with the results at large gaps b � g′c. This does not contradict
our analysis of admissible perturbations of the scale invariant solutions. An admissible perturbation may not
necessarily appear.

3. α > 4. The short-range solution decays more slowly than the near-plateau approximation |x|−α/2. This implies
that the plateau contribution cannot dominate at large distances for any value of b. The solution is always the
short range scale invariant one up to the cutoff ξSR, with no significant dependence on b at long distances:

F = FSR ∼ |x|−2 , |x| � ξSR (88)

Therefore we have a short-range behavior for the extension and area

〈`(b)〉S , 〈A(b)〉S ∼ ∂m2

∫
F (x)ddx ∼ ξdSR . (89)

Because there is no longer a b dependence, there are no longer a large number of clusters. In other words, the
short-range physics completely takes over when α > 4, confirming the simple argument of the main text.

E. Relation and application to avalanches

In this section we discuss the above results from the perspective of depinning avalanches with long-range elasticity.
We assume α < 2 unless otherwise stated.
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We recall that an avalanche of an elastic interface is described by the following equation of motion governing the
interface position u(x, t):

∂tu = (Dα −m2)u+ f(x, u) + δ(t− t0)δ(x− x0)m2w . (90)

Here Dα is the elastic interaction (plus a mass term), m2 is a mass (it introduces a cut off to the avalanche size, in a
similar way as does 1−R0), f is the quenched random force from the disordered medium, which for realistic models
is usually short range in space. The last term is a localized kick in order to trigger an avalanche. The mean-field
approximation, which can be justified in dimension d > 2α, consists in replacing f by an independent Brownian
motion in u for each x, such that: 〈

(f(x, u′)− f(x, u))2
〉

= |u− u′| . (91)

Then we obtain the Brownian force model, which is exactly solvable [36, 37]. If we place the interface at an equilibrium
before the kick, the interface will move forward and eventually stop at a further equilibrium. The displacement is the
avalanche. Its total size S =

∫
ddxdt∂tu is defined as the integrated displacement.

It is known that the Brownian force model is equivalent to a continuum limit of the epidemic model discussed in
this work [35]. We will comment on this below. Now, let us take this mapping for granted and discuss the results of
this work from the perspective of mean-field avalanches.

1. Applications

Roughness. In the mapping to the Brownian force model the total number of infections S corresponds to the
total size of the avalanche. Its distribution is fixed by the BGW law: P (S) ∼ S−τ , with τ = 3/2. Now, the Narayan-
Fisher [38, 60, 61] scaling relation (see also extensions in [62]) relates τ to the roughness exponent ζ (u ∼ xζ):

τ = 2− α

d+ ζ
, α > d/2 . (92)

Plugging in τ = 3/2, we find ζ = 2α− d. When α < d/2, the above relation does not apply, and ζ = 0 instead. How
does this relate to our results?

• When α < d/2, ζ = 0 corresponds to our finding that 〈`〉S , 〈A〉S ∼ S: The avalanche is flat instead of rough,
so that its extension/area is proportional to its size.

• When α > d/2, the roughness exponent relates the bulk extent with the size in a standard way:

S ∼ ξ2α ∼ ξd+ζ . (93)

This relation is usually interpreted as attesting the self-affinity of the rough avalanche. However, the scaling
relation between the extension/area and S is given by (93) (as one expects) only if d/2 < α < d. In 1D,
and when α ∈ (1, 2), the mean extension 〈`〉 ∼ S1/(1+α) is much larger than the bulk extent S1/(2α), and is
dominated by many small clusters in the outskirt (〈Nc〉 ∼ S1/(1+α) as well). These clusters are not expected to
be self-affine. Yet, we expect the largest clusters in the bulk to have size ∼ ξ and be self-affine with roughness
ζ. Probing these clusters directly is beyond the reach of the present approach.

A few more exponents. The nontrivial cluster number exponent χ gives rise to a few other predictions (conjec-
tures), for α ∈ (d/2, d).

