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Quadratization and convexification

in polynomial binary optimization

Yves Crama∗, Sourour Elloumi†, Amélie Lambert‡, Elisabeth Rodŕıguez-Heck§

October 2, 2022

Abstract

In this paper, we discuss several reformulations and solution approaches for the problem of
minimizing a polynomial in binary variables (P). We review and integrate different literature
streams to describe a methodology consisting of three distinct phases, together with several
possible variants for each phase. The first phase determines a recursive decomposition of each
monomial of interest into pairs of submonomials, down to the initial variables. The decom-
position gives rise to a so-called quadratization scheme. The second phase builds a quadratic
reformulation of (P) from a given quadratization scheme, by associating a new auxiliary vari-
able with each submonomial that appears in the scheme. A quadratic reformulation of (P) is
obtained by enforcing relations between the auxiliary variables and the monomials that they
represent, either through linear constraints or through penalty terms in the objective function.
The resulting quadratic problem (QP) is non-convex in general and is still difficult to solve. At
this stage we introduce the third phase of the resolution process, which consists in convexifying
(QP). We consider different types of convexification methods, including complete linearization
or quadratic convex reformulations. Theoretical properties of the different phases are recalled
from the literature or are further clarified. Finally, we present some experimental results to
illustrate the discussion.

1 Introduction

We consider the Polynomial Unconstrained Binary Programming (P) problem

(P)

min f(x) ,
∑
M∈M

aM
∏
i∈M

xi (1)

s. t. xi ∈ {0, 1} ∀i ∈ [n] (2)

where the objective function f(x) is a polynomial defined on binary variables x ∈ {0, 1}n. We
denote the set of variable indices by [n] = {1, ..., n}. Without loss of generality, we can assume
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†UMA-ENSTA, 828 Boulevard des Maréchaux, 91120 Palaiseau, France. sourour.elloumi@ensta-paris
‡CEDRIC-Cnam, 292 rue saint Martin, F-75141 Paris Cedex 03, France. amelie.lambert@cnam.fr
§RWTH Aachen University, The Chair of Operations Research, Kackertstraße 7, 52072 Aachen, Germany.

erodriguezheck@gmail.com

1



that f(x) is a multilinear polynomial since x2i = xi for any binary variable xi ∈ {0, 1}, for i ∈ [n].
Hence, f(x) consists of a sum of monomials

∏
i∈M xi weighted by non-zero coefficients aM ∈ Q, for

M ∈M ⊆ 2[n]. For the sake of simplicity, we will also use the word monomial to refer to a subset
of indices M ⊆ 2[n]. The degree of a monomial M is |M |, and the degree of the polynomial f is
defined as df = max

M∈M
|M |.

Problem (P) is a very general model that allows the formulation of many well-known problems
in optimization. When df = 2, the problem becomes a quadratic unconstrained binary optimization
(QUBO) problem. This important special case encompasses classical combinatorial optimization
problems such as maximum cut or stable set problems; it has recently been identified as playing
a central role in quantum computing (see for example [10, 14, 27, 44]). When df ≥ 3, (P) can
be used to formulate many classical problems such as uncapacitated facility location in operations
research, 3-SAT and maximum satisfiability in computer science, or applications in different fields
such as the construction of binary sequences with low aperiodic correlation, a very challenging
problem in signal design theory, or the restoration of blurred images in computer vision; see, e.g.,
[4, 10, 14, 8, 25, 34, 35], as well as Section 6.1 and Section 6.2 hereunder.

Since (P) generalizes unconstrained binary quadratic optimization, it is NP-hard for any fixed
df ≥ 2 [26]. Practical difficulties arise from the non-convexity of f and from the integrality of the
variables. Various approaches have been proposed to handle these difficulties. They will be briefly
reviewed in Section 2.

In this paper, we focus on a class of methods based on quadratic reformulations of problem (P),
which are subsequently solved via convexification techniques. These methods have their roots in a
seminal paper by Rosenberg [46] and have been more recently revived by several researchers (see,
e.g., [3, 8, 13]; more references will be provided in subsequent sections).

We propose to look at the generic approach as consisting of three phases, and we describe several
alternative techniques for each phase. Phase I consists in determining a recursive decomposition
of each monomial into a product of two sub-monomials, where each sub-monomial is again decom-
posed into a product of two, and so forth down to the initial variables. This decomposition is
called a quadratization scheme. Phase II consists in building a quadratic reformulation, that is, a
quadratic problem equivalent to (P), from any given quadratization scheme. For this purpose, each
element of the given quadratization scheme is associated with an auxiliary variable that models a
submonomial. The basic idea is then to enforce relations between auxiliary variables and the prod-
uct that they represent, which can be done using either linear constraints as in [24], or quadratic
penalties in the objective function as in [3, 46]. The resulting quadratic problem is non-convex in
general and still difficult to solve. At this stage we consider Phase III of the resolution process, or
convexification phase, which consists in computing a new formulation equivalent to the quadratic
problem obtained in Phase II, but this time with a convex continuous relaxation. We consider two
types of convexification approaches. In the first one, we simply produce a standard linearization of
the quadratic problem obtained in Phase II. In the second type, we compute an equivalent formu-
lation which is quadratic and convex using semi-definite programming [5, 21]. Both approaches can
be applied to any unconstrained quadratic binary optimization problem, whether it is a quadratic
reformulation of a polynomial problem of type (P) or not. However, in the particular case at hand,
where we deal with a quadratic reformulation of a higher-degree problem, we can also use the recent
PQCR [21] method which improves the convex reformulation.
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Our contribution. Research on quadratic reformulations of (P) has frequently examined one
or two of the phases in isolation, e.g., by focusing on the choice of the quadratic reformulation
obtained from Phases I and II, and then relying on generic solvers to handle Phase III [13, 45],
or conversely, by picking a simple quadratic reformulation, and then focusing on the choice of the
convexification method in Phase III [21]. The aim of the present paper is to revisit the three-phase
approach from a more holistic perspective. It aims at examining the joint impact of the phases, from
quadratic reformulation to convexification. On the theoretical side, we provide a unified framework
for several definitions of quadratic reformulations that were previously introduced independently
in the literature. We also clarify some basic properties of these reformulations and relationships
among them. We discuss which quadratic reformulations can be meaningfully combined with the
convexification methods presented in [5, 21]. From a computational perspective, we conduct a
set of experiments which illustrate the difficulty of choosing the best combination of a quadratic
reformulation with a convexification technique, as this choice may depend on the type of instances
considered.

Outline of the paper. Section 2 provides a brief literature review and lays out the fundamental
concepts required to formally describe the three-phase approach considered in this paper. Sec-
tions 3, 4 and 5 respectively discuss Phases I, II and III in detail. Section 6 presents the results of
computational tests aimed at experimentally comparing different combinations of quadratic refor-
mulations and convexification methods, and Section 7 concludes the paper.

2 Literature review and basic concepts

Let us briefly review some of the literature on algorithms for polynomial unconstrained binary
programming. Most such algorithms simply apply branch-and-bound to an appropriate linear
reformulation of (P), such as the standard linearization based on pioneering work published in [24,
29, 48, 49]. The basic idea behind standard linearization is to introduce an auxiliary variable yM for
every monomial M ∈ M, and to force the equality yM =

∏
i∈M xi by means of linear constraints.

More precisely, the standard linearization of (P) is the mixed integer linear programming problem

(SL)



min

n∑
i=1

aixi +
∑

M∈M:|M |≥2

aMyM

s. t.

yM ≤ xi M ∈M : |M | ≥ 2, i ∈M (3)

yM ≥
∑
i∈M

xi − (|M | − 1) M ∈M : |M | ≥ 2 (4)

yM ≥ 0 M ∈M : |M | ≥ 2 (5)

x ∈ {0, 1}n (6)

It is easy to check that the inequalities (3), (4), (5) imply yM =
∏
i∈M xi when x is a binary vector.

Therefore, problem (SL) is equivalent to (P).
The standard linearization of (P) has been studied by many researchers. When f(x) consists

of a single monomial or has a specific acyclic structure [11, 20], its continuous relaxation is exact
(i.e., its extreme points are binary). For the general case, several recent publications present valid
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inequalities for the convex hull of the feasible binary solutions, see, e.g., [15, 18, 17, 19, 22]. In [13],
Buchheim and Rinaldi established a polyhedral description based on a quadratic reformulation
of (P). They also proved the equivalence between separation algorithms for (SL) and for the cut
polytope. Compact linearizations requiring a smaller number of additional variables than (SL) have
been introduced in [28, 29] and in other papers.

Other approaches to (P) can be found in the literature. Some of them rely on specialized
combinatorial pseudo-Boolean methods (see, e.g., [10, 14]), like the dynamic programming Basic
Algorithm discussed in [30, 31], or a related dynamic programming algorithm proposed in [16].
Algorithms for the more general class of mixed-integer nonlinear programs can also be applied to
(P) (see, e.g., [1, 12, 36, 37, 41, 47]). Although these algorithms were not originally tailored for
binary programming, they can handle (P) by imposing x2i = xi for i ∈ [n]. We do not discuss these
approaches in more detail, as they are not directly related to our work.

On the other hand, as mentioned in the Introduction, another stream of literature centers around
quadratic reformulations of problem (P). More precisely, the first two phases of the algorithms that
we consider aim at reformulating (P) as an equivalent quadratic problem of the form

(QP)


min G(z) , zTQz + cT z

s. t. Aiz = bi ∀i ∈ [l]

zTQiz + cTi z = bi ∀i ∈ [q]

z ∈ {0, 1}n+m.

The dimension of the binary vector z is n + m: the first n components of z correspond to the
original variables x ∈ {0, 1}n of problem (P) and the last m components correspond to a vector
of auxiliary variables y ∈ {0, 1}m which are introduced to define the quadratic reformulation. The
correspondence between auxiliary and original variables is enforced by using either linear constraints
Aiz = bi, for i ∈ [l], or quadratic constraints zTQiz + cTi z = bi, for i ∈ [q], or penalties in the
quadratic objective function (in which case l or q may be 0), or both penalties and constraints.
In the special case of a (QP) formulation with l = q = 0, the problem becomes a quadratic
unconstrained binary optimization (QUBO) problem.

We now formally define the concept of quadratic reformulation.

Definition 1 (Quadratic reformulation of a polynomial optimization problem). (QP) is
a quadratic reformulation of (P) if and only if, for every optimal solution ẑ = (x̂, ŷ) ∈ {0, 1}n+m
of (QP), x̂ is an optimal solution of (P).

In the quadratic reformulations to be discussed in this paper, it will always be the case that
(P) and (QP) have the same optimal value, i.e., f(x̂) = G(ẑ), although this condition is not strictly
required in Definition 1.

The following related definition was previously introduced in several papers; see [2, 3, 9]. It
applies to any pseudo-Boolean function, that is, to any real-valued function f(x) defined on x ∈
{0, 1}n.

