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1. Introduction
Global atmospheric inversions are increasingly being used to estimate regional-scale net ecosystem exchange 
(NEE) of CO2 (e.g., Byrne et al., 2020; Chen et al., 2021; Enting et al., 2012; Liu et al., 2017, 2021; Miller 
& Michalak, 2020; Palmer et al., 2019). National-scale comparisons of atmospheric inverse flux estimates to 
biomass inventories have shown promise, albeit with large uncertainty bounds in both products (e.g., Ciais 
et al., 2022). The global stocktake of the Paris Agreement (GST) has begun to consider global atmospheric inver-
sions to inform national-scale CO2 flux estimates (Chevallier, 2021; Ciais et al., 2022). Regional evaluation of the 
CO2 NEE fluxes resulting from atmospheric inversions, however, is largely absent from the literature. Regional 
CO2 NEE estimates from inversions must be evaluated rigorously at seasonal and regional resolution before they 
can be used with confidence to inform climate mitigation.

Abstract Atmospheric inversion estimates of net ecosystem exchange (NEE) of CO2 are increasingly 
relevant to climate policy. We evaluated sub-continental, seasonal estimates of CO2 NEE from nine global 
inversion systems that participated in the Orbiting Carbon Observatory-2 model intercomparison project 
(OCO-2 v9 MIP), using 98 research flights conducted over the central and eastern United States from 2016 
to 2018 as part of the Atmospheric Carbon and Transport - America mission. We found that the seasonal 
amplitude of NEE in the central and eastern United States is underestimated in these models and model-data 
biases are largest for those inversions with the smallest seasonal flux amplitudes. These results were 
independent of whether the inversions used satellite or in situ data. The largest NEE biases were observed in the 
Midwest croplands and eastern forests. Future experiments are needed to determine the causes of the persistent 
biases and if they are associated with biases in annual flux estimates.

Plain Language Summary The exchange of CO2 between terrestrial ecosystems and the 
atmosphere is an important component of the Earth's climate system. Atmospheric budgets are used to 
quantify this exchange globally, but these estimates are difficult to evaluate on a regional basis. We used a 
unique set of aircraft data to evaluate a set of state-of-the-science estimates of ecosystem-atmosphere CO2 
exchange in temperate North America. Nearly every estimate underestimated the seasonal amplitude of 
ecosystem-atmosphere CO2 exchange (net photosynthesis too weak in the summer; respiration too weak in 
the winter) in this region. The source of atmospheric CO2 data did not influence this finding. More study is 
needed to determine both the cause of these seasonal biases and the impact of this bias on annual net CO2 flux 
estimates.
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Key Points:
•  The seasonal amplitude of net 

ecosystem exchange (NEE) of CO2 
in the central and eastern temperate 
North America is underestimated in 
global atmospheric inversions

•  The seasonal bias is not significantly 
different between inversions 
using OCO-2 v9 land nadir/glint 
observations and in situ observations

•  The largest NEE biases are observed 
in U.S. croplands and eastern forests
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The Orbiting Carbon Observatory-2 (OCO-2) Model Intercomparison Project (MIP) (Crowell et al., 2019) has 
brought together an ensemble of global atmospheric inversions systems. These inversion systems use a variety of 
atmospheric transport models, optimization algorithms, and prior flux estimates, but use common sets of atmos-
pheric CO2 data, including both column CO2 (XCO2) and in situ observations, to estimate NEE of CO2 across 
the globe (Crowell et al., 2019; Peiro et al., 2022). These inversions arguably represent the most advanced set of 
global inverse estimates of NEE of CO2, and they were evaluated with independent atmospheric observations but 
most of these evaluations have focused to date on global aggregate performance metrics for the annual budget 
(e.g., Chevallier et al., 2019; Crowell et al., 2019; Liu et al., 2021; Peiro et al., 2022). Currently, the evaluations 
of the inferred fluxes from most global inversion systems at the regional and seasonal scales are very limited.

The Atmospheric Carbon and Transport-America (ACT-America) project is a NASA Earth Venture Suborbital-2 
mission designed to study the transport and fluxes of greenhouse gases in the midlatitudes (Davis et al., 2021). 
ACT-America campaigns took place in the central and eastern United States (US) during Summer 2016, Winter 
2017, Fall 2017, Spring 2018, and Summer 2019 (Davis et al., 2021; Wei et al., 2021). These locations were 
chosen because they represent biologically productive middle-latitude ecoregions and experience vigorous 
synoptic weather that transports the CO2 signature of those biological fluxes. Over 1,140 flight hours of data 
from 121 research flights distributed across the central and eastern United States sampled more than 30 synoptic 
sequences. Forty-five percent of the flight hours were within the atmospheric boundary layer (ABL). Temperate 
North America also has one of the densest in situ greenhouse gas monitoring networks in the world. The ACT 
data set thus provides a unique testbed to assess rigorously and for the first time the regional, seasonal perfor-
mance of an array of global atmospheric CO2 inversions.

