
HAL Id: hal-03539682
https://hal.science/hal-03539682v1

Submitted on 21 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Edging towards an understanding of CH/CH2 on
nano-diamonds

A. P. Jones

To cite this version:
A. P. Jones. Edging towards an understanding of CH/CH2 on nano-diamonds. Astronomy & Astro-
physics - A&A, 2022, 657, pp.A127. �10.1051/0004-6361/202141792�. �hal-03539682�

https://hal.science/hal-03539682v1
https://hal.archives-ouvertes.fr


Astronomy
&Astrophysics

A&A 657, A127 (2022)
https://doi.org/10.1051/0004-6361/202141792
© A. P. Jones 2022

Edging towards an understanding of CH/CH2 on nano-diamonds

Regular and semi-regular polyhedra and diamond network models

A. P. Jones

Université Paris-Saclay, CNRS, Institut d’Astrophysique Spatiale, 91405, Orsay, France
e-mail: anthony.jones@universite-paris-saclay.fr

Received 14 July 2021 / Accepted 1 November 2021

ABSTRACT

Context. Nano-diamonds have been observed in only a handful of circumstellar regions 10–100 AU from moderately bright stars
(Teff ∼ 8000–10 000 K). They have also been extracted from primitive meteorites; some of these are clearly pre-solar, that is to say that
they formed far from the solar system and therefore traversed the interstellar medium, where they must exist but, because we see no
evidence of them, must be extremely well hidden.
Aims. Our goal is to understand if it is possible to constrain the sizes and shapes of nano-diamonds in circumstellar media using the
observed ratio, [CH]/[CH2], of their surface CH2 and CH infrared bands at '3.43µm and '3.53µm, respectively.
Methods. We calculated the CH and CH2 abundances on nano-diamonds using two approaches. The first assumes regular and semi-
regular polyhedra (tetrahedra, octahedra, and cubes and their truncated forms). The second uses a diamond bonding network to derive
the structures of tetrahedral and octahedral particles, and their truncated variants, and also of spherical nano-diamonds.
Results. As a function of the particle size and shape, and for the two different calculation methods, we derived the relative abundance
ratio [CH]/[CH2], which can then be weighted by their laboratory-measured infrared band intensities. The two methods give good
agreement and indicate that the spread in values, over the different particle forms, is more that an order of magnitude for any size.
Conclusions. We conclude that the ratio [CH]/[CH2], and their infrared band ratio, strongly depend upon particle size and shape. For
a given shape or size, the ratio can vary by more than an order of magnitude. It may therefore be difficult to constrain nano-diamond
sizes using the observed 3–4µm spectra alone. James Webb Space Telescope mid-infrared spectra may help, but only if bands are
size-specific.

Key words. dust, extinction – ISM: abundances

1. Introduction

Nano-diamonds with median radii of 1.3–1.5 nm (Daulton et al.
1996) have been extracted from meteorites in abundances of
up to '1400 ppm (Huss & Lewis 1995). Their isotopically
anomalous Xe content is considered characteristic of supernovae
(Lewis et al. 1987), and their 15N depletion and low C/N ratios
are typical of carbon-rich stellar environments (Alexander 1997).
The observation of a CH stretching mode at 3.47µm towards
dense regions was originally thought to be an indicator of the
presence of nano-diamonds in the interstellar medium (ISM)
(Allamandola et al. 1992), but most likely has another origin
(Brooke et al. 1996). However, we do today have conclusive
observational evidence for the presence of nano-diamonds in
proto-planetary discs where they are identified by their charac-
teristic CHn (n = 1, 2) stretching modes at 3.43 and 3.53µm (e.g.
Guillois et al. 1999; Van Kerckhoven et al. 2002; Habart et al.
2004).

In the laboratory, diamond-like materials and nano-
diamonds have long been synthesised and studied and there
exists a vast literature on this subject1. In most of these lab-
oratory studies, we have the luxury of being able to directly
analyse the textures, particle sizes, and shapes through a myriad

1 Here we desist from giving any obviously limited and highly-
selective citation of this literature.

of sophisticated techniques (e.g. scanning and tunnelling elec-
tron microscopy and atomic force microscopy). In astronomical
observations this option is not available to us and so we must
progress using solid-state material models. Our understand-
ing is therefore critically constrained by the limitations of our
knowledge and our models.

In order to model, analyse, and interpret the spectra of the
nano-diamonds observed in circumstellar proto-planetary discs,
we required well-determined wavelength- and size-dependent
optical constants: the complex indices of refraction. These were
then used to calculate the optical properties of nano-diamonds
and thence their extinction, absorption, and scattering cross-
sections, which in turn were used to derive their temperatures
in a given stellar radiation field. In the following paper, we
derive the nano-diamond optical constants and, in this paper, as
a key input to this modelling, we concern ourselves with approx-
imating nano-diamond structures using regular and semi-regular
polyhedral shapes, principally tetrahedra (T) and octahedra (O),
and their truncated forms (tT and tO), but also consider cubocta-
hedra (cO), cubes (C), and truncated cubes (tC). Additionally we
developed a diamond bonding network model to derive the struc-
tures of tetrahedral and octahedral particles and their truncated
forms.

A key question in unravelling the essential characteristics of
the 3–4µm infrared bands that have been attributed to nano-
diamonds and, in particular the 3.53µm/3.43µm ratio, is how
their size and the shape (e.g. rounded, angular, crystal-faceted
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[euhedral], . . . ) can affect this ratio. Here we consider this ques-
tion from a purely geometrical aspect, that is by considering
the surface and edge structures of euhedral forms modelled as
regular polyhedra and diamond-bonded networks. The principal
product of both of our nano-diamond modelling approaches is
the relative abundance ratio [CH]/[CH2] of nano-diamonds as a
function of the particle size and shape.

This paper is structured as follows: Sect. 2 describes the
nano-diamond physical properties, Sect. 3 considers particle
shapes and surfaces, Sect. 4 details the polyhedral methodology
for a range of regular forms, Sect. 5 describes semi-regular trun-
cated polyhedra, Sect. 6 presents the diamond-bonded network
methodology, Sect. 7 discusses the predicted CH/CH2 ratios in
nano-diamonds and their use as a ruler, Sect. 8 considers nano-
diamond stability and surface dehydrogenation effects, Sect. 9
discusses the implications of the results and speculates upon
their utility, and Sect. 10 summarises the work and presents the
conclusions.

2. Nano-diamond physical properties

The diagnostic potential of interstellar dust species is principally
driven by their characteristic infrared spectra. In order to fully
utilise this potential for hydro-carbonaceous dust, be it aliphatic-
rich, aromatic-rich or (nano)diamond, we need to understand
how the particle size, composition, and morphology determine
its spectroscopic signatures. For nano-diamonds there is a wealth
of laboratory data to aid us (e.g. Lewis et al. 1989; Colangeli
et al. 1994; Koike et al. 1995; Mutschke et al. 1995, 2004; Reich
2011; Andersen et al. 1998; Braatz et al. 2000; Hill et al. 1998;
Chen et al. 2002; Sheu et al. 2002; Jones et al. 2004; Pirali et al.
2007; Steglich et al. 2011; Usoltseva et al. 2018; Zhigilei et al.
1997a). The hope is that we can, at the very least, use these
data to enable us to determine nano-diamond sizes in interstel-
lar media through the ratio of the 3.43µm and 3.53µm band
strengths (e.g. Chen et al. 2002; Sheu et al. 2002; Pirali et al.
2007) because, as these works show, this ratio is size depen-
dent. However, the band ratio is also morphology-dependent
(e.g. Pirali et al. 2007) and also depends on the nature and
degree of the surface hydrogen coverage. Further, and given that
nano-diamonds are observed in emission close to hot stars, this
ratio will be temperature-dependent because of the underlying
thermal continuum and the possibility of differential excitation
and/or the de-hydrogenation of surface CH and CH2 groups.

2.1. Possible degeneracies and critical assumptions

It is essential to understand and, where possible, to try and
break the inherent degeneracies that must exist between the
effects of particle size, shape, structure, composition, and degree
of surface (de-)hydrogenation. In the latter case, we clearly
need a detailed understanding of how (de-)hydrogenation may
(dis)proportionately effect the CH/CH2 surface concentration
ratio, that is its effect on the relative contributions of CHn groups
at particles vertices, edges, and faces (e.g. Pirali et al. 2007).

The 3.43µm and 3.53µm band strengths and ratios have
not yet been completely calibrated because the particle shapes
in most infrared (IR) studies were not determined (e.g. Chen
et al. 2002; Sheu et al. 2002). This was not the case for the
small diamondoids (NC < 100) studied by Pirali et al. (2007)
where the particle shapes were principally tetrahedral and the
3.53/3.43µm band ratio appears to be approximately linearly-
dependent upon the CH/CH2 surface concentration ratio.

However, it should be noted that a tetrahedral form for larger
diamondoids or nano-diamonds may not be the most likely or
even the most stable form in either a fully hydrogenated or a
fully dehydrogenated state (e.g. Barnard et al. 2003a; Barnard &
Zapol 2004).

In this work we, preliminarily at least, assume that the intrin-
sic 3.53µm CH band peak intensity per CH group is ≈1.2 times
that of the 3.43µm CH2 group, as indicated in the Pirali et al.
(2007) simulations2. This calibration, based on the smaller, tetra-
hedral diamondoids, may no longer hold true for different shapes
and/or larger nano-diamonds. However, we have no choice but to
ignore this possibility until such time as suitable laboratory data
become available to refute this supposition.

2.2. Bulk density, number of C atoms, and surface coverage

Using the regular diamond lattice structure we can construct par-
ticles with a given number of C atoms as a model for interstellar
nano-diamonds. The number of constituent C atoms in a par-
ticle can be determined from the particle volume, for example
(4/3) π abc, for ellipsoids (a , b , c), spheroids (a , b = c),
and spheres (a = b = c), and the bulk diamond specific density
(here taken to be ρbulk = 3.51 g cm−3). Nevertheless, the den-
sity of a particle does exhibit some dependence on its size, as
shown experimentally for 30−200 nm radius silica (SiO2) nano-
particles, which have densities of ∼1.9 g cm−3, which is 14–30%
lower than that of the parental solid (2.2–2.7 g cm−3, Kimoto
et al. 2014). Thus, and by analogy with silica, a structure not
too dissimilar to that of diamond, and as in the THEMIS mod-
elling (Jones et al. 2017), we should perhaps assume a diamond
density reduction of the order of 20% for sub-µm particles. How-
ever, for the present purposes, given that the density must be
depth-dependent and that we consider polyhedral shapes, we
assume the bulk diamond density because our network mod-
elling approach assumes a sp3 diamond C−C bond length of
0.154 nm and therefore a density of 3.51 g cm−3.

In order to determine the number of C atoms in a particle,
NC, and because we are dealing with H atoms only at the sur-
faces, we assume that the mean atomic mass of the ‘bulk’ interior
of a nano-diamond is that of a C atom, AC = 12 amu. The number
of C atoms per particle is then given by

NC =
Vnd(S) ρbulk

AC mH
' 734

(
a

[1 nm]

)3

, (1)

where Vnd(S) is the nano-diamond shape-dependent volume and
the right hand expression gives NC for a spherical nano-diamond.
Given that nitrogen is the most common diamond hetero-atom,
the inclusion of a number of N atoms, NN, within the bulk can be
expressed as a fraction, fN, of the total number of C atoms, that
is NN = fN ×NC. In this case the mean atomic mass of the ‘bulk’
would then need to be adjusted accordingly, that is AC(N) = (1 −
fN)× AC + fN × AN where AN = 14.

The fraction of C atoms that are at the particle surface
depends upon the shape and will therefore be determined on a
shape-by-shape basis. For (nano)diamond particles this depends
upon the numbers of CH and CH2 groups (per unit edge length
or per unit surface area) on particle vertices, edges and faces.

For carbon atoms within the diamond bulk the C−C−C
bond angle is 109.5◦, the tetrahedral angle, the projected
distance of the 0.154 nm C–C bond length (dC–C) onto a

2 The experimental results for the 3.53/3.43µm band ratio in the poly-
amantanes in the Pirali et al. (2007) study are, however, less clear-cut.
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{100} facet3 is 0.126 nm and the distance between CH2
groups on this surface or along {111}–{111} and {111}–{100}
edges is (2× 0.126) = 0.252 nm ( = DCH2 ). The area per CH2
group on a {100} facet is then (2× 0.126)2 nm2 = 0.0635 nm2

because, viewed perpendicularly, the {100} surface appears
as a 0.126 nm × 0.126 nm square grid with one CH2 group
per four squares. Therefore, {100} facets present one CH2
group per 0.0635 nm2 ( = ACH2 ), or one H atom per 0.0318 nm2.
In contrast, {111} facets present a hexagonal grid with
projected C−C bond length sides of 0.126 nm, and area
(3/2)

√
3× 0.1262 nm2 = 0.0412 nm2, with one CH bond per

hexagon, and one CH group or one H atom per 0.0412 nm2

( = ACH). The H atom density on {100} facets is ≈30% greater
than on {111} facets but CH groups are ≈35% more abundant on
{111} facets.

In our calculations, we derived the shape-dependent group
abundance ratio, {[CH]/[CH2]}S

4, and the model-predicted IR
band ratio is then

I(3.53µm)/I(3.43µm) = RIR × {[CH]/[CH2]}S, (2)

where RIR is the measured ratio of the 3.53µm and 3.43µm band
intensities, that is I3.53(CH)/I3.43(CH2) ' 1.2 (e.g. Pirali et al.
2007)5. In the following we calculated and present the abun-
dance ratio, [CH]/[CH2], leaving the user to adjust the required
numbers by their preferred value for RIR.

3. Shape and surfaces

The infrared bands observed to date in proto-planetary discs
that are attributed to nano-diamond are, primarily, the 3.43 and
3.53µm CHn stretching bands, which are characteristic of dia-
mond {100} and {111} surfaces or facets passivated by H atoms
in CH2 and CH groups, respectively. Given this facet-specificity
we clearly must consider all of the possible and likely euhedral
forms that nano-diamonds are known to exhibit in the laboratory
along with their respective surface CHn functionalisation.

From images of synthetic nano-diamonds and CVD diamond
coatings it appears that a wide range of particle shapes is possi-
ble, including: truncated octahedral, cuboctahedral, tetrahedral,
and cubic particles. For completeness we therefore consider all
possible euhedral forms, from tetrahedral to cubic and all inter-
vening polyhedra, including: regular tetrahedra, octahedra, and
cubes and their regular and semi-regular truncated forms. For
brevity in the following, we define the following designators for
the various forms: T, tT, O, tO, cO, tC, and C, for tetrahedra, trun-
cated tetrahedra, octahedra, truncated octahedra, cuboctahedra,
truncated cubes, and cubes, respectively (see Fig. 1). The edges
of regular particles are all of equal length, while semi-regular
truncated polyhedra have truncated vertex facets of variable edge
length, that is all of the edges bordering the triangular and square
truncation faces are of the same length and can differ in length
from the other edges. In truncated polyhedra the hexagonal and
octagonal faces are transposed into six- and eight-sided faces
with alternating edges of differing lengths. The regular polyhe-
dral forms, with all edges of equal length, are shown in Fig. 1

3 A facet is a particular crystallographic plane, face or facet indicated
by {h, k, l} where h, k, and l are the Miller indices, which are the min-
imised integer distances along the respective x, y, and z crystalline
axes.
4 For simplicity this ratio is hereafter written as [CH]/[CH2].
5 N.B., This is equivalent to a ratio of 0.6 when normalised to the
number of hydrogen atoms involved.

along with their fundamental characteristics. In addition to these
forms, we also considered ‘spherical’ nano-diamonds.