Definition 2 (Quadratization of a pseudo-Boolean function). Given a pseudo-Boolean func-
tion f(x) on {0, 1}n, a function h(z) = h(x, y) is a quadratization of f(x) if h is a quadratic polyno-
mial depending on the original variables x ∈ {0, 1}n and on a set of auxiliary variables y ∈ {0, 1}m
such that

f(x) = min{h(x, y) : y ∈ {0, 1}m} ∀x ∈ {0, 1}n.
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Clearly, when h(z) is a quadratization of the pseudo-Boolean function f(x), then the prob-
lem: min{h(z) : z ∈ {0, 1}n+m} is a straightforward unconstrained quadratic reformulation of the
polynomial optimization problem (P). This type of reformulation will be of special interest in the
sequel, as the quadratic reformulations that we consider are closely related to quadratizations of
the objective function.

Common goals for finding good quadratic reformulations in the literature have been: introducing
as few auxiliary variables as possible in order to limit the dimension of the reformulated problem, or
introducing a small number of (non-submodular) positive quadratic terms in the objective function,
as this is often a good property for computational performance [3, 7, 25, 34, 45]. Other goals
have been to define quadratic reformulations for particular classes of functions, such as symmetric
functions [2, 7].

In this paper, we restrict our attention to quadratic reformulations resulting from the application
of Phases I and II, that is, quadratic reformulations constructed on the basis of a quadratization
scheme. Such quadratic reformulations have been previously considered in the literature and pre-
sented in various ways [3, 13, 21, 25, 46]. In the next sections, we provide a unified presentation of
these methods and clarify the relations between them.

3 Phase I: Construction of quadratization schemes

Let us consider the first phase of the construction of a convex reformulation of (P), which consists
in the elaboration of a quadratization scheme. The goal is to determine a valid decomposition of
the monomials of the objective function f that will allow us to produce a quadratic reformulation
in Phase II. Concretely, each monomial is recursively decomposed into exactly two products, down
to the initial variables. Then, each element of the decomposition will be substituted by an auxiliary
variable in the quadratic reformulation phase, thus reducing the degree of f . We further link this
definition with related concepts existing in the literature.

3.1 Definition of quadratization schemes

We start with the definition of a scheme for a single monomial.

Definition 3 (Quadratization scheme of a monomial). A quadratization scheme for a mono-
mial M , where |M | ≥ 3, is a directed acyclic graph GM = (VM , AM ) with the following properties:

i) VM ⊆ 2M , i.e., each vertex in VM is a subset of M ;

ii) M ∈ VM ; M is the root of GM : it has indegree 0, and all other vertices have nonzero indegree;

iii) {i} ∈ VM for all i ∈M ; the vertices {i}, i ∈M , are the leaves of GM : they have outdegree 0;

iv) when a vertex E ∈ VM is not a leaf of GM , its outdegree is 2, and

• the arcs leaving E are denoted as (E, lM (E)) ∈ AM and (E, rM (E)) ∈ AM ; lM (E) and
rM (E) are the left child and right child of E, respectively;

• lM (E) and rM (E) define a nontrivial decomposition of E into two subsets: 0 < |lM (E)| <
|E|, 0 < |rM (E)| < |E|, and E = lM (E) ∪ rM (E).
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For simplicity, we assume that each subset of M can appear at most once as a vertex in VM ,
although this assumption could be lifted at the expense of heavier notations. In the sequel, it will
be useful to have a distinct notation for the set EM , {E ∈ VM : |E| ≥ 2, E 6= M} which contains
all vertices of GM except the root M and the leaves {i}, i ∈ M . As a matter of terminology,
remember that a hypergraph H on a ground set V is a set of subsets of V , that is, a set H ⊆ 2V .
The elements of H are the edges of the hypergraph. So, VM and EM are hypergraphs on M .

We look at lM and rM as applications on EM ∪ {M}, and we sometimes find it convenient
to extend them to VM by defining lM ({i}) = rM ({i}) = ∅ for all i ∈ M . Also, note that the
quadratization scheme GM = (VM , AM ) is equivalently defined by the triplet (VM , lM , rM ) or by
the triplet (EM , lM , rM ); we will use either of these notations.

To illustrate the definitions, let us give three examples of quadratization schemes for a degree 5
monomial.

Example 1. Consider the monomial M = {1, 2, 3, 4, 5}.
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We define (V 1
M , l

1
M , r

1
M ), a first quadratization scheme of M , by

V 1
M =

{
{1}, {2}, {3}, {4}, {5}, {1, 2}, {3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}

}
with

• l1M ({1, 2}) = {1}, r1M ({1, 2}) = {2}
• l1M ({3, 4}) = {3}, r1M ({3, 4}) = {4}
• l1M ({1, 2, 3, 4}) = {1, 2}, r1M ({1, 2, 3, 4}) = {3, 4}
• l1M ({1, 2, 3, 4, 5}) = {1, 2, 3, 4}, r1M ({1, 2, 3, 4, 5}) = {5}

and E1M =
{
{1, 2}, {3, 4}, {1, 2, 3, 4}

}
.

{1} {2} {3} {4} {5}

{1, 2} {3, 4}

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Next, we define (V 2
M , l

2
M , r

2
M ), a second quadratization scheme of M ,

by

V 2
M =

{
{1}, {2}, {3}, {4}, {5}, {1, 2}, {3, 4}, {1, 2, 5}, {1, 2, 3, 4, 5}

}
with

• l2M ({1, 2}) = {1}, r2M ({1, 2}) = {2}
• l2M ({3, 4}) = {3}, r2M ({3, 4}) = {4}
• l2M ({1, 2, 5}) = {1, 2}, r2M ({1, 2, 5}) = {5}
• l2M ({1, 2, 3, 4, 5}) = {1, 2, 5}, r2M ({1, 2, 3, 4, 5}) = {3, 4}

and E2M =
{
{1, 2}, {3, 4}, {1, 2, 5}

}
.

{1} {2} {5} {3} {4}

{1, 2} {3, 4}

{1, 2, 5}

{1, 2, 3, 4, 5}

Finally, a third quadratization scheme (V 3
M , l

3
M , r

3
M ) is given by

V 3
M =

{
{1}, {2}, {3}, {4}, {5}, {1, 2}, {3, 4}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}

}
with

• l3M ({1, 2}) = {1}, r3M ({1, 2}) = {2}
• l3M ({3, 4}) = {3}, r3M ({3, 4}) = {4}
• l3M ({1, 2, 3}) = {1, 2}, r3M ({1, 2, 3}) = {3}
• l3M ({1, 2, 3, 4}) = {1, 2, 3}, r3M ({1, 2, 3, 4}) = {3, 4}
• l3M ({1, 2, 3, 4, 5}) = {1, 2, 3, 4}, r3M ({1, 2, 3, 4, 5}) = {5}

and E3M =
{
{1, 2}, {3, 4}, {1, 2, 3}, {1, 2, 3, 4}

}
. {1} {2} {3} {4} {5}

{1, 2}

{1, 2, 3} {3, 4}

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

As illustrated by Example 1, a quadratization scheme provides a decomposition of monomials
into pairs of subsets, which are themselves decomposed into pairs, and so forth, until singletons are
obtained. Reading a scheme bottom-up, starting from the leaves, suggests how pairs of original or
auxiliary variables can be recursively substituted by new ones. We will return to this interpretation
in more detail in Section 4.

In Definition 3, we did not assume that lM (E) ∩ rM (E) = ∅ for every E ∈ VM , |E| ≥ 2. When
this additional property holds, we say that the scheme is disjoint. For instance, the first two schemes
in Example 1 are disjoint, the third one is not.

Let us call GM a rooted binary tree if every vertex of GM other than the root has indegree equal
to 1.

Proposition 4. A quadratization scheme is disjoint if and only if it is a rooted binary tree.
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Proof. If lM (E) ∩ rM (E) 6= ∅ holds for some E, say, i ∈ lM (E) ∩ rM (E), then there is a directed
path from lM (E) to {i} and from rM (E) to {i}. These two paths meet in a first vertex which
therefore has indegree at least 2, and hence GM is not a tree.

Conversely, assume that GM is not a rooted binary tree, meaning that there is a vertex E ∈ VM
with indegree larger than 1. So, there exist two distinct paths from the root M to E. Let F ∈ VM
be a vertex where these two paths diverge; say, lM (F ) is on the first path and rM (F ) is on the
second one. Since E is a descendant of both lM (F ) and rM (F ), it follows that E ⊆ lM (F )∩rM (F ),
and the scheme is not disjoint. �

We now characterize the size of a quadratization scheme.

Proposition 5 (Size of a quadratization scheme). Every quadratization scheme for a monomial
M satisfies:

(a) |VM | ≥ 2|M | − 1 and |EM | ≥ |M | − 2.

(b) If the scheme is disjoint, |VM | = 2|M | − 1 and |EM | = |M | − 2.

Let us now turn to the case of a generic polynomial function f , as in Equation (1). Since
a polynomial is defined by a set of monomials M (together with their coefficients), we define a
quadratization scheme for a set of monomials or equivalently, for a hypergraph M.

Definition 6 (Quadratization scheme for a set of monomials). A quadratization scheme for

a hypergraphM⊆ 2[n] is a collection of quadratization schemes S =
{
GM = (VM , AM ) : M ∈M

}
,

where each GM is a quadratization scheme for the corresponding monomial M ∈M.

Observe that a same subset E ⊆ [n] can appear in several of the schemes GM . Therefore,
the collection of sets (E : E ∈ VM ,M ∈ M) is a multiset, or a hypergraph with repeated edges.
Nevertheless, we find it convenient to look at S as a collection of vertex disjoint digraphs, as
illustrated in Example 2 hereunder. Moreover, we denote as E the hypergraph (without repeated
edges)

E ,
⋃

M∈M
EM =

⋃
M∈M

(VM \ ({M} ∪
⋃
i∈M
{i})). (7)

Note that even though M /∈ EM , M∩ E might be nonempty if a monomial M ∈ M appears in
the quadratization scheme of another monomial, that is, if M ∈ EM ′ for M ′ ∈M,M ′ 6= M .

Example 2. Let f(x) = a1x1x2x3x4x5 + a2x1x2x3x4 be a polyomial containing two monomi-
als, M = {M1 = {1, 2, 3, 4, 5},M2 = {1, 2, 3, 4}}, and n = 5. A quadratization scheme S ={
GM1 , GM2

}
for M can be defined as follows:
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VM1 =
{
{1}, {2}, {3}, {4}, {5}, {1, 2}, {3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}

}
• lM1({1, 2}) = {1}, rM1({1, 2}) = {2}
• lM1({3, 4}) = {3}, rM1({3, 4}) = {4}
• lM1({1, 2, 3, 4}) = {1, 2}, rM1({1, 2, 3, 4}) = {3, 4}
• lM1({1, 2, 3, 4, 5}) = {1, 2, 3, 4}, rM1({1, 2, 3, 4, 5}) = {5}

and EM1 =
{
{1, 2}, {3, 4}, {1, 2, 3, 4}

}
. {1} {2} {3} {4} {5}

{1, 2} {3, 4}

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

VM2 =
{
{1}, {2}, {3}, {4}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}

}
• lM2({1, 2}) = {1}, rM2({1, 2}) = {2}
• lM2({1, 2, 3}) = {1, 2}, rM2({1, 2, 3}) = {3}
• lM2({1, 2, 3, 4}) = {1, 2, 3}, rM2({1, 2, 3, 4}) = {4}

and EM2 =
{
{1, 2}, {1, 2, 3}

}
.