We evaluated the seasonal, regional performance of the OCO-2 MIP flux inversions in temperate North America 
using the ACT observations. We compared observed ABL CO2 mole fractions to corresponding CO2 mole frac-
tions simulated using OCO-2 MIP inversion products. We then quantified errors in the seasonal inverse estimates 
of CO2 NEE. This work moves us toward quantitative understanding of the ability of global inversion systems to 
estimate regional NEE of CO2.

2. Data and Methods
The model-data comparison framework used here follows the methods presented in Cui et  al.  (2021). This 
description focuses primarily on modifications to Cui et al. (2021)'s methods.

2.1. ACT-America Observations

ACT-America flights typically involved two aircraft in-flight patterns coordinated to sample atmospheric state 
throughout a portion of a synoptic weather system in either the MidAtlantic, MidWest or SouthCentral region 
of the United States (Davis et al., 2021). Both aircraft included highly calibrated observations of CO2 (Baier 
et al., 2020; Wei et al., 2021). Each seasonal flight campaign lasted for 6 weeks, with 2 weeks focused on each of 
the three study regions. All stages of synoptic weather (prefrontal, frontal, and postfrontal) were sampled. Each 
flight included long-level flight legs within the ABL. The data sets, including the in situ aircraft observations 
(Davis et al., 2018) are documented and archived at Oak Ridge National Lab's Distributed Active Archive Center 
(https://daac.ornl.gov/actamerica).

2.2. CO2 NEE Flux Inversion Products

The OCO-2 v9 MIP released a suite of gridded CO2 flux inversions from 10 global inversion models encom-
passing the years 2015–2018. Details of the OCO-2 v9 MIP are described by Peiro et  al.  (2022) and Zhang 
et al.  (2022) and in Table S1 of Supporting Information S1. The different inversion systems are standardized 
in the sense that they are required to assimilate the same four sets of atmospheric observations. The four obser-
vational data sources include the CO2 mole fraction measurements from (a) in situ data (“IS”) compiled in the 
GLOBALVIEW+ 5.0 (Cooperative Global Atmospheric Data Integration Project, 2019) and NRT v5.1 (Carbon-
Tracker Team, 2019) ObsPack products; (b) the land nadir/land glint (“LNLG”) retrievals of column-integrated 
CO2 from OCO-2 v9; (c) OCO-2 ocean glint (“OG”) v9 retrievals; and (d) a combination of the in situ and 
satellite data (“LNLGOGIS”) (Kiel et al., 2019; Peiroet al., 2022). We evaluate 35 of these inversion products 
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(nine inversion systems and four data experiments, and one inversion system did not conduct the LNLGOGIS 
experiment), and we sometimes limit our assessments to the LNLG and IS products from each of the nine inver-
sion systems based on the suggestion from Cui et al. (2021) that the LNLG product is the best performing of 
the OCO-2 based inversion products in temperate North America and that all other inversions outperformed the 
OG-based inversion.

Prior flux estimates were only partly constrained in the MIP protocol. All models in the OCO-2 v9 MIP were 
required to use the same fossil fuel inventory from the Open-source Data Inventory for Anthropogenic CO2 
(ODIAC) 2019 version but were not limited to their choice of biospheric, oceanic, and fire prior fluxes. The 
selected prior flux inputs for the components of the biospheric, oceanic, and fire sources are listed in Table S2 
of Supporting Information S1. Overall, there are seven different prior NEE of CO2 estimates used in these inver-
sion systems, six different prior estimates of the oceanic CO2 fluxes, and four different prior fire CO2 emissions 
estimates.

The OCO-2 v9 MIP produced CO2 flux estimates with monthly resolution. Gridded global 3-hourly resolution 
CO2 NEE products were generated for the four ACT-America campaign periods (i.e., summer 2016, winter 2017, 
fall 2017, and spring 2018) from the monthly flux products specifically for this study (Text S1 in Supporting 
Information S1).