• By assuming self-affinity of the bulk clusters, we can relate the clusters’ size Sc with their extension/area via
Sc ∼ `2αc , Sc ∼ Aα. Combining this with the conjecture on the distribution of `c and Ac (given in the main
text), we can conjecture the cluster size distribution:

P (Sc) ∼ S−
χ
2α−1

c . (94)

• Using the scaling relation Nc ∼ ξχ ∼ S
χ
2α and the BGW law for S, we obtain a conjecture on the distribution

of cluster number:

P (Nc) ∼ N
−αχ−1
c . (95)

The exponent goes to 3/2 as α → d/2 (since χ → d). Away from that limit, the exponent is larger than 3/2.

Of course this is not in contradiction with the numerical observation of Ref. [40] that P (Nc) ∼ N−3/2c for all α
in non-mean-field avalanches. The robustness of the exponent 3/2 is probably a result of loop corrections.
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2. Remarks on the mapping and the continuum limit

We now briefly discuss the mapping between the epidemic model and the Brownian force model, focusing on the
continuum limit involved [35]. From the point of view of the epidemic model, the first step of this continuum limit is
to take the infection and recovery rate to be large:

β = N � 1 , γ = N +m2 . (96)

Thereby, the instanton equation ∂tF = DαF −NF 2−m2F acquires a large parameter. The second step is to remove
the large parameter from the instanton equation, by changing the observable. Recall that in our approach, E = 1−F
is the probability that the b-neighborhood of the origin is not visited by an epidemic starting from x (16). We can
soften this “hardcore repulsion” observable as follows:

G(x, t) :=

〈
exp

−∫ 0

−t
ds

I(s)∑
i=1

1

N
λ(xi(s), s)

〉 , (97)

where λ(x, t) is a function of space, and the epidemic starts at −t with a single infected individual at x (The
choice of time coordinate looks awkward but necessary for a backward recursion to work.). In particular, taking
λ(x, t) = CNθ(b/2− ‖x‖), with C →∞, we recover E (16). It is not hard to see that G satisfies a similar backward
recursion as E:

∂tG = DαG+N(1−G)2 +m2(1−G)− 1

N
λG . (98)

Finally, setting G = exp(−ũ/N), and keeping the leading order in N , we obtain

∂tũ = Dαũ− ũ2 −m2ũ+ λ . (99)

This is the instanton equation in the Brownian force model [37] (often a different sign convention is used where
ũ → −ũ and λ → −λ). Note that it is very similar to our instanton equation for F . However the differences are
important, in particular the physical interpretation is distinct. In the Brownian force model, the velocity of the
interface corresponds to the (scaled) density of infected individuals

∂tu(x, t) =

I(t)∑
i=1

1

N
δ(xi(t)− x) . (100)

In particular, if we set λ(x, t) ≡ λ,

e−ũm
2w = GI(0) =

〈
exp

(
−λ
∫

∂tuddxdt

)〉
, I(0) = m2wN (101)

is the generating function of the total avalanche size, usually called S in the avalanche literature. It corresponds to
th e (scaled) total lifetime of all infected individuals (until recovery), if we start with I(0) infected individuals. This
is in turn proportional to the total number of infections. So it is reasonable to call the latter S as well, as we did in
the main text.

We remark that, once the continuum limit is taken, it becomes not obvious to speak about clusters. Indeed, putting
a source term in (99), for example λ = λ0θ(b/2 − ‖x‖), amounts to imposing a finite penalty/fugacity for the time
spent by infected individuals (or avalanche activities) in the b-neighborhood. To define the emptyness probability
one needs to send λ0 → ∞. This has been done in the case of short-range elasticity to calculate, for example, the
extension of the avalanche [37, 44, 58]. But such a limit would be ill-behaved with long-range elasticity, since ũ would
diverge everywhere. By contrast in our model, the instanton equation for F does not have a source term but rather a
“boundary condition”, F |‖x‖<b/2 = 1. Similar boundary conditions for ũ (99) also appeared in the continuum limit,
but the interpretation is different, see [35] Appendix D2, and references therein.