{1} {2} {3} {4}

{1, 2}

{1, 2, 3}

{1, 2, 3, 4}

The hypergraph E without repeated edges is E =
{
{1, 2}, {3, 4}, {1, 2, 3}, {1, 2, 3, 4}

}
.

3.2 Related concepts

Definitions closely related to Definitions 3 and 6 have been previously introduced in the literature.
In particular, pairwise covers of the hypergraph associated with a polynomial have been considered
by Anthony et al. [3], and the concept of reducibility of a set of monomials has been introduced by
Buchheim and Rinaldi in [13]. Let us briefly discuss and clarify the relations.

Definition 7. When M, H are two hypergraphs, we say that H is a pairwise cover of M if, for
every set M ∈ M with |M | ≥ 2, there are two sets l(M), r(M) ∈ H such that 0 < |l(M)| < |M |,
0 < |r(M)| < |M | and l(M) ∪ r(M) = M.

The original definition in [3] is restricted to |M | ≥ 3, but the adaptation is harmless and is more
coherent with the present paper.

Example 3. Consider again the hypergraph M = {M1 = {1, 2, 3, 4, 5},M2 = {1, 2, 3, 4}} of Ex-
ample 2. Then, H = {{4}, {5}, {1, 2, 3}, {1, 2, 3, 4}} is a pairwise cover ofM with l({1, 2, 3, 4, 5}) =
{1, 2, 3, 4}, r({1, 2, 3, 4, 5}) = {5}, l({1, 2, 3, 4}) = {1, 2, 3}, and r({1, 2, 3, 4}) = {4}.

The definition of pairwise covers is obviously related to the definition of quadratization schemes
and in fact, in Example 3, the decomposition of the monomials M1, M2 is the same as in the
quadratization scheme of Example 2. A main difference, however, is that the definition of pairwise
covers does not require a left-right decomposition of each subset S ∈ H: the condition only applies
to subsets M ∈ M. In other words, pairwise covers only relate to the first level of quadratization
schemes, just under the root monomials.

The exact relation between pairwise covers and quadratization schemes is clarified by the next
result.
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Proposition 8. If S =
{

(VM , AM ) : M ∈ M
}

is a quadratization scheme for M, then H =⋃
M∈M{lM (M), rM (M)} is a pairwise cover of M. Conversely, if H is a pairwise cover of M

such that H ⊆ M, then M has a quadratization scheme S =
{

(VM , AM ) : M ∈ M
}

such that⋃
M∈M VM ⊆ H.

Proof. The first claim is obvious. For the second one, assume that H is a pairwise cover of M
such that H ⊆M. For each monomial M ∈M, define VM and AM inductively as follows:

1. M ∈ VM ;

2. (M, l(M)) ∈ AM and (M, r(M)) ∈ AM ;

3. if (E1, E2) ∈ AM , then E2 ∈ VM , and if |E2| ≥ 2, then (E2, l(E2)) ∈ AM , (E2, r(E2)) ∈ AM .

Then, (VM , AM ) is a quadratization scheme for M and VM ⊆ H. �

Remark 1. The quadratization scheme defined forM in the previous proof has the property that,
for all M,M ′,M ′′ ∈ M, lM ′(M) = lM ′′(M) = l(M), and rM ′(M) = rM ′′(M) = r(M): in other
words, the left-right decomposition of each set M is unique in the scheme, as opposed to what is
illustrated in Example 2 where the set {1, 2, 3, 4} is decomposed in two different ways. This shows
that quadratization schemes, as we have introduced them in Definition 3 and Definition 6, offer
more flexibility than decompositions based on pairwise covers.

The second statement in Proposition 8 explains why Anthony et al. [3] restrict their attention
to special types of pairwise covers. More precisely, Theorem 4 in [3] establishes constructively that,
if H is a pairwise cover ofM such that H ⊆M, then the function f(x) =

∑
M∈M aM

∏
i∈M xi has

a quadratization (recall Definition 2) using at most |H| auxiliary variables. Even though this is not
explicitly mentioned in [3], it is easy to check that the existence of a pairwise cover H such that
H ⊆M is equivalent to the condition thatM is a pairwise cover of itself (say, a pairwise self-cover).
Therefore, as a consequence of Theorem 4 in [3], we can state that ifM is a pairwise self-cover, then
f(x) has a quadratization using at most |M| auxiliary variables. Given a function f , the pairwise
cover quadratization methods to be described in subsequent sections will concentrate on extending
M (that is, on adding monomials with coefficient zero in f) until M becomes a pairwise self-cover
and hence, until a quadratization scheme becomes available by virtue of Proposition 8. Anthony et
al. [3] observed that such a pairwise self-cover can be constructed in polynomial time.

In a different framework, Buchheim and Rinaldi [13] had previously proposed a heuristic proce-
dure in order to extend M to a pairwise self-cover (which they call a reducible set of monomials).
They used these notions to provide a quadratic reformulation of problem (P), and to show that a
complete description of the standard linearization polytope of (P) can be derived from a complete
polyhedral description of the quadratic reformulation.

4 Phase II: Building quadratic reformulations

We now present an adaptation of several approaches of the literature for reformulating prob-
lem (P) into an equivalent quadratic optimization problem, in the sense of Definition 1. Different
types of reformulations that do not rely on quadratization schemes have been proposed, for instance,
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in [2, 3, 7, 9, 23, 25, 34]. In this paper, however, we restrict our attention to reformulations derived
from an arbitrary quadratization scheme S.

To do this, the basic idea is to introduce a set of |E| auxiliary variables, where E is defined by
equation (7), so that each additional variable corresponds to an “intermediate” vertex in one of the
graphs GM . Let z ∈ {0, 1}N , where N = n + |E|, the first n components of z correspond to the
vector of original variables x, and the last |E| components correspond to the auxiliary variables.
If the equalities zE = zlM (E)zrM (E) hold for all E ∈ EM , then it follows from the definition of

quadratization schemes that zE =
∏
i∈E

zi also holds for all E ∈ EM . When this is the case, we say

that z defines a consistent assignment of values to the variables, or simply, that z is consistent. It
follows that, given a scheme S, we can reformulate (P) as the equivalent quadratically constrained
quadratic programming problem (QCQPS):

(QCQPS)


min

z∈{0,1}N
g(z) ,

∑
M∈M:
|M |≤2

aM
∏
i∈M

zi +
∑

M∈M:
|M |≥3

aMzlM (M)zrM (M) (8)

s.t.

zE = zlM (E)zrM (E) ∀E ∈ E ,∀M ∈M : E ∈ EM . (9)

Both the objective function and the constraints of (QCQPS) are usually non-convex. In this
section, we focus on rewriting the quadratic constraints (9) and we show that they can be enforced
either using linear inequalities or using penalties in the objective function. Doing so, we accordingly
obtain either a linearly constrained quadratic problem, or an unconstrained quadratic problem. The
resulting problems are still non-convex, in general, but now the non-convexity can only arise from
the quadratic objective function and from the integrality of the variables, not from the additional
constraints.

4.1 A quadratic reformulation based on standard linearizations

Similarly to the standard linearization of the objective function, the quadratic equations (9) can
be reformulated by a set of linear constraints. This leads to the following quadratic reformulation
(FORS) (for Fortet [24]) of (QCQPS) and of (P):

(FORS)


min

z∈{0,1}N
g(z)

s.t.

zE ≤ zlM (E), zE ≤ zrM (E) ∀E ∈ E ,∀M ∈M : E ∈ EM (10)

zE ≥ zlM (E) + zrM (E) − 1, zE ≥ 0 ∀E ∈ E ,∀M ∈M : E ∈ EM (11)

where g(z) is defined by Equation (8).

Example 4. Let f(x) = −6.5x1x2x3x4x5x6 − 5.6x1x2x3, with M = {M1 = {1, 2, 3, 4, 5, 6},M2 =

{1, 2, 3}}, and n = 6. Consider the quadratization scheme S =
{
GM1 , GM2

}
, where:
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VM1 ={
{1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {3, 4}, {5, 6}, {3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}

}
• lM1({1, 2}) = {1}, rM1({1, 2}) = {2}
• lM1({3, 4}) = {3}, rM1({3, 4}) = {4}
• lM1({5, 6}) = {5}, rM1({5, 6}) = {6}
• lM1({3, 4, 5, 6}) = {3, 4}, rM1({3, 4, 5, 6}) = {5, 6}
• lM1(M1) = {1, 2}, rM1(M1) = {3, 4, 5, 6}

{1} {2} {3} {4} {5} {6}

{1, 2}

{3, 4} {5, 6}

{3, 4, 5, 6}

{1, 2, 3, 4, 5, 6}

VM2 =
{
{1}, {2}, {3}, {1, 2}, {1, 2, 3}

}
• lM2({1, 2}) = {1}, rM2({1, 2}) = {2}
• lM2(M2) = {1, 2}, rM2(M2) = {3}

{1} {2} {3}

{1, 2}

{1, 2, 3}

with EM1
=
{
{1, 2}, {3, 4}, {5, 6}, {3, 4, 5, 6}

}
, EM2

=
{
{1, 2}

}
, and E =

{
{1, 2}, {3, 4}, {5, 6}, {3, 4, 5, 6}

}
.

Standard linearization consists in performing the following substitutions z{1,2} = z1z2, z{3,4} =
z3z4, z{5,6} = z5z6, z{3,4,5,6} = z{3,4}z{5,6} in f(x) and adding the appropriate set of constraints.
The final linearly constrained quadratic reformulation is:

(FORS)



min
z∈{0,1}10

g(z) = −6.5z{1,2}z{3,4,5,6} − 5.6z{1,2}z3

s.t. z{1,2} ≤ z1, z{1,2} ≤ z2, z{1,2} ≥ z1 + z2 − 1, z{1,2} ≥ 0

z{3,4} ≤ z3, z{3,4} ≤ z4, z{3,4} ≥ z3 + z4 − 1, z{3,4} ≥ 0

z{5,6} ≤ z5, z{5,6} ≤ z6, z{5,6} ≥ z5 + z6 − 1, z{5,6} ≥ 0

z{3,4,5,6} ≤ z{3,4}, z{3,4,5,6} ≤ z{5,6}, z{3,4,5,6} ≥ z{3,4} + z{5,6} − 1, z{3,4,5,6} ≥ 0

4.2 A quadratic reformulation based on Rosenberg’s method

We first provide an explicit quadratic reformulation of (P) by applying the central idea of Rosen-
berg’s method [46]. The original algorithm is iterative and produces a quadratic reformulation by
selecting a pair of (original or auxiliary) variables say, zi, zj , and by substituting a new variable
zi,j for the product zizj in the objective function. The equality zi,j = zizj is enforced by adding to
the function a quadratic penalty term of the form pi,j(3zi,j − 2zizi,j − 2zjzi,j + zizj) with a large
enough multiplier pi,j (it suffices to set pi,j equal to the sum of the absolute values of the coefficients
of the terms containing the product zizj ; see, e.g., [14]). This step is repeated until the penalized
objective function becomes quadratic.