Based on the studies of Barnard & Sternberg (2005) and
Pirali et al. (2007), but primarily following the modelling of
regular and semi-regular polyhedra and their truncated forms
presented here, we make the following observations: vertices are
terminated with CH (T) or CH2 (O) groups, the edges between
{111} facets are CH2 (T) or CH (O), all three- and six-sided
faces are {111} facets, all four- and eight-sided faces are {100}
facets, {111} facets exhibit only coherently-directed CH bonds
and {100} facets are CH2-covered. In the non-specified cases
vertex CHn structures form part of the adjacent edges and edge
CHn structures form part of the adjacent faces6. These results are
summarised in Table 1.

For a given polyhedron the fractional surface area in trian-
gular and/or hexagonal {111} facets is denoted as fs{111} and that
in square and/or octagonal {100} facets as fs{100}. The number
of surface C and H atoms per particle, NCs{111}, NHs{111}, NCs{100}
and NHs{100} in {111} and {100} facets respectively, are then:

NCs{111} = fs{111} NCs, NHs{111} = NCs{111} fH, (3)

and

NCs{100} = fs{100} NCs, NHs{100} = 2 NCs{100} fH, (4)

where fH is the degree of surface hydrogenation, with fH = 1
indicating a maximally-hydrogenated surface and fH = 0 a com-
pletely dehydrogenated surface.

4. Regular polyhedral particles

Here, we consider the case of regular polyhedral particles, and
their truncated variants, where all edges are of equal length, l.
The full expressions for the properties and characteristics of reg-
ular polyhedral particles can be found in Appendix A. We recall
that regular triangular and hexagonal {111} facets have areas
of
√

3/4 l2 and 3
√

3/2 l2, respectively, and that regular square
and octagonal {100}facets have areas of l2 and 2(

√
2 + 1) l2,

respectively7.
For all of the polyhedral nano-diamond particle shapes con-

sidered here the total number of CH groups is obtained by
summing over their number on vertices (VCH), edges (ECH),
and triangular and hexagonal {111} facets (F{111}(49)) and the
number of CH2 groups by summing over those on vertices
(VCH2 ), edges (ECH2 ), and square and octagonal {100} facets
(F{100}(�8)). The [CH]/[CH2] ratio is then obtained via,

[CH]
[CH2]

=
VCH + ECH + F{111}(49)

VCH2 + ECH2 + F{100}(�8)
. (5)

From the observations drawn at the end of the previous section,
it follows that where vertices (edges) are of the same CHn type
as an adjacent edge (facet) then they are subsumed into that edge
(facet).

To determine the various polyhedral behaviours the reader
should make extensive reference to Fig. 1 and Tables 1 and 2 to
derive the quantities VCHn , ECHn , F{111} and F{100}, and this should
be taken as implicit in the following subsections and is therefore

6 This is strictly only valid for infinitely small vertices and infinitely
thin edges but is a good approximation for particle sizes≫dC–C.
7 In this and the following section we implicitly assumed that the poly-
hedral edge lengths, l, are in units of the C–C bond length dC−C, even
though they are not actually discretised in this way.
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                                 truncated                                         truncated                                         truncated 
tetrahedron               tetrahedron           octahedron           octahedron         cuboctahedron            cube                    cube

Regular polyhedra with equal length edges 

        V =   4   12 6 24 12 24 8

        E =   6 18 12 36 24 36 12

        F =   4 8 8 14 14 14 6

  fs{111} =   1 1 1 0.776 0.366 0.107 0

V/Vsph. = 0.123 0.401 0.318 0.683 0.563 0.577 0.368

V, E and F are the number of vertices, edges and faces ( V - E + F  = 2, is the Euler characteristic ).  

In diamond triangular and hexagonal facets are {111} and square and octagonal facets are {100}. 

V/Vsph. the ‘sphericity’, is the volume of the polyhedron/volume of the circumscribed sphere.

T                     tT                  O                  tO                 cO                 tC                 C

Fig. 1. Regular polyhedra and their truncated forms along with some of their properties. fs{111} is the fraction of the particle surface in triangular
and hexagonal facets. We note that all square and octagonal facets are {100}.

Table 1. Polyhedral nano-diamond particle vertex (V), edge (E) and face (F) properties.

Shape V Vertices E Edges F Faces fs{111} reff/and

T 4 4 isolated CH 6 6× {111}/{111}, CH2 4 4× {111} triangular, CH 1 2.013

tT 12 ≡ edge CH2 18 6× {111}/{111}, CH2 8 4× {111} hexagonal, CH 1 1.356
12× {111}/{111}, CH on faces 4× {111} triangular, CH

O 6 6 isolated CH2 12 12× {111}/{111}, CH on faces 8 8× {111} triangular, CH 1 1.465

tO 24 ≡ face CH 36 24× {111}/{100}, CH2 on faces 14 6× {100} square, CH2 1.135
12× {111}/{111}, CH on faces 8× {111} hexagonal, CH 0.776

cO 12 ≡ face CH2 24 24× {111}/{100}, CH2 on faces 14 6× {100} square, CH2 1.211
(all cO edges are equivalent) 8× {111} triangular, CH 0.366

tC 24 ≡ face CH2 36 24× {111}/{100}, CH2 on faces 14 6× {100} octagonal, CH2 1.396
12× {100}/{100}, CH2 on faces 8× {111} triangular, CH 0.107

C 8 4 CH2 + 4 CH3 12 12× {100}/{100}, CH2 on faces 6 6× {100} square, CH2 0 1.201

Notes. Only {111} and {100} facets are considered in the modelling where fs{111} is the fraction of the particle surface in {111} facets and therefore
fs{100} = (1− fs{111}). The considered regular polyhedral shapes are tetrahedra (T), truncated tetrahedra (tT), octahedra (O), truncated octahedra (tO),
cuboctahedra (cO), truncated cubes (tC), and cubes (C). For vertices ‘≡ edge(face) CHn’ indicates that their CHn groups can be considered as
forming an integral part of the adjacent edges (faces). The last column gives the ratio of the radius of the circumscribed sphere, reff , with the same
volume as a sphere, and (see text for details).

not be repeated at every instance. In Table 1 polyhedral vertices
indicated as ‘≡ edge CHn’ or ‘≡ face CHn’ do not count as inde-
pendent CHn groups because they are of the same type as an
adjacent edge or face and therefore already counted as a part of

that edge or face, which is to their right in the table. Similarly,
edges labelled as ‘on faces’ are already counted as part of the
adjacent face. This is generally manifest where horizontally adja-
cent V and E or E and F entries in the table have identical CHn
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Table 2. Nano-diamond polyhedra vertex (V), edge (E), and face (F)
heirarchies as a function of CHn group composition and facet geometry.

Shape CHn V E F [CH]/[CH2]

T CH2 – 6 – ∝ l
CH 4 – 44

tT CH2 12→ 6 – ∝ l
CH – 12→ 4449

O CH2 6 – – ∝ l2
CH – 12→ 84

tO CH2 – 24→ 6� 2
√

3
CH 24→ 12→ 89

cO CH2 12→ 24→ 6� 1
3
√

3
CH – – 84

tC CH2 24→ 36→ 68
√

3
6(
√

2+1)
CH – – 84

C CH2,3 8→ 12→ 6� 0
CH – – –

Notes. Rightward arrows indicate that a given quantity is subsumed
into the quantity to its right, i.e. V→E, E→F or V→E→F and therefore
that only the boldface quantities need to be included in order to avoid
double counting. The [CH]/[CH2] ratio behaviours are indicated in the
right hand column.

group types. These dependencies are also shown more explicitly
and concisely as arrows in Table 2. In the calculation of the poly-
hedral [CH]/[CH2] ratios only the boldfaced quantities in Table 2
were included in order to avoid double counting CHn groups.

The number of vertices for a given polyhedron is fixed, the
total edge length scales with l and the facet area scales with l2.
Thus, for large polyhedra, large with respect to the C–C bond
length (i.e. l � dC−C), it is the nature of the edges and facets that
determine the [CH]/[CH2] ratio and that in very large polyhedra
(l≫ dC−C) the size dependence of this ratio is principally driven
by the l2 dependence of the relevant facet areas.

4.1. Regular tetrahedral (T) particles

We first consider regular tetrahedral particles, the simplest reg-
ular polyhedra, with four CH vertices, VCH = 4, six CH2 edges,
ECH2 = 6 l, and a total surface area of F{111}(4) = 4×

√
3/4 l2. In

this case, VCH2 , ECH and F{100} are all zero and so we have

[CH]
[CH2]

=
VCH + F{111}(4)

ECH2

=
4 +

√
3 l2

6 l
, (6)

which reduces to ≈(
√

3/6) l for large l. Thus, for regular tetrahe-
dral nano-diamonds [CH]/[CH2] increases with particle size as
shown in Fig. 2.

4.2. Regular truncated tetrahedral (tT) particles

Regular truncated tetrahedral particles are tetrahedra with
the four vertices truncated into equilateral triangular faces.
They have 12 CH2 vertices counted within the CH2 edges,
and therefore VCH2 = 0, eighteen edges of which the 12 CH
edges are counted within the adjacent {111} facets, yielding

Fig. 2. [CH]/[CH2] ratios for regular polyhedra as a function of the
effective nano-diamond radius, and (nm), for T (red), tT (orange),
O (blue), tO (purple), cO (cobalt), and tC (green) forms. For the cubic
form (C) this ratio is zero.

ECH = 0 and ECH2 = 6 l, and a surface comprised of four tri-
angular {111} facets and four hexagonal {111} facets. Thus,
F{111}(49) = 4×

√
3/4 l2 + 4× 3

√
3/2 l2 = 7

√
3 l2, and with VCH

and F{100} equal to zero, we have

[CH]
[CH2]

=
F{111}(49)

ECH2

=
7
√

3
6

l. (7)

Thus, as indicated in Fig. 2, the [CH]/[CH2] ratio for regular
truncated tetrahedral nano-diamonds increases with l (increasing
size) and with the same slope as for T particles.

4.3. Regular octahedral (O) particles

Turning to regular octahedral particles with six CH2 vertices,
VCH2 = 6, 12 CH edges all of which are counted within the adja-
cent {111} facets (∴ ECH = 0) and eight triangular {111} facets,
F{111}(4) = 8×

√
3/4 l2 = 2

√
3 l2. With VCH, ECH2 , and F{100} all

zero, we have

[CH]
[CH2]

=
F{111}(4)

VCH2

=

√
3

3
l2. (8)

As for tetrahedral nano-diamond polyhedra, the [CH]/[CH2]
ratio increases with size but in this case with a steeper l2
dependence (Fig. 2).

4.4. Regular truncated octahedral (tO) particles

A common nano-diamond particle shape is the regular truncated
octahedron (e.g. Barnard & Sternberg 2005), an octahedron
with its six vertices truncated into square {100} facets. This
polyhedron has 24 CH vertices and 36 edges (24 CH2 and
12 CH) all of which can be counted within the adjacent edges
and facets, respectively (∴ VCH, VCH2 , ECH, ECH2 are all zero).
The surface is comprised of eight hexagonal {111} facets and
six square {100} facets, that is F{111}(9) = 8× 3

√
3/2 l2 = 12

√
3 l2

and F{100}(�) = 6 l2, and

[CH]
[CH2]

=
F{111}(9)
F{100}(�)

= 2
√

3, (9)
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for regular truncated octahedral nano-diamonds the [CH]/[CH2]
ratio is therefore independent of size (Fig. 2), in contrast to all of
the previously considered polyhedral forms.

4.5. Regular cuboctahedral (cO) particles

Nano-diamonds also commonly form cuboctahedra, which are
a limiting form of tO particles where the hexagonal faces
are reduced to triangular faces. These interesting polyhedra
have 12 CH2 vertices and 24 CH2 edges, all of which can be
counted within the adjacent square {100} facets (i.e. VCH2 and
ECH2 = 0). Their surfaces exhibit eight triangular {111} facets
and six square {100} facets, F{111}(4) = 8×

√
3/4 l2 = 2

√
3 l2,

F{100}(�) = 6 l2, and with VCH and ECH each zero, we have

[CH]
[CH2]

=
F{111}(4)
F{100}(�)

=

√
3

3
, (10)

and for this common nano-diamond polyhedral shape the
[CH]/[CH2] ratio is also independent of size, as per the closely
related truncated octahedral polyhedron (Fig. 2).

4.6. Regular truncated cube (tC) particles

For completeness we finally consider the regular truncated
cube, a cube with its eight vertices truncated into triangu-
lar facets. This polyhedron has 24 CH2 vertices and 36 CH2
edges, all of which can be counted within the adjacent octag-
onal {100} facets (i.e. VCH2 and ECH2 = 0). Their surfaces con-
sist of eight triangular {111} facets and six octagonal {100}
facets), F{111}(4) = 8×

√
3/4 l2 = 2

√
3 l2, F{100}(8) = 6× 2(

√
2 +

1) l2 = 12(
√

2 + 1) l2, and with VCH and ECH both zero, we have

[CH]
[CH2]

=
F{111}(4)
F{100}(8)

=

√
3

6(
√

2 + 1)
, (11)

and for truncated cubic nano-diamonda the [CH]/[CH2] ratio is
also independent of size, as per tO and cO polyhedral particles
(Fig. 2).

4.7. Regular cube (C) particles

Another typical diamond shape is the regular cube, with 8 ver-
tices, four of which are CH2 and four CH3, 12 CH2 edges and
6 CH2 facets, that is

[CH]
[CH2]

=
0

VCH3 + VCH2 + ECH2 + F{100}(�)
. (12)

Thus, given that there are no CH groups on perfectly cubic nano-
diamonds their [CH]/[CH2] ratios are zero.

4.8. The spatial properties of regular polyhedra

In the preceding sub-sections, we briefly derived the expected
[CH]/[CH2] ratios for regular polyhedral nano-diamonds. The
results are graphically summarised in Fig. 2 where the ratio is
plotted as a function of the effective radius and for T (red), tT
(orange), O (blue), tO (purple), cO (cobalt), and tC (green) par-
ticle forms (see Appendix A for the derivation of the effective
nano-diamond radii, and). In Fig. 2 we take into account the dis-
crete nature of nano-diamonds and calculate the [CH] and [CH2]
surface abundances using the parameters DCH2 , ACH2 , and ACH
defined in Sect. 2.2. This figure indicates that [CH]/[CH2] for

the closely related tO, cO, and tC polyhedra8 are independent
of particle size. However, for the T, tT, and O polyhedra the
[CH]/[CH2] ratio, and hence the 3.53µm(CH)/3.43µm(CH2)
IR band ratio, does depend on size, and more strongly so for O
than the T and tT polyhedra, and can span orders of magnitude.

