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An interpretable and versatile machine learning approach for
oocyte phenotyping
Gaelle Letort1,*, Adrien Eichmuller1, Christelle Da Silva1, Elvira Nikalayevich1, Flora Crozet1, Jeremy Salle2,
Nicolas Minc2, Elsa Labrune3,4,5, Jean-Philippe Wolf6,7, Marie-Emilie Terret1 and Marie-Héleǹe Verlhac1

ABSTRACT
Meiotic maturation is a crucial step of oocyte formation, allowing
its potential fertilization and embryo development. Elucidating this
process is important for both fundamental research and assisted
reproductive technology. However, few computational tools based on
non-invasive measurements are available to characterize oocyte
meiotic maturation. Here, we develop a computational framework to
phenotype oocytes based on images acquired in transmitted light.We
trained neural networks to segment the contour of oocytes and their
zona pellucida using oocytes from diverse species. We defined a
comprehensive set of morphological features to describe an oocyte.
These steps were implemented in an open-source Fiji plugin.
We present a feature-based machine learning pipeline to recognize
oocyte populations and determine morphological differences
between them. We first demonstrate its potential to screen oocytes
from different strains and automatically identify their morphological
characteristics. Its second application is to predict and characterize
thematuration potential of oocytes.We identify the texture of the zona
pellucida and cytoplasmic particle size as features to assess mouse
oocyte maturation potential and tested whether these features were
applicable to the developmental potential of human oocytes.

This article has an associated First Person interview with the first
author of the paper.

KEY WORDS: Characterization, Machine learning, Maturation,
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INTRODUCTION
At the end of its growth in the ovary, an oocyte follows a crucial phase
called meiotic maturation, which determines its capacity to be
fertilized and sustain early embryonic development. Meiotic

maturation consists of two successive highly asymmetric divisions
in size (Mogessie et al., 2018; Verlhac and Terret, 2016). The first
meiotic division (meiosis I) begins for an oocyte initially in prophase
I with the rupture of the nuclear envelope (nuclear envelope
breakdown, NEBD, Fig. 1A) and finishes with the formation of
two daughter cells: a large oocyte and a small polar body (PB) (PB
extrusion, Fig. 1A). This highly asymmetric division allows the
oocyte to retain most of its cytoplasmic content accumulated during
its growth, which is essential for early embryonic development
(Mogessie et al., 2018; Verlhac and Terret, 2016; Coticchio et al.,
2015). The oocyte then enters the secondmeiotic division (meiosis II)
and arrests in metaphase II until fertilization by the sperm. This
maturation step is particularly error-prone in terms of chromosome
segregation and responsible for most aneuploidies in human
(Mihajlovic ́ and FitzHarris, 2018; Nagaoka et al., 2012). Strikingly,
in humans, the quality of oocytes decreases with maternal age, which
constitutes amajor societal issue inmodern societies inwhichwomen
tend to postpone childbearing. Oocyte maturation is thus the object of
intense research efforts both in clinics and in academia, which often
relies on using surrogate models similar to humans to analyze larger
cohorts of genetically modified oocytes.

In the context of assisted reproductive technologies, in vitro
oocyte maturation can be used to avoid hormonal treatments for
women experiencing repeated in vitro fertilization failures or those
who do not respond to hormonal stimulation. Moreover, oocytes can
also be extracted and frozen for fertility preservation (Hatırnaz et al.,
2018; Segovia et al., 2017). The success rate of in vitro oocyte
maturation is typically around 70% (Kim et al., 2004), but the
developmental potential of in vitro-matured oocytes is much lower
than that for in vivo-matured ones (Kim et al., 2004; La et al., 2019;
Monti et al., 2017). To improve in vitro oocyte maturation protocols,
we need to better decipher the parameters associated with successful
oocyte development. Several characteristics correlating with oocyte
quality have been identified, such as the composition and amount of
accumulated maternal mRNAs, the sizes of the oocyte, its zona
pellucida (ZP) and its polar body, its cytoplasmic organization, or
the presence of certain epigenetic modifications (Cran, 1985; Eppig
et al., 1994; Fair et al., 1995; Hyttel et al., 1989; La et al., 2019).
However, a consensus on the individual power of these parameters
to predict the developmental potential of oocytes has never been
reached, and there are often conflicting results (Bartolacci et al.,
2022; Rienzi et al., 2011). Machine learning techniques can be used
to tackle this problem as they can automatically identify more
relevant features and take into account multiple features at the same
time. These techniques have been applied to predict metaphase II
oocyte or blastocyst quality and select the best embryo for
implantation (Khosravi et al., 2019; Wang et al., 2019; Cavalera
et al., 2019; Manna et al., 2013), but not to predict the potential of
prophase I oocyte maturation (Fernandez et al., 2020; Zaninovic and
Rosenwaks, 2020).
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In both academia and clinics, computational tools to better
characterize the developmental potential of oocytes are thus
necessary. To follow live oocyte development, fluorescence

imaging is commonly used in academia. However, it is limited to
the number of fluorescent markers that can be visualized in parallel
and it produces phototoxicity, potentially affecting the proper

Fig. 1. A machine learning pipeline to characterize oocyte developmental potential. (A) Scheme of the main steps of oocyte maturation, from prophase I to
metaphase II. Schematic representation (top) and still images from a movie of a mouse maturing oocyte in transmitted light (bottom). Scale bar: 20 µm. Nuclear
envelope breakdown, NEBD; polar body, PB. DNA is in blue, microtubules in dark gray, oocyte plasma membrane in purple, zona pellucida in green.
(B) Scheme of the machine learning pipeline. Steps used in our pipeline: data acquisition, preprocessing, temporal alignment, segmentation, feature extraction
and analysis. (C) Automatic nucleus detection from transmitted light images. (i) Training of the neural network (blue box) to recognize oocytes with a visible
nucleus (upper left, the nucleus is indicated by the white dotted circle; bottom left, the oocyte does not have a nucleus). Scale bars: 20 µm. (ii) Scores of nucleus
detection (p) on the test dataset (recall=TP/(TP+FN); precision=TP/(TP+FP), where TP=true positive, FN=false negative, FP=false positive) of ten neural
networks (with random weights initialization) after training. Boxes represent the 25–75th percentiles, whiskers show the data within 1.5× from the interquartile
range and themedian is marked with a line. (D) Automatic determination of the NEBD timing in mouse oocytematurationmovies. (i) Nucleus detection score (p) in
individual images of onemovie, acquired at 10 min, 25 min, 1 h, 8.5 h and 12 h after movie beginning, calculatedwith the trained neural network. Scale bar: 20 µm.
(ii) Evolution of the nucleus detection score in time and automatic determination of NEBD timing as the first transition from low score (before NEBD) to high score
(after NEBD). (iii) Comparison of automatically and manually determined NEBD timing on 46 test oocyte maturation movies. R-square of the timing differences is
indicated. The dashed line represents the y=x line. (iv) Histogram of the timing of NEBD from 424 movies. The dashed vertical line represents the 0.95
quantile above which oocytes are considered to present a delay in NEBD timing.
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development of oocytes (Kasprowicz et al., 2017; Ounkomol et al.,
2018; Skylaki et al., 2016; Vicar et al., 2019). Label-free imaging is a
promising non-invasive method to overcome these hurdles
(Kasprowicz et al., 2017) and is exclusively used in clinics.
However, label-free images present a much lower contrast, making
the segmentation of the object contour a limiting step (Buggenthin
et al., 2013; Tse et al., 2009). Deep learning approaches provide a
good performance for segmentation of label-free images from various
cell types (Falk et al., 2019; Kim et al., 2019; Ronneberger et al.,
2015). Therefore, we chose a versatile approach to implement a
segmentation tool that would be robust to the diversity of oocyte types
and modes of acquisition (mouse oocytes coming from academia and
human oocytes from clinics), as well as to external objects present in
the field of view, such as follicular cells or injection pipettes.
Here, we developed a machine learning approach to characterize and

predict oocyte maturation in vitro based on images acquired non-
invasively. First, we propose a new Fiji plugin, Oocytor, available
open-source onGitHub (seeMaterials andMethods). Oocytor is a user-
friendly tool to segment the contour of oocytes from diverse species as
well as their zona pellucida, when present, from transmitted light
images. Oocytor was designed to extract numerous morphological
features and to automatically detect NEBD, which marks the
beginning of the maturation process. Next, we implemented a
machine learning approach to characterize and predict oocyte
development. We decided to favor interpretability over predictive
power and chose an approach based on hand-engineered features
extracted from our plugin. We designed a list of 118 morphological
features identified as potential markers of oocyte quality (Bartolacci
et al., 2022; Ozturk, 2020; Rienzi et al., 2011). We showed that this
machine learning approach can be used to discriminate oocyte
populations and automatically identify morphological differences
coming from a mutant strain. This automatic phenotyping could be a
valuable tool for fundamental research studies. Finally, we used our
pipeline to predict the potential of oocytes to start and perform a
correct maturation. In addition to predicting oocyte quality before its
maturation, it allowed us to identify the most determinant
morphological features controlling the maturation process. As a
proof of concept, we based our study on the in vitro maturation of
mouse oocytes, which are relatively similar to human oocytes
(Anderiesz et al., 2000; Levi et al., 2013; Ménézo and Hérubel,
2002), and offering access to more data and possible genetic
manipulations. We tested how the results obtained on mouse oocytes
could be transferred to in vitro human oocytes with a small dataset
acquired from clinics.

