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Abstract 54 

Mountains are an essential component of the global life-support system. They are characterized 55 

by a rugged, heterogenous landscape with rapidly changing environmental conditions providing 56 

myriad ecological niches over relatively small spatial scales. Although montane species are well 57 

adapted to life at extremes, they are highly vulnerable to human derived ecosystem threats. 58 

Here we build on the manifesto ‘World Scientists’ Warning to Humanity’, issued by the Alliance 59 

of World Scientists, to outline the major threats to mountain ecosystems. We highlight climate 60 

change as the greatest threat to mountain ecosystems, which are more impacted than their 61 

lowland counterparts. We further discuss the cascade of “knock-on” effects of climate change 62 

such as increased UV radiation, altered hydrological cycles, and altered pollution profiles; 63 

highlighting the biological and socio-economic consequences. Finally, we present how 64 

intensified use of mountains leads to overexploitation and abstraction of water, driving changes 65 

in carbon stock, reducing biodiversity, and impacting ecosystem functioning. These 66 

perturbations can provide opportunities for invasive species, parasites and pathogens to 67 

colonize these fragile habitats, driving further changes and losses of micro- and macro-68 

biodiversity, as well further impacting ecosystem services. Ultimately, imbalances in the normal 69 

functioning of mountain ecosystems will lead to changes in vital biological, biochemical, and 70 

chemical processes, critically reducing ecosystem health with widespread repercussions for 71 

animal and human wellbeing. Developing tools in species/habitat conservation and future 72 

restoration is therefore essential if we are to effectively mitigate against the declining health of 73 

mountains.  74 

 75 

Keywords: Pollution, climate change, environmental health, sustainable development 76 

goals, policy 77 
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Main text 79 

Following the onset of the industrial revolution and the use of fossil energy, humans can 80 

indisputably be seen as major geological agents (Gałuszka et al., 2014) and as global pathogen 81 

vectors (Small et al., 2019). Due to the increase in human activities over the last 300 years, 82 

human impact has become at least as strong a force as natural processes (Crutzen, 2006), 83 

marking the geological era of the Anthropocene (Gałuszka et al., 2014). Already in 1972, 84 

scientists lined out that there are limits to human population growth (Meadows et al., 1972). 85 

Twenty years later, scientists warned about ozone depletion in the stratosphere, availability of 86 

drinking water, climate change, exponential human population growth, and degradation of the 87 

environment and biodiversity (Scientists, 1992). This early warning remained largely unheard 88 

and unrecognized, and the progress of humanity towards a sustainable lifestyle has been largely 89 

insufficient. This insufficiency ushered in a second warning to humanity 25 years later, arguing 90 

that our life-support system is on the brink of collapse (Ripple et al., 2017). Scientists are now 91 

largely aware of humanity approaching important tipping points (Lenton, 2011) and planetary 92 

boundaries (Steffen et al., 2015). A policy-led reaction was the development of 17 Sustainable 93 

Development Goals (https://sdgs.un.org/goals) and 20 Aichi targets 94 

(https://www.cbd.int/sp/targets/), the creation of the Intergovernmental Panel for Climate Change 95 

(IPCC) and the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem 96 

Services (IPBES, Schmeller et al., 2017). However, all recent global reviews of the state of the 97 

planet conducted by the United Nations, IPCC and IPBES univocally lay out the dire state of 98 

Earth (Bridgewater et al., 2019). The direct drivers of the observed changes, as outlined in the 99 

global assessment on biodiversity and ecosystem services by IPBES (Intergovernmental 100 

Science-Policy Platform on Biodiversity and Ecosystem Services 2019), include climate change, 101 

pollution, and increasing demands for energy and materials due to a growing human population. 102 

As a response, the UN Convention on Biological Diversity (CBD), developed a global biodiversity 103 

framework with 21 targets and 10 milestones to be achieved by 2030 to ‘living in harmony with 104 

nature’ by 2050 (CBD/WG2020/3/3). Goals include reducing threats to biodiversity (8 targets), 105 

meeting people’s needs through sustainable use and benefit-sharing (5 targets), developing 106 

tools and solutions for implementation and mainstreaming (8 targets; CBD/WG2020/3/3). In line 107 

with these goals and targets, IPBES, during its 8th plenary, decided to advance with an 108 

assessment on the transformative change needed to indicate ways out of the current global 109 

crisis (Schmeller and Bridgewater, 2021).  110 

Mountains cover a large part of the Earth’s terrestrial surface and host a larger proportion 111 

of biodiversity than expected by area (Körner et al., 2011). They hold an estimated one-third of 112 
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terrestrial species diversity (Körner, 2004), and represent 18 of the 36 global biodiversity 113 

hotspots (Chape et al., 2005). Nevertheless, even in remote areas human impact is strong, as 114 

mountains are part of the global socio-ecological systems which have been shaped by 115 

geological forces and by human activities (Turner et al., 1990). In mountains, these impacts and 116 

the resulting threats remain largely understudied (Schmeller et al., 2018). Generally, people are 117 

unaware of the threats to mountain ecosystems and the services mountains provide to humanity. 118 

Mountain ecosystems sequester CO2, clean waters and the air, regulate climate, provide 119 

biomedical resources, and regulate floods (Martín-López et al., 2019). Mountains also provide 120 

for the livelihoods of more than half of humanity (Grêt-Regamey et al., 2012; Grêt-Regamey and 121 

Weibel, 2020). All these goods and services are provided by mountain ecosystems through 122 

complex processes that are maintained by communities of species interacting with each other 123 

and with the abiotic environment (Bestion et al., 2021). These mountain communities are 124 

comprised of prokaryotic and eukaryotic microbes, fungi, plankton species, woody and non-125 

woody plants, as well as invertebrates and vertebrates. By destructing, rebuilding, changing, and 126 

shaping the environment, these species produce organic matter and oxygen as well as bind 127 

CO2.  128 

The mountain environment is characterized by extreme temperature regimes, severe 129 

weather events and short growing seasons at high altitudes to which species have adapted 130 