The primary motivation for this study was to better under-
stand the 3.53µm(CH)/3.43µm(CH2) IR band intensity ratio,
through a study of the surface [CH]/[CH2] abundance ratio on
nano-diamond {111} and {100} facets. It is therefore interesting
to note the wide variation in the CH-covered, {111} facet surface
fraction, fs{111}, which while not strongly dependent on polyhe-
dral form, is independent of size and spans about an order of
magnitude (0.107–1.000, see Fig. 1).

We conclude that, if the observed nano-diamond shapes
are polyhedral, but the distribution of polyhedral forms is not
well determined, deriving the intrinsic [CH]/[CH2] ratio can be
uncertain by orders of magnitude. However, if the [CH]/[CH2]
ratio and size are known then it would be possible to usefully
constrain the form or, conversely, to constrain the size if the
[CH]/[CH2] ratio and form are known. Ideally, and in order
to maximise the amount of information from nano-diamond
IR spectra, we therefore need to know the particle size and
shape distributions. Unfortunately, astronomical observations
cannot access either of these critical quantities and it is therefore
going to be difficult to lift this degeneracy other than through
detailed nano-particle modelling. Additionally, current presolar
nano-diamond studies, while constraining particle sizes, do not
provide sufficient information on the particle shapes9.

In this modelling scheme the forms are contiguous, meaning
that the polyhedral dimensions can be scaled arbitrarily, that is
the equations of these structures are not discretised. However, the
numerical results presented in Fig. 2 do assume the appropriate
C–C bond length, dC–C, and CHn group areas, ACH, and ACH2 .
A more detailed treatment of the polyhedral particle geometries
can be found in Appendices A and B. In our later diamond-
bonded network modelling (Sect. 6) all of the calculations are
necessarily discretised.

5. Semi-regular polyhedral particles

Wishing to generalise the method, but probably also complicate
matters a little further, we now turn our attention to semi-
regularly truncated polyhedra, which are semi-regular in the
sense that, with respect to the regular parent polyhedron (i.e.
tetrahedron, octahedron, and cube), the truncated facets are of
arbitrary size but remain parallel to those of the regular truncated
form of the parent polyhedron. The necessarily more cumber-
some expressions are available in full in Appendix B for the more
courageous of readers. While the truncated facets remain paral-
lel to those of the parent polyhedron their edges are of arbitrary
length a, which implies that the remnant edge, L, of the regu-
lar polyhedron parent is reduced from l to (l − 2a) as illustrated
in Figs. 3 to 5, that is L = (l − 2a). In semi-regular polyhedra
the triangular and square faces retain their regular form, that is
all edges are of the length a, and therefore have areas of

√
3/4 a2

and a2, respectively. However, the hexagonal and octagonal faces

8 N.B., tO, cO, and tC polyhedra are transformable tO↔ cO↔ tC
through variations in the relative area of the square faces, which become
octagonal in the cO↔ tC transition.
9 For even this scant information to be of use we would have to assume
that there is an as yet unsubstantiated direct relationship between
the presolar nano-diamonds and those responsible for the observed
circumstellar 3.53µm(CH) and 3.43µm(CH2) IR bands.

A127, page 6 of 23



A. P. Jones: Edging towards an understanding of CH/CH2 on nano-diamonds

a 

a 

a 

l 

L 

Fig. 3. Semi-regular truncated tetrahedron.
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Fig. 4. Semi-regular truncated octahedron.
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Fig. 5. Semi-regular truncated cube.

are no longer regular but have alternating edge lengths of a and
L. The area of the six-sided faces is now

√
3/4 (l2 − 3a2), which

gives the area of a regular hexagon area when l = 3a, and the
area of the eight-sided faces is now (l2 − a2), which corresponds
to a regular octagon when l = (

√
2 + 1) a. Although the expres-

sions for these polyhedra cannot be reduced to simple functions
of r, the radius of the sphere that circumscribes the particle and
includes all its vertices, the particles can still be circumscribed
by a sphere that encompasses all vertices.

The mathematical expressions for the semi-regular truncated
polyhedra (stT, stO amd stC) given in this section (see also

Appendix B) are vaild for 0 6 a 6 l/2, that is the parent poly-
hedron edge is, at most, bisectable, which leads to the following
critical conditions:
i) a = 0 ≡ L = l → a regular parent polyhedron,
ii) a = l/3 ≡ L = a→ a regular truncated parent polyhedron,
iii) a = l/2 ≡ L = 0→ a different polyhedron.
In the a = l/2 case the truncated tetrahedron solution is an octa-
hedron, and for the truncated octahedron and truncated cube the
solution is a cuboctahedron10.

For each semi-regular polyhedron type, and in the same
way as for the regular polyhedra of Sect. 4, we can derive the
[CH]/[CH2] ratios using the same expressions but substitute the
new edge length expressions and the modified surface areas for
the six and eight sided facets. In this case the number and type
of vertices are unchanged.

5.1. Semi-regular truncated tetrahedral (stT) particles

These are similar to truncated tetrahedral particles except that
the four vertices are now arbitrarily truncated into equal equi-
lateral triangular faces of edge length a (see Fig. 3). The total
edge length is now 12a + 6(l − 2a) = 6 l, that is truncation does
not change the total edge length compared to the parent tetra-
hedron11. The [CH]/[CH2] ratio for a generalised truncated
tetrahedron is then

[CH]
[CH2]

=
F{111}(49)

ECH2

=

√
3 a2 +

√
3(l2 − 3a2)

6 l
=

√
3
[
(l/a)2 − 2

]
6 (l/a2)

.

(13)

This reduces to that for a regular tetrahedron, (
√

3/6) l, when
a = 0, if we ignore the change in vertex CHn composition. From
this equation the behaviour of the [CH]/[CH2] ratio is less obvi-
ous because of the dependency on both l and a but as Fig. 6
shows an increase in the truncation length leads to an increase in
the ratio.

5.2. Semi-regular truncated octahedral (stO) particles

These are octahedral particles with the six vertices arbitrar-
ily truncated into equal area square faces of edge length a.
The total edge length is now 24a + 12(l − 2a) = 12 l, that is
truncation does not change the total edge length with respect
to the parent octahedron12 (see Fig. 4). The surface is com-
prised of eight six sided {111} facets and six square {100}
facets that is F{111}(9) = 8×

√
3/4 (l2 − 3a2) = 2

√
3 (l2 − 3a2) and

F{100}(�) = 6 a2, and

[CH]
[CH2]

=
F{111}(9)
F{100}(�)

=
2
√

3 (l2 − 3a2)
6 a2 =

√
3

3

( l
a

)2

− 3

 . (14)

This expression reduces to that for a regular truncated octahe-
dron on substituting l = 3a and to a regular cuboctahedron for
l = 2a. Figure 6 shows that for semi-regular truncated octahedral
nano-diamonds the [CH]/[CH2] ratio increases with the increas-
ing number of carbon atoms but decreases and tends to flatten
with increasing truncation (increasing a). The latter effect is
because the particle shapes are increasingly driven towards the
tO and cO forms which exhibit size independent [CH]/[CH2]
ratios.
10 Hence, cO particles are not considered here because they are the stO
and stC polyhedra formed by bisecting the parent polyhedron edges.
11 This is because the chamfered vertices are regular tetrahedra.
12 In this case the chamfered vertices are half of a regular octahedron.
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Fig. 6. [CH]/[CH2] ratios in semi-regular truncated polyhedra, stT (red),
stO (blue), and stC (green), as a function of the truncation length (a = 0
[thick], 1

6 l, 1
4 l, 1

3 l (dotted), 1
2 l [dashed]), and the number of constituent

carbon atoms NC. The thick lines show the data for the un-truncated
polyhedra and the thin dashed lines show the a = l/2 limiting cases,
except for stT where a = 0.49 l. The dangling and rising thinner lines
show the effects of increasing truncation. For the C polyhedra, and
for illustrative purposes only, an arbitrarily low value (104 l) of the
[CH]/[CH2] ratio was assumed.

5.3. Semi-regular truncated cubic (stC) particles

These are cubes with the eight vertices arbitrarily truncated
into equilateral triangular faces of edge length a. The total
edge length is now 24a + 12[l −

√
2 a] = [12l + 12a (2 −

√
2)]

(see Fig. 5) and therefore differs from that of the parent
polyhedron in this case. The polyhedral surfaces consist of
eight triangular {111} facets and six seight-sided {100} facets),
F{111}(4) = 8×

√
3/4 a2 = 2

√
3 a2, F{100}(8) = 6× (l2 − a2) and

[CH]
[CH2]

=
F{111}(4)
F{100}(8)

=

√
3 a2

6(l2 − a2)
=

√
3

6
[
(l/a)2 − 1

] . (15)

In the case of truncated cubic nano-diamonds the [CH]/[CH2]
ratios launch from zero because cubic particle surfaces are
comprised of only CH2 groups. Thereafter their [CH]/[CH2]
behaviour is determined by the denominator in the above expres-
sion. Thus, with increasing truncation (l/a) decreases and the
[CH]/[CH2] ratio increases steeply, and much more so than the
increase for stT and the decrease for stO polyhedra, as can be
clearly seen in Fig. 6. It is interesting to note the convergence of
the stC and stO polyhedra in this figure, which is due to the fact
that both of these forms converge to the related cO polyhedral
form with increasing truncation.

5.4. The spatial properties of semi-regular polyhedra

Figure 6 shows the [CH]/[CH2] ratios of semi-regular truncated
polyhedra, stT (red), stO (blue), and stC (green), as a function
the number of constituent carbon atoms NC. Most of what we
noted in Sect. 4.8, pertaining to the [CH]/[CH2] ratio in regular
polyhedra, also holds for semi-regular polyhedra and so it will
not be repeated here.

We note that the truncation of tetrahedral (T) and octahedral
(O) particles, to tT and tO, respectively, leads to an overlap in
their [CH]/[CH2] ratios and that truncated cubic particles (stC)
always have lower ratios because of the dominance of {100}
facets. The limiting stC particles converge with the limiting stO

forms because, at maximum truncation, the stO and stC forms
both converge to cO polyhedra.

It is evident that the truncation of tetrahedral polyhedra can
sequentially result in tT, O, tO, and cO forms, and with square
{100} facet expansion, to tC and C polyhedra, and that is there
is therefore a two-way transformational sequence

T 4
0.12 ↔ tT 8

0.40 ↔ O 8
0.32 ↔ tO 14

0.68 ↔ cO 14
0.56 ↔ tC 14

0.58 ↔ C 6
0.37

where the subscript is the ‘sphericity’ (to 2 d.p.) and the super-
script is the number of faces (F) in the given polyhedron. The
above sequence, which was alluded to at the beginning of Sect. 5,
implies that some of the ‘upward’ tetrahedral truncation evo-
lution in Fig. 6 must lead to some exact regular polyhedral
solutions. However, the counter ‘downward’ octahedral trunca-
tion in this figure does not represent a reversal of the above
transformation, even though there is an overlap in the mapped-
out parameter space. This is because there is, in general, likely
to be an increase in the ‘sphericity’ during any evolutionary
sequence due to erosion, that is there will be a ‘blunting’ of the
protruding polyhedral vertices and exposed edges. This can be
seen along the transformation sequence shown above as a gen-
eral correlation between ‘sphericity’ and the number of faces (F).
However, cubic polyhedra, although they may appear to be a bit
of an outlier to this trend, are nevertheless a part of this sequence,
which is in fact a cycle. This is because a C↔T polyhedral trans-
formation is possible via the half-truncated cube, that is a cube
in which only the opposing vertices on opposing faces (indi-
cated by the small circles in Fig. 5) are chamfered into equilateral
triangles.

Interestingly, the truncation of tetrahedra (T→ tT) and
octahedra (O→ tO) initially leads to a convergence of their
[CH]/[CH2] ratios, that is they evolve in opposite senses, and
then to an overshoot of one another to more extreme values. Also
evident in Fig. 6 is a progressive flattening of this ratio as octahe-
dral particles are progressively truncated (O→ tO→ cO), which
is to be expected because, as Fig. 2 indicates, the [CH]/[CH2]
ratio in tO and cO particles is independent of size.

The results in Fig. 6 confirm the earlier conclusion that the
nano-diamond [CH]/[CH2] ratio likely varies over more that an
order of magnitude for any given size particle. As in the previous
sections, the modelling of semi-regular polyhedra is a process in
which the possible particle dimensions are continuous, that is
any arbitrary polyhedral dimension is valid.

6. Diamond-bonded nano-particle networks

This section presents a diamond network bonding model, a com-
plimentary, discretised approach that is more attuned to the
calculation of the ‘molecular’ structure of diamond at nano-
scales, which can be directly compared with the (semi-)regular
polyhedral models developed in the previous sections. The dia-
mond lattice consists of two interwoven, face-centred cubic (fcc)
lattices that are offset by one quarter of the unit cell dimension
with respect to each other13. This overlapping two-fcc lattice de-
construction allows for a reasonably straight-forward, cubic-grid
computational description of the perfect diamond lattice.

In this approach we consider the from-vertex ‘top-down’
atomic layers, i, of regular tetrahedral and octahedral structures
(where i = 1, 2, 3, 4, . . . ). Construction, or rather de-construction,
is such that the removal of a particular atomic layer, and of

13 The lattice offset is one quarter of the unit cell dimension in each of
the x̂, ŷ, and ẑ directions, which are orthogonal in the diamond lattice.
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its associated overlying atomic layers, leaves a coherent dia-
mond(oid) particle with no ‘dangling’ CHn groups (where n can
be 1,2 or 3) and with the ‘newly-exposed’ surface passivated
with only CH and CH2 groups. In the following, and for sim-
plicity, we designate the considered T, tT, O, and tO particles as
diamondoids, even though they may not strictly be such. As a
guide, and before we enter into the details in the following sub-
sections, we present some general characteristics of this atomic
layer approach.

For tetrahedral particles the sequential number of carbon
atoms per layer, n, is given by the series of the squares:
n = 4, 9, 16, 25, 36, 49, 64, 81, 100, . . .

and for the ith atomic layer NC = (i + 1)2. Summing over this
series does not yield the total number of carbon atoms in the
particle because the terminating, lowest layer (largest value of i)
has three less atoms than the series predicts14. Hence,

NC =

{∑
i

(i + 1)2
}
− 3.

With this formalism the minimum tetrahedral particle, adaman-
tane (C10H16), has the layer structure 4, (9 − 3) = 4, 6 and a total
number of carbon atoms NC = (4 + 9) − 3 = 10).