RESULTS
To maximally avoid perturbations and to be in line with clinical
practice, our method to analyze oocyte development was based on
non-invasive measurements. Therefore, we propose here a
computational tool to characterize oocytes from images or movies
acquired in transmitted light, without any fluorescent markers. Our
first objective was to build a user-friendly computational tool to
extract quantitative information from images and/or movies of
oocytes undergoing maturation. For this, we acquired 468 movies of
mouse oocytes, starting shortly before NEBD until metaphase II
onset (Fig. 1A). Note that we made these movies freely accessible
on Zenodo (see Materials and Methods).

Overview of our new machine learning pipeline to
characterize oocytes
To automatically analyze oocyte maturation, we propose a machine
learning pipeline (Fig. 1B, overview of the pipeline and its different

steps) based on our image dataset. First, movies or images were
preprocessed for homogenization (see Materials and Methods).
Then, the time of maturation initiation, characterized by NEBD, was
automatically determined and used as a temporal landmark (Fig. 1B,
Temporal alignment step). Next, images were segmented to identify
the oocyte and its zona pellucida contours (Fig. 1B, Segmentation
step), allowing the extraction of a vector of 118 numerical features
describing an oocyte (Fig. 1B, Features extraction step). We then
used these features, or an uncorrelated subset of them, in several
machine learning methods according to our needs (Fig. 1B,
Analysis step). We implemented the Temporal alignment,
Segmentation and Features extraction steps into a Fiji plugin,
Oocytor, proposing a user-friendly source to extract quantitative
information from oocytes in transmitted light. Below we present
more details on these three main steps of our pipeline.

Automatic detection of NEBD from mouse oocytes
Oocyte maturation is a precisely, temporally regulated process. The
time after NEBD is commonly used as a landmark to describe
progression into oocyte maturation. When maturation is triggered in
vitro, the oocyte population does not undergo NEBD perfectly
synchronously, with few oocytes being extremely delayed and some
remaining arrested in prophase I. We therefore designed an automatic
assessment of NEBD in our plugin to annotate this event and
temporally align time-lapse movies of oocyte development.

We first trained a neural network to determine the presence
or absence of a visible nucleus. Our network takes as input an
image containing one oocyte and evaluates the probability that
it has already undergone NEBD (Fig. 1C, left panel, nucleus
highlighted in dotted white circle). The architecture of a neural
network determines its performance for a given task. We chose an
architecture based on the neural network VGG-16 (Simonyan and
Zisserman, 2015 preprint), which is specialized for image
classification (Fig. S1A). We generated a dataset of mouse oocyte
images manually annotated as before or after NEBD from our
dataset (see Materials and Methods). Our final database comprised
7713 images, 90% of which were used for selection and training of
the network (Fig. S1B, see Materials and Methods) and 10% for
testing its performance. We measured network precision and recall
(Taha and Hanbury, 2015), which give an indication of the quality
and quantity of ‘hits’ (here, oocytes having undergone NEBD). We
obtained a higher precision than recall (median score of 98% versus
96%, Fig. 1C, right panel), indicating that the network had a slight
tendency to generate false negatives, i.e. oocytes without a nucleus
that were predicted as still containing one. These false negatives
might be due to the presence of a visible polar body in some images,
which somehow confused the network. Indeed, the fourth image in
Fig. 1D with a visible polar body has a lower score compared to the
third and fifth images without a visible polar body.

We corrected this problem by considering the overall information
in the movie instead of looking only at a single snapshot, and
implemented NEBD determination in Oocytor. Each image from a
movie was run through our trained neural network, which calculated
a probability of the oocyte state being after NEBD for each time
point (Fig. 1D, top panel). NEBDwas set as the first transition point
at which the nucleus detection score switches from low to high
(Fig. 1D, bottom left panel). To evaluate the accuracy of our
method, we compared the NEBD timings obtained with our plugin
to the annotated ones from test movies, which were not used for
training the network. Overall, automatically detected and manually
assigned timings were very close (Fig. 1D, bottom middle panel),
which confirmed that our plugin can reliably be used for automatic
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detection of NEBD. Finally, we calculated the NEBD timing for our
468 mouse oocyte maturation movies. We manually checked the
movies for which the obtained NEBD time was delayed. We found
that eight of the 44 oocytes that did not undergo NEBD were
erroneously labeled as having a late NEBD and thus manually
corrected. In the majority of the cases, NEBD occurred in oocytes
(424 cells) approximately 30 min after the start of the recordings
(Fig. 1D, bottom right panel). However, some oocytes required
more time to undergo NEBD, which might reflect states of
unfinished growth or other defects. Taking the delay in NEBD
timing into account is important as it can reflect inherent differences
in oocyte potential and is also essential to compare oocytes at the
same stage of meiotic maturation. Oocytor allows us to do this
automatically and to avoid manual annotation, which could be
tedious for large datasets.

A robust and generic segmentation pipeline of oocyte
contours
The second step of our machine learning pipeline was to extract
quantitative and interpretable information from images to better
describe oocytes. For this, we first implemented a deep learning-
based tool to segment the contour of the oocyte from images
acquired in transmitted light. We based our neural network (Fig.
S1C) on the U-Net architecture (Ronneberger et al., 2015),
specifically designed for segmentation of biomedical images
(Caicedo et al., 2019; Saleh et al., 2019). First, we created a
database of thousands of images of single oocytes with their
corresponding segmentation, which are our ground-truth labels.
With the aim of building a robust and versatile network (Möckl
et al., 2020), we pooled together datasets of both mouse and human
oocytes, derived from different contexts (see Materials and
Methods). We obtained a database of 8256 images of which 85%
were used for selection and training of the network and the
remaining 15% for testing it (Fig. 2A). During training, the network
learned by optimizing its parameters to minimize the error between
its outputs and the ground-truth images (Fig. 2A, right panel). We
evaluated this error by the intersection over union (IOU) score, a
metric measuring segmentation quality (Taha and Hanbury, 2015).
The implementation of the network requires choosing additional
parameters (e.g. the number of iterations) called hyper-parameters.
Their fine tuning was performed on the training dataset with a cross-
validation technique (see Materials and Methods; Fig. S1D). We
then trained the selected network (Fig. 2A, left). For mouse oocytes,
we obtained an average IOU of 97% on the test dataset (Fig. S1F).
We applied the same steps to select and train neural networks to
determine the contours (inner and outer limits) of the zona pellucida,
a glycoprotein layer surrounding the oocyte, for which we built a
database of 3578 images (see Materials and Methods). We obtained
an average IOU of 82% for the zona pellucida segmentation on
the mouse test dataset (Fig. S1E,F). Eventually, we implemented this
step in our Fiji plugin with the objective of proposing a user-friendly
tool for segmentation of oocyte and zona pellucida contours from
transmitted light images to the oocyte research community (see
Materials and Methods; Fig. S1G). Fig. 2B shows examples of
segmentation obtained with Oocytor for oocytes at different stages of
maturation. Oocytor can thus be used to segment oocytes from
transmitted light images and, based on how it was constructed, should
be relatively robust to different imaging conditions.

A numerical description of oocytes
To numerically characterize oocytes at a given time point, we
defined 118 quantitative measures of their properties (features).

These features described the oocyte, its surrounding zona pellucida,
its perivitelline space (space between the oocyte and its zona
pellucida) and its dynamics (Fig. 2C). For this, we used radiomics
features (Fornacon-Wood et al., 2020; Rizzo et al., 2018),
morphological characteristics that have been shown to be
important to discriminate oocyte quality (Inoue et al., 2007;
Ozturk, 2020; Rienzi et al., 2011), and other characteristics that
could be applied to the oocyte description. We implemented the
measures of all features based on the segmentation of oocyte and
zona pellucida contours from images acquired in transmitted light
using our plugin (see Materials and Methods). We defined a high
number of features in order to have an unbiased exploration of
the oocyte. It is important to note that some features can measure
related biological properties and thus have correlated values
(Fig. 2D, bottom graph). Several methods are available to extract
a subset of independent features necessary for some machine
learning algorithms (Hira and Gillies, 2015). Here, we implemented
an unsupervised subset selection based on correlation (see Materials
and Methods; Fig. 2D, top graph). Our 118 features or the
uncorrelated subset can then be used in machine learning algorithms
to classify and characterize oocyte populations.