2.3. Influence Functions

We estimated source-receptor relationships between CO2 fluxes and atmospheric CO2 mole fractions along the 
ACT-America flight tracks using Lagrangian particle dispersion modeling (e.g., Cui et al., 2021). In the study, 
we aggregated the ACT-America ABL CO2 measurements in 10-min intervals, excluding take-off and landing 
portions. The ABL determination is described in Pal et al. (2020) and Davis et al. (2021). Each of the 10-min 
(roughly 60–70 km at typical flight speeds) intervals is treated as a receptor. We release 1,000 particles per recep-
tor and simulate their backward transports for 10 days using FLEXPART v10.4 (“FLEXible PARTicle dispersion 
model,” Pisso et al., 2019). The FLEXPART model was driven by ERA-interim reanalysis data (Dee et al., 2011).

2.4. Background Values

A portion of the simulated CO2 mole fractions comes from the atmospheric state 10 days upwind of the observa-
tion point or receptor. We refer to this as the background value for atmospheric CO2. The background values are 
determined using the CO2 mole fraction fields simulated by each OCO-2 v9 MIP experiment using its posterior 
fluxes. We sampled the CO2 mole fraction field at the locations in time and space when and where the particle 
trajectories' 10-day backward simulations terminated. The details of the background determination are described 
in Text S1 and Figure S1 of Supporting Information S1.

2.5. Model-Data Comparison Framework

We convolve each OCO-2 v9 MIP NEE flux estimate with the influence functions to simulate the biogenic 
contribution to the atmospheric CO2 mole fractions along the ACT-America ABL flight tracks. We refer to this 
quantity as ymodbio (Cui et al., 2021). The contribution of ABL CO2 mole fractions from fossil fuels, fire and 
ocean sources are calculated by convolving these surface flux maps with the 10-day influence functions. The 
NEE-related portion of the ACT-America CO2 observations, which we refer to as yACTbio (Cui et al., 2021) are 
determined by subtracting the influence of fossil fuel, fire and ocean fluxes from the total ABL CO2 measure-
ments, as well as the determined background values (Section 2.4). We use the fossil fuel CO2 emission estimates 
from the ODIAC, 2018 emission inventory (Oda et al., 2018), and fire emissions from the GFEDv4.1s wildfire 
emission inventory for all cases. The ocean CO2 influence is derived from the monthly-averaged posterior oceanic 
CO2 flux estimates from each experiment from the individual model of OCO-2 v9 MIP.

The flights were designed to sample ecosystem fluxes in the Central and Eastern US and maximize the influence 
of NEE on ABL CO2. Numerical estimates in Cui et al. (2021) show that the fire and ocean fluxes have negligible 
contributions to the ABL mole fractions. Fossil fuel sources have a more significant, but moderate impact. We 
analyze the impact of the variability in boundary conditions across inversion systems in this study. We found that, 
along the flight's ABL track, differences in large-scale boundary conditions contributes less than 2 ppm to the 
spread of simulated CO2 mole fractions, while the differences in fluxes within the domain lead to a spread of up 
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to 20 ppm (Figure S2 in Supporting Information S1). The large-scale transport uncertainty is small compared to 
the uncertainties caused by fluxes within the domain.

2.6. Evaluation Metrics

We evaluate the OCO-2 v9 MIP posterior NEE estimates using root-mean-square error (RMSE) and mean bias 
error (MBE) metrics. These metrics are computed by summing over all ABL observations (receptors) in each 
seasonal flight campaign, that is,

RMSE =

∑𝑁𝑁

𝑖𝑖=1

(
√

(𝑦𝑦modbio 𝑖𝑖 − 𝑦𝑦ACTbio 𝑖𝑖)
2
)

𝑁𝑁

 (1)

MBE =

∑𝑁𝑁

𝑖𝑖=1
(𝑦𝑦modbio 𝑖𝑖 − 𝑦𝑦ACTbio 𝑖𝑖)

𝑁𝑁
 (2)

where i denotes each receptor, and N denotes the number of receptors within a seasonal flight campaign. In this 
way we evaluate how well the inversion systems simulate the spatial and temporal variability in regional fluxes 
(RMSE) and the mean seasonal flux magnitude (MBE).

2.7. Ecoregion-Based Evaluation Framework

To evaluate fluxes by ecoregion, we group the receptors by ecoregion and calculate the MBE values between the 
simulated and observed biological CO2 mole fractions for each ecoregion and season. We attribute each receptor 
to the one eco-region which contributes the largest portion of the influence function for that receptor (Figure 1 
and Figure S3 in Supporting Information S1).