For octahedral particles the series for the number of carbon
atoms per layer is:
n = 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, . . .

where this series effectively comprises alternating terms in the
series with terms j2 and k(k + 1), respectively. Reflection about a
square term >22 (i.e. 4, 9, 16, 25, 36, . . . ) yields a complete octa-
hedral nano-diamond particle. The minimum octahedral particle
is also adamantane and in this formalism has the layer structure
1, 2, 4, 2, 1 (NC = 10). For a 9-atomic layer octahedron the num-
ber of carbon atoms per layer is obtained by reflection about the
i = 5 term ( j = 3 ≡ (i − 2)2 = 32) in the alternating series, i.e.

n = 1, 2, 4, 6, 9, 6, 4, 2, 1
∑

n

= NC = 35.

In the following we explore these two network structures in more
detail in order to calculate their compositions and, in particular,
their [CH]/[CH2] group ratios.

6.1. Tetrahedral and truncated tetrahedral networks

The faces, edges and vertices of tetrahedral diamondoids are
comprised of CH, CH2, and CH groups, respectively. In their
truncated forms the four CH-terminated vertices are replaced
with four {111} CH-passivated facets and the {111}/{111} trun-
cation edges are alternately-directed CH bonds coherent with the
adjacent {111} facets.

With a bit of three-dimensional geometrical thinking it can
be shown that the total number of carbon atoms, NC, in a
diamondoid with i atomic layers is given by

NC = 6 (2i − 1) + 4 (i − 1)2 + 4 +

{∑
i

(i − 2)2
}
, (16)

where the terms are, from left to right, the number of edge, face,
vertex, and quaternary (4◦) carbon atoms. Replacing the summa-
tion with the closed formula (i − 2)3/3 + (i − 2)2/2 + (i − 2)/6 it
can be shown that Eq. (16) reduces to

NC =
i3

3
+

5 i2

2
+

37 i
6

+ 1. (17)

14 If allowed, these C atoms would form dangling CH3 groups.

The corresponding number of hydrogen atoms is

NH = 12 i + 4
i (i − 1)

2
+ 4, (18)

where the terms are, from left to right, the number of edge CH2’s,
and facet and vertex CH groups, respectively, which reduces to

NH = 2 i2 + 10 i + 4. (19)

Truncation leads to the cumulative loss of successive layers,
i, of carbon atoms, from each of the four vertices for equi-
vertex truncation, following the atomic layers series described
above, that is 16, 36, 64, 100, 144, 196, 256, . . . 4 (i + 1)2, which
highlights the increasingly rapid loss of atoms with top-down
truncation in a tetrahedral pyramid. The total number of carbon
atoms lost, where all four vertices are equally truncated, is given
by

NC,loss = 4
∑

i

(i + 1)2 =
2 i (2 i2 + 9 i + 13)

3
. (20)

The equivalent hydrogen atom loss from all four vertices is

NH,loss = 4
{

6 i + 3
∑

i

(i − 1) −
∑

i

(i + 1)
}

= i (i + 3), (21)

where the terms in brackets, from left to right, relate to the loss
of CH2, and the loss and gain of CH groups, respectively, that is

NCH2,loss = 12 i (22)

NCH2,gain = 0 (23)

NCH,loss = 6 i (i − 1) + 4 (24)

NCH,gain = 2 (i + 1)(i + 2). (25)

The factor of two difference between the first term in Eqs. (21)
and (22) is because the former counts the total H atom loss from
CH2 groups and the latter the number of CH2 groups lost. The
tetrahedral and truncated tetrahedral particle compositions are
shown in Tables 3 and 4, respectively.

6.2. Octahedral and truncated octahedral networks

The faces, edges and vertices of octahedral diamondoids are
comprised of CH, alternately-directed CH and CH2 groups,
respectively. In the truncated form the {100} truncation facets
are CH2 covered and the {100}/{111} truncation edges and
vertices comprise CH bonds coherent with the adjacent {111}
facets.

With yet another bout of three dimensional gymnastics it
is possible to show that the total number of carbon atoms in a
diamondoid with (2i + 1) atomic layers is given by

NC = 2
∑

i

i2 + 2
∑

i

i (i + 1)2 + (i + 1)2, (26)

where the first two terms on the left give the number of mid-
plane to vertex atoms and the right hand term is the number of
atoms in the square mid-plane. Replacing the summations with
their closed forms this reduces to

NC =
4 i3

3
+ 4 i2 +

11 i
3

+ 1. (27)
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Table 3. Tetrahedral particle compositions.

i NC NH NCH NCH2 N4◦ H/C XH [CH]/[CH2]

1 10 16 4 6 0 1.60 0.62 0.67
2 26 32 8 12 6 1.23 0.55 0.67
3 51 52 16 18 17 1.02 0.50 0.89
4 87 76 28 24 35 0.87 0.47 1.17
5 136 104 44 30 62 0.76 0.43 1.47
6 200 136 64 36 100 0.68 0.40 1.78
7 281 172 88 42 151 0.61 0.38 2.10
8 381 212 116 48 217 0.56 0.36 2.42
9 502 256 148 54 300 0.51 0.34 2.74
10 646 304 184 60 402 0.47 0.32 3.07
11 814 356 224 66 524 0.44 0.30 3.39
12 1011 412 268 72 671 0.41 0.29 3.72

Notes. As a function of the number of atomic layers, i. NC and NH are the total number of carbon and hydrogen atoms, NCH and NCH2 the number
of CHn groups on the surfaces, N4◦ the number of carbon atoms in the bulk and XH the atomic hydrogen fraction.

Table 4. Truncated tetrahedral particle compositions.

i NC NH n NC(n) NH(n) NCH NCH2 N4◦ H/C XH [CH]/[CH2]

3 51 52 1 35 36 24 6 5 1.03 0.51 4.00

4 87 76 1 71 60 36 12 23 0.85 0.46 3.00

5 136 104 1 120 88 52 18 50 0.73 0.42 2.89
2 84 64 52 6 26 0.76 0.43 8.67

6 200 136 1 184 120 72 24 88 0.65 0.39 3.00
2 148 96 72 12 64 0.65 0.39 6.00

7 281 172 1 265 156 96 30 139 0.59 0.37 3.20
2 229 132 96 18 115 0.58 0.37 5.33
3 165 100 88 6 71 0.61 0.38 14.67

8 381 212 1 365 196 124 36 205 0.54 0.35 3.44
2 329 172 124 24 181 0.52 0.34 5.17
3 265 140 116 12 137 0.53 0.35 9.67

9 502 256 1 486 240 156 42 288 0.49 0.33 3.71
2 450 216 156 30 264 0.48 0.32 5.20
3 386 184 148 18 220 0.48 0.32 8.22
4 286 144 132 6 148 0.50 0.33 22.00

10 646 304 1 630 288 192 48 390 0.46 0.31 4.00
2 594 264 192 36 366 0.44 0.31 5.33
3 530 232 184 24 322 0.44 0.30 7.67
4 430 192 168 12 250 0.45 0.31 14.00

11 814 356 1 798 340 232 54 512 0.43 0.30 4.30
2 762 316 232 42 488 0.41 0.29 5.52
3 698 284 224 30 444 0.41 0.29 7.47
4 598 244 208 18 372 0.41 0.29 11.56
5 454 196 184 6 264 0.43 0.30 30.67

12 1011 412 1 995 396 276 60 659 0.40 0.28 4.60
2 959 372 276 48 635 0.39 0.28 5.75
3 895 340 268 36 591 0.38 0.28 7.44
4 795 300 252 24 519 0.38 0.27 10.50
5 651 252 228 12 411 0.39 0.28 19.00

Notes. As a function of the number of atomic layers, i, and the number of atomic layer truncations, n. NC and NH are the total number of carbon
and hydrogen atoms in the parent tetrahedron and NC(n) and NH(n) those in the truncated tetrahedron. NCH and NCH2 the number of CHn groups on
the surfaces, N4◦ the number of carbon atoms in the bulk and XH the atomic hydrogen fraction.
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Table 5. Octahedral particle compositions.

i NC NH NCH NCH2 N4◦ H/C XH [CH]/[CH2]

0 10 16 4 6 0 1.60 0.62 0.67
1 35 36 24 6 5 1.03 0.51 4.00
2 84 64 52 6 26 0.76 0.43 8.67
3 165 100 88 6 71 0.61 0.38 14.67
4 286 144 132 6 148 0.50 0.33 22.00
5 455 196 184 6 265 0.43 0.30 30.67
6 680 256 244 6 430 0.38 0.27 40.67
7 969 324 312 6 651 0.33 0.25 52.00
8 1330 400 388 6 936 0.30 0.23 64.67

Notes. As a function of the number of atomic layers, i. NC, and NH are the total number of carbon and hydrogen atoms, NCH and NCH2 the number
of CHn groups on the surfaces, N4◦ the number of carbon atoms in the bulk and XH the atomic hydrogen fraction.

The corresponding total number of hydrogen atoms is

NH = (i + 3)2. (28)

The number of vertex CH2 groups, NCH2 , is constant at 6 (i.e.
NH,vertex = 12) and the number of CH groups in {111} facets and
along their edges is then NCH = NH − 12.

Truncation leads to the cumulative loss of successive layers,
i, of carbon atoms, from each of the six vertices for equi-vertex
truncation, following the atomic layers series described above,
that is 12, 24, 36, 54, 72, 96, 120, . . . , which again shows a rapid
loss of atoms with increasing truncation. The total number of
carbon atoms lost, where all vertices are equally truncated, is
given by

NC,loss = 6
{ limit∑

k even

(i − k)[(i − k) + 1]
2

+
i (i + 1)

2

}
, (29)

where the upper ‘limit’ = 2[(i + 2)/2 − 1]. All of the above
assume integer calculations adopting the lowest integer result in
each case. In the octahedral diamondoid case truncation results
in no net hydrogen atom loss if the truncated facets are hydrogen-
passivated with CH2 and CH groups. The CHn group losses and
gains, per vertex, are in this case

NCH2,loss = 1 (30)

NCH2,gain =

( i
2

+ 1
) { (i + 1)

2
+ 1

}
(31)

NCH,loss = 2 NCH2,gain − 2 (32)

NCH,gain = 0. (33)

The octahedral and truncated octahedral particle compositions
are shown in Tables 5 and 6, respectively.

6.3. The spatial properties of diamond-bonded networks

In Fig. 7, we show the [CH]/[CH2] ratios in diamond-bonded
networks, of overall polyhedral form, as a function the number
of constituent carbon atoms NC. Perhaps the first thing of note is
the wide spread in the ratios and, secondly, how the truncation of
tetrahedral (T) networks can lead to exact and terminal octahe-
dral particle (O) solutions (as noted in Sect. 5.4). The latter are
reflected in the [CH]/[CH2] ratios, that is the coincident red and
blue squares on the thick blue line in Fig. 7. However, the reverse

Fig. 7. CH]/[CH2] ratios in diamond-bonded networks of polyhedral
form as a function of the truncation length (thin solid lines) increasing
with distance from the thick solid red and blue lines, as a function of
the number of constituent carbon atoms NC: the thick solid lines are for
the regular tetrahedral (red) and octahedral (blue) forms and the dan-
gling and rising thinner lines show the effects of increasing truncation.
The thick dashed lines show the [CH/[CH2] ratios for the polyhedral
models: T (red), tT (orange), O (blue), tO (purple), cO (cobalt), and
tC (green). For cubic particles (C) this ratio is zero. The data points
show the only possible particle solutions with this truncation scheme.
The black squares show the ratios for ‘spherical’ nano-diamonds for
comparison.

is not true, in that octahedral particles cannot be truncated to
exact tetrahedral forms and so there are no coincident solutions
in this truncation direction and neither are there any truncated
forms close to tetrahedral. In the latter case the truncated forms
are truncated octahedron and cuboctahedron, as evidenced by the
tendency of the truncated forms to flatter [CH]/[CH2] ratios and
to stray into the regions occupied by these polyhedra in Fig. 7.

For the network-modelled tetrahedral and octahedral nano-
diamond particles, and their truncated forms, the [CH]/[CH2]
ratios are shown in Tables 3 to 6. Unlike the regular and semi-
regular polyhedral modelling the diamond-bonded network is a
discrete modelling process, in that only certain lattice-allowed
dimensions are valid, as shown in Fig. 7 and the tables.

In comparing the T and O polyhedral forms with the tT and
tO network forms it can clearly be seen that increasing T network
truncation tends towards O polyhedra and O network truncation
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Table 6. Truncated octahedral particle compositions.

i NC NH n NC(n) NH(n) NCH NCH2 N4◦ H/C XH [CH]/[CH2]

2 35 36 1 29 36 12 12 5 1.24 0.55 1.00

3 84 64 1 78 64 40 12 26 0.82 0.45 3.33
2 66 64 16 24 26 0.97 0.49 0.67

4 165 100 1 159 100 76 12 71 0.63 0.39 6.33
2 147 100 52 24 71 0.68 0.40 2.17
3 123 100 28 36 59 0.81 0.45 0.78

5 286 144 1 280 144 120 12 148 0.51 0.34 10.00
2 268 144 96 24 148 0.54 0.35 4.00
3 244 144 72 36 136 0.59 0.37 2.00
4 208 144 36 54 118 0.69 0.41 0.67

6 455 196 1 449 196 172 12 265 0.44 0.30 14.33
2 437 196 148 24 265 0.45 0.31 6.17
3 413 196 124 36 253 0.47 0.32 3.44
4 377 196 88 54 235 0.52 0.34 1.63
5 323 196 52 72 199 0.61 0.38 0.72
6 251 196 4 96 151 0.78 0.44 0.04

7 680 256 1 674 256 232 12 430 0.38 0.28 19.33
2 662 256 208 24 430 0.39 0.28 8.67
3 638 256 184 36 418 0.40 0.29 5.11
4 602 256 148 54 400 0.43 0.30 2.74
5 548 256 112 72 364 0.47 0.32 1.56
6 476 256 64 96 316 0.54 0.35 0.67
7 380 256 16 120 244 0.67 0.40 0.13

8 969 324 1 963 324 300 12 651 0.34 0.25 25.00
2 951 324 276 24 651 0.34 0.25 11.50
3 927 324 252 36 639 0.35 0.26 7.00
4 891 324 216 54 621 0.36 0.27 4.00
5 837 324 180 72 585 0.39 0.28 2.50
6 765 324 132 96 537 0.42 0.30 1.38
7 669 324 84 120 465 0.48 0.33 0.70
8 549 324 24 150 375 0.59 0.37 0.16

Notes. As a function of the number of atomic layers, i, and the number of atomic layer truncations, n. NC and NH are the total number of carbon
and hydrogen atoms in the parent octahedron and NC(n) and NH(n) those in the truncated octahedron. NCH and NCH2 the number of CHn groups on
the surfaces, N4◦ the number of carbon atoms in the bulk and XH the atomic hydrogen fraction.

tends towards, and indeed underpasses, tT polyhedra, tending
towards tO and even underpassing tC polyhedra in some cases.
Yet again, as can be seen in Fig. 7 this modelling clearly indi-
cates that the nano-diamond [CH]/[CH2] ratio likely varies over
more that an order of magnitude for any given size particle.