A powerful pipeline to automatically phenotype oocytes
In fundamental research, genetic manipulation is often performed to
study a particular aspect of oocyte maturation. Our machine learning
pipeline allowed us to build an algorithm that, after training, should
automatically recognize the population of origin of an oocyte. The
success or failure of this classification allows us to test whether the
population presents morphological differences and oocytes could be
sorted according to the extent of their mutant phenotype. To
demonstrate the potential of our pipeline, we chose to test it on a
well-characterized population of Formin-2-knockout oocytes
(Fmn2−/−) against control mouse oocytes [wild type (WT) and
Fmn2+/−], for which we already have datasets of movies of oocytes
arrested in prophase I (Al Jord et al., 2021 preprint; Almonacid
et al., 2015). We kept the smaller dataset to test the performance of
our approach and trained the algorithm with the other two combined
datasets (Fig. 3A). We first verified visually that our segmentation
with Oocytor performed well on these new data, despite the
differences in oocytes phenotypes and modes of image acquisition
(Fig. S2A). We then applied our pipeline to classify oocytes by their
population of origin. For this, in the Analysis step of the pipeline, we
compared the performance of different machine learning algorithms
(see Materials and Methods; Fig. S3B) that received the features
describing one oocyte as input and classified it either as control
(Ctrl) or Fmn2−/− (Fig. 3A). We obtained the best performance with
the random forest algorithm (Breiman, 2001), which was able to
recognize control and Fmn2−/− oocytes with approximately 94%
accuracy on the training data (Fig. 3A; Fig. S2B,C). We tested the
performance of this algorithm on an independent set of data and
obtained a classification accuracy of about 92% (Fig. 3B), with a
better recall than precision (Fig. S2C). Hence, even with a small
number of training oocytes (49 control and 49 Fmn2−/− oocytes),
our algorithm was able to discriminate oocytes based on their
phenotype, owing to their morphological description.

To understand how the algorithm recognized the two oocyte
populations, we examined theweight of the different features (based
on the Gini index, see Materials and Methods). The average
cytoplasmic agitation, measured by particle image velocimetry
(Tseng et al., 2012), was the most discriminant feature for the
algorithm (Fig. S2D,E). Indeed, cytoplasmic agitation was strongly
reduced in Fmn2−/− oocytes (Fig. S3E), confirming previous work
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showing that cytoplasmic agitation is controlled by the movement of
actin-coated vesicles nucleated by Formin-2 (Almonacid et al.,
2015; Holubcová et al., 2013). In addition, the second and third
most discriminant features were the size and spatial distribution of
the cytoplasmic particles (Fig. S2D). The difference in spatial
repartition most likely reflects the difference in the position of large
objects such as the nucleus (centered in control oocytes, off-
centered in Fmn2−/− oocytes, Fig. 3A; Almonacid et al., 2015). The
difference in the average particle size (bigger in control oocytes,

Fig. 3C), a newly identified feature, could be explained by the
difference in cytoplasmic agitation, which tends to center large
objects in the cytoplasm (Colin et al., 2020) and thus could favor the
aggregation of particles into clusters.

To further challenge our pipeline phenotyping capacities, we
applied it to discriminate oocytes with more subtle differences,
derived from two different mouse wild-type strains. Indeed, we had
access to single images of oocytes taken before NEBD from
different strain backgrounds, OF1 and C57BL6 (see Materials and

Fig. 2. Segmentation and extraction of features from oocytes. (A) Scheme of the process used to segment the oocyte contour with neural network. Thousands
of mouse and human oocyte images acquired under different conditions (top left panel) with their associated ground-truth (true segmentation mask, top left
panel) were split into a training dataset (85% of the images, topmiddle panel) and a test dataset (bottom panel). Network score is evaluated by the intersection over
union (IOU) score during the training iterations (epochs) of the network (top right graph). Once trained, the performance of the network is evaluated by measuring
the IOU between its output and the ground truth on the test dataset (bottom panel). (B) Examples of segmentation of the oocyte membrane (purple lines) and
of the zona pellucida contours (green lines) obtained with Oocytor onmouse oocytes at different stages ofmaturation. Scale bar: 20 µm. (C) Features characterizing
an oocyte. The numbers of features are shown in parenthesis and the features are grouped by categories: describing the oocyte (purple), its zona pellucida
(green), the perivitelline space in between (gray) and the dynamics of the oocyte (dark purple). Scale bar: 20 µm. (D) Features correlation and subset selection.
Pearson correlation coefficient calculated for each pair of the 118 features (bottom graph) from the values obtained from the training onmouse oocytes dataset. After
subset selection (absolute Pearson coefficient under 0.75), 49 uncorrelated features were kept (top graph) and used in machine learning algorithms.
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Fig. 3. Oocyte phenotyping using our machine learning pipeline. (A) Training of our machine learning pipeline to recognize control (Ctrl; WT or Fmn2+/−)
and Formin-2-knockout (Fmn2−/−) oocytes. A training database of 49 Ctrl (dark yellow) and 49 Fmn2−/− (dark purple) oocytes was built from two independent
datasets and used to train our machine learning pipeline to discriminate Ctrl and Fmn2−/− oocytes. The accuracy of the classification of oocytes as Ctrl or Fmn2−/−

was evaluated around 94% (cross-validation on the training data). Scale bars: 20 µm. (B) Test of our machine learning pipeline with the selected random
forest algorithm. A new dataset of 18 Ctrl (dark yellow) and 12 Fmn2−/− (dark purple) oocytes was run through the pipeline and the accuracy of the classification of
oocytes as Ctrl or Fmn2−/− was evaluated to be around 92%. Scale bar: 20 µm. (C) Cytoplasmic particle size is the second most discriminant feature between
Ctrl and Fmn2−/− oocytes. (i) Example of particles detected and measured in our plugin (red dots) in Ctrl (dark yellow box) and Fmn2−/− (dark purple box)
oocytes (scale bars: 20 µm). Insets correspond to a zoom of the image for better visualization. (ii) Comparison of the mean cytoplasmic particle size from Ctrl and
Fmn2−/− oocytes. Statistical comparison was assessed using a Kolmogorov–Smirnov test (P-value indicated on the graph). (D) Training of our machine
learning pipeline to discriminate oocytes coming from twowild-type mouse strains: OF1 and C57BL6. A training database of 488 OF1 (light blue) and 182 C57BL6
(dark blue) oocytes was built from several independent datasets (∼20 experiments from three projects) and used to train our machine learning pipeline. The
balanced accuracy of the classification of oocytes was evaluated around 92.5% (fivefold cross-validation on the training data). Scale bar: 20 µm. (E) Test of
our machine learning pipeline with the random forest algorithm. A new dataset of 51 OF1 (light blue) and 43 C57BL6 (dark blue) oocytes was run through the
pipeline and the balanced accuracy of the classification of oocyte was evaluated around 91%. Scale bar: 20 µm. (F) Most discriminant features between the
population of oocytes coming from the two wild-type mouse strains. Comparison of the values for OF1 (light blue) and C57BL6 (dark blue) oocytes are shown.
P-values indicated on the graphswere calculated with a Kolmogorov–Smirnov test. From left to right panels: graphs show the comparison of the average value of the
entropy of the texture of the zona pellucida (measured by Haralick’s entropy), the average number of detected cytoplasmic particles and average perivitelline area.
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Methods). We trained our pipeline to recognize the strain of origin
(Fig. 3D) and tested its performance on a dataset not used in the
training (Fig. 3E; Fig. S2F). The pipeline was able to classify
oocytes correctly with a balanced accuracy around 91%, with a
better precision than recall (Fig. S2F). Moreover, our pipeline
indicated that the most discriminant features (based on the Gini
index) to discriminate the strain of origin were the texture of the
zona pellucida, the texture of the cytoplasm, the number of
cytoplasmic particles and the size of the perivitelline space
(Fig. S2G; Fig. 3F). Thus, although they were control oocytes, the
two strain backgrounds presented morphological differences that
were revealed by our algorithm, which showed the importance of
using the same genetic background in experiments or to be aware of
the strain differences.
These results validate and highlight the power of our approach to

automatically identify the main differences between two oocyte
populations (wild-type or mutant backgrounds) and discover novel
characteristics (i.e. particle size for Formin-2-knockout oocytes)
associated with a mutant background. We believe that this approach
for oocyte phenotyping might be of particular interest in basic
research.