The procedure can be interpreted as implicitly defining a quadratic scheme S bottom-up, starting
from the leaves. In order to integrate it in our framework, we can actually translate it to produce
an explicit reformulation of (P) based on (QCQPS). Given a scheme S, for each monomial M and
E ∈ EM , let us introduce the penalty functions

qRM (E) , 3zE − 2zlM (E)zE − 2zrM (E)zE + zlM (E)zrM (E) (12)
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which possess the following (easily verified) properties: for all binary values of zE , zlM (E), zrM (E),

qRM (E) ≥ 0, (13)

zE = zlM (E)zrM (E) ⇐⇒ qRM (E) = 0. (14)

If we repeatedly apply Rosenberg’s approach to reduce the degree of M according to the quadra-
tization scheme S, we eventually find that the monomial aM

∏
i∈M xi can be substituted in the

objective function by

ρM (z) , aMzlM (M)zrM (M) + |aM |
∑
E∈EM

qRM (E). (15)

If we now apply the scheme S to the complete set of monomials M (i.e., to the function f(x))
and if we recall the definition of the function g(z) in equation (8), we can transform the objective
function into the quadratic function:

gR(z) ,
∑

M∈M:
|M|≤2

aM
∏
i∈M

zi +
∑

M∈M:
|M|≥3

ρM (z) (16)

= g(z) +
∑

M∈M:
|M|≥3

|aM |
∑

E∈EM

qRM (E). (17)

The resulting unconstrained quadratic reformulation of (QCQPS) and of (P) is the following prob-
lem:

(ROSS)

{
min

z∈{0,1}N
gR(z).

For the sake of completeness, let us formally establish the correctness of the transformation
(remember Definition 2).

Theorem 9. For every quadratization scheme S = {GM = (VM , lM , rM ) : M ∈ M}, the function
gR(z) is a quadratization of f(x) and (ROSS) is a quadratic reformulation of (P).

Proof. Consider any binary minimizer of gR(z), say z∗, and let x∗i = z∗i for i ∈ [n]. If z∗ is
consistent, then in view of Equation (14), gR(z∗) = f(x∗) as required for a quadratization.

On the other hand, if z∗ is not consistent, then there is M ∈ M and E ∈ EM such that
z∗E 6= z∗lM (E)z

∗
rM (E). We say that z∗ is inconsistent for this monomial M . In view of Equations (13)-

(14), for any such M ,

ρM (z∗) ≥ aMz∗lM (M)z
∗
rM (M) + |aM | ≥ max(aM , 0).

Next, define z+ to be consistent with x∗, that is, let z+S =
∏
i∈S

z∗i =
∏
i∈S

x∗i for all subsets S ∈⋃
M∈M:
|M |≥3

VM . For any monomial M , if z∗ is consistent for M , then ρM (z+) = ρM (z∗). On the other

hand, if z∗ is inconsistent for M , then there are two cases:

1. if
∏
i∈M

x∗i = 1, then ρM (z+) = aMz
+
lM (M)z

+
rM (M) = aM ≤ max(aM , 0) ≤ ρM (z∗);
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2. if
∏
i∈M

x∗i = 0, then ρM (z+) = aMz
+
lM (M)z

+
rM (M) = 0 ≤ max(aM , 0) ≤ ρM (z∗).

It easily follows from these inequalities that gR(z+) ≤ gR(z∗). Thus, gR(z) has a minimizer which
is consistent (namely, z+), and we conclude that gR(z) is a quadratization of f(x) as in the first
part of the proof. This implies, in turn, that (ROSS) is a quadratic reformulation of (P). �

Remark 2. For the record, it may be interesting to notice that in his original paper, Rosenberg [46]
did not use the penalty multipliers |aM | that we use in (ROSS), but introduced a different, more
flexible way to compute valid multipliers. As a result, the reformulation g(z) produced by his
original method does not necessarily yield a quadratization, contrary to what was suggested a bit
hastily, for example in [3, 9].

Remark 3. The number of auxiliary variables in gR(z) is equal to the size of E in the quadratization
scheme. Since Anthony et al. [3] observed that there exist quadratization schemes of size O(2

n
2 ), it

follows that every pseudo-Boolean function has a quadratization involvingO(2
n
2 ) auxiliary variables.

This reasoning provides an alternative, easier proof of Theorem 4 in [3].

Remark 4. The function gR(z) can be rewritten as

gR(z) = g(z) +
∑
E∈E

( ∑
M∈M:

|M|≥3 and E∈EM

|aM |qRM (E)
)
.

If each monomial has a unique decomposition in S, that is, if lM (E) = lM ′(E) = l(E) and rM (E) =
rM ′(E) = r(E) for all M,M ′ such that E ∈ EM ∩ EM ′ , then this simply becomes

gR(z) = g(z) +
∑
E∈E

( ∑
M∈M:

|M|≥3 and E∈EM

|aM |
)
(3zE − 2zl(E)zE − 2zr(E)zE + zl(E)zr(E)).

Here, the coefficient of the penalty function associated with variable zE in (ROSS) is the sum of
the absolute values of the coefficients of the terms of f whose decomposition involves E. This
case arises, in particular, when S arises from a pairwise cover as explained in Proposition 8 (see
Remark 1).

Example 5 (Example 4 continued). To illustrate Remark 4, consider again the objective function
f(x) = −6.5x1x2x3x4x5x6 − 5.6x1x2x3, and the quadratization scheme S. To build the penalized
objective function we add a penalty function to g(z) for each E ∈ E :

• P{1,2}(3z{1,2} − 2z1z{1,2} − 2z2z{1,2} + z1z2) with P{1,2} =
∑

M∈M:
|M|≥3,{1,2}∈EM

|aM | = 6.5 + 5.6 = 12.1

• P{3,4}(3z{3,4} − 2z3z{3,4} − 2z4z{3,4} + z3z4) with P{3,4} =
∑

M∈M:
|M|≥3,{3,4}∈EM

|aM | = 6.5

• P{5,6}(3z{5,6} − 2z5z{5,6} − 2z6z{5,6} + z5z6) with P{5,6} =
∑

M∈M:
|M|≥3,{5,6}∈EM

|aM | = 6.5

• P{3,4,5,6}(3z{3,4,5,6} − 2z{3,4}z{3,4,5,6} − 2z{5,6}z{3,4,5,6} + z{3,4}z{5,6}) with

P{3,4,5,6} =
∑

M∈M:
|M|≥3,

{3,4,5,6}∈EM

|aM | = 6.5
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We obtain as final quadratic reformulation:

(ROSS)


min

z∈{0,1}10
−6.5z{1,2}z{3,4,5,6} − 5.6z{1,2}z3 + 12.1(3z{1,2} − 2z1z{1,2} − 2z2z{1,2} + z1z2)

+6.5(3z{3,4} − 2z3z{3,4} − 2z4z{3,4} + z3z4) + 6.5(3z{5,6} − 2z5z{5,6} − 2z6z{5,6} + z5z6)

+6.5(3z{3,4,5,6} − 2z{3,4}z{3,4,5,6} − 2z{5,6}z{3,4,5,6} + z{3,4}z{5,6})

4.3 A quadratic reformulation based on ABCG quadratization

We call ABCG a quadratization procedure due to Anthony et al. [3] . Given a scheme S, for each
monomial M and E ∈ EM , let

qAM (E) ,
(
2|E| − 1− 2

∑
j∈E

zj
)
zE + zlM (E)zrM (E). (18)

Let again g(z) be given by Equation (8), and define

gA(z) , g(z) +
∑

M∈M:
|M|≥3

∑
E∈EM

βM (E) qAM (E) (19)

where the coefficients βM (E) are given by the following “top-down” recursion in the graph GM :

• if E ∈ {lM (M), rM (M)}, then
βM (E) = |aM |; (20)

• if E ∈ EM \ {lM (M), rM (M)}, then

βM (E) =
∑
S∈EM :

E∈{lM (S),rM (S)}

βM (S). (21)

The recursive definition (20)-(21) has a simple graphical interpretation: for all M ∈M and E ∈ EM ,
βM (E) is equal to |aM |πM,E , where πM,E is the number of directed paths from the root M to vertex
E in the quadratization scheme GM . In particular, βM (E) ≥ |aM | ≥ 0.

The quadratic expression qAM (E) plays a similar role for ABCG as the quadratic expressions
qRM (E) in Equation (12) for Rosenberg’s procedure. However, contrary to qRM (E), there is no
guarantee that qAM (E) is nonnegative for all assignments of values to the variables. One can easily
establish the following property which will prove sufficient for our purpose: for all binary values of
zj , zE , zlM (E), zrM (E),

if zE = zlM (E)zrM (E) and zE =
∏
j∈E

zj then qAM (E) = 0. (22)

Anthony et al. [3] proved that gA(z) is a quadratization of the original function f(x) when the
scheme S = {GM = (VM , lM , rM ) : M ∈ M} is associated with a pairwise cover. For the sake of
completeness, we formally establish the next, more general statement, where (ABCGS) denotes the
unconstrained quadratic minimization problem

(ABCGS)

{
min

z∈{0,1}N
gA(z)

where gA(z) is defined by Equation (19).
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Theorem 10. For every quadratization scheme S = {GM = (VM , lM , rM ) : M ∈M}, the function
gA(z) is a quadratization of f(x) and (ABCGS) is a quadratic reformulation of (P).

Proof. It suffices to prove that gA(z) is a quadratization of f(x). As in the proof of Theorem 9,
consider any binary minimizer of gA, say z∗, and let x∗i = z∗i for i ∈ [n]. If z∗ is consistent with x∗,
then in view of Equation (22), gA(z∗) = g(z∗) = f(x∗) as required from a quadratization.

We are now going to show that we can actually assume without loss of generality that z∗ is
consistent. Let us rewrite gA(z) in the form

gA(z) =
∑

M∈M:
|M |≤2

aM
∏
i∈M

zi +
∑

M∈M:
|M |≥3

αM (z) (23)

where

αM (z) , aMzlM (M)zrM (M) +
∑
E∈EM

βM (E)

(2|E| − 1− 2
∑
j∈E

zj)zE + zlM (E)zrM (E)

 . (24)

Consider now any variable zE which appears in gA(z) with |E| ≥ 2, E ∈ EM for some M ∈ M.
(Note that E may actually appear in several schemes GM , but this will not affect the reasoning
hereunder.) We would like to identify the multiplier of zE in αM (z). Let us distinguish two cases.

Case 1: E appears in the decomposition of M , that is, E ∈ {lM (M), rM (M)}. Assume without
loss of generality that E = lM (M). Then, in (24), zE is multiplied by

cM,E(z) = aMzrM (M) + βM (E)(2|E| − 1− 2
∑
j∈E

zj),

where the second term results from the decomposition of E in GM . Consider again two subcases.

1.1. If
∏
j∈E z

∗
j = 1, or equivalently

∑
j∈E z

∗
j = |E|, then by definition (20):

cM,E(z∗) = aMz
∗
rM (M) − βM (E) = aMz

∗
rM (M) − |aM | ≤ 0.

Since z∗ is a minimizer of gA, we can assume that z∗E = 1, meaning that z∗E is consistent with
the value of

∏
j∈E z

∗
j . (As already observed, E may appear in the quadratization scheme of

several monomials M , but as we will see below, the conclusion cM,E(z) ≤ 0 will hold in all
cases.)

1.2. If
∏
j∈E z

∗
j = 0, then 2|E| − 1 − 2

∑
j∈E

z∗j ≥ 1. From this and from definition (20), it follows

that
cM,E(z∗) ≥ aMz∗rM (M) + βM (E) = aMz

∗
rM (M) + |aM | ≥ 0.