(Körner, 2019; Payne et al., 2020). In temperate mountains, comparably few species have been 131 

able to widely colonize the diverse habitats with montane conditions during the short time 132 

window given by the recent demise of glaciers at the end of the last glacial period about 11,000 133 

years ago (McCain and Colwell, 2011; Schabetsberger et al., 2013; Valbuena-Ureña et al., 134 

2018). Mountain ecosystems have evolved in partial isolation, separated by a variety of 135 

biogeographic barriers. The gradients and dynamics in climate, hydrology, and water chemistry 136 

contributed to the formation of a high diversity of microhabitats, harboring numerous species in 137 

comparably small areas (McCain and Colwell, 2011), which also explains the high levels of 138 

endemism detected in mountains (Rahbek et al., 2019a; b; Swanson et al., 1988). With 139 

increasing elevation, montane climates become more extreme, providing habitat for fewer 140 

species. System redundancies (i.e. different species with similar functions), available in 141 

ecosystems at low altitudes, are increasingly scarce in mountain ecosystems with increasing 142 

elevation. Such redundancies usually provide stability to ecosystems (Fonseca and Ganade, 143 

2001). The absence of these redundancies renders mountain ecosystem particularly vulnerable 144 

to the impacts of global change (Moser et al., 2019). However, multiple threats to mountains are 145 

arising from climate change alone. Moreover, interactions with socio-cultural, economic and 146 
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political developments, such as the exploitation of mountains, e.g. for timber, food production, 147 

including fish and livestock, tourism, and hydro-electricity, exacerbate these threats, calling for 148 

urgent consideration by policymakers (Figure 1). 149 

Here, we highlight the diversity of global threats impacting mountain ecosystems. We 150 

focus on the direct drivers climate change, pollution, and land use following earlier science-151 

policy reports (IPBES 2019) to compel stakeholders and decision makers of the urgency to act 152 

on all of these different threats. We detail how different drivers interact, creating pressures that 153 

degrade and destroy valuable mountain ecosystems and their biodiversity. We further outline, 154 

how this impacts the services provided by mountains and creates emerging risks for humans. 155 

We treat threats to mountains largely equally, as a ranking of threats in regard to their severity 156 

appears elusive based on current knowledge. Finally, we provide recommendations for 157 

mitigation actions to be taken to preserve mountains, their biodiversity and the ecosystem 158 

services they provide to humanity, as well as describing ways of averting detrimental 159 

trajectories. 160 

Climate Change in Mountains 161 

Mountains are defined by rugged terrain and unique climate regimes distinguishing them 162 

from lowlands (Körner et al., 2017). The climatic complexity created by mountain topography 163 

also influences insolation and air circulation (Dobrowski et al., 2009). Elevation gradients in 164 

particular, have a strong impact on many abiotic variables in mountains, and their geographic 165 

location is the main control on moisture gradients or seasonality in climate (Körner, 2007). On a 166 

regional scale, mountain climate is influenced by large-scale synoptic patterns, proximity to 167 

oceans, and the range’s longitudinal or latitudinal orientation (Del Barrio et al., 1990). In synergy 168 

with climate change impacts, we see important changes in precipitations, temperatures, and 169 

frequency of extreme events, such as droughts and floods. Therefore, climate change might be 170 

considered the most basic and far-reaching threat to mountains, impacting mountain biodiversity 171 

and ecosystems way more intensively as compared to lowland regions (Rangwala and Miller, 172 

2012; Scarano, 2019). 173 

Precipitation dynamics are not the same in all mountains, and for example, mountains in 174 

tropical regions show precipitation maxima at lower and mid-elevations. Temperate mountains 175 

typically have an orographic effect and show increased precipitation towards the top, largely 176 

driven by different seasonal dynamics in precipitation intensity (Roe, 2005). These precipitation 177 

regimes are also regulated by geology, soils, vegetation, and human land use, leading to a large 178 

variety of hydrological behaviors and stream flow regimes in global mountain catchments 179 

(Dierauer et al., 2018; Zuecco et al., 2018). Climate change-driven precipitation regimes and 180 
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their increasing variability, especially in mountains, determine long-term change on soil moisture 181 

conditions and are important controls on water levels and on the hydroperiods of shallow lakes, 182 

ponds and wetlands (Catalan and Bartumeus, 2006; Stephan et al., 2021). As such they are 183 

particularly important variables for mountain habitats. Climate change will increase the 184 

unpredictability of precipitation patterns (Myhre et al., 2019). Generally, water availability and its 185 

predictability is expected to decrease in the future due to lower water storage capacities in areas 186 

with glacier cover and higher outflows of excess water during periods of extreme precipitation 187 

and melting events (Rajczak and Schär, 2017). These changes will jeopardize the role of 188 

mountains as global water towers and the drinking water supply for billions of people (Viviroli et 189 

al., 2007) as well as for plants and animals. 190 

Trends in warming of mountain surface air temperatures become more and more 191 

apparent (López-Moreno et al., 2008; Niedrist et al., 2018; Niedrist and Füreder, 2021), and 192 

high-latitude mountains are projected to warm much faster than temperate and tropical 193 

mountains (Negi et al., 2021; Nogues-Bravo et al., 2007). Further, warming is accentuated at 194 

higher altitudes (Pepin et al., 2015). The intensity of warming depends on the mountain climatic 195 

zone, elevation and season (Pepin and Lundquist, 2008). In the Alps, the mean annual 196 

temperature has already increased by 1.5 - 2°C since 1970, and future projections predict an 197 

additional rise of 0.25 - 0.36 °C per decade within the next century (Einhorn et al., 2015). Similar 198 

increases have been projected in other mountain ranges (Urrutia and Vuille, 2009; Valdivia et 199 

al., 2013). Increasing temperatures have decreased the annual snow deposition volume with 200 

most impacts observed at mid- and lower elevations (Laternser and Schneebeli, 2003), has 201 

caused important shifts to earlier snow melt (Kapnick and Hall, 2012), earlier lake-ice melt 202 