Using the diamond network approach we constructed spher-
ical nano-diamond particles of radius and by filling the specified
volume with a diamond lattice of a given number of C atoms, NC,
and then passivating the exposed surface atom dangling bonds
with CH and CH2 groups as required15. The particle properties
and [CH]/[CH2] ratios for these ‘spherica’l nano-diamonds are
shown in Table 7 and Fig. 7 (black squares). We again point out
that this is a discrete modelling process in that only certain parti-
cle dimensions are allowed, which is reflected in the values in the
table because these data represent exact solutions to the filling
of a given spherical volume with a regular diamond lattice. The
black squares in Fig. 7 indicate that spherical nano-diamonds

15 This approach ensures that there are no dangling bonds or pendant
−CH3 methyl groups.

would appear to have a rather narrow range in [CH]/[CH2], that
is from a value of 0.67 for adamantane (C10H16) up to '2.2 for
particles with NC ≤ 2500. A close look at these data shows that
spherical nano-diamonds exhibit [CH]/[CH2] ratios approximat-
ing those of the tetrahedral polyhedral and network particles.
This was indeed speculated by Pirali et al. (2007) who found
that the [CH]/[CH2] ratios of large diamondoid molecules or
nano-diamonds ought to resemble those of the Td point group,
the largest subgroup of the Oh point group. We therefore concur
with their speculation. Interestingly, the low [CH]/[CH2] ratios
for spherical nano-diamonds, would seem to imply that any (ero-
sional) process that leads to a rounding of euhedral/polyhedral
nano-diamond facets would tend to suppress the [CH]/[CH2]
ratio, with respect to most non-cuboid polyhedral particle forms,
if surface passivation with hydrogen is maintained.

7. The CH/CH2 ratio in nano-diamonds as a ruler

The aim of this work is to explore whether it is possible to use the
observed 3.53µm/3.43µm (nano-)diamond IR band ratio as a

A127, page 12 of 23



A. P. Jones: Edging towards an understanding of CH/CH2 on nano-diamonds

Table 7. Spherical nano-diamond particle compositions.

Radius (nm) NC NH NCH NCH2
[CH]
[CH2]

0.27 10 16 4 6 0.67
0.31 14 20 8 6 1.34
0.36 26 32 8 12 0.67
0.40 36 40 16 12 1.34
0.44 59 60 24 18 1.34
0.53 123 100 28 36 0.78
0.76 311 178 76 151 1.50
0.98 678 296 140 78 1.80
1.33 1700 552 276 138 2.00
1.46 2316 694 340 177 1.92
1.51 2509 732 384 174 2.20
2.31 9177 1756 868 444 1.96
4.98 91 820 8160 4320 1920 2.25
8.99 539 011 26 556 14 400 6078 2.39

Notes. Theoretically-constructable nano-diamond structures with only
surface CH and CH2 groups, i.e. there are no pendant −CH3 groups nor
dangling bonds.

proxy for the ratio of the surface concentrations or abundances of
CH and CH2 groups, [CH]/[CH2], on nano-diamonds, and hence
as a ruler to measure their sizes in circumstellar (and interstellar)
environments. Firstly, we need to consider whether the mea-
sured or observed 3.53µm and 3.43µm nano-diamond IR bands
directly map the surface concentrations of CH and CH2. This
appears to be so but must be qualified because, although a direct
mapping appears to be true for tetrahedral diamondoids, was
shown by Pirali et al. (2007), this has not yet be demonstrated for
larger species or for other (polyhedral) forms. Secondly, assum-
ing that the direct mapping issue is a given, we need to determine
if it is possible to use the ratio as a ruler. To this there can remain,
as yet, no definitive answer within the astronomical context.
This is because there is an inherent degeneracy in [CH]/[CH2]
between particle form and size. To break this degeneracy, or at
least to reduce the uncertainties to a manageable degree, there-
fore requires some direct knowledge of the particle form and/or
size. Currently, and if the nano-diamond form is unknown, a par-
ticular [CH]/[CH2] ratio can spread over orders of magnitude in
size (and the cube of this in mass!).

Clearly, it would help to have some idea of the form or the
likely range of forms. As Pirali et al. (2007) have demonstrated,
it appears that small diamondoids could tend towards tetrahe-
dral forms for NC ≤ 140. While at the other size extreme, that
is at micronic scales, images of synthetic nano-diamonds and
CVD diamond coatings indicate that a wide range of particle
shapes is possible, including: truncated octahedral (tO), cuboc-
tahedral (cO), tetrahedral (T), and cubic (C) particles. Looking
at these likely particle shapes, and the data presented in the fig-
ures here, it would therefore seem to be a lost cause to try and
break the form/size degeneracy. For example, for the favoured
tO and cO nano-particle forms the [CH]/[CH2] ratio is, unfortu-
nately, independent of size (see for example Figs. 2 and 7). Thus,
it appears that a restriction to the tO and cO forms still does not
sufficiently reduce the degeneracy to any useful degree because
their [CH]/[CH2] ratios are fixed in each case, independent of
size, and are separated by about an order of magnitude (three
orders of magnitude in mass)

In optical constant modelling it would seem that we therefore
have little choice but to focus on a range of polyhedral forms,
that is tetrahedral, truncated tetrahedral, octahedral, truncated

octahedral, and cuboctahedron (T, tT, O, tO, and cO). Ideally
we could use the semi-regular forms stT and stO, to replace
all of these but this approach would entail the introduction of
the difficult to constrain truncation lengths, a, as free parame-
ters into the mix. We would therefore like to be able to adopt a
more restricted range of fixed forms, which can then be matched
against the observed [CH]/[CH2] values. Thus, it appears that
the usual astronomical practice of assuming spherical particles
is probably the most viable solution for nano-diamonds.

8. Stability and dehydrogenation considerations

Perhaps the first, and most fundamental, issue to be resolved
is whether nano-diamonds actually are the most stable form of
carbon at nano-scales. This was addressed by Badziag et al.
(1990) who compared the heats of formation of small diamond
and graphitic clusters. Following Nuth (1987a,b) these authors
concluded that surface stabilisation plays a critical role and, con-
sequently, that diamonds with hydrogen-terminated surfaces and
radii smaller than ∼1.5 nm are energetically favoured over poly-
cyclic aromatics. However, since this early work the fullerene
allotrope of carbon was discovered, which has added to the
possible carbon nanoparticle forms that need to be considered.
Barnard et al. (2003a) re-considered this issue, in the light of
these more recent developments, and found that at the nanoscale
diamond is not necessarily the most stable phase but that there
is a ‘window’ of stability for nano-diamonds with radii ∼0.9–
2.6 nm (1127 < NC < 24 398). Further, Barnard et al. (2003a)
found that fullerenes are the more stable form for smaller carbon
clusters (a < 0.9 nm, 20 < NC < 1127), while graphite is the
more stable form for larger clusters (a > 2.6 nm, NC > 24 398).

Nevertheless, the story does not end here because nano-
diamonds are known to take several polyhedral forms, which
have differing stability in their (de-)hydrogenated states (e.g.
Barnard & Zapol 2004). This question was investigated in detail
by Barnard & Zapol (2004) who found that, for hydrogenated
nano-diamonds with NC > 104 (a & 2.4 nm) the cubic form is
the most stable form, followed by the sphere, cuboctahedron
or octahedron, and truncated octahedron. For dehydrogenated
nano-diamonds the equivalent stability order is: truncated octa-
hedron, cuboctahedron or sphere, octahedron, and cube but for
smaller sizes the spherical form is the most stable with the
cuboctahedron and truncated octahedron becoming more sta-
ble as size increases. For particles with up to 106 atoms (a .
10 nm), the dehydrogenated cubic and octahedral forms are
higher in energy making them unlikely forms in the larger size
range (Barnard & Zapol 2004). These shape- and size-dependent
behaviours are principally due to the differences in the particle
surface energies.

Given that in excited regions the nano-diamond surface
hydrogenation may be less than complete, that is close to hot
stars where they may undergo extreme heating and/or direct
surface CH bond photo-dissociation, in our follow-up work we
introduce a fractional surface H atom coverage factor, fH, where
0 ≤ fH ≤ 1. A critical issue is then whether the different sur-
face facets or, more generally, the different CH and CH2 surface
groups lose hydrogen atoms through the same processes and at
the same rates.

A definitive answer to this is probably not yet possible but we
can perhaps garner clues from some of the work published on the
related issues of CHn groups, surface re-structuration/relaxation,
deprotonation potentials, and proton affinities (e.g. Zhigilei et al.
1997a,b; Barnard et al. 2003b; Barnard & Per 2014). The findings
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of these works are consistent with other theoretical and exper-
imental studies in this area. For instance, the theoretical work
of Barnard et al. (2003b) shows, for dehydrogenated particles
with a ≤ 0.5 nm, that is less than a few hundred carbon atoms,
that octahedral and cuboctahedral particle {111} facets preferen-
tially transform from sp3 to sp2 bonding, that is they exfoliate,
resulting in onion-like structures with carbon clusters at their
core (‘bucky-diamonds’). They also found that {100} (cubic)
nano-diamonds are stable against exfoliation re-structuring.

Surface re-structuring must obviously have an effect on the
CHn surface group IR band strengths and positions. Zhigilei
et al. (1997a,b) used classical molecular dynamics simulations
to study diamond surface structural transformations of {111}
surfaces, designated C{111}(1× 1)H structures in their terminol-
ogy, which exhibit a single peak at 4.28µm in their simulations.
They explored the transformation of dehydrogenated bulk {111}
surfaces into C{111}(2× 1) structures, that consist of π-bonded
chains containing five- and seven-membered rings. With hydro-
gen adsorption, to form C{111}(2× 1)H surfaces, an additional
peak appears at 3.49µm due to a metastable structure. As
the hydrogen coverage in the simulations increases this peak
increases in intensity, up to half monolayer coverage, and then
disappears in favour of the C{111}(1× 1)H 4.28µm peak. They
also found that C{111}(2× 1) bulk surfaces graphitise upon
heating to 2300 K.

In their later theoretical work (Barnard & Per 2014) studied
the deprotonation potentials and proton affinities16 of ∼0.9–
1.4 nm radius nano-diamonds and found that they generally
decrease with particle size but exhibit strong shape- and facet-
dependencies. Differences of the order of 1 eV were found for
1 nm size variations and proton loss was found to be inhomoge-
neous over the nano-diamond surfaces. As Barnard & Per (2014)
point out, tertiary ions (>−C−) being more stable that secondary
ions (>C<−H) results in tertiary (3◦) CH bonds (>−C−H) being
more easily deprotonated than secondary CH bonds (>C<H

H) on
facets, edges, and vertices. Thus, deprotonation, that is hydrogen
abstraction or dehydrogenation by H+ loss, occurs preferentially
from facets. The opposing process, proton affinity, was found
to be strongly facet-dependent while the deprotonation potential
was edge/vertex-dependent. The proton affinity was found to be
higher, that is protonation is preferred, on {110} facets, followed
by {111} facets and then {100} facets. From this work we can
probably conclude that deprotonation (and by inference dehydro-
genation) will tends to preferentially occur from tertiary CH on
{111} facets, while protons preferentially attach to, and therefore
preferentially rehydrogenate, edges and vertices.

The theoretical and experimental observations described in
the preceding paragraphs may be summarised into the following
broad scenarios for the evolution of nano-diamond properties:

– stability: they are most stable for radii from 0.9 to 2.6 nm
(for smaller [larger] sizes fullerenes [graphite] are more stable),

– dehydrogenation: occurs preferentially via the dissociation
of 3◦ CH bonds on {111} facets (before edges and vertices) lead-
ing to carbon atom sp3 to sp2 transformation (i.e. aromatisation),

– re-structuring: aromatisation triggers the formation of π-
bonded chains with 5- and 7-membered rings and ultimately to
outer layer exfoliation as edge-anchored, aromatic sheets that
will shift absorption to longer (visible) wavelengths,

– shape: the preference for hydrogenated particles is: cube
> sphere > cuboctahedon/octahedon > truncated octahedon. For
16 The deprotonation energy is the enthalpy change of the reaction nano-
diamond-H
 nano-diamond− + H+.
The proton affinity is the negative of the enthalpy change of the reaction
nano-diamond + H+ 
 nano-diamond-H+.

dehydrogenated particles the order is almost reversed but as their
surfaces transform sp3 → sp2 its relevance is moot, and

– rehydrogenation: occurs preferentially at edges and ver-
tices, leading to a hysteresis with dehydrogenation because
H atoms do not necessarily (re)attach to the sites they were
removed from. The above summary indicates that modelling the
thermal- and photo-processing of nano-diamonds in circumstel-
lar regions must ideally try and include these complex surface
re-structurations and compositional changes.

9. Discussion and speculations

The key parameters in determining the ratio of the CH and CH2
IR band strengths are the surface structure, the euhedral (poly-
hedral) form and the edge to surface ratio where faces and/or
edges exhibit different crystal facet properties. For example, reg-
ular tetrahedral (T), truncated tetrahedral (tT) and octahedral (O)
particles (see Fig. 1) exhibit only {111} facets and {111}/{111}
edges17 and their [CH]/[CH2] ratios are size-dependent and dif-
fer between the three polyhedral forms (see Fig. 2). In contrast,
regular truncated octahedral (tO), cuboctahedral (cO), and trun-
cated cubic (tC) particles exhibit both {111} and {100} facets
and {111}/{100} edges, and also {111}/{111} edges in the case
of tO (Fig. 1). However, the [CH]/[CH2] ratios for these particles
do not depend on size and are spread over more than an order
of magnitude (Fig. 2). For cubic (C) particles the [CH]/[CH2]
ratio is zero because they exhibit no tertiary CH bonds on their
exclusively {100} surfaces.

For fully surface-hydrogenated nano-diamonds larger than
typical diamondoids (e.g. NC > 100) the most stable, and
therefore the most likely, forms are the cube (C), followed
by the sphere, cuboctahedron(cO)/octahedron(O), and trun-
cated octahedron (tO) (Barnard & Zapol 2004). For the cube
[CH]/[CH2] = 0 and so is of no help to us here, even though it
may be the most stable form. Of the remaining four only two
exhibit size-dependent [CH]/[CH2] ratios, the sphere because
it mimics tetrahedral particles (see Sect. 5.4) and the octahe-
dron (O). The [CH]/[CH2] ratios for the cuboctahedron (cO)
and truncated octahedron (tO) are fixed at ∼0.9 and ∼5.3,
respectively.