So, in this case, we can safely assume that z∗E = 0 =
∏
j∈E z

∗
j .

Let us now turn to the second case.

Case 2: E appears in the decomposition of one or several sets S ∈ EM , S 6= M . For notational
simplicity and without loss of generality, let us assume that for all such sets S, there holds E =
lM (S). Then, in (24), zE is multiplied by

cM,E(z) = βM (E)(2|E| − 1− 2
∑
j∈E

zj) +
∑
S∈EM :

E∈{lM (S),rM (S)}

βM (S)zrM (S).
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2.1. If
∏
j∈E z

∗
j = 1, then in view of definition (21),

cM,E(z∗) = −βM (E)+
∑
S∈EM :

E∈{lM (S),rM (S)}

βM (S)z∗rM (S) ≤ −βM (E)+
∑
S∈EM :

E∈{lM (S),rM (S)}

βM (S) = 0.

Since z∗ is a minimizer of gA, we can assume that z∗E = 1 =
∏
j∈E z

∗
j .

2.2. If
∏
j∈E z

∗
j = 0, then

cM,E(z∗) ≥ βM (E) +
∑
S∈EM :

E∈{lM (S),rM (S)}

βM (S)z∗rM (S) ≥ 0.

So, in this case, we can safely assume that z∗E = 0 =
∏
j∈E z

∗
j .

In all cases, we conclude that z∗ can be assumed to be consistent. Hence, as argued in the first
part of the proof, gA(z∗) = f(x∗) and gA(z) is a quadratization of f(x).

As observed earlier, βM (E) is equal to |aM |πM,E , where πM,E is the number of directed paths
from the root M to vertex E in the quadratization scheme GM . As a consequence, we immediately
obtain the following simplified form of Theorem 10 for disjoint schemes (compare with Remark 4):

Proposition 11. For every disjoint quadratization scheme S = {GM = (VM , lM , rM ) : M ∈ M},
the function

gA(z) = g(z) +
∑
E∈E

( ∑
M∈M:

|M |≥3 and E∈EM

|aM |
)
qAM (E).

is a quadratization of f(x).

Proof. When S is disjoint, every vertex E 6= M has indegree 1 in GM (see Proposition 4). Hence
πM,E = 1 and βM (E) = |aM |.

Remark 5. Proposition 11 shows that in the disjoint case, the penalty coefficients are the same in
Rosenberg’s procedure and in ABCG. However this is not the case for the penalty functions qRM (E)
and qAM (E), which can be different as illustrated by the next example.

Example 6 (Example 4 continued). Consider again the function f(x) = −6.5x1x2x3x4x5x6 −
5.6x1x2x3, and the quadratization scheme S. We construct the penalty function term by term for
every M ∈M with |M | ≥ 3 and every E ∈ EM .

Since the quadratization scheme S is disjoint, we have that for M1 = {1, 2, 3, 4, 5, 6}, βM1
(E) =

|aM1
| = 6.5 for every E ∈ EM1

and for M2 = {1, 2, 3}, βM2
(E) = |aM2

| = 5.6 for every E ∈ EM2
.

For M1 = {1, 2, 3, 4, 5, 6}, the sets E ∈ EM1
and their corresponding penalty terms are

• E = {3, 4, 5, 6}. The penalty term is
6.5
(
7z{3,4,5,6} − 2z3z{3,4,5,6} − 2z4z{3,4,5,6} − 2z5z{3,4,5,6} − 2z6z{3,4,5,6} + z{3,4}z{5,6}

)
.

• E = {1, 2}. The penalty term is 6.5
(
3z{1,2} − 2z1z{1,2} − 2z2z{1,2} + z1z2

)
.

• E = {3, 4}. The penalty term is 6.5
(
3z{3,4} − 2z3z{3,4} − 2z4z{3,4} + z3z4

)
.
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• E = {5, 6}. The penalty term is 6.5
(
3z{5,6} − 2z5z{5,6} − 2z6z{5,6} + z5z6

)
.

For M2 = {1, 2, 3}, there is only one set E ∈ EM2
:

• E = {1, 2}. The penalty term is 5.6
(
3z{1,2} − 2z1z{1,2} − 2z2z{1,2} + z1z2

)
.

We finally obtain the quadratic reformulation:

(ABCGS)


min

z∈{0,1}10
−6.5z{1,2}z{3,4,5,6} − 5.6z{1,2}z3 + 12.1(3z{1,2} − 2z1z{1,2} − 2z2z{1,2} + z1z2)

+6.5(3z{3,4} − 2z3z{3,4} − 2z4z{3,4} + z3z4) + 6.5(3z{5,6} − 2z5z{5,6} − 2z6z{5,6} + z5z6)

+6.5(7z{3,4,5,6} − 2z3z{3,4,5,6} − 2z4z{3,4,5,6} − 2z5z{3,4,5,6} − 2z6z{3,4,5,6} + z{3,4}z{5,6}).

Observe the difference between functions gR(z) and gA(z) for this example. In Rosenberg’s
procedure, the penalties for a variable zE involve the direct successors of monomial E, while in
ABCG they involve the leaves of the quadratization scheme (i.e., the initial variables). Compare,
for example, the penalties associated with z{3,4,5,6} in Example 5 and in the current Example 6.

5 Phase III: Convexifying the quadratic reformulation

In the previous section, from a given quadratization scheme S, we have built three quadratic
formulations equivalent to (P), all of them sharing the same set of N binary variables z: a linearly
constrained binary quadratic problem (FORS), and two unconstrained binary quadratic programs
(ROSS) and (ABCGS). In these three formulations, the objective function is non-convex. So, to solve
these optimization problems, a convexification step would be typically required. We propose in
this section a linearization and a convexification method for each of these three problems, and we
compare them from the point of view of the bounds obtained by continuous relaxation.

5.1 Linearization of the objective function

In this section, we propose to linearize the three quadratic reformulations. For this purpose, the
basic idea is to apply once again the standard linearization described in Section 4 to the nonlinear
terms of the quadratic functions g(z), gR(z), or gA(z) (this is also implemented in commercial
solvers like CPLEX [33] or Gurobi [43]). We thus obtain three linear reformulations of (P). We
then compare the continuous relaxation bounds of these linear problems.

Linearization of (FORS). To linearize problem (FORS), we first introduce a new variable Z{i1},{i2}
for each monomial M = {i1, i2} ∈ M of degree 2. Then, we introduce a variable ZlM (M),rM (M)

to represent the product zlM (M)zrM (M) in (FORS) for each monomial M ∈ M of degree at least
three. This variable also represents the monomial M itself. We obtain the following 0-1 linear
programming reformulation of (FORS) and therefore of (P):
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(FOR-LS)



min gL(z, Z) ,
n∑
i=1

aizi +
∑
M∈M

M={i1,i2}

aMZ{i1},{i2} +
∑
M∈M
|M |≥3

aMZlM (M),rM (M) (25)

s.t. (10)− (11)

Z{i1},{i2} ≤ zi1 , Z{i1},{i2} ≤ zi2 , Z{i1},{i2} ≥ zi1 + zi2 − 1 ∀M ∈M : M = {i1, i2} (26)

ZlM (M),rM (M) ≤ zlM (M), ZlM (M),rM (M) ≤ zrM (M) ∀M ∈M : |M | ≥ 3 (27)

ZlM (M),rM (M) ≥ zlM (M) + zrM (M) − 1 ∀M ∈M : |M | ≥ 3 (28)

z ∈ {0, 1}N , 0 ≤ Z ≤ 1,

where the shorthand notation 0 ≤ Z ≤ 1 means that each component of Z is between 0 and 1.
The number of auxiliary variables in (FOR-LS) is equal to |M| + |E|. In contrast with this,

the standard linearization (SL) introduced in Section 2 contains |M| auxiliary variables, and is
independent of any quadratization scheme. We can compare the value of the LP bounds provided
by these two linearizations when S is a disjoint quadratization scheme.

Proposition 12. For every disjoint quadratization scheme S, the LP bound provided by the contin-
uous relaxation of (FOR-LS) is at least as good as the LP bound provided by the continuous relaxation
of (SL).

Proof. Let (z∗, Z∗) be an optimal solution of the relaxation of (FOR-LS). We build the following
point (x̃, ỹ): x̃i = z∗i for i = 1, ..., n, ỹ{i1,i2} = Z∗{i1},{i2} for every degree-2 monomial {i1, i2} ∈ M,

and ỹM = Z∗lM (M),rM (M) for every monomial M ∈M with |M | ≥ 3.

Let us check that (x̃, ỹ) is a feasible solution of (SL). For any degree-2 monomial M = {i1, i2},
Constraints (3) and (4) follow from (26). Moreover, Constraints (10)-(11) iteratively enforce z∗E ≤ z∗i
and z∗E ≥

∑
i∈E z

∗
i − (|E| − 1) for all E ∈ E and all i ∈ E. Therefore, for any monomial M

with |M | ≥ 3, Constraints (3) follow from (10)-(11),(27), and M = lM (M) ∪ rM (M). To verify
Constraints (4), note that it follows from (28) that:

ỹM ≥ z∗lM (M) + z∗rM (M) − 1 ≥
∑

i∈lM (M)

z∗i − (|lM (M)| − 1) +
∑

i∈rM (M)

z∗i − (|rM (M)| − 1)− 1

and the last expression is equal to
∑
i∈M x̃i − (|M | − 1) as lM (M), rM (M) form a partition of M .

Finally, solution (x̃, ỹ) has the same objective value in (SL) as (z∗, Z∗) in (FOR-LS). We conclude
that the optimal value of (FOR-LS) is smaller than or equal to that of (SL).

�

Linearization of (ROSS). Now, we introduce the linearization of problem (ROSS). Observe that the
penalty functions of the Rosenberg procedure are composed of quadratic terms that do not appear
in (FORS). Therefore, the linearization of problems (ROSS) requires more auxiliary variables than
(FOR-LS): in addition to the Z variables already in (FOR-LS), the products zEzlM (E), zEzrM (E)

and zlM (E)zrM (E) are respectively linearized by new auxiliary variables that we denote by ZE,lM (E),
ZE,rM (E) and ZlM (E),rM (E), ∀E ∈ E ,∀M ∈ M : E ∈ EM . (Nevertheless, in order to simplify the
presentation, we use the same letter Z to denote the vector of auxiliary variables in (ROS-LS) and
in (FOR-LS).) We build the following mixed-integer linear problem equivalent to (ROSS) and to (P):
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(ROS-LS)



min gLR(z, Z) , gL(z, Z) +
∑

M∈M:
|M|≥3

∑
E∈EM

|aM |
(

3zE − 2ZE,lM (E) − 2ZE,rM (E) + ZlM (E),rM (E)

)
s.t. (26)− (28)

ZE,lM (E) ≤ zlM (E), ZE,lM (E) ≤ zE ∀E ∈ E ,∀M ∈M : E ∈ EM . (29)

ZE,rM (E) ≤ zrM (E), ZE,rM (E) ≤ zE ∀E ∈ E , ∀M ∈M : E ∈ EM (30)

ZlM (E),rM (E) ≥ zlM (E) + zrM (E) − 1 ∀E ∈ E , ∀M ∈M : E ∈ EM (31)

zE ≤ zlM (E), zE ≤ zrM (E) ∀E ∈ E ,∀M ∈M : E ∈ EM (32)

z ∈ {0, 1}N 0 ≤ Z ≤ 1.

