

Rapid characterisation of Photonic Crystal Fibre dispersive properties by a stochastic and tunable picosecond pump source

Guillaume Walter, Sidi-Ely Ahmedou, Thelma de Thoury, Nicolas Dos Santos, Jules Herbuvaux, Melvin Redon, Jean-Christophe Delagnes, Romain Dauliat, Sébastien Février, Constance Valentin, et al.

▶ To cite this version:

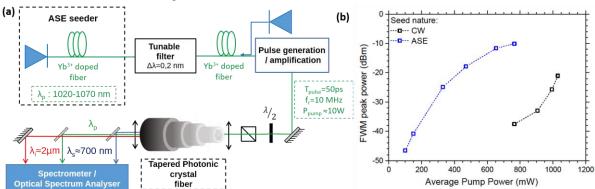
Guillaume Walter, Sidi-Ely Ahmedou, Thelma de Thoury, Nicolas Dos Santos, Jules Herbuvaux, et al.. Rapid characterisation of Photonic Crystal Fibre dispersive properties by a stochastic and tunable picosecond pump source. 10TH EPS-QEOD EUROPHOTON CONFERENCE 2022, Aug 2022, Hannover, Germany. pp.TUE-P-1.25. hal-03795353

HAL Id: hal-03795353

https://hal.science/hal-03795353

Submitted on 4 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.


L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Rapid characterisation of Photonic Crystal Fibre dispersive properties by a stochastic and tunable picosecond pump source

Guillaume Walter¹, Sidi-Ely Ahmedou², Thelma De Thoury¹, Nicolas Dos Santos, Jules Herbuvaux¹, Melvin Redon¹, Jean-Christophe Delagnes¹, Romain Dauliat², Sébastien Février², Constance Valentin¹, Stéphane Petit¹, Nicolas Valero¹, Denis Marion¹, Jérôme Lhermite¹, , Sébastien Tanzilli⁴, Frédéric Gérôme², Benoît Debord², Fetah Benabid², Guy Millot³, Philippe Roy², Raphael Jamier²

- 1. CELIA, Centre Lasers Intenses et Applications, Université de Bordeaux-CNRS-CEA, UMR 5107, F-33405 Talence Cedex, France 2. Université de Limoaes. CNRS. XLIM. UMR 7252, F-87000 Limoaes. France
 - 3. ICB, Université de Bourgogne Franche-Comté, CNRS, UMR 6303, F-21078 Dijon, France
 - 4. Univ. Côte d'Azur, CNRS, Institut de Physique de Nice, F-06108 Nice Cedex 2, France

Photonic crystal fibre (PCF) are used in telecom, fibre lasers or nonlinear sources. Due to their nonlinearity, PCF support Raman conversion, four wave mixing (FWM) generation or continuum generation [1]. The dispersion properties governing these nonlinear effects strongly depend on the PCF transverse section profile. Slight changes in the geometry of the transverse section profile may occur during the fibre drawing process and may alter the generated spectra. It is thus crucial to characterise the dispersion and its higher order accurately and rapidly. Compared to conventional white light interferometry, FWM generation gives access to a wide range of wavelengths with a greater accuracy especially on the zero dispersion wavelength and other PCF characteristics. Within this context, we propose a high-power and widely tunable source based on spectrally shaped amplified spontaneous emission (ASE) with a variable spectral width. Its unique characteristics lead to the observation of FWM with a greatly reduced threshold, and its tunability allows the reconstruction of the dispersion curve from the visible to the mid-infrared (MIR) [2]. The source is depicted in Fig.1(a). It consists in an Ytterbium-doped ASE seeder, emitting a spectrum from 1020 to 1070 nm. A programmable spectral filter is used to select a 0.1-1 nm bandwidth. After a pre-amplification stage, the light is injected in a main amplifier that also modulates the signal periodically thus delivering 50 ps bursts of ASE at 10 MHz. We can generate up to a maximum energy of 2 μJ per 50 ps burst for the PCF under study. At the PCF output, the pump, the signal and the idler waves resulting from the FWM are separated using dichroic mirrors and analysed in terms of spectrum, power and shot-to-shot statistics. Due to the stochastic nature of ASE bursts, a drastic increase of nonlinear effects is expected and observed [3]. The FWM threshold can be decreased by several orders of magnitude as compared to a non-stochastic source obtained from a CW laser (Fig.1(b)).

 $Fig. \ 1$ (a) Experimental scheme of the PCF characterisation source. (b) Evolution of the signal power generated though FWM as a function of the pump power for an ASE seed or a Continuous Wave seed.

We used this source to characterise PCFs and tapered PCFs optimised for MIR generation (~2 um) in fibered Optical Parametric Chirped-Pulse Amplification. Indeed, in order to improve the spectral bandwidth of the PCF, we propose a microstructured air/silica fibre with a longitudinal gradient of its transverse section: a fibered taper. During the fibre drawing, a homothety of the photonic structure allows to continuously vary the dispersion properties (including the zero-dispersion wavelength). This extends the usable range of the parametric gain over a spectral width of up to 100 nm, which is a key feature for generating few-cycle pulses in the MIR range. The authors thank Agence National de la Recherche (ANR) for financing the METROPOLIS project (ANR-19-CE47-0008).

References

- [1] H. Kano and H. Hamaguchi, "Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent raman spectroscopy," Opt. Lett. 28, 2360 (2003).
- [2] J.-C. Delagnes, R. Royon, J. Lhermite, et al., "High-power widely tunable ps source in the visible light based on four wave mixing in optimized photonic crystal fibers," Opt. Express 26, 11265 (2018).
- [3] N. Valero, D. Marion, J. Lhermite, J.-C. Delagnes, W. Renard, R. Royon, and E. Cormier, "High-power amplified spontaneous emission pulses with tunable coherence for efficient non-linear processes," Scientific Reports (2021).