Figure 8 summarises the [CH]/[CH2] ratios for all of the
modelled polyhedra and network structures, the data are the
same as in the previous figures but are here plotted as a func-
tion of the equivalent sphere radius, and, rather than against the
number of carbon atoms, NC. These are compared with the typ-
ical range (0.5–3) for the experimental and observational data
(grey shaded area). From this figure we conclude that, for parti-
cles with radii larger than ∼1 nm, only spherical nano-diamonds
(black squares) and truncated octahedral/cuboctahedral nano-
diamonds in their semi-regular forms (‘vertical’ blue lines)
appear to be consistent with the measured data. However, for
nano-diamonds with radii smaller than ∼1 nm it appears that
almost any shape could be consistent with the data. Thus, from
a consideration of the [CH]/[CH2] ratio it seems that spheri-
cal and truncated octahedral/cuboctahedral nano-diamonds are
the most probable forms. It is interesting that Barnard & Zapol
(2004) basically come to the same conclusion but from a com-
pletely different and energetic point of view. Thus, and given that

17 However, it should be noted that not all {111}/{111} edges are equiv-
alent. For example, these edges are lined with CH2 groups on tetrahedral
particles but with CH groups on octahedral particles, the CH groups in
the latter case actually being an integral part of the adjacent facets.
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Fig. 8. Ranges of the [CH]/[CH2] ratios
for all of the considered models: tetra-
hedra and octahedra including their trun-
cated forms, solid red and blue lines,
respectively. The dangling and rising thin-
ner lines show the effects of increasing
truncation. The dashed lines show the
[CH/[CH2] ratios for the regular polyhe-
dra: T (red), tT (orange), O (blue), tO
(purple), cO (cobalt), and tC (green). For
cubic particles (C) this ratio is zero. The
black squares show the ratios for ‘spheri-
cal’ nano-diamonds and the orange dashed
line shows an analytical approximation to
these data (see text for details). The grey
shaded gives an indication of the observed
and experimental values (0.5–3) and the
lighter grey vertical band indicates the typ-
ical radii of the most abundant pre-solar
nano-diamonds (1.3–1.5 nm).

regular tetrahedral (T) and octahedral (O) forms are apparently
not favoured, nano-diamonds in astrophysical environments must
therefore include spherical, semi-regular and truncated octahe-
dral family (cO, tO and stO) particle forms in order to allow for
the observed variations in the CH to CH2 band ratio both in the
laboratory and in space (see Fig. 8 and also Sects. 4.8 and 5.4 for
a discussion of these effects).

Determining nano-diamond sizes, both in space and in the
laboratory, from only their 3–4µm spectra will be difficult
unless the particle shapes are well-determined. Therefore, an
increase in useful information, such as further laboratory data
and the modelling of any specific nano-diamond bands at longer
wavelengths, is critical for interpreting their spectra with future
instruments, such as the James Webb Space Telescope (JWST),
that will give us a more complete spectral coverage than cur-
rently available. However, it is likely that most longer wavelength
(i.e. mid-IR) bands are due to (nitrogen) hetero-atom impurity
and structural defects in diamond (e.g. Hill et al. 1998; Jones
& d’Hendecourt 2000; Braatz et al. 2000) and so may not be
particularly size-diagnostic.

Nevertheless, the spherical nano-diamond data do indicate
an apparent convergence in the [CH]/[CH2] ratio (to '2.4) for
the larger sizes (see Fig. 8). However, at the smaller (actual)
sizes (and ≤ 10 nm), as shown in Fig. 9), there is an inherent and
unavoidable dispersion in the CHn group abundance data, which
is due to trying to shoehorn a discretised, 3D diamond network
lattice into a volume imposed by a given radius18. The red line in
Fig. 9 (and the long-dashed orange line in Fig. 8) is a by-eye fit
to these data with the following function

[CH]
[CH2]

= 2.265 a0.03
nd −

(
1

2.5 and

)
, (34)

where the nano-diamond radius and is in nm. This equation
may thus provide a means to avoid the ‘ups and downs’ in
determining the [CH]/[CH2] ratio by exact diamond network
18 In the diamond network calculations here the actual particle radius is
determined by the structure discretisation and not by the imposed radius.

Fig. 9. [CH]/[CH2] ratios for ‘spherical’ nano-diamonds with actual
radii ≤10 nm (black line), showing the inherent dispersion in the data.
The red line shows the analytical approximation to these data (see text
for details). The grey shaded gives an indication of the observed and
experimental values (0.5–3) and the lighter grey vertical band indi-
cates the typical radii of the most abundant pre-solar nano-diamonds
(1.3–1.5 nm).

calculations (see Fig. 9), which introduce unpredictable ‘noise’
into the derivation. In essence, Eq. (34) therefore provides a sort
of statistical averaging of the [CH]/[CH2] ratios and may yield
a means of estimating nano-diamond sizes from their IR spec-
tra. Even though Eq. (34) is only indicative it does show that, if
circumstellar nano-diamonds are quasi-spherical, there may be
some hope in estimating the sizes of the larger nano-diamonds
(and & 2 nm) from their [CH]/[CH2] ratios, albeit with some
uncertainty because of the rather flat dependence of [CH]/[CH2]
on radius. The utility of such a simple expression clearly rests
upon adopting the critically fundamental assumption of spheri-
cal nano-diamonds. Unfortunately, given the wide dispersion in
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their properties, the sizes and shapes of circumstellar (and inter-
stellar?) nano-diamonds with radii .2 nm are probably always
going to be somewhat poorly constrained by their [CH]/[CH2]
ratios.

The survivability of nano-diamonds in intense radiation
fields close to bright stars is determined by their absorption of
energetic (UV to EUV) photons versus their ability to shed this
absorbed energy via thermal emission, be it through stochastic
or thermal equilibrium emission. The nano-diamond surface-
to-volume ratio and also the nature of the particle surfaces,
in particular the degree of surface hydrogenation, are critical
in determining the absolute balance between absorption and
emission. In this sense, smaller nano-diamonds have both high
surface-to-volume ratios and high surface hydrogen atom frac-
tions and are, perhaps paradoxically, more resilient than their
larger relations. While larger, fully hydrogenated nano-diamonds
will be more stable than in their de-hydrogenated forms, if they
were to lose their surface hydrogen through extreme heating they
would undergo surface aromatisation and likely runaway heating
leading to their rapid erosion and destruction.

At large distances from bright stars fully-hydrogenated nano-
diamonds of all sizes should be stable against extreme thermal
processing. Nevertheless, given that the analysed pre-solar nano-
diamonds are the most abundant of all pre-solar grains and have
approximately log-normal size distributions peaking at diam-
eters ø ' 3 nm and extending out to ø ∼10 nm (Lewis et al.
1987, 1989; Daulton et al. 1996), it would seem that nano-
diamonds with radii as large as 100 nm are not the norm. Indeed,
it appears that the pre-solar nano-diamond sizes fall well within
the nano-diamond stability window (ø = 1.9–5.2 nm, Barnard
et al. 2003a). If large nano-diamonds were common we would
surely see signs of them in the pre-solar grains but we do not. A
possible explanation for this is that the nano-diamonds are actu-
ally formed in the inner regions of circumstellar regions, by some
as yet unspecified process19, and that they are there size-sorted as
a result of thermal processing, which leads to the observed size
distribution biased towards smaller nano-diamonds. Indeed we
know that the analysed pre-solar nano-diamonds, or at least some
fraction of them, must be of extra-solar origin based upon their
anomalous Xe isotopic component (Xe-HL), which is considered
characteristic of the nucleosynthetic processes in supernovae
(Lewis et al. 1987). This extra-solar origin is also supported by
the fact that they exhibit 15N depletions and low C/N ratios that
are consistent with carbon-rich stellar environments (Alexander
1997).

There has always been something of a question mark over
the origin of the anomalous Xe-HL in pre-solar nano-diamonds.
It has been proposed that it arises from implantation (e.g.
Verchovsky et al. 2000). However, it is hard to understand how
this process could lead to the trapping of Xe atoms in such small
particles, when it would be expected that the incident heavy, Xe
ions would likely traverse the particle rather than be implanted.
If small nano-diamonds are, however, formed by the erosion of
much larger particles in intense radiation field environments, it is
possible that the heavier Xe atoms could be retained in the grain
during down-sizing as a result of progressive sublimation. Such
an effect would, as required, explain Xe atom trapping in nano-
diamonds and also result in a concentration effect that would
increase the number of Xe atoms per unit nano-diamond mass.

Taking the Xe-HL to carbon ratio in nano-diamonds,
f ( Xe

C )�nd, to be 1.7× 10−3 of the solar ratio (Anders & Zinner

19 As noted by Daulton et al. (1996), the pre-solar nano-diamonds were
most probably formed via some vapour phase condensation process.

1993), the solar abundances of xenon, [Xe]� = 1.9× 10−10, and
of carbon, [C]� = 3.2× 10−4 (Palme et al. 2014), we can estimate
the quantity of cosmic carbon likely tied up in nano-diamonds.
Given that the most abundant pre-solar nano-diamonds have
radii '1.5 nm and ∼2, 500 carbon atoms per grain (NC,nd, see
Table 7) then the fraction of nano-diamonds that contain a
Xe-HL atom, fXe, is

fXe =
[Xe]
[C]

f
(

Xe
C

)�
nd

NC,nd =
1.9× 10−10

3.2× 10−4 × 1.7× 10−3 × 2500

= 2.5× 10−6, (35)

which implies that only one in 400 000 nano-diamonds actu-
ally contains a xenon atom. From this we can conclude that
there must, inescapably, be a large reservoir of pre-solar nano-
diamonds that are Xe-free but must be associated with the
nano-diamonds that do contain Xe atoms, that is all of these
other nano-diamonds are ‘guilty by association’ and have to
come from the same source or sources.

Expressing this in another way the fraction of solar car-
bon that must be associated with the Xe-containing pre-solar
nano-diamonds, fC,nd, can be estimated from the Xe/C ratio
in nano-diamonds with respect to the solar Xe/C ratio
f ( Xe

C )�nd (= 0.0017) (Anders & Zinner 1993), which is equivalent
to ≈0.2% of the solar carbon abundance. Given that the heavy
Xe atom trapping efficiency into nanoparticles, ftrap, by what-
ever mechanism, cannot be a very efficient process ( ftrap < 1)
the actual fraction of carbon tied up in nano-diamonds in circum-
stellar and interstellar media must be significantly larger, that is
fC,nd > 0.2%. In their experiments Koscheev et al. (2001) found
that the efficiency for He, Ne, Kr, and Xe atom trapping into
nano-diamonds is of the order of 10%, which implies that fC,nd
must be at least of the order of 2%. If the origin of the Xe-HL
atoms is by implantation at keV energies, then this inefficiency
is compounded by the experimental observation that nano-
diamonds with radii less than ∼4 nm can be completely destroyed
during the Xe implantation process (Shiryaev et al. 2018). Con-
sequently the Xe record would be preferentially preserved in the
larger size fraction of the pre-solar nano-diamonds. This experi-
mental result is a further indication of the inefficient trapping of
Xe atoms in nano-diamonds. The initial nano-diamond reservoir
must therefore have been considerably larger than that indicated
by the measured Xe content, implying that fC,nd > 2% or, given
that '50% of carbon is in dust, that > 4% of the cosmic car-
bonaceous dust ought to be in the form of nano-diamonds. Thus,
if a significant fraction of them are indeed interstellar, as well
as circumstellar, as is an unavoidable conclusion given that a
significant fraction were associated with distant supernovæ and
have therefore traversed the interstellar medium, then it would
seem that they have to be ‘multi-talented’20 and well hidden
with(in) other (carbon) dust components in order to have avoided
widespread detection in interstellar and circumstellar media.

10. Summary and conclusions

We developed several different approaches to the calculation of
the CH and CH2 group abundances on nano-diamonds: regu-
lar and semi-regular polyhedral shapes, and diamond bonding

20 Nano-diamonds in the ISM would have to express their presence in
multiple, but indirect, ways in order to most efficiently use the rather
limited supply of carbon available (e.g. Jones & d’Hendecourt 2000),
i.e. they would have to contribute to the FUV extinction, the 3–15µm
IR emission bands, the mid-IR emission, . . .
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networks. As a function of the particle size and shape, and for the
different calculation methods, we derived the relative abundance
ratio [CH]/[CH2], which can then be weighted by the laboratory-
measured IR band intensity ratio in order to interpret and/or
predict the observed 3.53µm/3.43µm (nano-)diamond IR band
ratio. We found that the various methods give good qualitative
agreement, within the likely uncertainties.

Overall we found that the [CH]/[CH2] ratio, and therefore
the observed IR band intensity ratios, ought to strongly depend
upon both the particle size and shape. For a given particle size
or shape the [CH]/[CH2] ratio varies over more than an order
of magnitude. Thus, it appears that it will be somewhat difficult
to constrain the sizes of the observed nano-diamonds solely on
the basis of their observed infrared spectra in the 3–4µm region.
This conclusion remains valid even if we restrict ourselves to
the most probable and most stable nano-diamonds forms, that is
spherical and the family of cO, tO, and stO (cuboctahedral and
truncated octahedral) particles.

If we, justifiably, make the strong assumption that circum-
stellar (and interstellar) nano-diamonds are (quasi-)spherical,
then there may be some hope in estimating the sizes of nano-
diamonds larger than '2 nm from the observed ratios of the
CH and CH2 IR bands at 3.53µm and 3.43µm, respectively.
Although, the uncertainties are still likely to be rather large
because of the very flat dependence of their [CH]/[CH2] ratio
on radius (∝ a0.03

nd ). If this same statistically-averaged, size-
dependent behaviour is assumed to hold for the smallest nano-
diamonds (and < 10 nm) then we may have some hope estimating
their mean sizes, with the critical caveat that the surfaces are
fully hydrogenated and/or that de-hydrogenation processes do
not affect the surface CH and CH2 groups abundance ratios.

Further laboratory and modelling data of the longer wave-
length (mid-IR) bands specific to nano-diamonds is therefore
essential for the coming JWST era if we are to understand and
extract the maximum amount of data from circumstellar nano-
diamond spectra. With these new spectroscopic data, we will
perhaps discover nano-diamonds in new astronomical objects,
other than circumstellar discs regions, and that they even exist in
the interstellar medium. Although, and as a caveat, it is probable
that as interesting as these bands will be they may not be partic-
ularly size-specific because they are predominantly, and perhaps
exclusively, due to impurities such as nitrogen and to structural
defects in the diamond lattice.

As something of an aside, based upon their hetero-atom Xe
content, it is here speculated that nano-diamonds may actually
be quite abundant in the ISM; of the order of several percent of
cosmic carbon could be in the form of nano-diamonds. However,
given that they have not yet been detected there they must be
well-hidden with(in) other dust components, either that or we
do not yet recognise their spectroscopic signatures in the ISM
because they are confused with other carbonaceous dust features.