(Franssen and Scherrer, 2008), and globally accelerated the deglaciation process (Zemp et al., 203 

2015). Yearly, world-wide cumulative glacier mass balance data have been showing significant 204 

decreasing trends in glacier thickness (Ripple et al., 2021). The shorter period of snow cover will 205 

therefore also shorten the time during which the Albedo effect is active and during which 85% to 206 

90% of sunlight is reflected. Hence, further acceleration of the temperature rise in alpine 207 

mountain regions needs to be expected. Droughts and extreme precipitation events will globally 208 

increase in mountains (Gobiet et al., 2014; Urrutia and Vuille, 2009; Valdivia et al., 2013). For 209 

the European Alps, climate projections predict more summer droughts and more extreme rainfall 210 

events (Rajczak and Schär, 2017). Subtropical mountains tend to experience more frequent 211 

summer droughts (McCullough et al., 2016), while for example the Hindu Kush and the Himalaya 212 

have been experiencing increased amounts of extreme rainfall events (Hartmann and Andresky, 213 

2013; Wester et al., 2019). Droughts in mountains also lead to an increase of the probability of 214 
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wildfires in mountain grasslands and forest as the probability of ignition of dry plant material by 215 

lightning increases (Stephens et al., 2018). Such wildfires are difficult to extinguish due to the 216 

difficult terrain and result in the loss of very large areas (i.e. thousands of hectare) of mountain 217 

vegetation with large and long-lasting effects on mountain ecosystems due to low pre-fire 218 

production of seeds due to drought and the generally low recovery speed with increasing altitude 219 

(Werner et al., 2022). 220 

Ultraviolet radiation (UVR) both affects and is affected by climate change. These 221 

modifications of UV exposure are affecting how people and ecosystems respond to UV, with 222 

more pronounced effects in the future (Barnes et al. 2019). UVR reaching mountain ecosystems 223 

increases with elevation (Sommaruga et al., 1999). In many high mountain freshwaters, the 224 

limited catchment sources of DOC, which results in crystal clear water, facilitates the penetration 225 

of radiation far into the water column (Catalan and Donato Rondon, 2016; Laurion et al., 2000; 226 

Rose et al., 2009). High levels of UVR in the UV-B spectrum (wavelength range 280-320 nm) 227 

have been studied with regard to their effects on aquatic organisms at higher elevations. Colored 228 

dissolved organic carbon (DOC) and phytoplankton may attenuate the penetration of UV 229 

underwater, shielding freshwater species from negative effects of this radiation (Sommaruga et 230 

al., 1999). Variability in UVR reaching mountain freshwaters depends on factors such as cloud 231 

cover and air pollution (Brooks et al., 2005; de Oliveira et al., 2021; Diamond et al., 2005; 232 

Obertegger and Flaim, 2021; Sommaruga, 2001). Long-term changes in UV-B in turn are due to 233 

changes in atmospheric ozone levels, and despite the recovery of atmospheric ozone layers 234 

since the Montreal protocol was implemented (Barnes et al., 2019), new reports of ongoing 235 

lower stratospheric ozone depletion (Ball et al., 2018) and new ozone depleting agents in the 236 

atmosphere have been issued (Fang et al., 2019). We may also see potential opposite effects of 237 

global warming in mountains, as for aquatic or semi-aquatic species UVR stress may increase 238 

due to earlier snow and ice-cover melt, but may decrease due to higher DOC import from 239 

catchment reforestation (Sommaruga et al., 1999). The impact of UVR and stress avoidance 240 

behavior remains an understudied field, but may drive further changes in mountain biodiversity 241 

and perturb mountain ecosystems (Häder et al., 2011). 242 

Generally, decreasing amounts of annual snow and retreating glaciers have been and 243 

will continue to profoundly reshape mountain freshwater habitats and also the terrestrial 244 

communities depending on them, threatening mountain species and communities (Jacobsen and 245 

Dangles, 2017; Sommaruga, 2015), but also providing new habitats for colonization (Ficetola et 246 

al., 2021). Impacts on lowland human populations include difficult to predict water supply (Huss 247 

et al., 2017; Viviroli et al., 2007) and destruction of infrastructure through more frequent extreme 248 
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floods and/or landslides. Climate change will drive the disappearance of many intermediate and 249 

ephemeral habitats in mountains due to droughts, with potential severe consequences for 250 

mountain biodiversity and biological processes e.g. carbon storage. Climate change will also 251 

impact the water regime of many peatlands. Due to the importance of mountain peat- and 252 

wetlands as global carbon sinks, the loss of these habitats may further accentuate climate 253 

change (De Jong et al., 2010) and UVR impacts (Barnes et al. 2019).  254 

Pollutants in Mountains 255 

Sources of pollution are manifold in mountain ecosystems (Lei and Wania, 2004; Noyes 256 

et al., 2009; Shunthirasingham et al., 2010) and we generally lack a global approach to observe 257 

environmental pollution and its impact (Brack et al., 2022). Global atmospheric transport of 258 

micropollutants (Hussain et al., 2019; Wania and Mackay, 1993; Yang et al., 2010) and local 259 

human activities such as mining, logging, agriculture, pastoralism and tourism are the main 260 

pollution sources in mountain environments. Increasing pastoralism and livestock units have 261 

been shown to put the health of mountain lakes at risk by introducing highly toxic organic 262 

pollutants into mountain lakes (Machate et al., 2022). Further, fish stocking introduced heavy 263 

metals such as mercury in mountain ecosystems (Hansson et al., 2017b). Other sources of 264 

pollution include extreme weather events releasing legacy pollutants from mining, tourists 265 

introducing UV blockers as part of personal care products, and atmospheric transport of 266 

pollutants releasing a plethora of different molecules (Gross, 2022; Le Roux et al., 2020; Pozo et 267 

al., 2007). Mountains are also at risk of acidification when they are located downwind of Nitrogen 268 

or Sulphur emission sources and buffering capacity of freshwater is low. In addition, seasonal 269 

events such as snowmelt can change pH up to a full unit (Nodvin et al., 1995). Acidic pulses 270 

may co-occur with spikes of toxic element concentrations in water (Havas and Rosseland, 271 