Our pipeline predicts mouse oocyte maturation outcome
before entry into meiosis
Another major use of our pipeline is its predictive capacity. We
used it to predict meiotic entry and the maturation potential
of an oocyte arrested in prophase I before its division. Out of the
468 movies from our dataset of mouse oocyte maturation, 44
oocytes never resume meiosis. We first tested whether we could
predict this developmental failure before it happens (Fig. 4A). For
this, we trained our machine learning pipeline to classify which
oocytes would undergo NEBD or not, based on the average value of
features over the first 12 min of the movies. By cross-validation, we
selected the random forest algorithm that performed the best for this
task (see Materials and Methods; Fig. S3A). Finally, we trained our
selected algorithm on all the data and tested its performance on a
new independent dataset of 69 oocytes, seven of which did not
resume meiosis. As the dataset was strongly imbalanced between
oocytes that would resume meiosis or not, we measured the
balanced accuracy of the pipeline prediction (see Materials and
Methods) and obtained a balanced accuracy of about 91%
(Fig. S3C). Therefore, our algorithm has the power to correctly
predict which prophase I oocytes will fail to undergo NEBD. The
most discriminant features associated with meiotic entry were the
thickness and texture of the zona pellucida and the size of the
oocyte–zona pellucida complex (Fig. S3B). Oocytes that remained
arrested in prophase I were smaller, with a thin and heterogeneous
zona pellucida (Fig. 4C, red), consistent with them not completing
their growth (Wassarman and Litscher, 2012), further validating our
approach.
Next, we aimed to predict and characterize the potential of

oocytes to properly mature (Fig. 4B). We analyzed only the movies
of oocytes that underwent NEBD and temporally aligned them
based on the NEBD timing calculated with Oocytor. We considered
that oocytes had maturation defects when they did not extrude or
when they resorbed their first polar body (PB), or if the timing of
NEBD or first polar body extrusion was abnormally late (Fig. S4).
We trained machine learning classifiers to predict oocytes that
will have a maturation defect based on the average values (over
12 min) of the features taken 15 min before NEBD. Our selected
algorithm (balanced random forest, Fig. S3F) had a balanced
accuracy of nearly 80% on the training data (Fig. S3D) and 90% on

the test dataset (which contained three out of 62 oocytes with
maturation defects, Fig. S3F). Thus, our approach allowed the
prediction of the maturation potential of oocytes before maturation
even resumed.

We then compared the performance of our pipeline by comparing
the accuracy of the predictions made with that of predictions made
by a small pool of scientists, using images of oocytes 15 min before
NEBD. The performance of our pipeline in predicting NEBD
success was in a range similar to the predictions made by scientists
with a strong expertise in oocyte maturation (Fig. S3C). Both sets of
predictions were much more accurate than the ones from novice
scientists (Fig. S3C), showing the necessity of training for both
human and machine predictions. In all predictions (pipeline or
humans), the precision was better than the recall (Fig. S3C): oocytes
predicted to resume meiosis did indeed resume meiosis whereas
some oocytes that showed a potential to resume meiosis were not
identified as such. Importantly, the pipeline predictions
outperformed human expert ones for the prediction of maturation
defects (Fig. S3F). Thus, our pipeline can be used as a tool to
automatically screen large numbers of oocytes to predict NEBD or
maturation defects, without the need of human expertise. In
addition, by providing better predictions than those from human
experts for an event occurring after a period of in vitro culture lasting
a minimum of 10 h, our pipeline can save time and resources by
pointing out bad oocytes early on.

Oocyte quality canbescored from four non-dynamic features
The two most discriminant features used by the algorithm for the
prediction of oocyte maturation outcome were the zona pellucida
texture and the cytoplasmic particle size (Fig. S3E). Zona pellucida
texture (measured byHaralick’s entropy) was a determinant feature of
oocyte quality for both the entry and the success of oocytematuration,
making it highly relevant for assessing oocyte potential. This feature
reflects the heterogeneity of the zona pellucida (Fig. 4C, third panel).
It was highest in oocytes that did not start maturation (Fig. 4C, third
panel, red) and was relatively high in oocytes that had maturation
defects (Fig. 4C, third panel, orange). The second discriminant
feature for successful oocyte maturation was cytoplasmic particle
size, which was smaller in oocytes that failed to resume or to properly
end meiotic maturation (Fig. 4C, fourth panel, red and orange).
Finally, both the thickness of the zona pellucida and the size of the
oocyte–zona pellucida complex were good indicators of oocyte
quality (Fig. 4C, first and second panels). Thus, the characteristics of
the zona pellucida are a good measure of oocyte maturation potential.

To evaluate the quality of an oocyte, we defined a score based on
these most relevant features for resuming and completing
maturation. This competence score, as an indicator of oocyte
quality, which corresponds to its capacity to develop properly, was
defined as a linear combination of the standardized values of the
four most discriminant features: texture and thickness of the zona
pellucida, size of cytoplasmic particles and perimeter of the outer
limit of the zona pellucida (Fig. 4D; see Materials and Methods).
Importantly, this score was based on non-dynamic features and,
therefore, only required a single image acquired from an oocyte
arrested in prophase I. Consistently, most oocytes that did not
resume meiosis had a low competence score (Fig. 4D, left panel,
red), whereas oocytes that matured properly had an overall high
competence score (Fig. 4D, left panel, yellow). Moreover, the
competence score correlated with the maturation dynamics of
oocytes that entered meiosis I: oocytes with a low score resumed
meiosis more slowly (Fig. 4D, middle panel, Pearson coefficient
r=−0.4, P<10−16) and were delayed in the first PBE extrusion
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Fig. 4. Prediction and characterization of mouse oocyte maturation with our machine learning pipeline. (A) Prediction of failure to enter meiosis I. Our
machine learning pipeline is trained with our mouse oocyte maturation dataset. Each oocyte was labeled as ‘Normal’ if it underwent NEBD (yellow box,
424 oocytes) and ‘NoNEBD’ otherwise (red box, 44 oocytes). Scale bars: 20 µm. (B) Prediction of a defect in maturation after meiosis resumption. Each oocytewas
labeled as ‘Normal’ if no defect was detected (yellow box, 327 oocytes) and as ‘Defect’ if the oocyte did not extrude a first polar body, resorbed its polar body,
entered meiosis I after an abnormal delay or extruded its polar body after a delay (orange box, 96 oocytes). Scale bar: 20 µm. (C) Discriminant features for NEBD
failure or maturation defect. (i) Comparison of the values of the discriminant features for oocytes that do not enter meiosis I (red, No NEBD), with maturation
defect (orange, Defect) or normal (yellow, Normal). P-values indicated on the graphs were calculated with a Kolmogorov–Smirnov test. From left to right: graphs
show thecomparison of theaverage thickness of the zonapellucida (average distance between the inner and the outer contours), average value of the zona pellucida
outer diameter, average value of the entropy of the texture of the zona pellucida (measured by Haralick’s entropy) and average cytoplasmic particle size.
(ii) Illustration of oocytes with low and high values of the discriminant features. The ZP contours are highlighted in green, cytoplasmic particles in red. Scale bars:
20 µm. (D) Quantitative measure of oocyte competency. The competence score is defined as a linear combination of the four features presented in C: competence
score=ZP outer perimeter−ZP texture entropy+ZP thickness+Cytoplasmic particle size. (i) Sorted competence scores from all oocytes of the mouse maturation
dataset. Each point represents one oocyte, and the color of the category to which the oocyte belongs: no NEBD (red), maturation defect (orange), normal (yellow).
(ii) Timing of NEBD according to the oocyte competence score. (iii) Time spent between NEBD and first polar body extrusion according to the oocyte
competence score. (iv) Examples of oocytes observed in transmitted light presenting different competence scores indicated in white on the images (bottom panel),
increasing from left (very low competence score) to right (high competence score). Scale bars: 20 µm.
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(Fig. 4D, right panel, Pearson coefficient r=−0.36, P =4.8×10−13).
Hence, our competence score allows the ranking of oocytes arrested
in prophase I by their developmental potential (Fig. 4D, bottom
panel).

Heterogeneity of the zona pellucida is predictive of in vitro
maturation of human oocytes
As our algorithm proved to accurately estimate the quality of mouse
oocytes, we then tested whether the same discriminating features
would be applicable to human oocytes. For this, we used a dataset of
72 human oocyte maturation movies acquired in clinics (see
Materials and Methods). Oocytes were collected from patients after
hormonal stimulation and those that did not complete maturation,
which were therefore unsuitable for intracytoplasmic sperm
injection (ICSI), were followed overnight for research purposes.
The dataset was a mix of prophase I and meiosis I oocytes at the
beginning of the movies, hence it could not be temporally aligned as
for mouse oocytes, increasing the variability. Out of 72 oocytes, 48
oocytes eventually succeeded in extruding a first polar body. To test
whether our previously identified features could predict polar body
extrusion, we used our plugin on these movies. As we trained our
neural networks for cortex and zona pellucida segmentation on both
mouse and human oocytes, we achieved a good performance on the
segmentation of human oocytes, despite the presence of obstacles in
the field of view, such as the presence of cumulus cells (Fig. S5A).
This demonstrates that Oocytor can successfully segment human
oocyte and zona pellucida contours. Using Oocytor, the values of
the 118 morphological features were then extracted. To visualize the
distribution of the values of these features at the beginning of the
movies, the uniform manifold approximation and projection (U-
MAP) reduction technique (McInnes et al., 2018 preprint) was
applied. No strong morphological differences were detected
between extruding and non-extruding oocytes (Fig. S5B, left
panel). We then compared extruding and non-extruding human
oocytes using the values of the discriminant features identified from
mouse oocytes at the beginning of the movies (Fig. S5B). The
differences were not significant, except for the texture of the zona
pellucida (Fig. S5B, middle and right panels). As those movies
could not be temporally aligned, the analysis was performed on the
values of the features at the beginning of the movies; hence, the
oocytes were at different stages of development, contrary to our
analysis on mouse oocytes, which increased the variability of the
values of the features. Moreover, it is important to remember here
that the population of human oocytes analyzed in these experiments
corresponded to oocytes not responding to the hormonal stimuli
and, thus, were probably of lower quality. Hence, this population
might not be comparable to the mouse population and might not
represent a physiologically relevant cohort of human maturing
oocytes. Consistent with this, nuclei, which were visible at the
beginning of 39 movies, were generally not centered, a feature
known to correlate with defects in polar body extrusion (Levi et al.,
2013).
Nevertheless, this analysis of low-quality human oocytes before

metaphase II, the only ones accessible so far for research purposes,
showed the importance of the texture of the zona pellucida: a more
heterogeneous zona pellucida correlated with maturation defects
in both human and mouse oocytes. This feature has also been
reported as an important marker of the quality of human matured
oocytes and human embryos, to assess their potential to develop to
the blastocyst stage and their implantation success rate (Rienzi
et al., 2011). In particular, it was shown that the optical
birefringence measured by polarized light microscopy was

higher and more uniform in human oocytes that developed
properly (Montag and van der Ven, 2008). Altogether, our results
suggest a crucial role of the zona pellucida in oocyte maturation
and reveal that its morphology can reflect the quality of the oocyte
even before maturation.