Interestingly, this modelling indicates that spherical nano-
diamonds exhibit a narrower range in [CH]/[CH2] than shown
by the regular and semi-regular polyhedral forms and also by
the polyhedral nano-diamond network models. Further, spher-
ical nano-diamonds exhibit [CH]/[CH2] ratios approximating
those of the tetrahedral polyhedral and network particles, as has
already been speculated, that is the ratios for large diamondoid
molecules or nano-diamonds resemble those of the Td point
group, the largest subgroup of the Oh point group.
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Appendix A: Regular polyhedral particles

Here we consider all of the relevant equations pertaining to reg-
ular and regular truncated polyhedral particles where all particle
edges are of length, l. Following the modelling of regular and
semi-regular polyhedra and their truncated forms presented in
this work we propose the following rules, which generalise the
observations presented in Section 3, for determining the CHn
group terminations of nano-diamond polyhedral vertices, edges,
and facets:

– Vertices (V)
– with an even number of intersecting facets are CH2,
– with an odd number of intersecting {111} facets are CH,
– with one or more intersecting {100} facets are CH2,

– Edges (E)
– between facets of the same type are CH2,
– of triangular facets are CH2,
– between a square and a hexagonal facet are CH,

– Facets (F)
– with three and six sides are {111},
– with four and eight sides are {100},
– {111} are covered in coherently-directed CH bonds and
– {100} are CH2 covered.

These rules can be used to determine the CHn group structures
comprising the surfaces of polyhedral nano-diamonds.

Appendix A.1: Regular tetrahedral (T) particles

We first describe the properties of regular tetrahedral particles,
the simplest regular polyhedra, where the total edge length is 6 l
(see Fig. 1 and Tables 1 and 2). An encompassing sphere, that
is one that is equally arrayed around and intersects all four of
the particle vertices, is of radius r =

√
6/4 l = 0.612 l. The sur-

face area of a tetrahedron, with four equivalent, triangular {111}
facets, each of area

√
3/4 l2, is:

AT =
√

3 l2 =
√

3
(

4
√

6

)2

r2 =
8
√

3
3

r2 = 4.619 r2. (A.1)

Given that the entire surface area is in {111} facets, fs{111} = 1,
which does not include the four CH-terminated vertices. All
edges are distinct in structure from the faces, are CH2-terminated
and can be considered to be of {100}-type with a {100} edge
length E{100} = 6 l = 4

√
6 r = 9.798 r. The ratio of the total edge

length, ET, to the total surface area of such a particle is

ET

AT
=

6 l
√

3 l2
=

2
√

3
l

=
3
√

2
2 r

=
2.121

r
(A.2)

and the ratio of the surface area of a tetrahedron to that of its
encompassing sphere is

AT

Asphere
=

8
√

3/3 r2

4πr2 =
2
π
√

3
= 0.368. (A.3)

The volume of a tetrahedron is given by:

VT =

√
2

12
l3 =

√
2

12

(
4
√

6

)3

r3 =
8

9
√

3
r3 = 0.513 r3 (A.4)

and the ratio of the volume of a tetrahedron to that of its
encompassing sphere is:

VT

Vsphere
==

[8
√

3/9] r3

(4/3)πr3 =
2

π 3
√

3
= 0.123. (A.5)

Hence, and because for convenience we usually define the parti-
cle mass in terms of a radius, the volume of a tetrahedron, with
circumscribed sphere of effective radius reff , must be normalised
to that of a spherical particle of the same volume VT(reff), that is
the radius, and, of a "spherical nano-diamond" is defined by
4
3
πa3

nd =
8

9
√

3
r3

eff (A.6)

and hence

reff =

(
π 3
√

3
2

) 1
3

and = 2.103 and. (A.7)

We note that reff is greater than and because any polyhedron is,
individually, less efficient at space filling than a sphere.

Appendix A.2: Regular truncated tetrahedral (tT) particles

In the same manner as for tetrahedral particles we now look to
the equivalent properties of regular truncated tetrahedral parti-
cles, that is tetrahedral particles with the four vertices truncated
into equilateral triangular faces. In this case the total edge length
is 18 l (see Fig. 1 and Tables 1 and 2) and the encompassing
sphere radius r =

√
22/4 l = 1.173 l. The surface area of a trun-

cated tetrahedron, with four equivalent, triangular {111} facets
(each of area

√
3/4 l2), and four hexagonal {111} facets each of

area 3
√

3/2 l2, is:

AtT = 7
√

3 l2 = 7
√

3
(

4
√

22

)2

r2 =
56
√

3
11

r2 = 8.818 r2. (A.8)

Given that the entire surface area is in triangular and hexag-
onal {111} facets, fs{111} = 1. However, unlike tetrahedra, not
all edges are {100}-type, twelve are CH-terminated and there-
fore an integral part of the adjacent {111} facets. Thus, only
six of the truncated form edges are of {100} CH2-type and
E{100} = 6 l = (24/

√
22) r = 5.117 r. The ratio of the total edge

length, EtT, to the total surface area of such a particle is
EtT

AtT
=

18 l
7
√

3 l2
=

6
√

3
7l

=
3
√

3
√

22
14 r

=
1.741

r
(A.9)

and the ratio of the surface area to that of the encompassing
sphere is

AtT

Asphere
=

56
√

3/11 r2

4πr2 =
14
√

3
11π

= 0.702. (A.10)

The volume of a truncated tetrahedron is given by:

VtT. =
23
√

2
12

l3 =
23
√

2
12

(
4
√

22

)3

r3 =
184

33
√

11
r3 = 1.681 r3

(A.11)

and the ratio of the volume of a truncated tetrahedron to that of
its encompassing sphere is:

VtT

Vsphere
=

[184/(33
√

11)] r3

(4/3)πr3 =
46

π11
√

11
= 0.401. (A.12)

Normalising to a spherical particle of the same volume
Vtetra.(reff), the radius, and, of the equivalent "spherical nano-
diamond" is from
4
3
πa3

nd =
184

33
√

11
r3

eff (A.13)

whence

reff =

(
π11
√

11
46

) 1
3

and = 1.356 and. (A.14)
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Appendix A.3: Regular octahedral (O) particles

We now consider the properties of regular octahedral particles,
with a total edge length of 12 l (see Fig. 1 and Tables 1 and 2)
and an encompassing sphere of radius r =

√
2/2 l = 0.707 l. The

surface area of an octahedron, which exhibits eight equivalent
triangular {111} facets is:

AO = 8
√

3
4

l2 = 2
√

3
(

2
√

2

)2

r2 = 4
√

3 r2 = 6.928 r2. (A.15)

As per tetrahedral particles, the surface of octahedral particles
is entirely in triangular {111} facets, that is fs{111} = 1. How-
ever, in this case, all the {111}/{111} edges are comprised of
alternately-facing CH bonds forming an integral part of those
adjacent facets.21 Hence, E{100} = 0 and the total edge length
EO = 12 l = 12

√
2 r = 16.971 r. The ratio of the total edge

length, EO, to the total surface area of such a particle is

EO

AO
=

12 l
2
√

3 l2
=

2
√

3
l

=
2
√

3
√

2
2r

=

√
6

r
=

2.450
r

. (A.16)

The ratio of the surface area to that of its encompassing sphere
is

AO

Asphere
=

4
√

3 r2

4πr2 =

√
3
π

= 0.551. (A.17)

The volume of an octahedron is

VO =

√
2

3
l3 =

√
2

3

(
2
√

2

)3

r3 =
4
3

r3 = 1.333 r3 (A.18)

and the ratio of its volume to that of the encompassing sphere is:

VO

Vsphere
=

(4/3)r3

(4/3)πr3 =
1
π

= 0.318. (A.19)

Normalising the volume to that of a sphere of radius, and we have

4
3
πa3

nd =
4
3

r3
eff (A.20)

and

reff = π
1
3 and = 1.465 and. (A.21)

Appendix A.4: Regular truncated octahedral (tO) particles

Our attention now turns to a common nano-diamond particle
shape, a regular truncated octahedron (e.g. Barnard & Sternberg
2005), an octahedron with its six vertices truncated into square
{100} facets, with a total edge length of 36 l (see Fig. 1
and Tables 1 and 2) and an encompassing sphere of radius
r =
√

(5/2) l = 1.581 l. The surface of a truncated octahedron
is comprised of eight hexagonal {111} facets (each of area
3
√

3/2 l2) and six square {100} facets (each of area l2) is:

AtO = 8
(

3
√

3
2

)
l2 + 6 l2 = 6 (2

√
3 + 1) l2

=
12 (2

√
3 + 1)

5
r2 = 10.714 r2. (A.22)

21 For regular octahedral particles there are only six CH2 groups
present, one to be found on each of the particle vertices.

Here the surface is in hexagonal {111} facets, with fs{111} =
0.776, and square {100} facets, with fs{100} = 0.224. In trun-
cated octahedral particles both {111}/{111} and {111}/{100}
edges exist (see Fig. 1). {111}/{111} edges are alternating
CH-terminated and an integral part of {111} facets, while
{111}/{100} edges are CH2-terminated and form part of the
{100} facets. The ratio of the total edge length, EtO = 36 l =
36
√

(2/5) r = 22.768 r, to the total surface area of the particle is

EtO

AtO
=

36 l
6 (2
√

3 + 1) l2
=

6
(2
√

3 + 1)l
=

3
√

2
√

5
(2
√

3 + 1)r
=

2.125
r

.

(A.23)

The ratio of the surface area to that of an encompassing sphere
is

AtO

Asphere
=

(12/5)(2
√

3 + 1) r2

4πr2 =
3(2
√

3 + 1)
5π

= 0.853. (A.24)

The volume of a truncated octahedron is given by:

VtO = 8
√

2 l3 = 8
√

2 [
√

(2/5) r]3 =
32

5
√

5
r3 = 2.862 r3 (A.25)

and its volume with respect to that of an encompassing sphere of
the same radius r is:

VtO

Vsphere
=

[32/(5
√

5)] r3

(4/3)πr3 =
24
π5
√

5
= 0.683. (A.26)

Normalising to the volume of a sphere with radius and we have

4
3
πa3

nd =
32

5
√

5
r3

eff (A.27)

and

reff =

(
π5
√

5
24

) 1
3

and = 1.135 and. (A.28)

Appendix A.5: Regular cuboctahedral (cO) particles

Another common nano-diamond shape is the cuboctahedron
with a total edge length of 24 l (see Fig. 1 and Tables 1 and 2)
and an encompassing sphere of radius r = l. The surface area
of a cuboctahedron, which exhibits eight triangular {111} facets
(each of area [

√
3/4]l2) and six square facets (each of area l2) is:

AcO = 8
√

3
4

l2 + 6l2 = 2(
√

3 + 3) l2 = 2(
√

3 + 3) r2 = 9.464 r2.

(A.29)

In cuboctahedral particles the surface is in triangular {111}
facets, with fs{111} = 0.366, and square {100} facets, with
fs{100} = 0.634. All edges are {111}/{100} and equivalent (see
Fig. 1) and their CHn groups form an integral parts of their adja-
cent {111} and {100} facets. The ratio of the total edge length,
EcO = 24 l = 24 r, to the total surface area of such a particle is

EcO

AcO
=

24 l
2(
√

3 + 3) l2
=

12
(
√

3 + 3)l
=

12
(
√

3 + 3)r
=

2.536
r

. (A.30)

The ratio of the surface area of a cuboctahedron to that of its
encompassing sphere is

AcO

Asphere
=

2(
√

3 + 3) r2

4πr2 =
(
√

3 + 3)
2π

= 0.753. (A.31)
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The volume of a cuboctahedron is given by:

VcO =
5
√

2
3

l3 =
5
√

2
3

r3 = 2.357 r3 (A.32)

and the ratio of its volume to that of the encompasing sphere of
the same radius r is:

VcO

Vsphere
=

5
√

2/3 r3

(4/3)πr3 =
5
√

2
4π

= 0.563 (A.33)

and normalising to a sphere of radius and

4
3
πa3

nd =
5
√

2
3

r3
eff (A.34)

the effective radius (reff) of a cuboctahedron with the same
volume as a sphere of radius and is then

reff =

(
4π

5
√

2

) 1
3

and = 1.211 and. (A.35)

Appendix A.6: Regular cube (C) particles

For geometrical completeness we here describe the properties
of a regular cube, with a total edge length of 12 l (see Fig. 1
and Tables 1 and 2) and an encompassing sphere of radius r =√

3/2 l = 0.866 l. The surface area of a cube, comprised of six
square {100} facets of area l2, is:

AC = 6 l2 = 8 r2. (A.36)

The ratio of the total edge length, EC = 12 l = 24
√

3 r, to the
total surface area is

EC

AC
=

12 l
6 l2

=
2
l

=

√
3

r
=

1.732
r

. (A.37)

The ratio of the surface area of a cube to that of its encompassing
sphere is

AC

Asphere
=

8 r2

4πr2 =
2
π

r = 0.637 r. (A.38)

The volume of the cube (l3 = 1.540 r3) with respect to that of an
encompassing sphere of the same radius r is:

VC

Vsphere
=

l3

(4/3)πr3 =
8/(3
√

3) r3

(4/3)πr3 =
2
π
√

3
= 0.368. (A.39)

Normalising to the volume of a sphere with radius and we have

4
3
πa3

nd =
8

3
√

3
r3

eff (A.40)

and

reff =

(
π
√

3
2

) 1
3

and = 1.396 and. (A.41)

Appendix A.7: Regular truncated cube (tC) particles

In order to be fully complete we now describe a regular trun-
cated cube, a cube with its eight vertices truncated into triangular
facets, with a total edge length of 36 l (see Fig. 1 and Tables 1 and
2) and an encompassing sphere of radius r = 1

2
√

(7 + 4
√

2) l =
1.779 l. The surface of a truncated cube is thus comprised of
eight triangular {111} facets (each of area

√
3/4 l2) and six octag-

onal {100} facets (each of area 2[
√

2 + 1] l2) and its surface
area is:

AtC = 8
√

3
4

l2 + 6[2(
√

2 + 1)] l2 = 2[6 (
√

2 + 1) +
√

3] l2

=
8[6 (
√

2 + 1) +
√

3]
7 + 4

√
2

r2 = 10.251 r2. (A.42)

Here the surface is in triangular {111} facets, with fs{111} =
0.107, and octagonal {100} facets, with fs{100} = 0.893.
The edges of truncated cube particles are {111}/{100} and
{100}/{100} and their CHn groupings an integral part of their
adjacent facets. The ratio of the total edge length, EtC = 36 l =
72/(
√

[7 + 4
√

2]) r, to the total surface area of such a particle is

EtC

AtC
=

36 l
2[6 (
√

2 + 1) +
√

3] l2
=

3
[(
√

2 + 1) +
√

3/6] l

=
3
√

(7 + 4
√

2)
2[(
√

2 + 1) +
√

3/6] r
=

2.126
r

. (A.43)

The ratio of the surface area of a truncated cube to that of its
encompassing sphere is

AtC

Asphere
=

8[6 (
√

2 + 1) +
√

3]/(7 + 4
√

2) r2

4πr2

=
2[6 (
√

2 + 1) +
√

3]
π(7 + 4

√
2)

= 0.816. (A.44)

The volume of the truncated cube is given by:

VtC =
7(3 + 2

√
2)

3
l3 =

56(3 + 2
√

2)
3[
√

(7 + 4
√

2)]3 r3 = 2.416 r3 (A.45)

and its volume with respect to that of an encompassing sphere of
the same radius r is:

VtC

Vsphere
=

56(3 + 2
√

2)/{3[
√

(7 + 4
√

2)]3} r3

(4/3)πr3

=
14(3 + 2

√
2)

π[
√

(7 + 4
√

2)]3 = 0.577. (A.46)

Normalising to the volume of a sphere with radius and we have

4
3
πa3

nd =
56(3 + 2

√
2)

3[
√

(7 + 4
√

2)]3 r3
eff (A.47)

and

reff =

√
(7 + 4

√
2) π

1
3

[14(3 +
√

2)]
1
3

and = 1.201 and. (A.48)
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Fig. A.1. Spatial properties of regular polyhedra. The coloured dashed
lines show the surface area to volume ratios of T (red), tT (orange),
O (blue), tO (purple), cO (cobalt), C (dark green), and tC (green) par-
ticle forms, and the solid lines show the edge/surface area ratio. The
asterisk symbols on the far left show their ‘sphericities’ and the differ-
ent coloured symbols on the right indicate the fraction of the particle
surface in {111} facets, which is zero for a cube (C).