Remark: reduction in dimension. The 1D model can be obtained from the 2D one by a projection. Writing
(xi(t), yi(t)) the coordinates of the infected individuals in the 2D model, then the process xi(t) is the 1D model with
the same infection/recovery rates and the jump rate pα(x − x′)dx′dt where pα(x − x′) =

∫
dy′/((x − x′)2 + (y −

y′)2)
2+α
2 ∼ |x − x′|−(1+α), up to an irrelevant change in the precise cutoff function at scale ε. A similar reduction

in dimension holds for the Brownian force model, see e.g. [58] Sec. IA. This reduction implies a number of bounds
between 2D and 1D quantities with the same α. For example, the number of clusters increase with the dimension:
〈Nc(b)〉α,2D ≥ 〈Nc(b)〉α,1D. We can check that our asymptotic results satisfy this bound. This bound is not tight: for

instance when α ∈ (1/2, 1), 〈Nc(b = 1)〉 ∼ S in 2D but 〈Nc(b = 1)〉 ∼ Sχ/(2α) � S in 1D.
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F. Numerical methods

In this section we describe the numerical techniques used in the extensive solution of the instanton equation. We
restrict to d = 1.

1. Logarithmic discretisation

To solve the instanton equation numerically, we need to discretise space. The standard uniform mesh is not sufficient
to attain the large length scale where the asymptotic behaviors predicted above can be clearly observed. We take a
logarithmic mesh

xn = ε exp(nδ) , n = 0, 1, 2, . . . , N. (102)

Usually, we choose ε = 1, the mesh size δ = 0.1 or δ = 0.2 is sufficient fine, and N = 200 ∼ 400 should be chosen
appropriately to avoid finite size effects. For example, for the critical regime, one should see a clear mass cutoff. The
value of b is chosen to be 2xn for some n.

Then, we approximate F to be piece-wise linear in the intervals |x| ∈ [−x0, x0] and |x| ∈ [xn, xn+1]. We also assume
F (x) = F (−x). When calculating (DαF )(x) in the interval |x| ∈ (xn, xn+1), we approximate x to be the middle point
zn = (xn + xn+1)/2 for the whole interval:

(DαF )(x ∈ [xn, xn+1]) =

∫
pα(zn − y)(F (y)− F (x))dy =

N∑
m=−1

(F (zm)− F (zn))Knm , (103)

Knm =

∫
|y|∈[xm,xm+1]

pα(zn − y)dy (104)

where we have set z−1 = 0 (it corresponds to the interval [−x0, x0]. The matrix elements can be explicitly calculated
using pα(x) = |x|−1−α, for n 6= m. We do not need the ones for n = m.

It should be noted that the logarithmic mesh amounts to different way of cutting off pα(x) at short distances: the
cutoff effectively depends on the position. This has an undesired effect for α > 2: we do not get the short distance
term ∝ |k|2 automatically, and have to add it by hand: K → K +KSR, where KSR is the above matrix with α = 2,
from which we remove all the elements with distance > 1 away from the diagonal (so that KSR is tri-diagonal).

2. Iteration scheme for stationary solution

In critical regime, we need to find the stationary (t → ∞) solution to the instanton equation. We find this by
iteration. For this, we can write the instanton equation as∑

m

KnmF (zm) = (m2 +
∑
m

Knm)F (zn) + F (zn)2 , |zn| > b/2 . (105)

Then the iteration scheme is as follows:

F0(zn) = θ(b/2− zn) , (106)

(m2 +
∑
m

Knm)Fj+1(zn) + Fj+1(zn)2 =
∑
m

KnmFj(zm) , zn > b/2 . (107)

that is, for each iteration, we compute the matrix multiplication of the RHS, and then solve the quadratic equation for
Fj+1 (we pick the positive solution). It is not hard to show that Fj(z) increases with j. Since F ≤ 1 is also bounded
from above, the (point-wise) convergence of this procedure is guaranteed. In practice, a few hundred iterations provide
a sufficient convergence for all the tests we presented. This corresponds to no more than to a couple of minutes of
calculation on a consumer laptop in order to generate each plot of this paper from scratch.

In the supercritical regime, we solve the time-dependent instanton equation by the Euler scheme with δt = 0.01.
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3. Code availability

The code used to generate all the plots of this paper is available by following this link: https://github.com/xcao-
phys/cluster.
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de matière et son application à un problème biologique,”
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