Generalization of Oocytor to oocytes coming from other
species
Here, we presented our open-source plugin Oocytor and showcased
its use in a computational pipeline to screen mouse and human
oocytes. We believe that our machine learning pipeline could easily
be adapted to oocytes coming from other species as well. One of the
pitfalls of machine learning algorithms and neural networks in
particular is their major dependence on the data used to train them.
In general, these networks perform very well on a dataset similar to
those used for training, but can fail completely on new ones. We
attempted to produce more robust and versatile networks by feeding
them a variety of images (Möckl et al., 2020), pooling human and
mouse oocyte images from different projects, acquired in different
laboratories and clinics. Nonetheless, the networks could still yield
limited results on oocytes never seen before by the networks, such
as oocytes from a different species. In this case, a new network
could be trained with only few images of these ‘foreign’ oocytes by
using the transfer learning technique (Bengio, 2012) on our neural
network. To test this, we used our neural network to segment the
membrane of sea urchin eggs, a species not used in the training data.
The resulting segmentation of sea urchin eggs was acceptable with
an IOU score of about 94% (Fig. 5B,C, initial results in red), but not
as good as those obtained on mouse and human datasets (IOU
around 96–97%). As expected, using transfer learning (Fig. 5A) and
retraining our neural network specifically on a few sea urchin eggs
(n=185), we reached an IOU score of about 96.5% (Fig. 5B,C,
retrained results in green). However, as this new network was
retrained specifically on sea urchin eggs, its performance on mouse
and human oocytes decreased (Fig. 5B,C, retrained results in green).
Finally, we trained a neural network combining the three datasets:
mouse, human and sea urchin oocytes (Fig. 5A). This strategy was
successful and allowed us to propose a more general network
performing as well on the three types of oocytes (Fig. 5B,C, final
results in blue). This more general network is available on our
GitHub repository and can be used as a basis to use Oocytor on other
oocyte species. Moreover, the dataset used for training our neural
networks (mouse, human and sea urchin oocytes) is freely
accessible on Zenodo (see Materials and Methods), so that it can
be used to train other neural networks.

DISCUSSION
We developed a computational tool to segment and numerically
describe oocytes, which was then associated with a machine
learning pipeline to phenotype oocyte populations or predict and
characterize oocyte meiotic resumption and maturation. Our tool
was set up on images acquired in transmitted light, which allows its
use both in academia and in clinics. As all the steps of the pipeline
are automatized, our tool can be used to screen an important number
of oocytes for large-scale studies.

To make our tool user friendly, we implemented it as a Fiji plugin
(Schindelin et al., 2012), Oocytor, available open source on GitHub
(see Materials and Methods). Oocytor can perform three tasks on
label-free images: segmentation of the oocyte and its zona pellucida
contours, NEBD detection and extraction of hundreds of
morphological features. For the first two tasks, we took advantage
of the power of deep learning algorithms and trained U-Net-like
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networks on mouse, human and sea urchin oocyte images that were
pooled together for a better generalization (Fig. 5). Oocytor also
offers the possibility to automatically define the NEBD timing of
mouse oocytes, thus avoiding manual annotation and providing a
temporal reference to align maturation movies. This property can
turn out to be a true time-saver for studies implemented on large
cohorts of oocytes. We implemented the measurements of 118
features, allowing the tool to numerically describe an oocyte at any
stage of its development. This list could be further expanded. In
particular, it would be interesting to add segmentation and features
to better describe polar body properties, which certainly would help
better characterization of metaphase II-arrested oocytes. New neural
networks could also be trained to infer the position of the nucleus,
spindle or other organelles from images acquired in transmitted
light using data coupled with fluorescence labeling (Christiansen
et al., 2018; Ounkomol et al., 2018; Wieslander et al., 2021). This
approach is very promising for fundamental research to avoid
fluorescence labeling. These steps of synchronization, segmentation
and numerical description are independent and can then be used to
answer a variety of fundamental research studies on oocytes.
Based on the numerical description of oocytes, we developed an

interpretable machine learning pipeline to classify oocytes and
identify major differences between oocyte populations. Here, we
demonstrated that our algorithm can discriminate oocytes from
different genetic backgrounds, such as control and Fmn2−/−

oocytes, after training with only a small dataset and revealed
major morphological differences between these two populations.
This phenotyping could be very useful in the mouse oocyte research

community, in which genetic modifications are often used as a tool
to identify gene function without knowing all the consequences on
oocyte characteristics. We thus propose a new approach to
systematically identify new differences in an unbiased and
automated manner and thus to potentially reveal novel gene
function during oocyte development.

We then used this approach to explore oocyte quality within a
wild-type population for clinical applications. We developed our
approach on mouse oocytes, which allowed us access more data
and possible manipulations. We successfully trained our pipeline
to recognize mouse oocytes that failed to resume meiosis and to
predict maturation defects before NEBD. Our pipeline performed
similarly to human experts to predict meiosis resumption but
outperformed human predictions for maturation defects. Oocytes
that did not enter meiosis I were smaller with a thin and
heterogeneous zona pellucida. It has been previously shown that
small size is a sign of oocyte incompetence, which corresponds to
oocytes unable to successfully develop to metaphase II (Hirao
et al., 1993; Kanatsu-Shinohara et al., 2000; Wickramasinghe
et al., 1991). This small size is most probably an indicator of
unfinished oocyte growth. The zona pellucida thickness correlated
with the size of the oocyte before NEBD in our mouse data
(Pearson correlation r=0.42, P<10−16), consistent with the fact that
the zona pellucida thickness and the oocyte diameter increase
concomitantly during oocyte growth (Wassarman and Litscher,
2012). However, this correlation was lost after NEBD (Pearson
correlation at NEBD+5 h r=0.18, P=1.6×10−3); the zona pellucida
thickness remained constant, whereas the oocyte size decreased.

Fig. 5. A generic pipeline to segment oocytes from different species. (A) Segmentation of sea urchin egg membrane using Oocytor. Eggs were
segmented using our neural network trained onmouse and human oocytes presented in this paper (Initial, light red). A new neural network was trained specifically
on sea urchin eggs, starting from our initial neural network with transfer learning (Retrained, green). Finally, a complete neural network was trained from
scratch on all the oocytes species: mouse, human, sea urchin (Full, blue). (B) Performance of the segmentation with the three types of neural networks
training: Initial (light red), Retrained (green) and Full (blue). The performance is measured as the intersection over union (IOU) score compared to a manually
generated ground-truth, on our three test datasets of mouse, human and sea urchin oocytes. Boxes represent the 25–75th percentiles, whiskers show the
data within 1.5× from the interquartile range and the median is marked with a line. (C) Examples of resulting segmentation of sea urchin eggs using our three
neural networks: Initial (light red), Retrained (green) and Full (blue). Scale bars: 20 µm.
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Therefore, ZP thickness provides information on the maturation
potential of the oocyte, which is different from the information
provided by oocyte size. In human oocytes, no correlation has been
found between zona pellucida thickness and oocyte diameter in
metaphase II-arrested oocytes (Bertrand et al., 1995), consistent
with our findings of low correlation in mouse oocytes. Moreover,
in human embryos, zona pellucida thickness was positively
associated with development to the blastocyst stage and embryo
quality (Høst et al., 2002; Raju et al., 2007; Shen et al., 2005), but
negatively correlated with fertilization success (Bertrand et al.,
1995; Marco-Jiménez et al., 2012). Thus, zona pellucida thickness
could be a relevant feature for assessing oocyte (our study) and
embryo quality.
Our machine learning algorithm revealed that mouse oocytes with