Appendix A.8: The spatial properties of regular polyhedra

In the preceding sub-sections we described the surface and
volume properties of known and other possible nano-diamond
polyhedral forms. Fig. A.1 shows the surface area to volume
ratios of T (red), tT (orange), O (blue), tO (purple), and cO
(cobalt) particle forms (dashed lines ), and their edge/surface
area ratios (solid lines). Also shown are their ‘sphericities’ (aster-
isks on the left), the ratio of the volume of the polyhedron to that
of its circumscribed sphere, and the surface fraction in {111}
facets, fs{111} (different shaped and coloured symbols on the
right, these data also appear in Fig. 1).

Given that the primary motivation for this study is to better
understand the [CH]/[CH2] abundance ratio on nano-diamond
surfaces and the associated 3.53 µm(CH)/3.43 µm(CH2) IR band
intensity ratio, perhaps the most interesting result in Fig. A.1 is
the wide variation in the CH-covered, {111} facet surface frac-
tion, fs{111}. For each of the seven regular polyhedra considered
in this study fs{111} is independent of size and spreads over almost
an order of magnitude (0.107−1.000). Nevertheless, fs{111} is not
a good indication of the surface CHn composition because it does
not take account disproportionate edge effects.

Other things to note in Fig. A.1 are that: the particle ‘spheric-
ity’ roughly increases with the number of polyhedral faces, that
is particle complexity, and the surface-to-volume and edge-to-
surface ratios decrease linearly in a log-log plot with increasing
size.

Appendix B: Semi-regular polyhedral particles

We now consider the more complex case of semi-regularly trun-
cated polyhedra with truncated facets that are of arbitrary size,
which remain parallel to those of the regularly truncated par-
ent polyhedron. In this case the expressions are necessarily
more cumbersome and cannot be reduced to relatively straight-
forward expressions of, r, the radius of the sphere that circum-

scribes the particle and includes all its vertices.22 The truncated
facet edges are assumed to be of arbitrary length a, which implies
that the remnant edge, L, of the regular polyhedron parent is
reduced from l to (l − 2a) as illustrated in Figs, 3 to 5, that is
L = (l − 2a).

As will become clear in the following sections, for the
expressions to hold in the case of each of the three truncated
polyhedra that we consider, the following condition must hold

a
l
6

1
2
, (B.1)

that is the parent polyhedron edge length is maximally-
truncatable at its centre and we note that when

a = 0 (≡ L = l) → a regular parent polyhedron,

a = l/3 (≡ L = a) → a regular truncated parent polyhedron,

a = l/2 (≡ L = 0) → a different polyhedron. (B.2)

In the L = 0 case the truncated tetrahedron solution is an octa-
hedron, and for a truncated octahedron or cube the solution is a
cuboctahedron.

Appendix B.1: Semi-regular truncated tetrahedral (stT)
particles

These are similar to truncated tetrahedral particles except that
the four vertices are now arbitrarily truncated into equal equilat-
eral triangular faces of edge length a (see Fig, 3). The total edge
length is now 12a + 6(l − 2a) = 6 l, that is truncation does not
change the total edge length compared to the parent tetrahedron.
In this case the encompassing sphere radius is

r =

(
3
8

L2 +
1
2

aL +
1
2

a2
) 1

2

, (B.3)

where L = (l − 2a), and which gives the values for the regular
tetrahedron, truncated tetrahedron, and octahedron for a = 0, a =
L, and L = 0 , respectively. The above equation can, for later
convenience, be re-arranged as a function of the remnant edge
length L and the edge length ratio (a/L), to

r = L
{

3
8

+
1
2

( a
L

)
+

1
2

( a
L

)2
} 1

2

. (B.4)

The surface area of an semi-regular truncated tetrahedron, with
four equivalent, triangular {111} facets, each of area

√
3/4 a2,

and four six-sided facets, each of area
√

3/4 (l2 − 3a2), is:

AstT =
√

3 (l2 − 2a2). (B.5)

In this case a = l/2 leads to a singularity and so we instead set
a = 0.49 l in order to provide indicative data points for this lim-
iting case in the figures. Given that the entire surface area is in
triangular and six-sided {111} facets, fs{111} = 1. However, as
noted above for tT polyhedra, not all edges are of {100} CH2-
type, only 6 are and hence E{100} = 6 L. The ratio of the total
edge length, EstT, to the total surface area is

EstT

AstT
=

6 l
√

3(l2 − 2a2)
=

2
√

3 l
(l2 − 2a2)

(B.6)

22 However, all particles can still be circumscribed by an all-vertex
encompassing sphere of radius r.
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and the ratio of the surface area to that of the encompassing
sphere is

AstT

Asphere
=

√
3(l2 − 2a2)

4πr2 =

√
3(l2 − 2a2)

4π
(

3
8 L2 + 1

2 aL + 1
2 a2

) . (B.7)

The volume of a semi-regular truncated tetrahedron is given by:

VstT =

√
2

12
(l3 − 4a3) (B.8)

and the ratio of the volume of a semi-regular truncated tetrahe-
dron (radius r) to that of its encompassing sphere of the same
radius r is:

VstT

Vsphere
=

√
2

12 (l3 − 4a3)
4
3πr3

=

√
2(l3 − 4a3)

16 π
(

3
8 L2 + 1

2 aL + 1
2 a2

) 3
2

. (B.9)

Equating VstT to a spherical particle of the same volume to deter-
mine the radius, and, of the equivalent "spherical nano-diamond"
we have
4
3
πa3

nd =

√
2

12
(l3 − 4a3). (B.10)

This expression is not directly solvable for reff as for regular poly-
hedra and so we need to adopt a different approach. Substituting
l = (L + 2a) and re-arranging the above equation to the following
form we have

Leff =

{
π 8
√

2
1 + 6(a/L) + 12(a/L)2 + 4(a/L)3

} 1
3

and, (B.11)

where the ratio (a/L) is defined for the particular truncated
particle shape under consideration.23 We can determine the rem-
nant polyhedron effective edge length, Leff , and substitute this
and (a/L) into Eq. (B.4) and thus obtain the value of reff that
corresponds to the required nano-diamond radius and. Alterna-
tively we can bypass reff and calculate and directly by solving
Eq. (B.10), that is

and =
{ √2
16 π

(l3 − 4a3)
} 1

3
. (B.12)

Appendix B.2: Semi-regular truncated octahedral (stO)
particles

These are octahedral particles with the six vertices arbitrarily
truncated into equal square faces of edge length a. The total
edge length is now 24a + 12(l − 2a) = 12 l, that is truncation
does not change the total edge length with respect to the parent
octahedron (see Fig. 4). The encompassing sphere radius is

r =

(
1
2

L2 + aL + a2
) 1

2

, (B.13)

where L = (l − 2a), and which gives the values for the regular
octahedron, truncated octahedron and cuboctahedron for a = 0,
a = L, and L = 0 , respectively. As above, and for later conve-
nience, the above equation can be re-arranged as a function of
the remnant edge length L and the edge length ratio (a/L), to

r = L
{

1
2

+
a
L

+

( a
L

)2
} 1

2

. (B.14)

23 N.B., (a/L) can take any positive value: for a = 0, a = L, and L = 0
we have (a/L) = 0, 1 and∞, respectively.

The surface area of a semi-regular truncated octahedron, with
six equivalent, square {100} facets, each of area a2, and eight
six-sided {111} facets, each of area

√
3/4 (l2 − 3a2), is:

AstO = 8
√

3
4
√

3(l2 −3a2) + 6a2 = 2
{√

3 l2 −3(
√

3−1) a2
}
. (B.15)

The fraction of the surface in {111} facets, fs{111}, is

fs{111} =
2
√

3(l2 − 3a2)
2
√

3(l2 − 3a2) + 6a2 =

{
1 − 3(a/l)2

1 − (3 −
√

3)(a/l)2

}
(B.16)

and, trivially, fs{100} = (1 − fs{111}). The square truncated facet
edges, of total length 24 a, are of {100}-type and are there-
fore included in the {100} facet CH2 groups. However, the
twelve edges of length L = (l − 2a) of the six-sided faces are
{111}/{111} edges, hence E{111} = 12 L = 12(l − 2a), and their
CH groups form part of the adjacent {111} facets. The ratio of
the total edge length, EstO, to the total surface area is

EstO

AstO
=

12 l

2
{√

3 l2 − 3(
√

3 − 1) a2
} =

{√3
6

l −
1
2

(
√

3 − 1)
a2

l

}−1

(B.17)

and the ratio of the surface area to that of the encompassing
sphere is

AstO

Asphere
=

2
{√

3 l2 − 3(
√

3 − 1) a2
}

4πr2 =

√
3 l2 − 3(

√
3 − 1) a2

2π
(

1
2 L2 + aL + a2

) .
(B.18)

The volume of a semi-regular truncated octahedron is given by:

VstO =

√
2

3
(l3 − 3a3) (B.19)

and the ratio of its volume (radius r) to that of its encompassing
sphere of the same radius r is:

VstO

Vsphere
=

√
2

3 (l3 − 3a3)
4
3πr3

=

√
2(l3 − 3a3)

4 π
(

1
2 L2 + aL + a2

) 3
2

. (B.20)

Equating VstO to a spherical particle of the same volume to deter-
mine the radius, and, of the equivalent ‘spherical nano-diamond’
we have

4
3
πa3

nd =

√
2

3
(l3 − 3a3). (B.21)

This expression is not directly solvable for reff as for regular poly-
hedra and so as in the preceding case we substitute l = (L + 2a)
and re-arrange to the following form

Leff =

{
π 2
√

2
1 + 6(a/L) + 12(a/L)2 + 5(a/L)3

} 1
3

and, (B.22)

where the ratio (a/L) is defined for the particular truncated par-
ticle shape under consideration. We can determine the remnant
polyhedron effective edge length, Leff , and substitute this and
(a/L) into Eq. (B.14) and thus obtain the value of reff that corre-
sponds to the required nano-diamond radius and. Again, if we do
not need reff , we can calculate and by solving Eq. (B.21), that is

and =
{√2
4 π

(l3 − 3a3)
} 1

3
. (B.23)
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Appendix B.3: Semi-regular truncated cubic (stC) particles

These are cubes with the eight vertices arbitrarily truncated into
equilateral triangular faces of edge length a. The total edge
length is now 24a + 12[l−

√
2 a] = [12l + 12a (2−

√
2)] (see Fig.

5). Note that in this case truncation does change the total edge
length with respect to the parent cube. The encompassing sphere
radius is

r =

(
3
4

L2 +
√

2 aL + a2
) 1

2

, (B.24)

where L = (l − 2a), and which gives the values for the regular
cube, truncated cube and cuboctahedron for a = 0, a = L, and
L = 0 , respectively. Once again for later convenience we re-
arrange the above equation as a function of the remnant edge
length L and the edge length ratio (a/L), to

r = L
{

3
4

+
√

2
a
L

+

( a
L

)2
} 1

2

. (B.25)

The surface area of an semi-regular truncated cube, with eight
equivalent, triangular {111} facets, each of area (

√
3/4) a2, and

six eight-sided {100} facets, each of area (l2 − a2), is:

AstC = 8 (
√

3/4) a2 + 6 (l2 − a2) = 6 l2 + 2(
√

3 − 3) a2. (B.26)

The fraction of the surface in {111} facets, fs{111}, is

fs{111} =
8(
√

3/4) a2

6 l2 + 2(
√

3 − 3) a2 =
√

3
{

3
(

l
a

)2

+
√

3 − 6
}−1

(B.27)

and, trivially, fs{100} = (1 − fs{111}). The triangular truncated
{111} facet edges, of total length 24 a, all border {100} facets
are of {100}-type and their CH2 groups are therefore included in
the {100} facets. All other edges are {100}/{100} edges, hence
E{111} = 0. The ratio of the total edge length, EstC, to the total
surface area is
EstC

AstC
=

[12 l + 12 a(2 −
√

2)]
6 l2 + 2(

√
3 − 3) a2 =

2[(l/a) + 2 −
√

2]
(l2/a) + (

√
3/3 − 1) a

(B.28)

and the ratio of the surface area to that of the encompassing
sphere is

AstC

Asphere
=

6 l2 + 2(
√

3 − 3) a2

4πr2 =
6 l2 + 2(

√
3 − 3)) a2

4π
(

3
4 L2 +

√
2 aL + a2

)
=

(l/a)2 +
√

3/3 − 1
2
3π

[
3
4 (L/a)2 +

√
2 (L/a) + 1

] . (B.29)

The volume of a semi-regular truncated cube is given by:

VstC =
1
3

(3l3 −
√

2a3) (B.30)

and the ratio of its volume (radius r) to that of its encompassing
sphere of the same radius r is:

VstC

Vsphere
=

1
3 (3l3 −

√
2a3)

4
3πr3

=
(3l3 −

√
2a3)

4 π
(

3
4 L2 +

√
2 aL + a2

) 3
2

. (B.31)

Equating VstC to a spherical particle of the same volume to deter-
mine the radius, and, of the equivalent "spherical nano-diamond"
we have
4
3
πa3

nd =
1
3

(3l3 −
√

2a3). (B.32)

Once again we have an equation that is not directly solvable
for reff and so we substitute l = (L + 2a) and re-arrange to the
following

Leff =

{
4π

3[1 + 6(a/L) + 12(a/L)2 + (8 +
√

2/3)(a/L)3]

} 1
3

and,

(B.33)

where the ratio (a/L) is defined for the particular truncated parti-
cle shape under consideration. This again allows us to determine
the remnant polyhedron effective edge length, Leff , and substi-
tute this and (a/L) into Eq. (B.25) and thus obtain the value of
reff that corresponds to the required nano-diamond radius and.
Again we can bypass reff and calculate and by solving Eq. (B.32),
that is

and =
{ 1
4 π

(3l3 −
√

2a3)
} 1

3
. (B.34)
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