The function gL(z, Z) in the objective function is given by Equation (25). Constraints (29)
are enough to enforce the equality ZE,lM (E) = zEzlM (E) in any optimal solution because variable
ZE,lM (E) appears in the objective function with a negative coefficient, and nowhere else. The same
holds for Constraints (30) which enforce the equality ZE,rM (E) = zEzrM (E). Constraints (31) enforce
the equality ZlM (E),rM (E) = zlM (E)zrM (E) in any optimal solution as this variable has a positive
coefficient in the objective function whenever |E| ≥ 3. This property may not hold, however, when
E is a degree-2 monomial and ZlM (E),rM (E) also appears with a negative coefficient in gL(z, Z).
But in this case, Constraints (31) are redundant with (26), which impose the required equalities.
Constraints (32) are valid inequalities that follow from the fact that in any optimal solution z̃ of
(ROSS) and therefore of (ROS-LS), z̃E must be equal to the product z̃lM (E)z̃rM (E).

We next show that the addition of Constraints (32) allows us to significantly reduce the size of
(ROS-LS) (the letter C in (ROS-CS) refers to a compact reformulation):

Proposition 13. Let (ROS-CS) be the following problem:

(ROS-CS)


min g′LR(z, Z) , gL(z, Z) +

∑
M∈M:
|M|≥3

∑
E∈EM

|aM |(ZlM (E),rM (E) − zE)

s.t. (26)− (28), (31), (32)

z ∈ {0, 1}N 0 ≤ Z ≤ 1.

Problems (ROS-LS) and (ROS-CS) have the same optimal value. The same property holds for their
LP relaxations.

Proof. In an optimal solution of (ROS-LS), ZE,lM (E) is as large as possible, therefore it is equal to
min(zE , zlM (E)) which is in turn equal to zE by Constraints (32). The same reasoning applies for
variable ZE,rM (E) which is equal to zE in any optimal solution. One can therefore fix both ZE,lM (E)

and ZE,rM (E) to zE in (ROS-LS) and straightforwardly get (ROS-CS). Integrality plays no role in
this argument, so the same conclusion holds for the linear relaxations of (ROS-LS) and (ROS-CS).
�

The compact problem (ROS-CS) has the same variables as (FOR-LS) and additional variables
ZlM (E),rM (E). We now compare the LP bounds of linearizations (FOR-LS) and (ROS-CS).

Proposition 14. For every quadratization scheme S, the LP bound provided by the continuous
relaxation of (FOR-LS) is at least as good as the LP bound provided by the continuous relaxation of
(ROS-CS).
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Proof. Let (z∗, Z∗) be an optimal solution of the relaxation of (FOR-LS). Let us build a solution
(z̃, Z̃) of the relaxation of (ROS-CS). We set z̃ = z∗ and Z̃ = Z∗ for the components of Z that are
common to both problems. We also set Z̃lM (E),rM (E) = z∗E . One can easily check that (z̃, Z̃) is a
feasible solution of the linear relaxation of (ROS-CS) with the same value as (z∗, Z∗) in the linear
relaxation of (FOR-LS). �

Linearization of (ABCGS). Let us now turn to the ABCG procedure. We need the Z variables
present in (FOR-LS), variables ZlM (E),rM (E) already used in (ROS-LS), and we add a new variable
denoted by ZE,{j} for each product zjzE , for all M ∈ M, E ∈ EM and j ∈ E. We build the
following mixed-integer linear problem equivalent to (ABCGS) and to (P):

(ABCG-LS)



min gLA(z, Z) , gL(z, Z) +
∑

M∈M:
|M|≥3

∑
E∈EM

βM (E)
(

(2|E| − 1)zE − 2
∑
j∈E

ZE,{j} + ZlM (E),rM (E)

)
s.t. (26)− (28), (31), (32)

ZE,{j} ≤ zj , ZE,{j} ≤ zE ∀E ∈ E , ∀j ∈ E (33)

z ∈ {0, 1}N 0 ≤ Z ≤ 1.

Here again, variables ZE,{j} are weighted by negative coefficients in gLA(z, Z), so Constraints (33)
are enough to linearize zjzE by ZE,{j}. For the same reasons as in (ROS-LS), Constraints (32) are
valid inequalities in (ABCG-LS). We now show that variables ZE,{j} can be fixed and Constraints (33)
can be dropped to obtain a compact reformulation of (ABCG-LS).

Proposition 15. Let (ABCG-CS) be the following problem:

(ABCG-CS)


min g′LA(z, Z) , gL(z, Z) +

∑
M∈M:
|M|≥3

∑
E∈EM

βM (E)(ZlM (E),rM (E) − zE)

s.t. (26)− (28), (31), (32)

z ∈ {0, 1}N 0 ≤ Z ≤ 1

Problems (ABCG-LS) and (ABCG-CS) have the same optimal value. The same property holds for
their LP relaxations.

Proof. The proof is similar to the proof of Proposition 13. It is enough to observe that, in an
optimal solution of (ABCG-LS), ZE,{j} is as large as possible and is therefore equal to min(zE , zj).
Constraints (32) can be applied iteratively starting from zE until reaching the leaf {j}. Hence,

min(zE , zj) = zE and ZE,{j} = zE . It follows that (2|E| − 1)zE − 2
∑
j∈E

ZE,{j} = −zE . �

The following proposition states that the LP bounds of linearizations (FOR-LS) and (ABCG-CS)
compare similarly to above.

Proposition 16. For every quadratization scheme S, the LP bound provided by the continuous
relaxation of (FOR-LS) is at least as good as the LP bound provided by the continuous relaxation of
(ABCG-CS).
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Proof. Identical to the proof of Proposition 14. �

Finally, we can observe that the compact mixed integer linear programs (ROS-CS) and (ABCG-CS)
differ only by the penalty coefficient in their objective functions. As proved in Proposition 11, these
coefficients are identical when the quadratization scheme is disjoint. This observation is recorded
in the following statement.

Corollary 17. When βM (E) = |aM | for all M ∈ M, E ∈ EM , problems (ROS-CS) and (ABCG-CS)
are identical. This happens in particular when the quadratization scheme S is disjoint.

As a conclusion of this section, we can assert that the linearized forms of (ROSS) and (ABCGS) are
weaker than (FORS), in terms of quality of the bounds they deliver. In fact, an important difference
between the quadratic reformulation (FORS) and the penalized quadratic programs (ROSS) and
(ABCGS) is that in (FORS), due to Constraints (10)-(11), the equivalence with (P) holds at each binary
point, while for problems (ROSS) and (ABCGS), it only holds at the optimum. For the latter two
formulations, the link between the variables zE and the products zlM (E)zrM (E) is somehow lost. (If
we reestablish this relation by imposing the equality zE = zlM (E)zrM (E) in their linearized versions,
then the penalties vanish in (ROS-CS) and (ABCG-CS), which both simply reduce to (FOR-LS).)

5.2 Quadratic convex reformulations

In this section, we apply convexification techniques to the quadratic formulations (FORS), (ROSS) and
(ABCGS) described in Section 4. The general idea is to replace the functions g(z), gR(z) and gA(z)
by equivalent quadratic convex functions. This provides an alternative approach to the linearization
step described in Section 5.1.

For simplicity, we detail the method for problem (FORS). As z2 = z when z is binary, the
function g(z) can be considered as a pure quadratic form. From now, we write its Hessian matrix
representation as

g(z) =
1

2
zTQz

where Q is a symmetric matrix of order N .
One common method to get a quadratic convex reformulation of (FORS) is then to use λmin,

that is, the smallest eigenvalue of Q, and to replace g(z) by

gλmin
(z) ,

1

2

(
zTQz − λmin

∑
E∈E

(z2E − zE)

)
.

The equality g(z) = gλmin
(z) holds when each zE is a binary variable. The Hessian matrix of

this equivalent form of the objective function is Q − λminIN , where IN is the identity matrix
of order N . Since Q − λminIN is positive semidefinite, the function gλmin(z) is convex. Thus,
the continuous relaxation of the reformulated problem is a convex quadratic problem which can
be solved by branch-and-bound. Different improvements of this basic convexification method are
presented hereunder.

5.2.1 Convexification for quadratic problems: the QCR method

QCR is a quadratic convex reformulation method proposed by Billionnet and Elloumi [5]. It is
an improvement of the smallest eigenvalue method based on two key ideas. First, it considers
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a parameterized non-uniform diagonal convexification. Second, it uses semidefinite programming
to determine the parameters that maximize the optimal value of the continuous relaxation of the
resulting problem.

QCR method applied to (FORS). We can rewrite (FORS) as the following equivalent quadratic problem,
parameterized by any vector α ∈ RN :

(FOR-QSα)


min gα(z) , g(z) +

∑
E∈E∪[n]

αE(z2E − zE)

s.t. (10)− (11)

z ∈ {0, 1}N .

Here again, it is clear that gα(z) = g(z) for any z ∈ {0, 1}N . Since there exist many values
of the parameter vector α ∈ RN that make gα(z) convex, we next try to determine a value of α
that makes gα(z) convex while maximizing the continuous relaxation value of (FOR-QSα). For this
purpose, we compute the dual optimal solution of the following semi-definite relaxation of (FORS):

(SDP )



min gL(z, Z)

s.t. (10)− (11)

ZE,E − zE = 0 E ∈ E ∪ [n] (34)(
1 zT

z Z

)
� 0 (35)

z ∈ RN , Z ∈ SN (36)

where SN is the set of symmetric matrices of order N , and the Z variables are introduced in the
same spirit as in the linear reformulations of Section 5.1 in order to replace the product of two z
variables. Constraints (35) are the Shor relaxation of the equality Z = zzT . It is proven in [5] that
an optimal α∗ can be deduced from the optimal dual variables associated to Constraints (34). The
continuous relaxation of (FOR-QSα∗) ((FOR-Q*S) for short) is a quadratic convex problem leading to
the highest possible dual bound in this framework. It is also proven in [5] that it has the same
optimal value as problem (SDP ).

QCR method applied to (ROSS). We can similarly apply the QCR method to convexify problem (ROSS).
The main difference with the previous case (beside the fact that the objective functions are different)
is that (ROSS) is unconstrained. Therefore, Constraints (10)-(11) are not present, which means that
(ROSS) is reformulated as the following problem:

(ROS-Q*S)


min gR(z) +

∑
E∈E∪[n]

µ∗E(z2E − zE)

s.t. z ∈ {0, 1}N

where the optimal parameters µ∗E are the optimal dual variables of Constraints (34) in the semidef-
inite program:
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(SDPR)

{
min gLR(z, Z)

s.t. (34)− (36).

QCR method applied to (ABCGS). Finally, the application of method QCR to (ABCGS) consists in
solving the following quadratic convex problem:

(ABCG-Q*S)


min gA(z) +

∑
E∈E∪[n]

ν∗E(z2E − zE)

s.t. z ∈ {0, 1}N

where the optimal parameters ν∗E are the optimal dual variables of Constraints (34) in the semidef-
inite program:

(SDPA)

{
min gLA(z, Z)

s.t. (34)− (36).