maturation defects had a more heterogeneous zona pellucida and
smaller cytoplasmic particles (Fig. 4C). The heterogeneity of the zona
pellucida, measured by Haralick’s entropy, was a discriminant feature
for both the initiation and the success of maturation. Moreover, this
feature was also relevant for predicting human oocyte maturation
potential. This texture could be related to the birefringence of the zona
pellucida, which is used to assess human embryo quality (Gabrielsen
et al., 2000; Ozturk, 2020; Raju et al., 2007; Rienzi et al., 2011) and
reflects the structuration of the zona pellucida. Cytoplasmic particles
were smaller not only in wild-type oocytes, with a low competence
score, but also in Fmn2−/− oocytes (Fig. 3D); thus, this difference
observed in the control oocyte population could be related to
differences in cytoplasmic actin activity that was reduced both in
oocytes of low competence scores and in Fmn2−/− oocytes (Fig. S4B,
Fig. S2E). Previous studies showed that actin-coated vesicle activity
follows a gradient from the cortex to the center, generating a non-
specific centering force (Almonacid et al., 2015; Colin et al., 2020),
which could favor cytoplasmic particle aggregation. This reduced
activity, which correlated with a low maturation potential (Fig. S4B),
was also associated with slower maturation dynamics (Fig. 4D,
middle and right panels).
To conclude, our machine learning pipeline could predict

oocyte maturation with a fidelity between 80% and 90%.
Furthermore, we identified two new features, the texture of the
zona pellucida and the size of cytoplasmic particles, as good
predictors of the maturation potential of mouse oocytes. Moreover,
we showed that the zona pellucida texture could be a good
predictor of the maturation potential of human oocytes. We also
defined a competence score to rank mouse oocytes by their
capacity for maturation and revealed defects in the cytoplasmic
activity in poor-quality oocytes. This ranking could be used to
improve in vitro maturation protocols by identifying the most
promising oocytes. By adding new features to Oocytor, such as
polar body contour detection, it might also be possible to adapt our
approach to assess the potential of oocytes for fertilization and
embryonic development.

MATERIALS AND METHODS
Datasets
Mouse oocyte maturation
Our study was primarily based on a dataset of 468movies of in vitromatured
mouse oocytes. This dataset is publicly available on Zenodo (Letort et al.,
2022a). An additional dataset of 69 mouse oocyte maturation movies were
acquired independently, after the pipeline development, and used only to
test its final performance.

OF1 or C57BL6J (referred to as C57BL6 in the main text) female mice
(Charles River Laboratories) aged between 3 and 10 weeks were used for
experiments. The prophase I-arrested oocytes were collected according to

laboratory protocol in M2 medium made in-house with 4 g/l bovine serum
albumin (BSA, A3311, Merck) supplemented with 1 µM milrinone
(M4659, Merck) (Reis et al., 2006). For in vitro maturation, the oocytes
were washed out from milrinone and cultured in M2 medium under mineral
oil (M8410, Merck) at 37°C. They were then placed under a Leica
DMI6000B microscope equipped with a Plan-APO 40×/1.25 NA oil
immersion objective, a motorized scanning deck and an incubation chamber
(37°C), a Retiga 3 CCD camera (QImaging, Burnaby) coupled to a Sutter
filter wheel (Roper Scientific), and a Yokogawa CSU-X1-M1 spinning disk.
Images were acquired using Metamorph (Universal Imaging, version
7.7.9.0) every 3 min in transmitted light with the objective 20×/0.75 NA for
20 h at 37°C.

All animal studies were performed in accordance with the guidelines of
the European Community and were approved by the French Ministry
of Agriculture (authorization no. 75-1170) and by the Direction Générale de
la Recherche et de l’Innovation (DGRI; GMO agreement number DUO-
5291).

Fmn2−/− dataset
We re-used datasets of control and Fmn2−/− genotypes of oocytes arrested in
prophase I from previous studies [Fmn2+/−, n=25; Fmn2−/−, n=12 (Al Jord
et al., 2021 preprint); WT, n=18; Fmn2−/−, n=12 (Almonacid et al., 2015)]
and we performed a supplemental experiment with oocytes from both
genotypes (WT, n=24; Fmn2−/−, n=37) to increase the training dataset (see
protocol above). Oocytes were imaged every 1 min (movies were under-
sampled for the dataset when the imaging frequency was higher) for 5 min
or more. Datasets were not acquired with the same microscope objective
resolution (0.1135 µm/pixel, 0.1613 µm/pixel and 0.227 µm/pixel), so we
resized the images to a resolution of 0.1613 µm/pixel to allow direct
comparison.

Human oocyte maturation
Human oocyte maturation movies were acquired at the Cochin hospital
(Paris, France) for research purposes (72 movies). Immature human
prophase I-stage and meiosis I-stage oocytes found in cohorts retrieved
for the purpose of ICSI can be used for research according to the French
legislation, with the consent from patients. The in vitromaturation study was
performed with oocytes (n=72) that were donated for research by patients
undergoing assisted reproductive technology protocols. It was approved by
the Germetheque Biobank (BB-0033-00081) under the number 20160912.
Once the ICSI procedurewas performed for the patients, oocytes that did not
reach metaphase II were included in the protocol. All clinical investigation
was conducted according to the principles expressed in the Declaration of
Helsinki. Patients were not renumerated. Culture dishes were prepared,
covered with mineral oil (Irvine Scientific, Ireland), warmed and pre-gassed
before in vitro maturation. Cumulus cells had been removed from the
oocytes by brief treatment with hyaluronidase IV-S (Sigma-Aldrich)
at 37°C. These desynchronized oocytes were incubated in Continuous
Single Culture Complete medium (CSCM-C; Irvine Scientific) in an
embryoscope (Geri time-lapse system, Genea Biomedx) at 37°C, 6% CO2

and 5% O2 to record the maturation process. In vitro maturation to the
NEBD, metaphase I or metaphase II stages, activation or atresia were
evaluated 24 h later. Oocytes were considered as ‘matured’ when the first
polar body was present.

Additional datasets
Mouse datasets
To train our neural network for segmentation, we also used data from other
projects to diversify our training. We used movies of mouse oocyte
maturation acquired in transmitted light from a previous study (Bennabi
et al., 2020). To train our neural network to determine the timing of NEBD,
we also used another dataset of mouse maturing oocytes (C57BL6 strain) in
which the NEBD timing had already been manually annotated (120 movies)
(unpublished projects). To compare oocytes coming from two wild-type
mouse strains, we added images of control oocytes (C57BL6) acquired
before NEBD from other projects (157 images, unpublished projects) at a
resolution of 0.1135 µm/pixel.
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Human datasets
Through the ICSI procedure at the Cochin hospital (see above), we also had
access to images of metaphase II oocytes that we used to diversify our
training data (658 images). Moreover, we also added images from movies
following the development of fertilized oocytes from the Hôpital Femme
Mer̀e Enfant in Lyon (551 movies). The cumulus–oocyte complexes
(COCs) were obtained after transvaginal follicular puncture of patients
treated for infertility.

One hour after COC retrieval, they were stripped by enzymatic digestion
(hyaluronidase; CooperSurgical, Malov, Denmark) and by a mechanical
action. The stripped oocytes were fertilized by intracytoplasmic sperm
injection (ICSI). After ICSI, the fertilized oocytes were immediately
cultured in oil-coated Cleav® medium (CooperSurgical) in a time-lapse
system (EmbryoScope®; Vitrolife, Viby, Denmark). The culture was
monitored by successive image acquisitions (one image every 15 min).

Sea urchin dataset
Purple sea urchins (Paracentrotus lividus) were obtained from the Roscoff
Marine station (France) and kept at 16°C in an aquarium for several weeks in
artificial seawater (Reef Crystals; Instant Ocean). Gametes were collected by
intracoelomic injection of 0.5 M KCl. Sperm was collected dry and kept at
4°C for 1 week. Eggs were rinsed twice, kept at 16°C, and used on the day of
collection. The jelly coat of unfertilized eggs was removed by passing them
three times through an 80-μm Nitex mesh (Genesee Scientific) to allow egg
adhesion on protamine-coated glass-bottomed dishes (MatTek
Corporation). Pictures were acquired before fertilization or 1–5 min after
fertilization.

Image acquisition was performed on awide-field microscope (TI-Eclipse;
Nikon) equipped with a complementary metal oxide-semiconductor camera
(Orca-flash4.0LT; Hamamatsu). Samples were imaged with a 20× dry
objective (NA, 0.75; Apo; Nikon). A secondary microscope (Leica DMI
6000B) equipped with the same camera using either a 20× dry objective
(NA, 0.70; PLAN Apo; Leica) or a 10× dry objective (NA, 0.25; PLAN;
Leica) was also used. Microscopes were operated with Micro-Manager
(Open Imaging). A total of 185 images were used for training and 50 were
used for testing.

All animal studies were performed in accordance with the guidelines of
the European Community and were approved by the French Ministry of
Agriculture (authorization no. 75-1170) and by the Direction Générale de la
Recherche et de l’Innovation (DGRI; GMO agreement number DUO-5291).