1995). Further, higher rates of erosion and weathering, as a result of more frequent events of 272 

heavy precipitation, may also lead to a higher import of base cations and increase the pH of 273 

mountain freshwater and soil (Kopáček et al., 2017). Finally, global change-driven eutrophication 274 

and elevated temperatures lead to an increased growth of cyanobacteria, which can produce 275 

toxins (e.g. cyanotoxins), with known negative impacts on human health (Catherine et al., 2013; 276 

Funari and Testai, 2008; Zanchett and Oliveira-Filho, 2013). 277 

The scavenging of atmospheric organic and inorganic pollutants is pronounced at high 278 

altitudes and can take the form of dry and wet deposition of aerosols to the ground surface (Daly 279 

and Wania, 2005; Le Roux et al., 2016; Le Roux et al., 2020). Atmospheric pollutants in 280 

mountains include trace elements (Camarero et al., 2009) (Yang et al., 2010), organic and 281 
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synthetic pollutants (i.e. current-use and legacy pesticides), polycyclic aromatic hydrocarbons 282 

(PAHs), endocrine disrupting compounds (EDCs; Rockström et al., 2009; Meire et al., 2012), 283 

and polychlorinated biphenyls (PCBs) or microplastics (Allen et al., 2019; Brahney et al., 2020; 284 

Reid et al., 2019). These compounds are introduced into the atmosphere via evaporation, or 285 

binding to particles light enough to be carried by wind. Volatile compounds tend to evaporate in 286 

warmer environments at lower altitudes and condensation progressively takes place with 287 

decreasing temperature as air masses travel over mountain slopes (Blais et al., 1998). Less 288 

volatile compounds, such as most of the currently used agricultural pesticides, are not prone to 289 

directly evaporate into the atmosphere, but are still transported into the mountain environment 290 

as they bind to soil particles, which can be uplifted and carried over longer distance during more 291 

extreme wind events (Silva et al., 2018). As a consequence, organic and inorganic 292 

micropollutants can be introduced to mountains via the atmosphere and over long distances 293 

(Camarero et al., 2009; Bradford et al., 2010; 2013; Fig. 2).  294 

Transfer of inorganic and organic pollutants to mountain freshwaters can also originate 295 

from legacy and recent local human activities. Fish stocking (Hansson et al., 2017b), present 296 

and historic mining activities (Hansson et al., 2017a) or forestry, agriculture and tourism (Alpers 297 

et al., 2016) introduce pollutants or mobilize their catchment sources such as soils and 298 

sediments. Evidence for the introduction of potentially harmful trace elements (PHTE, for 299 

example the metals As, Hg, Pb, Se, Sb, Zn, Cu) from distant or local sources is found in 300 

mountain lake sediments, peatlands and in snow (Bacardit and Camarero, 2010). Furthermore, 301 

glacier melt and snowmelt can mobilize legacy atmospheric pollution and catchment sources of 302 

pollutants (Bogdal et al., 2009; Meyer and Wania, 2008), which may increase exposure of 303 

mountain species to micropollutants.  304 

Despite the accumulated knowledge on global pollution, we still know little about the toxic 305 

cocktail accumulating in mountains and its impact on biodiversity (but see Catalan, 2015). There 306 

are very few studies that analyzed a broad set of pollutants or even conduct non-target 307 

monitoring in a mountain context (Machate et al., 2022), rendering our current knowledge on 308 

global mountain pollution patterns largely incomplete. We also know little about each 309 

(detectable) compound’s physico-chemical characteristics, e.g. the water-air constant (Kwa), 310 

without which it is difficult to make predictions on future pollution patterns in mountains. 311 

Generally, the introduction of new pollutants and changes in pollutant mobilization due to climate 312 

change may challenge mountain ecosystem health and increase the vulnerability of species and 313 

humans to pathogens, increasing health risks (Brack et al., 2022; Schmeller et al., 2020; 2018). 314 

Concerns about adverse toxic effects have especially been raised about, but are not limited to, 315 
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pollutants introduced from local activities (Machate et al., 2022). In the future, these health risks 316 

might further increase, by shifting e.g. pastures to higher altitudes (Mayer et al., 2022), where 317 

ecosystems are already under high pressures due to climate change (Herzog and Seidl, 2018)). 318 

Tourism and expansion of infrastructure create yet additional pressures on mountain 319 

biodiversity.  320 

Vegetation and land use changes in Mountains 321 

Recent mountain vegetation is largely shaped by historical and current land use (Körner 322 

et al., 1997; Lavorel et al., 2017), with the degree of influence depending mainly on the 323 

accessibility of the area (Tasser and Tappeiner, 2002). Vegetation and changes in rates of 324 

carbon sequestration due to shifts in land use can occur through a change in land cover, through 325 

intensification or extensification of existing land use practices (Niedertscheider et al., 2017) and 326 

acidification (Bowman et al., 2012). Most of these changes are driven by pastoral activities, such 327 

as livestock grazing, which is the major agricultural activity in most mountains. Pastoral activities 328 

in many mountain regions have a long history. However, especially for European countries it is 329 

known that livestock units are increasing, partly as a result of the EU subvention policy, partly as 330 

strategy to evade climate change impacts and reduced availability of fodder in lowlands (Mayer 331 

et al. 2022). Another (illegal) activity related to pastoralism is slash and burn to avoid expansion 332 

of forest areas. The clearing intensity and frequency increases with increasing pastoral pressure. 333 

In addition, novel non-native crops have been planted to increase local food availability under 334 

optimal environmental conditions. However, plantations of species that are well-adapted to the 335 

environment of a particular mountain range, such as cardamom in the Hindu Kush region 336 