5.2.2 Convexification for polynomial problems: the PQCR method

We now describe a more elaborate convex quadratic reformulation approach called PQCR [21], which
is more specifically adapted to binary polynomial optimization problems and takes more deeply
advantage of the specific quadratization scheme. This method has an initial step that can be
viewed as yielding a quadratization scheme S together with the associated reformulation by the
quadratic problem with linear constraints (FORS). Next, it applies a convexification step to (FORS),
based on a stronger SDP relaxation than QCR. We next detail this convexification step, following
the presentation given in [21].

We start by introducing three sets of quadratic forms that, in addition to the forms z2E − zE ,
vanish on the feasible domain of (FORS) (i.e., when z is binary and Constraints (10)-(11) are
satisfied): 

zE − zlM (E)zrM (E) = 0 ∀E ∈ E ,∀M ∈M : E ∈ EM (37)

zE1
− zE1

zE2
= 0 ∀E1, E2 ∈ E ∪ [n] : E2 ⊂ E1 (38)

zE1
zE2
− zE3

zE4
= 0 ∀E1, .., E4 ∈ E ∪ [n] : E1 ∪ E2 = E3 ∪ E4. (39)

With each of these equations, we associate a real scalar multiplier, say δE for Constraints (37),
βE1,E2

for Constraints (38), and λE1,E2,E3,E4
for Constraints (39). We next add to gα(z) the

quadratic forms in (37)–(39) multiplied by their associated coefficient. This yields the following
parameterized function:

gα,δ,β,λ(z) , gα(z) +
∑

E∈E,M∈M:
E∈EM

δME (zE − zlM (E)zrM (E)) +
∑

E1,E2∈E∪[n]:
E2⊂E1

βE1,E2
(zE1

− zE1
zE2

)

+
∑

E1,..,E4∈E∪[n]:
E1∪E2=E3∪E4

λE1,E2,E3,E4
(zE1

zE2
− zE3

zE4
).
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Function gα,δ,β,λ(z) has the same value as g(z) for any binary z satisfying the standard inequali-
ties (10)-(11). Moreover, there exist parameters α, β, δ and λ such that gα,δ,β,λ is a convex function
(take, for instance, α = −λmin and β = δ = λ = 0).

Replacing g by this new objective function, we obtain the following family of convex mixed-
integer quadratic equivalent formulations of (FORS):

(PQCRSα,δ,β,λ)


min gα,δ,β,λ(z)

s.t. (10)− (11)

z ∈ {0, 1}N .

It is proved in [21, 38] that optimal parameters (α∗, δ∗, β∗, λ∗) that make gα,δ,β,λ convex and
maximize the continuous relaxation bound of (PQCRSα,δ,β,λ) can be deduced from the dual solution
of the following semidefinite program (SDP’):

(SDP ′)



min gL(z, Z)

s.t. (34)− (36)

zE − ZlM (E),rM (E) = 0 E ∈ E ,M ∈M : E ∈ EM (40)

zE1
− ZE1,E2

= 0 E1, E2 ∈ E ∪ [n] : E2 ⊂ E1 (41)

ZE1,E2
− ZE3,E4

= 0 E1, .., E4 ∈ E ∪ [n] : E1 ∪ E2 = E3 ∪ E4 . (42)

It is interesting to note that, as proved in [38], Constraints (10)-(11) become redundant when adding
Constraints (40)-(42). However, (SDP ′) has many more constraints than (SDP ). The optimal
parameters (α∗, δ∗, β∗, λ∗) can be obtained as optimal values of the dual variables respectively
associated with Constraints (34), (40), (41), and (42). Here again the continuous relaxation bound
of (PQCRSα∗,δ∗,β∗,λ∗) ((PQCR*S) for short) is as tight as the semidefinite programming bound.

6 Computational comparison of quadratization schemes

In this section, we compare the performance of different combinations of quadratization schemes,
quadratic reformulations and convexification techniques in terms of CPU time and root node gap
of the branch-and-bound algorithm on two families of instances of polynomial binary optimization
problems like (P). More precisely, for the three steps of our solution methods, we consider four
quadratization schemes to be described hereafter, the three quadratic reformulations introduced
in Section 4, and the three convexification methods presented in Section 5. We also compare the
different approaches with the standard linearization (SL) presented in Section 2. We summarize in
Table 1 the methods that we have tested. We did not consider the PQCR convexification applied
to penalty-based quadratic reformulations, as it only works if the linearization inequalities are
explicitly added to the constraint set.
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Quadratization Scheme S Quadratic reformulation
Convexification

Linearization QCR PQCR

- - (SL) − −

QA, QB, QC, QD

(FORS) (FOR-LS) (FOR-Q*S) (PQCR*S)

(ROSS)
(ROS-LS)

(ROS-Q*S) ×
(ROS-CS)

(ABCGS)
(ABCG-LS)

(ABCG-Q*S) ×
(ABCG-CS)

Table 1: Methods considered in our experiments with associated phases.

Let us now describe the four specific quadratization schemes that we consider. The case of
monomials of degree 2 is trivial, so we focus on the longer ones.

• QA [21, 38] is a “lexicographic” quadratization scheme. To obtain it, we start by sorting the
monomials in non increasing order of their degrees, and we sort the monomials of the same
degree in lexicographic order. Then, in this order, iteratively: (i) Select the first product of
variables xixj that appears in the next monomial of degree at least 3. (ii) For any monomial
M containing i and j, set lM (M) = {i, j} and rM (M) = M \ {i, j}. (iii) Add lM (M) and
rM (M) to the sorted monomial set.

• QB (Heuristic 2 in Chapter 7 of [45]) is similar to QA. The difference is that in step (i), we first
consider the products xixj which appear most frequently in f(x).

• QC: Recursively split any monomial M = {1, . . . , d} with d ≥ 3 into lM (M) = {1, . . . , d − 1}
and rM (M) = {d}.

• QD: Recursively split any monomial M = {1, . . . , d} with d ≥ 3 into lM (M) = {1, . . . , d − 1}
and rM (M) = {2, . . . , d}. This is our only quadratization scheme with non-disjoint subsets
lM and rM .

One can easily check that these quadratization schemes fulfill Definition 1. We illustrate them
in Figure 4 for the monomial x1x2x3x4.
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{1} {2} {3} {4}

{1, 2} {3, 4}

{1, 2, 3, 4}

(a) Quadratization schemes QA and QB
{1} {2} {3} {4}

{1, 2}

{1, 2, 3}

{1, 2, 3, 4}

(b) Quadratization scheme QC

{1} {2} {3} {4}

{1, 2} {2, 3} {3, 4}

{1, 2, 3} {2, 3, 4}

{1, 2, 3, 4}

(c) Quadratization scheme QD

Figure 4: Illustration of the quadratization schemes QA, QB, QC, QD

Experimental environment

Our experiments were carried out on a server with 2 CPU Intel Xeon each of them having
16 cores and 32 threads of 2.3 GHz and 8 ∗ 16 GB of RAM using a Linux operating system. For
convexifications (FOR-QSα∗), (ROS-Q*S), (ABCG-Q*S), we used the solver Mosek [42] to solve the semi-
definite programs (SDP ), (SDPR), and (SDPA). For algorithm PQCR, the quadratisation schemes
considered in our experiments lead to a very large number of Constraints (42). This raises two
experimental difficulties: generating all the Constraints (42) is very costly in CPU time, and in
addition no standard solver is able to directly handle the resulting (SDP ′) problem. To overcome
this difficulty, we solved (SDP ′) heuristically, and in particular we considered only the subset of
Constraints (42) where at least one of E1 or E2, and one of E3 or E4 correspond to an original
variable xi. Then we used the solver Mosek together with the Conic Bundle library [32] to solve
(SDP ′) heuristically within a lagrangian duality framework as described in [6]. Finally, to solve
the convex (linear or quadratic) reformulations, we used the solver Gurobi [43]. We set the total
time limit to 3 hours.

6.1 The Low Auto-correlation Binary Sequence problem

The first class of instances that we consider is associated with the Low Auto-correlation Binary
Sequence problem. The problem is to find binary sequences with low off-peak auto-correlations.
It has various practical applications in communication engineering or theoretical physics [4]. More
formally, let B = (b1, . . . , bn) be a sequence with bi ∈ {−1, 1}, and for a given k = 1, . . . , n − 1,
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define the auto-correlation

Ck(B) =

n−k∑
i=1

bibi+k.

Given two integers n0 and n, with n0 ≤ n the problem is to find a sequence B of length n that
minimizes the degree-4 polynomial

En0
(B) =

n0−1∑
k=1

C2
k(B).

In order to apply our methods, we convert the variables from {−1, 1} to {0, 1} using the standard
transformation x = b+1

2 . The problem admits a lot of symmetries. In particular the correlations
Ck are identical for a sequence B and its complement. We exploit this symmetry by fixing to 0 the
variable that appears the most.

We present in Table 2 the characteristics of the considered instances, where each instance is
labeled b.n.n0 (column Instance) and |M| is the number of monomial of the objective function.
These instances were introduced by [39] and can be found on the MINLPLib [40] website. For each
quadratization (QA, QB, QC, and QD), we display |E|, the number of auxiliary variables, and |(SDP ′)|,
the number of constraints that we incorporated in (SDP ′) in method PQCR. As mentioned above,
|(SDP ′)| only accounts for a subset of Constraints (42), which means that the root node gap of
PQCR could in principle be significantly improved by generating more constraints. As an illustration,
the real number of constraints of (SDP ′) for instance b.25.6 is 1525 for QA, 1071 for QB, 41944,
for QC, and 53595 for QD.

We can observe in Table 2 that the number of intermediate monomials appearing in the quadra-
tization schemes, namely, |E|, is always smaller than the number of original monomials |M|. This
is particularly true for the quadratization schemes QA and QB which, for each original monomial
of degree 4, only add auxiliary intermediate monomials of degree two. They therefore add at most
n(n− 1)/2 monomials, regardless of the number of original monomials. This also implies that the
convexification methods of Table 1 (which all have n+ |E| variables) will have a significantly smaller
number of variables than the linearization methods (which use at least |M| + |E| variables). The
same observation holds for Table 3 in Section 6.2.
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Instance |M| |E| |(SDP ′)|
QA QB QC QD QA QB QC QD

b.20.5 207 44 25 68 86 498 163 750 1034

b.20.10 833 103 118 245 320 2477 3152 5395 7966

b.20.15 1494 144 157 447 625 4652 5271 13603 22299

b.25.6 407 79 69 144 169 1187 873 2102 2619

b.25.13 1782 180 202 540 717 5900 7234 15942 24347

b.25.19 3040 240 258 934 1312 10088 11200 37170 61312

b.25.25 3677 264 294 1140 1665 12012 14136 50532 87621

b.30.4 223 51 33 73 76 433 189 631 658

b.30.8 926 143 141 324 401 3125 2923 6574 8997

b.30.15 2944 265 299 924 1228 10497 13009 32702 50120

b.35.4 263 61 38 88 91 523 214 766 793

b.35.9 1381 198 197 493 616 5064 4819 11423 15928

b.40.5 447 104 45 168 206 1278 263 1970 2634

b.45.5 507 119 50 193 236 1473 288 2275 3034

b.50.6 882 179 144 344 394 2887 1848 5302 6444

b.55.6 977 199 159 384 439 3227 2043 5942 7209

b.60.8 2036 323 291 774 941 7625 6073 16684 22437

Table 2: Characteristics of the auto-correlation instances

We present in Figures 5-7 a comparison of the CPU times and of the initial gaps observed for
the auto-correlation instances. In Figures 5 and 6, for a given quadratic reformulation and a given
convexification, we compare the quadratization schemes (QA, QB, QC, and QD). (We do not report the
results for methods (ROS-Q*S) and (ABCG-Q*S), since they solve only one instance out of 17 within
the time limit.) The x-axis represents the instances and the y-axis the CPU times in seconds or

the initial gaps = 100 ∗ |LB−S|S , with LB the continuous relaxation value of the method, and S the
value of the best known solution. Note that the scale of the vertical axis for the initial gap differs
significantly from figure to figure.