Ground-truth database creation
Before training the neural networks, we tried to segment images using an
approach based on thresholding and morphology. However, the results were
highly dependent on the input parameters and could not be used without
manual validation and correction. We therefore chose to use a deep learning
approach instead to improve the performance. This preliminary
segmentation allowed to build an initial database with the manually
validated and corrected ground-truth segmentation. Moreover, in the
additional dataset from a previous project (Bennabi et al., 2020), some
oocytes were also stained with a fluorescent membrane marker, which
allowed direct access to the ground-truth images for these oocytes. In the
end, we created a database of 8256 images (4432 for mouse, 3824 for
human) with their associated ground truth. This dataset is publicly available
on Zenodo (Letort et al., 2022b), so that it can be used freely to train other
neural networks.

Eventually, the creation of the ground truth for the detection of the zona
pellucida was more challenging as the contrast was often very low. To
counter this, the segmentation was done or corrected manually on a large
part of the dataset by defining an ellipse around the zona pellucida and thus
lacked precision. This could explain the lower performance of the neural
network on zona pellucida segmentation against this imprecise ground truth.
The database for the zona pellucida consisted of 3578 images (2361 for
mouse, 1217 for human) with their associated ground truth.

It is important to note that multiple images per movie were used in the
datasets to increase the number of images. However, when a dataset was
split between training and test subsets, as well as when the training dataset

was split for cross-validation, images extracted from the same movie were
always in the same subset to ensure that we had independent datasets and
avoid data leakage (Wen et al., 2020).

Machine learning pipeline
Pipeline preprocessing
First, movies and/or images had to be preprocessed. When several oocytes
were present in the same movie, they were automatically cropped into
several image stacks of a single entire oocyte. Moreover, the movies were
aligned to keep the oocyte at the same position in the images to measure
dynamic features. Finally, intensity normalization (min-max normalization)
was performed to homogenize the images coming from different sources.

Oocytor plugin
Oocytor is a Fiji plugin (Schindelin et al., 2012) implemented in Java. The
source code can be found on GitHub (https://github.com/gletort/Oocytor),
as well as a compiled version presented as a ready-to-use plugin, with
installation instructions. Oocytor can perform three tasks: oocyte contour
segmentation, NEBD detection and features extraction. Segmentation and
NEBD detection are based on our neural network trained on large databases
in Python. To run the already trained neural network in Fiji, Oocytor uses the
CSBDeep plugin (http://sites.imagej.net/CSBDeep) (Weigert et al., 2018).
To calculate some features, Oocytor uses FeatureJ (http://imagescience.org/
meijering/software/featurej). We have also suggested using several macros
in the GitHub repository to facilitate Oocytor usage with several data
folders.

Oocytor NEBD detection
Neural network implementation and training
We built our neural network to classify images based on the presence or
absence of a nucleus with the VGG-16 architecture (Simonyan and
Zisserman, 2015 preprint) and tested variations around this architecture. The
final architecture is shown in Fig. S1A. To train the neural network for
NEBD detection, we used a one-time data augmentation on the training
images, by flipping these images. Images were resized to 256×256 pixels
and normalized before being fed to the neural network.We trained the neural
networks for 25 epochs, with batch normalization and a batch size of 30,
rectified linear unit (ReLU) activation functions and binary cross-entropy
loss. To adjust the network hyper-parameters, we performed tenfold cross-
validation on the training dataset (Fig. S1B, selection of the number of filters
n in the initial layer). The selected network was then trained on the full
training dataset and its performance was tested on the independent test
dataset (Fig. 1C, right panel).

NEBD determination in Oocytor
Each image of the movie is resized to 256×256 pixels and normalized before
running it through the neural network. This gives a score of the probability
of the absence of the nucleus at each time point (Fig. 1D). The evolution of
this score according to time is locally smoothed and NEBD is calculated as
the first transition point from a low to high score (Fig. 1D, bottom left
panel). This value of NEBD timing was then used to temporally align the
results of the movies in the analysis.

Oocytor segmentation
Neural network implementation and training
We based our neural network architecture for cortex and zona pellucida
segmentation on the U-Net architecture (Ronneberger et al., 2015). We
tested several configurations around this architecture [number of layers,
activation function, variation of the architecture (Falk et al., 2019; Gadosey
et al., 2020; Ibtehaz and Rahman, 2020)] and opted for a classical U-Net
architecture, shown in Fig. S1C. Note that we could have trained a single
network to segment the zona pellucida and the cortex at the same time,
which could have slightly improved the performance of the network
(Firuzinia et al., 2021). However, we preferred to keep two independent
networks for more flexibility. Images were resized to 256×256 pixels and
normalized before being fed to the neural networks. We trained the neural
networks for 25 epochs, with batch normalization and a batch size of 30,
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ReLU activation functions and jaccard distance loss. To adjust the network
hyper-parameters (number of epochs, network parameters), we performed
sixfold cross-validation on the training dataset (Fig. S1D,E, selection of the
number of filters n in the initial layer). Based on these results, we selected
a U-Net like architecture with n=8 initial filters for cortex segmentation
(Fig. S1D) and with n=16 initial filters for zona pellucida segmentation
(Fig. S1E). The selected networks were then trained on the full training
dataset and their performance was tested on the independent test dataset
(Fig. S1F).

Implementation of segmentation
Oocytor first resizes (to 256×256 pixels) and normalizes input images or
movies. To increase the robustness of the plugin, the results of two neural
networks trained on the same task (segmentation of oocyte contour or
zona pellucida boundaries) were combined (Fig. S1G, ‘Get cortex’
function of Oocytor). The resulting binary images are converted into
Fiji regions of interest (ROIs) that can eventually be refined to local
variation of intensity or smoothed, depending on the input parameters of
the plugin.

Features implemented
The complete list of features implemented in Oocytor, along with a brief
description, is available on GitHub (https://github.com/gletort/Oocytor/
blob/main/SupplementaryMaterials_features.pdf).

Feature selection
We calculated the Pearson correlation between all features (Fig. 2D) and set
a threshold (0.7 here) above which features were considered correlated. By
iterations, we kept the features with the most connections (correlated
features) and removed those connected to it, until we obtained a subset of
uncorrelated features that were below our threshold (Fig. 2D, top).

Feature standardization
Standardization was performed to shift the values of features in a similar
range for all features. For each feature, the mean and standard deviation (s.d.)
were calculated from the training data. The feature values were then updated
as: f=(f−mean)/s.d.

Machine learning methods
After features extraction with Oocytor, machine learning analysis
was performed with the R software (https://www.r-project.org/). We used
the ‘randomForest’ and ‘e1071’ packages (Liaw and Wiener, 2002; https://
rdrr.io/rforge/e1071/) for the classification algorithms tested. UMAP
projections were calculated with the ‘umap’ package https://cran.r-project.
org/web/packages/umap/vignettes/umap.html; McInnes et al., 2018. Finally,
graphs were generated with the ‘ggplot2’ package (Wickham, 2016).

Classification methods
We tried three standard machine learning methods in the Analysis step:
Naive Bayes classifier (Rish, 2001), Support Vector Machine (Vapnik
et al., 1996) and random forest (Breiman, 2001). Each of these algorithms
received as input the features describing one oocyte and classified them.
We used cross-validation techniques to measure the performance of our
training and to select the best method (Fig. S2B, Fig. S4A,B). The selected
method was finally trained on all the training data and its performance was
always tested on an independent dataset.

Data imbalance
Datasets were strongly imbalanced between oocytes that entered maturation
or not (Fig. S4A, left) as well as between oocytes that matured correctly or
not (Fig. S4B, left). As we were interested in building a tool that would
discriminate them based on images and not by considering the frequency of
each class, we equilibrated the training datasets and measured the balanced
accuracy to score the classification (Fig. S3A, right; Fig. S3D, right). For
this, we used the number of the smallest dataset for both classes in the
classification algorithm (under-sampling). We also tried to balance the

dataset by data augmentation (oversampling) of the smallest dataset with
the SMOTE technique (Chawla et al., 2002), but did not obtain better
results.

Performance score
The scores used to measure the performance of the algorithms were:
accuracy=(TP+TN)/(TP+TN+FP+FN), recall or true positiverateðTPRÞ ¼
TP=ðTP þ FNÞ, precision=TP/(TP+FP), truenegativerateðTNRÞ ¼ TN=
ðTN þ FPÞ and balancedaccuracy ¼ ðTPRþ TNRÞ=2,

where TP, TN, FP and FN correspond to true positive, true negative, false
positive and false negative, respectively.

Comparison of human predictions with machine predictions
To compare the performance of our pipeline with manual prediction, we
measured the performance of the pipeline on the new test dataset. We asked
oocyte experts (people in our lab having a minimum of 5 years of expertise
on mouse oocyte) to estimate the oocyte developmental potential from
images taken 15 min before NEBD. Two newly appointed students, not
fully trained yet, also participated (after a short training) in this contest,
providing scores for a naive prediction (novice user).