(Eklabya et al., 2000), provide a larger genetic reservoir and thus a greater buffer against 337 

environmental pressures such as climate change (Kelty, 2006). Other land use changes include 338 

logging of forest stands (Latty et al., 2004), afforestation (Liu et al., 2021), vegetation regrowth in 339 

abandoned lands (Aide et al., 2019). All these changes intervene deeply in the existing 340 

ecosystem (Hinojosa et al., 2016), altering and threatening underlying processes and associated 341 

ecosystem services (Chiang et al., 2014; Faccioni et al., 2019; Tasser and Tappeiner, 2002). An 342 

emerging land-use trend is the growing impact of tourism on ecosystems, where damage to 343 

vegetation can occur (Rodway-Dyer and Ellis, 2018) and is playing an increasing role in 344 

mountain regions (Niu and Cheng, 2019). In the Dongling Mountains (China), tourism led to a 345 

lower species richness, heterogeneity and evenness in impacted subalpine meadows (Zhang et 346 

al., 2012). Increasing pressures from land use changes will further accentuate the impacts of 347 

climate change and pollution on mountain biodiversity and the health of mountain ecosystems. 348 
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Introduced species in mountains 349 

Biological invasions are increasingly exacerbated by human activities and are 350 

responsible for significant biodiversity decline as well as high economic losses to society 351 

(Diagne et al., 2021). In addition, they are exacerbated by globalization and climate change 352 

(Seebens et al., 2021). The harsh environmental conditions (e.g., high UV-B, low temperatures, 353 

variable water availability, poor soil) may limit alien plant invasion and expansion, especially in 354 

high mountain areas (Watermann et al., 2020). However, remote mountain areas have been 355 

reportedly impacted by the introduction of alien species (Pauchard et al., 2009), partly also 356 

through tourism (Hemp, 2008). 357 

For example, tourism drives fish stocking of naturally fishless lakes. In such naturally 358 

fishless mountain lakes fish introductions have an outsized impact and drive profound ecological 359 

change as a highly efficient aquatic predator is introduced in a naïve environment (Miró and 360 

Ventura, 2020). Stocking montane lakes with fish for subsistence purposes has been occurring 361 

since the Neolithic, through fish translocations from nearby lakes and rivers. However, before 362 

1950 such introductions had limited geographic extent and their impacts were rather local 363 

(Moser et al., 2019). Since 1950, introductions of fish increased dramatically as a consequence 364 

of the increasing popularity of recreational angling, both in large and relatively small lakes as 365 

well as in adjacent wetlands (Hansson et al., 2017b). In addition, the use of small fish, mainly 366 

minnows Phoxinus sp. (Fam. Cyprinidae), as live baits for trout fishing is causing a new and 367 

detrimental wave of invasion (Miró and Ventura, 2015). These introduced fish dramatically affect 368 

native communities of mountain lakes. Initially considered ecologically harmless and 369 

economically beneficial, introductions continued even when their serious ecological 370 

consequences became clear (Knapp et al., 2001). Supported by institutional stocking campaigns 371 

and non-authorized translocations by anglers, fish spread rapidly in mountain deep-ponds and 372 

lakes of all sizes, as well as in all the colonizable downstream habitats (Ventura et al., 2017), 373 

with a long list of negative impacts: i) decline/elimination of native species (e.g., invertebrates 374 

and amphibians; (Knapp et al., 2001; Tiberti et al., 2014); ii) cascading effects in the trophic 375 

network (Schindler et al., 2001), affecting the chemical/microbiological quality of waters, and the 376 

ecological linkages with surrounding terrestrial habitats (Epanchin et al., 2010); iii) impacts such 377 

as predation, competition, transmission of pathogens and hybridization on native fish inhabiting 378 

downstream habitats (Adams et al., 2001), and iv) further collateral introductions of fish used as 379 

live bait (Miró and Ventura, 2015). Hence, fish stocking in mountain lakes is particularly 380 

detrimental to water quality and biodiversity, especially as now nearly all these ecosystems are 381 



 

12 

 

affected, including large lakes, small lakes, ponds, connecting streams and their adjacent 382 

mountain wetlands (Ventura et al., 2017). 383 

For timber production, fast growing tree species of the genera Pinus and Eucalyptus 384 

have also been introduced in many mountain forests. These exotic tree plantations are subject 385 

to serious criticism due to their negative impact on water balance, soil fertility, and native 386 

biodiversity (Fahey and Jackson, 1997; Hofstede et al., 2002; Lundgren, 1978). A significant loss 387 

of soil carbon and a major reduction in taxonomic and functional diversity of soil invertebrates 388 

has been observed in pine tree plantations compared to native forests of very similar soil origins 389 

and topographies (Cifuentes-Croquevielle et al., 2020). These impacts may further be 390 

exaggerated by fast rotation speeds, which would not permit to increase floristic and hence also 391 

faunistic biodiversity (Hall et al., 2012). These changes therefore have the potential to aggravate 392 

both climate change impacts and biodiversity loss (but see (Balthazar et al., 2015). Further, 393 

exotic tree species can become highly invasive under the right environmental conditions, which 394 

might also be met by future climate change. Invasibility is also driven by seeds from exotic tree 395 

plantations leading to colonisation and replacement of surrounding natural vegetation (van 396 

Wilgen, 2012). Reversing impacts associated with those self-sown invasive stands has be 397 

proven to be very difficult (van Wilgen and Richardson, 2012), also because waste of e.g. pine 398 

harvesting is left at sites or even delivered to nearby rivers, delaying the natural regeneration of 399 

indigenous vegetation (Balthazar et al., 2015). 400 

Water abstraction from Mountains 401 

Most valley bottoms have been heavily altered by human activities that impact freshwater 402 

systems (Finlayson and D'Cruz, 2005). These activities include land drainage, dredging, flood 403 

protection, water abstraction for hydroelectric powerplants, and inter-basin water transfer, 404 

building dams to create reservoirs, and digging new canals for navigation. In mountains, which 405 

are increasingly used as recreational area, food and water source, but also as hydroelectric 406 

powerplants, water abstraction has been increased to excessive levels. Hydrological 407 

interventions include (hydroelectric) dams, pipelines and derivation channels, agricultural ponds, 408 

irrigation and snowmaking reservoirs, quarries, water removal, and flow regime alterations. 409 