We observe that the CPU times (Figures 5a and 5c resp.) and the initial gaps (Figures 5b and 5d
resp.) of the convexification methods based on quadratic convex reformulation ((PQCR*S) and
(FOR-Q*S) resp.) are impacted by the choice of the quadratization. Note that the solution time of
(SDP ′) is included in the total time, and is on average about 25 seconds for QA and QB, 500 for QC,
and 1450 for QD. On the other side, the impact of the quadratization scheme on the linearization
methods is much smaller. It barely affects the CPU time, as shown in Figures 6a and 6c. For
(FOR-LS), the initial gap is very large but quite stable, and even identical for the quadratizations
QA, QC, and QD. For (ROS-CS), however, the choice of the quadratization has a real impact on the
initial gaps, with a factor of about 2 between the gaps of the quadratization schemes QC and QD.

The quadratization scheme that is globally most efficient, irrespective of the methods, is QA. For
this reason, we compare the performance of the different methods when QA is applied; see Figure 7.
More precisely, we compare the CPU time (Figure 7a) and the initial gaps (Figure 7b) for the
three best performing methods: (PQCR*QA), (ROS-CQA) and (FOR-LQA) with the performance of the
standard linearization (SL). We observe that (PQCR*QA) outperforms the other methods in terms of
both CPU time and initial gaps. The linearizations (FOR-LQA) and (ROS-CQA) have about the same
CPU times, while the initial gaps with (FOR-LQA) are almost twice as small as those with (ROS-CQA).
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Finally, for the standard linearization (SL), we observe that despite an initial gap comparable to
that of (FOR-LQA), it is the slowest formulation. Figure 7d displays a comparison of the initial gaps
of all the considered methods; we observe that the quadratic reformulation and convexification steps
have a clear impact on these gaps. Finally, Figure 7c illustrates the improvement in computing
time brought by the compact linearization (ROS-CQA) when compared to the linearization (ROS-LQA)
(which is identical to (ABCG-LQA)). We observe that it performs comparably to the linearization
(FOR-LQA).

(a) CPU times: (PQCR*S) with QA, QB, QC and QD (b) Initial gaps: (PQCR*S) with QA, QB, QC and QD

(c) CPU times: (FOR-Q*S) with QA, QB, QC and QD (d) Initial gaps: (FOR-Q*S) with QA, QB, QC and QD

Figure 5: Auto-correlation: CPU times and initial gaps for QCR and PQCR applied to (FORS).
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(a) CPU times: (FOR-LS) with QA, QB, QC and QD (b) Initial gaps: (FOR-LS) with QA, QB, QC and QD

(c) CPU times: (ROS-CS) with QA, QB, QC and QD (d) Initial gaps: (ROS-CS) with QA, QB, QC and QD

Figure 6: Auto correlation: CPU times and initial gaps for the linearizations.
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(a) CPU times: best performing methods with QA (b) Initial gaps: best performing methods with QA

(c) CPU times for linearizations with QA (d) Initial gaps for all methods with QA

Figure 7: Auto-correlation: CPU times and initial gaps with quadratization scheme QA

6.2 The image restoration problem

A second set of instances stems from the image restoration problem [8, 25, 34, 35]. The goal is
here to reconstruct an original sharp base image from a blurred image. An image is a rectangle
containing n = l × h (black or white) pixels. This rectangle is modeled as a binary matrix of the
same dimension. The problem can be written as the minimization of a degree-4 polynomial of binary
variables where each variable represents a pixel. The coefficients of the monomials are indicative of
how likely a configuration is to appear in the sharp base image. The size of the considered instances
is l × h = 10 × 10 and l × h = 10 × 15, or in the polynomial formulation n = 100 and 150, with a
number of monomials equal to |M| = 668 and 1033, respectively. In our experiments, 15 instances
of each size are considered, for a total of 30 instances. Note that the 15 instances of the same size
have identical monomials with different coefficients. The name of each image restoration instance
describes its characteristics v.n.r: n is the number of binary variables and r is the index of the
instance with the same characteristics. We report in Table 3 the number of auxiliary variables |E|,
and |(SDP ′)|, the number of constraints of (SDP ′) considered for these instances. Here again, we
only generate a subset of Constraints (42). These instances have a larger number of initial variables,
but are much sparser than the low auto-correlation instances.
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instance |M| |E| |(SDP ′)|
QA QB QC QD QA QB QC QD

v.100.r 668 252 159 324 423 2990 1317 3446 4687

v.150.r 1033 392 249 504 653 4730 2097 5436 7317

Table 3: Characteristics of the image restoration instances

We present the same graphs as in Section 6.1 (Figures 8 to 9), comparing the CPU times and
initial gaps of the different combinations of the quadratization schemes, quadratic reformulations
and convexifications. We only report the detailed results of the best performing methods (PQCR*S),
(FOR-LS) and (ROS-CS). In particular methods (FOR-Q*S), (ROS-Q*S), and (ABCG-Q*S) were not
able to solve any of the 30 instances within the time limit of 3 hours. We observe that the quadra-
tization scheme has only a limited impact on the CPU times of (FOR-LS) (Figure 8c) and (ROS-CS)
(Figure 8e), while its choice strongly affects the CPU times of (PQCR*S) (Figure 8a). Indeed, the
total CPU time of (PQCR*S) goes on average from about 1600 seconds for QD to 32 seconds for
QB, and the CPU time of (FOR-LS) ((ROS-CS) resp.) goes from 5 seconds for QA (5 seconds for
QB and QC resp.) to 21 seconds for QD (26 seconds for QA resp.). On these sparse instances, the
quadratization scheme QB, which has the smallest number of auxiliary variables, is the best scheme
for (PQCR*S). Note that most of the CPU time of (PQCR*S) is used to solve (SDP ′) since the
average CPU time for the branch-and-bound is 5 seconds for QB within an average total CPU time
of 32 seconds. Concerning the initials gaps, we observe that (PQCR*S) (Figure 8b) always has
an initial gap lower than 2%, for all quadratization schemes, whereas (FOR-LS) (Figure 8d) and
(ROS-CS) (Figure 8f) always have gaps higher than 175%. Moreover, for (PQCR*S) the initial gaps
are identical for the quadratization schemes QA, QC and QD; this is also the case for (FOR-LS) with
the quadratization schemes QA and QB.

The quadratization scheme that is most efficient globally on all the methods is QB, we therefore
compare in Figure 9 the performance of different methods when QB is selected. As in Section 6.1, we
compare the CPU time (Figure 9a) and the initial gaps (Figure 9b) for the three best performing
methods: (PQCR*QB), (ROS-CQB) and (FOR-LQB) with the performance of the standard linearization
(SL). We observe that (ROS-CQB) and (FOR-LQB) outperform (PQCR*QB) and (SL) in terms of CPU
times, in spite of the fact that (PQCR*QB) has a significant smaller initial gap than the other methods.
Finally, for the standard linearization (SL), we observe that despite an initial gap comparable to that
of (FOR-LQB), it is the slower method. Then, we present in Figure 9d a comparison of the initial gaps
of all the considered methods and we observe that the quadratic reformulation and convexification
steps have a clear impact on these gaps. Finally, we present in Figure 9c an illustration of the
improvement in computing time obtained with the compact linearization (ROS-CQB) when compared
with the reformulation (ROSQB) (which is identical to (ABCGQB) for the scheme QB). We observe that
the new linearization is slightly faster on average.
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(a) CPU times: (PQCR*S) with QA, QB, QC and QD (b) Initial gaps: (PQCR*S) with QA, QB, QC and QD

(c) CPU times: (FOR-LS) with QA, QB, QC and QD (d) Initial gaps: (FOR-LS) with QA, QB, QC and QD

(e) CPU times: (ROS-CS) with QA, QB, QC and QD (f) Initial gaps: (ROS-CS) with QA, QB, QC and QD

Figure 8: Image restoration instances: CPU time and initial gaps comparison of the quadratizations
QA, QB, QC and QD. Time limit: 10800 seconds.
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(a) CPU times: best performing methods with QB (b) Initial gaps for all methods with QB

(c) CPU times for linearizations with QB (d) All methods : Initial gap for QB

Figure 9: Image restoration: CPU times and initial gaps with quadratization scheme QB

7 Conclusion

In this paper, we have examined a generic framework for the exact solution of the polynomial
unconstrained binary programming problem. The framework consists of three phases: the first
one determines a quadratization scheme of the polynomial which is used, in a second phase, to
produce a quadratic reformulation of the initial problem. The resulting quadratic problem is in
general non-convex. The third phase of the solution process is the convexification of the quadratic
reformulation. For each phase, we present several possible approaches that we compare from the
theoretical point of view and that we relate to the literature. In particular, we present in a unified
way various concepts that were previously introduced independently of each other, and we explicitly
show which quadratic reformulations can be meaningfully combined with existing convexification
methods.

We illustrate our findings through a set of computational experiments. Our numerical results
clearly demonstrate that the choice of the quadratization scheme, of the quadratic reformulation
step and of the convexification method should not be made arbitrarily and independently of each
other. In particular, in our experiments, the smaller quadratization schemes QA and QB rather
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consistently outperformed the denser schemes QC and QD in terms of CPU time. Regarding the
quadratic reformulation methods, the constraint-based approaches proved more robust than the
penalty approaches. Finally, for the convexification methods, QCR struggled and was never com-
petitive, neither in terms of gap nor in terms of CPU time, whereas PQCR was best able to reduce
the duality gap and to provide a tight reformulation. However, this small gap came at the cost of
long computing times, mostly spent in setting up the large-size reformulation. For the (relatively
easy) image restoration instances, this time was prohibitively large, so that the reduction of the
gap and the associated tighter relaxation were not sufficient to make PQCR really competitive: it
was generally outperformed by simpler, more primitive methods like (FOR-LS) or (ROS-CS) or, in
spite of their much larger initial gap.

In summary, we conclude that within the three-phase framework for polynomial unconstrained
binary optimization, the performance of a global solution method depends very much on the com-
bination of its constituting elements, as well as on the features of the instances to be solved. The
combined method should always be designed accordingly. In particular, for sparse instances, ap-
plying linearization methods that do not require expensive pre-processing and whose size remains
moderate is probably a wise choice. On the other hand, for very dense instances, the size of lin-
earizations increases drastically, and thus convexifications that are very stable in both size and gap
are likely to perform more efficiently.
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