Feature importance
To assess the contribution of each feature in the random forest algorithm, we
considered the Gini index of the features in the decision trees. A higher Gini
index indicates that the feature provides stronger separation of the
population in the tree. Thus, features with higher Gini index were the
most discriminant in the algorithm.
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Fig. S1. Neural networks for nucleus detection and oocyte contour segmentation.
A – Architecture of the selected neural network, based on the VGG-16 architecture. 
The network takes as input one image of an oocyte and gives as output a score of detection 
for the nucleus (0: presence of a nucleus, 1: absence). The first convolution layer 
applies (n) filters, which controls the size of the network and we tested several 
values for this parameter. Scale bar is 20 µm.

B – Score of nucleus detection from neural networks for different values of the number 
of initial filters (n) controlling  the  network  size.  The  detection  score  was evaluated 
by Recall:  TP/(TP+FN)  and Precision:  TP/(TP+FP),  where  TP=True  Positive, 
FN=False Negative,  FP=False  Positive.  The selection of the best parameter (n) was 
done with a 10-fold cross validation technique on the training dataset:  data  are  split  in 
10 subsets,  9  are used  for  training,  and the  score  is  evaluated  on the remaining 
one. The operation is repeated 10 times so that each subset is used as the test subset 
once. The final selected network had n=32 initial filters.

C – Architecture of the selected neural network, based on a U-Net architecture. 
The network takes as input one image resized to 256*256 pixels of an oocyte and 
outputs a binary mask with the interior of the oocyte. The size of the network is 
controlled by (n), the number of filters in the first convolution layer. Scale bar is 20 µm.

D – Selection of the proper neural network by cross-validation for oocyte 
membrane segmentation (purple box). The training dataset was split in 6 subsets for 
cross-validation. Networks with n=2, 4, 8, 16 or 24 initial  filters were trained on 5 of 
the 6 subsets. Their performance during training was evaluated at each iteration 
(epoch) by the intersection over union (IOU) score between the network outputs and 
the ground truth images (left graph). The final performance of the trained network 
was validated on the respective remaining subsets by the IOU score (right graph). 
The network with n=8 filters was selected. Scale bar is 20 µm.

E -  Selection  of  the  proper  neural  network  by  cross-validation  for  zona 
pellucida contours segmentation (green box). By 6-fold cross-validation, the 
performance of neural networks with n=8, 16 or 24 initial filters (n) was evaluated during 
training by the IOU score (left graph) and after training on the remaining test subset 
(right graph). The network with n=16 filters was selected. Scale bar is 20 µm.

F – Performance of the neural network for membrane (purple dots) and zona pellucida 
(green dots) segmentation on independent test dataset for mouse oocytes measured by the 
IOU score. 

G – Segmentation of the oocyte membrane with Oocytor. The input image is run 
through 2 neural networks trained on all our training dataset (mouse and human 
oocytes). Two networks were used to increase the robustness. Their outputs were 
combined in a final binary mask used to determine the oocyte  contour.  Scale  bar  is 
20  µm.  The  procedure is  the  same  in  the  case  of  zona  pellucida segmentation.
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Fig. S2. Phenotyping of oocyte populations using our machine learning pipeline.

A – Examples of segmentation of the oocyte contour (membrane, purple line and zona 
pellucida, green lines) obtained with our plugin on the new dataset. Scale bar is 20 µm.

B  –  Comparison  of  several  classification  algorithms  performance.  3  methods 
were tested  in  the analysis step of our pipeline: Naive Bayes (NB), Support Vector 
Machine (SVM) and Random Forest (RF). Their performance was measured by their 
Accuracy and compared with a 5-fold cross-validation technique.

C – Scores of Random Forest classifier. Average prediction and recall scores are 
calculated on training data (by cross-validation) and test data.

D – Features classified by their importance using our algorithm. The features were 
sorted by their importance calculated from the Gini indexes of each features in our 
Random Forest algorithm. We only display the scores of the 15 most important features.

E – Cytoplasmic agitation appears as the most discriminant feature between Ctrl and 
Fmn2 -/- oocytes. i) Example of a PIV (Particle Image Velocimetry) map extracted from the 
cytoplasm of a Ctrl oocyte: arrows indicate the direction of particle motion while their 
color reflects the magnitude of motion (purple,  low to  red,  high).  Insets  correspond to 
a  zoom of  the image for  better  visualization.  ii) Comparison of the mean value 
(average from all oocytes and from 5 min duration movies) of the cytoplasmic 
agitation, measured by the PIV in Ctrl (dark yellow) and Fmn2 -/- (dark purple) oocytes. 
Statistical  comparison  was  assessed using  a  Kolmogorov-Smirnov  test  (p-value 
indicated  on  the graph).

F – Scores of Random Forest classifier for the oocyte strain (OF1 vs C57BL6) 
phenotyping. Average prediction and recall scores are calculated on training data (by cross-
validation) and test data.

G – Features classified by their importance using our algorithm to discriminate oocytes 
coming from two different wild-type strains. The features were sorted by their importance 
calculated from the Gini indexes of each feature in our Random Forest algorithm. We 
only display the scores of the 15 most important features. 
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Fig. S3. Prediction of NEBD failure and maturation defect.

A – Scores of prediction of NEBD failure with 3 classification methods (Naive Bayes 
NB, Support Vector Machine SVM, Random Forest RF) assessed by 10-fold cross-
validation. The training was done with  the unbalanced dataset,  thus  considering 
classes  frequency,  and the score was consequently measured by the Accuracy (left 
graph). Dashed line represents the naive prediction score consisting in always 
predicting  NEBD  success.  The  training was  also  done  with  under-sampling  the 
over-represented class (middle graph) and the score was measured by the balanced 
accuracy. The dashed line represents the naive prediction. 

B - Features classified by their importance for NEBD failure. Features sorted by 
importance calculated from the Gini indexes of each features in our Random Forest 
algorithm. We only display the scores of the 15 most important features. The description 
of features are given in Supplemental File 1.

C – Test on a new dataset of the selected algorithm (Random Forest on balanced 
training) performance (Balanced Accuracy, Precision, Recall), compared to the 
predictions of NEBD failure from novice and human experts.  Balanced  Accuracy  is 
the  average  between  the True  Positive  Rate  and  the  True Negative Rate. 
Precision is sensitive to false positive: oocyte that will  not resume meiosis but are 
predicted as correct. Recall is sensitive to false negative: oocyte that will resume meiosis 
but are not identified as correct. 

D - Scores of predictions of maturation defect with the same 3 classification methods (NB, 
SVM, RF) assessed by 10-fold cross-validation. The training was done with the 
unbalanced dataset, thus considering classes frequency, and the score was consequently 
measured by the Accuracy (left graph). Dashed line represents the naive prediction score 
consisting in always predicting maturation success. The training was also done with 
under-sampling the over-represented class (middle graph) and the score was measured 
by the balanced accuracy. The dashed line represents the naive prediction. 

E - Features classified by their importance maturation defect (right panel). Features 
sorted by importance calculated from the Gini indexes of each features in our Random 
Forest algorithm. We only display the scores of the 15 most important features. The 
significance of feature names are given in Supplemental File 1.

F - Test on a new dataset of the selected algorithm (Random Forest on balanced training) 
performance (Balanced Accuracy, Precision, Recall), compared to the predictions of 
maturation defect from human experts.
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Fig. S4. Characterization of oocyte maturation defects. 

A – Criteria used to classify a maturation as defective (top left panel, n is the number of 
oocytes for each defect). Histogram of NEBD timing in our dataset (middle panel). The dashed 
line represents the 95% quantile after which oocytes are considered as delayed in NEBD 
timing. Histogram of the time between NEBD and first polar body extrusion in our dataset 
(right panel). The dashed line represents the 95% quantile after which oocytes 
are considered to have a slow maturation. Time lapse of an example of polar body 
resorption (bottom panel). Scale bar is 20 µm. 

B – Correlation between cytoplasmic agitation and competence score. 
Cytoplasmic agitation in the area close to the edge of the oocyte (right panel) plotted 
against the oocyte competence score, for oocytes that do not enter into meiosis I (red, No 
NEBD), have a maturation defect (orange, Defect) or are normal (green, Normal). The 
Pearson correlation coefficients, r, are indicated in each graph with p-value < 10^-16 
(Pearson’s product moment correlation coefficient) in both cases.
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Fig. S5. Characterization of human oocytes.

A – Segmentation of human oocyte membrane (purple box) and zona pellucida (green 
box) using our trained  neural  network  (left  panel).  Graph  of  the  score  of  the 
segmentation measured  as  the Intersection Over Union (IOU) on the human test dataset 
(middle panel). Examples of segmentation of human oocytes (right panel). The oocyte 
membrane appears as a purple line and of the zona pellucida contours as green lines after 
segmentation. Scale bars are 20 µm.

B – U-MAP projection of human oocyte features (left panel) for oocytes that will extrude 
a polar body (blue dots) and those who do not (orange dots). Values of the features at 
the beginning of the movies were used for  all  oocytes  whether  they had already 
entered meiosis  or  not.  Comparison of  zona pellucida texture entropy for oocytes that 
extrude a polar body or not (middle panel). Indicated p-value was calculated with a 
Kolmogorrov-Smirnov test. Examples of oocytes with high and low values for the 
entropy of the zona pellucida texture (right panel). Scale bars are 20 µm.
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