Among their very many consequences, these interventions may lead to the gradual drying up of 410 

natural aquatic ecosystems due to excessive water extraction and diversion, as well as changes 411 

in the water level of (dammed) lakes, in the flow regime of streams, and in hydrological 412 

connectivity. These consequences in turn impact on the structure and function of the unique 413 

biodiversity that is characteristic of these habitats, and which includes many endemic and 414 

threatened species absent from the lowlands (Fait et al., 2020; Mayerhofer et al., 2021; 415 
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Schabetsberger et al., 2013). Importantly, ongoing modifications in high-mountain freshwater 416 

ecosystems may also directly and profoundly impact on the wellbeing and livelihoods of peoples 417 

(Schmeller et al., 2018).  418 

Recent reports indicate that biodiversity in freshwater ecosystems is declining even 419 

faster than in oceans and forests and that the extent of human alteration and impairment of 420 

aquatic ecosystems is massive (Tickner et al., 2020). Mountain aquatic systems are no 421 

exception, particularly in high-mountain areas (Catalan et al., 2017). Human alterations to alpine 422 

aquatic ecosystems are of particular concern given that mountain aquatic habitats provide 423 

essential ecosystem services such as drinking water and renewable energy to much of 424 

humanity, and that they are of high aesthetic, recreational, and conservation value, particularly in 425 

their function as biodiversity reservoirs (Fait et al., 2020). Water abstraction in concert with 426 

climate driven changes in hydrological regimes will lead to a gradual drying up of aquatic 427 

mountain ecosystems, likely causing massive water shortages in cities that depend on drinking 428 

water from mountains (Viviroli et al., 2020; United Nations Environment Programme 2022). The 429 

desertification of these ecosystems will also be detrimental to their unique mountain biodiversity, 430 

leading to an irreversible degradation of these sensitive ecosystems, if no or too little action for 431 

their preservation are put in place immediately (Immerzeel et al., 2020).  432 

Threats to and from Mountain Micro-Biodiversity 433 

The unseen diversity of micro-organisms and their microbiomes, comprising the 434 

community of fungi, yeasts, bacteria, viruses and protists, and the impacts of climate change on 435 

them have already been subject to a previous warning (Cavicchioli et al., 2019). In short, micro-436 

biodiversity plays a central role and is of global importance in climate change biology, 437 

particularly in extreme environments such as mountain ecosystems (Schmeller et al., 2018). 438 

Climate change impacts, relevant also for humanity, depend heavily on the responses of 439 

microorganisms, which are essential for achieving an environmentally sustainable future 440 

(Cavicchioli et al., 2019). Despite their importance, we still know little about the microbial 441 

communities or microbiomes, especially in mountain ecosystems (Kammerlander et al., 2015; 442 

Schmeller et al., 2018).  443 

Despite their small size, microbial communities drive major processes in and on animals, 444 

plants, as well as in ecosystems (Bates et al., 2022; Bernardo-Cravo et al., 2020; Lin et al., 445 

2021). In a nutrient poor environment such as mountains, microbial communities likely play an 446 

important role in synthesizing vital nutrients, thereby increasing energy uptake and growth of 447 

plants and animals (Bernardo-Cravo et al., 2020; Schmeller et al., 2020; Sentenac et al., 2022). 448 

Similarly, micro-organisms stabilize whole ecosystems by buffering against change through the 449 
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maintenance of biodiversity and ecosystem processes. For example, the interactions between 450 

micro-organisms and plankton constitute the basis of aquatic food webs and determine the 451 

functioning of biogeochemical cycles, accounting for more than half of global carbon fixation 452 

(Cavicchioli et al., 2019; Purcell et al., 2022). Any kind of disturbance to microbial communities 453 

can therefore impact on mountain species and ecosystems.  454 

Pathogens, and other microorganisms, can be easily introduced to mountains through 455 

pastoralism, tourism or wind drift. However, we remain largely oblivious to how the complexity of 456 

the abiotic and biotic environment in mountain ecosystems influences beneficial microbe-species 457 

interactions (e.g. microbial loop, mycoloop; (Kagami et al., 2014), host-pathogen interactions 458 

(Frenken et al., 2017; Haver et al., 2021; Fisher and Garner, 2020) and health risks for the 459 

human population (Schmeller et al., 2018). For example, the transport of microbial pathogens is 460 

of special concern for human and livestock health, but also for wildlife and keystone species 461 

groups such as amphibians. In particular, fungi and bacteria with resistant aerosolised spores 462 

are capable of long-distance transport of e.g. dust (Dadam et al., 2019; Sultan et al., 2005). 463 

Global dust dispersion is a natural phenomenon, and occurs when topsoil is transported into the 464 

troposphere and carried over long distances by wind currents. However, global warming and 465 

changes in land use practices (e.g. deforestation and overgrazing) have accelerated 466 

desertification in many areas, resulting in increased dust dispersion even to remote places 467 

(Moulin and Chiapello, 2006; Tegen et al., 2004), particularly to high elevation sites (Dong et al., 468 

2020). Further anthropogenic impacts via air pollution can intensify both the abundance and 469 

community composition of aerial microbes (Yan et al., 2016), but also for vector-borne diseases 470 

(Caminade et al., 2019): Malaria has been found at higher altitudes in mountains in Ethiopia and 471 

Colombia (Siraj et al., 2014), incidences of Malaria and Dengue are increasing in Nepal´s 472 

mountains (Dhimal et al., 2015a), altitudinal upward shifts of Dengue and Chikungunya (Dhimal 473 

et al., 2015b), and also ticks have been reported, the latter e.g. leading to increased occurrence 474 

of Lyme borreliosis in the Alps (Garcia-Vozmediano et al., 2020). 475 

Recent data also suggest that we currently see an increase in eutrophication of mountain 476 

lakes globally with an upsurge of the diversity of Cyanobacteria (Ho et al., 2019). Cyanobacteria 477 

produce a range of toxins (e.g. microcystins, cyanotoxins, Catherine et al., 2013), which have an 478 

important impact on the quality of water (Du et al., 2019; Ho et al., 2019), therewith increasing 479 

risks of intoxications for humans and livestock. Epilithic biofilms are a highly reactive component 480 

in freshwater systems that play a crucial role in the provision of many ecosystem services 481 

(Catalan and Donato Rondon, 2016). Especially in smaller mountain lakes, streams and other 482 

waterbodies, epilithic biofilms must be considered the major player in carbon cycling and 483 
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ecosystem productivity (Vadeboncoeur et al., 2008). A better understanding of the risks of 484 

proliferation of potentially harmful microbial groups, pathogenic fungi, bacteria and protists due 485 

to human-driven input of phosphorus, nitrogen through atmospheric fertilization and microbial 486 

pollution is necessary to improve our predictive abilities for human and wildlife risks. For 487 

mountain ecosystems, in particular, our predictive abilities are poor for forecasting pathogen 488 

proliferation, the dynamics of potentially harmful microorganisms, and for identifying threatened 489 

species and habitats. In a mountain context that could mean that resources of clean drinking 490 

water will diminish at a much faster rate than currently predicted (Schmeller et al., 2018) and the 491 

important ecosystem services such as CO2 sequestration and nitrogen retention will be 492 

suboptimal or absent (Saunders and Kalff, 2001). 493 

Threats to Mountain Macro-Biodiversity 494 

Mountain areas host many species that live in a delicate balance or at the edge of their 495 

distribution and are therefore very susceptible to environmental changes and local extinction. 496 

Top predators, such as large carnivores, but also large herbivores play important roles in 497 

maintaining mammal, avian, invertebrate, and herpetofauna abundance and richness. Many of 498 

these species are threatened with extinction (Ripple et al., 2014) and nearing global collapse 499 

(Ripple et al., 2015). Threats to macro-biodiversity in mountains come from chemical pollution, 500 

nutrient influx through atmospheric processes and local sources such as livestock (Machate et 501 

al., 2022), introduction of non-native taxa, but most importantly from overexploitation and habitat 502 

loss (Maxwell et al., 2016). These threats drive the decline of already threatened species 503 

(Maxwell et al., 2016) and will change the communities of species, which do not all have the 504 

same possibilities of dispersal, recovery and reproduction to avoid disturbances (Kerr and 505 

Deguise, 2004; Pimm, 2008). For example, among aquatic organisms, the possibility of dispersal 506 

and life traits such as the mode of reproduction are very different among taxonomic groups. 507 

Some zooplankton species can reproduce sexually or parthenogenetically, and can produce 508 

resting eggs, which can survive for a long time in sediment egg banks (Brendonck and De 509 

Meester, 2003; Nielsen et al., 2012). Benthic invertebrates increase their dispersal capacity by 510 

producing winged adults. Both strategies may allow a speedy recovery through hatching from 511 

resting stages or recolonization by flying. Complete recovery after local extinction, however, is 512 

unlikely, and restoration and recovery processes in mountains take a long time (Tiberti et al., 513 

2019). For example, recovery from fish impacts took 11-20 years to obtain a similar food web 514 

structure. In the same studies, it was evident that recolonization efficiency of species with a 515 

parthenogenetic reproduction mode was higher than for sexual reproduction (Knapp and 516 

Sarnelle, 2008; Knapp et al., 2001). In any case, for many species dispersal and recolonization 517 
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can be limited, when the remaining seed pool is not abundant or found too distant or beyond 518 

barriers in the land- or waterscape in mountains, due to their relief. Hence, connectivity between 519 

different populations of the same mountain species is reduced, hampering recolonization after 520 

disturbance (Heino, 2013). Further, upward shifts of distribution areas are not the same for all 521 

mountain species, disrupting long-established communities and their interactions. For example, 522 

we understand only inadequately, if the observed upward shift of some mountain plant species 523 

due to climate change  is met by associated microbes and invertebrates (Grabherr et al., 1994; 524 

Steinbauer et al., 2018). Other factors leading to unequal dispersal of formerly associated 525 

species might be driven by reduced oxygen availability with increasing elevation (Jacobsen, 526 

2020), differences in temperature and drought tolerance (Forero-Medina et al., 2011; 527 

Schai‐Braun et al., 2021), different adaptation abilities through e.g. seasonality or phenology 528 

(Parmesan and Yohe, 2003), or different abilities to change depth distribution. Dysfunctional 529 

ecosystems, with lower resilience to further impact s, are the likely outcome (Körner, 2019; Pecl 530 

et al., 2017). Due to the non-linear loss of biodiversity (Trisos et al., 2020), the expected 531 

extinction of endemic plant and animal species after tipping points have been met (Dullinger et 532 

al., 2012), may further increase the dysfunctioning of mountain ecosystems. When this will 533 

happen and what will be the outcome will be difficult to predict due to the multitude of factors 534 

impacting different species in a community.  535 

Threats to mountain ecosystem services 536 

Negative impacts on mountain biodiversity threatens ecosystem integrity and functioning, 537 

and hence also the multiple ecosystem services provided to local communities, populations 538 

downstream and local stakeholders, including tourists (Grêt-Regamey et al., 2012; Martín-López 539 

et al., 2019; Schirpke et al., 2019). The capacity of mountain ecosystems to provide ecosystem 540 

services is deteriorating due to biodiversity loss driven by global change (Palomo, 2017). There 541 

is an alarming set of negative consequences from those changes, in stark contrast to the few 542 

positive effects that have been reported (Hobbs et al., 2009). These changes will jeopardize 543 

water use of at least 1.9 billion people (Immerzeel et al., 2020). Moreover, as a result of glacier 544 

decline, water availability will be severely reduced in the dry season, affecting millions of farmers 545 

globally (Biemans et al., 2019). Mountains will therefore not remain the reliable and highly 546 

important source of water they have been for thousands of years. Even in humid mountain 547 

regions, such as the European Alps, droughts have become a problem (Stephan et al., 2021) 548 

due to the increasing irregularity of water discharging rates and increasing flood events (Ragettli 549 

et al., 2021). The irregularity of water discharging rates in combination with land use and land 550 

cover changes can also have synergistic effects on ecosystem functioning, rendering mountains 551 
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more vulnerable to climate change impacts (Chiang et al., 2014). For the central mountain range 552 

of Taiwan, it was shown that these combined effects lead to a relocation or loss of ecosystem 553 

services and therefore need to be considered in conservation planning (Lin et al., 2019; Lin et 554 

al., 2017). 555 

Net primary production (NPP), the amount of biomass or carbon produced by primary 556 

producers per unit area and time, is the basis of all ecosystem services and is being altered due 557 

to climate change (Haberl et al., 2007; Kastner et al., 2022; Melillo et al., 1993). Overall, there is 558 

evidence that increasing temperatures and CO2 concentrations have increased the NPP of 559 

forests when water was not a limiting factor (Boisvenue and Running, 2006). In the Alps, 560 

changes in NPP of grasslands on which cattle depend show contrasting regional trends (Jäger 561 

et al., 2020). A study combining experimentation and meta-analysis reported stabilization of NPP 562 

of grasslands under climate change due to changes in species and increasing allocation towards 563 

belowground biomass to resist drought (Liu et al., 2018). Despite a limited body of evidence, 564 

local models predict that NPP will increase under climate change in the forests of the mountain 565 

region of Changbai in China (Gao et al., 2020).  566 

Further, as glaciers retreat and permafrost thaw, the decreased land-surface stability 567 

results in increased hazards in the form of landslides and rock fall, increasing risks for wildlife, 568 

tourists and livestock (Huss et al., 2017; Temme, 2015). Glacial lake outburst floods may also 569 

intensify due to glacier retreat and glacial lake formation, with potentially devastating 570 

consequences for populations downstream (Harrison et al., 2018; Milner et al., 2017; Vuille et 571 

al., 2018). Cultural ecosystem services are also impacted by climate change. For example, 572 

glaciers are considered sacred or have a strong symbolic meaning for several mountain 573 

communities, and thus spirituality is being affected (Allison, 2015) and has been documented in 574 

various countries in Africa, Asia, and the Americas (Allison, 2015; Mölg et al., 2008; Shijin and 575 

Dahe, 2015). Overall, the documented threats to mountain ecosystem services are a major 576 

concern worldwide, as they could lead to increased poverty, lower food production, higher health 577 

risks and a general decrease of human wellbeing, which may often affect not only mountains but 578 

also the populations living downstream. 579 

Conclusions 580 

Mountain ecosystems are complex, dynamic, exceptionally fragile and are highly 581 

sensitive to global change. They are therefore considered sentinels of change (Schmeller et al., 582 

2018). We are only beginning to understand the functional ecology of mountain ecosystems, but 583 

international research already suggests that changing species communities will be detrimental to 584 

the environment, to biodiversity and therefore to a critical part of Earth’s life-support system. 585 
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Climate change might be considered the most impactful driver of change in mountain 586 

ecosystem, but all the outlined threats to mountains act in synergy. Climate change is modifying 587 

and will continue to modify the occurrence of extreme events, the amount of precipitations (rain 588 

and snow), as well as freeze and thaw cycles, with impacts on the onset of snow melt (and thus 589 

length of growing season) and water temperatures, aggravating impacts from inappropriate land 590 

use practices. Global change with all the different pressures outlined above causes imbalances 591 

in the functioning of mountain ecosystems, which lead to changes in vital biological, biochemical, 592 

and chemical processes, critically reducing ecosystem health with repercussions for animal and 593 

human health and wellbeing (Acevedo-Whitehouse and Duffus, 2009; Bradshaw et al., 2021; 594 

Lerner and Berg, 2017).  595 

Humanity has a wide range of options in its hand to mitigate human-driven impacts on 596 

mountains and to change the current trajectory as humanity is at the nexus of it all. All relevant 597 

actors need to coordinate their efforts in extensive collaborations to achieve the necessary 598 

conservation measures: in mountain areas with a protection status conservation policy needs 599 

reinforcement; for mountain areas without a protection status, evaluation of its status, 600 

importance and future perspective need to be used to prioritize (i) protective measures, (ii) re-601 

evaluations of impacts of touristic and pastoral activities, (iii) evaluation of sustainability 602 

management of natural resources, and (iv) development of early-warning systems of ecosystem 603 

degradation and biodiversity loss. These measures will then be able to inform about trajectories 604 

towards detrimental outcomes (pathogen emergence, ecosystem services; (Huber et al., 2013). 605 

As mountain stakeholders are numerous, regional networks and coordination mechanisms must 606 

urgently be installed, and a broad communication strategy needs to be developed to raise 607 

awareness about the threats to mountains and their complex consequences (Brunner and Grêt-608 

Regamey, 2016; Drexler et al., 2016). These consequences may have also an important social 609 

component, as people may move out of mountain areas, if the conditions for cultivation and 610 

exploitation are unfavourable, not providing for their livelihood. These different aspects need to 611 

be included in comprehensive mountain ecosystem management plans, considering the 612 

cumulative and hierarchical context of disturbance regimes to prevent reductions in ecological 613 

variability and ecosystem resilience (Chiang et al., 2014).  614 

In this light, and in that of the challenging objectives set by global agendas, including the 615 

UN Sustainable Development Agenda, the Convention on Biological Diversity, the recently 616 

launched EU Biodiversity Strategy for 2030 or the UN Decade on Ecosystem Restoration 2021-617 

2030, investments are needed for the delivery of policy-relevant science on mountain 618 

ecosystems (Körner, 2019), closely following recommendations given in the global biodiversity 619 
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framework (CBD/WG2020/3/3). Only if we maintain a high ecosystem resilience will we be able 620 

to maintain ecosystem functioning and ecosystem services. Threats to mountains are numerous 621 

and the repercussions to humanity demand conservation and restoration of mountain 622 

ecosystems, as they are an essential and highly sensitive part of the global life-support system. 623 
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