3. Results
3.1. Regional Biases in NEE

The seasonal MBE for all members of OCO-2 v9 MIP are shown in Figure 2 and we find that nearly every 
member has the same sign of seasonal bias with respect to the ACT-America observations. The inverse estimates 

Figure 1. The spatial patterns of ecoregions in Temperate North America defined in the study. The influence functions of 
ACT-America flights cover most of the central and eastern temperate North America, and here we evaluate the mean bias 
error for the regions (1–9) that have the greatest influence on the ACT-America atmospheric boundary layer observations 
(Cui et al., 2021).
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of NEE of CO2 yield positive MBE in the summer and negative MBE in the other seasons. These results suggest 
that nearly all inversions underestimate the magnitude of the seasonal cycle of NEE, with an underestimate of 
net photosynthesis in the summer and an underestimate of ecosystem respiration in the winter and fall. Spring is 
the one exception to this pattern, where the results suggest that the net photosynthesis is overestimated (NEE too 
negative). It is quite remarkable that this appears to be true for nearly every inversion system, independent of the 
source of data. The OU inversion system is one possible exception to this pattern.

The linear regression of all cases regardless of data source (Figure  2) establish the relationship between the 
bias errors determined with respect to the ACT-America flight data and the regionally-averaged, whole-season 
NEE estimates from the inversion models. We find that the MBEs are strongly correlated with the magnitude of 
seasonal NEE integrated across the entire study region, regardless of data source or inversion system. These corre-
lations are statistically significant in all seasons save summer. The regionally, seasonally integrated inverse flux 
estimates with larger seasonal amplitudes have smaller MBE with respect to the ACT observations. The  aircraft 
data are directly compared to a subsample of fluxes in space and time. It is possible that this subsample of fluxes 
in space and time might not be representative of the regionally, seasonally averaged flux estimates. This correla-
tion shows that our aircraft-based evaluation does capture a pattern that is representative of the regional, seasonal 
fluxes.

Extrapolation of these correlations to zero MBE suggests that, on average, the MIP products underestimate 
dormant season respiration across the central and eastern US by about 1 PgC, with a similar magnitude but 
opposite sign underestimate (∼−1 PgC) of net uptake in the summer season. Given that three of four seasons 
yield underestimates of positive NEE all about the same magnitude as the summer underestimates of net uptake, 
this suggests these inversion systems might yield annual NEE values for this region that are too negative, but 
that is a speculative inference given the limited temporal duration and discontinuous temporal coverage of the 
ACT-America flight observations.

Figure 2. Seasonal net ecosystem exchange (NEE) of CO2 in the Central and Eastern US (the domain is shown in Figure S4 
of Supporting Information S1) as a function of the seasonal mean bias error (Equation 1). The panels represent the analysis 
for July and August 2016 (“Summer 2016”); February and March 2017 (“Winter 2017”); October and November 2017 (“Fall 
2017”); and April and May 2018 (“Spring 2018”), respectively. Each OCO-2 v9 MIP member is labeled with the codes 
defined in (Table S1 in Supporting Information S1). The open circles denote the IS experiments, and the solid circles denote 
the land nadir/land glint experiments. The TM5 group (CT, OU, and TM5-4DVAR) is colored in red, the GEOS-Chem group 
(Ames, CMS-Flux, UT, and CSU) is colored in blue, the Baker model is in black, and the CAMS model is in yellow. The pink 
lines are linear regressions of all inversions for each season. The linear fits, correlation coefficients, and fractional probability 
that the quantities are not correlated are shown in the lower right of each panel.
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The inversion products from each model are only required to use the same fossil fuel emission and the same 
observational data sets, leaving many potential differences among the inversion systems including prior fluxes, 
atmospheric transport, and inversion algorithms. Given the limited similarity among the systems and the contrast-
ing observations (IS and LNLG), the similarity in NEE performance relative to the ACT-America observations is 
striking. It is possible that a bias in our influence functions contributes to the MBE in Figure 2. The TM5 group 
shows the best performance among the transport models, with smaller MBEs (from −3.3 to 3.1 ppm) than the 
other transport models (from −3.5 to 4.5 ppm) across four seasons. Both our influence functions and the TM5 
inversions are based on ERA reanalysis. This might explain the advantageous performance of the TM5 group 
of inversions in our analyses. Overall, the TM5-4DVAR model has the best performance across the different 
seasons.

3.2. Ecoregion-Based Bias Analyses

A number of broad patterns emerge when the MBE is evaluated for each ecoregion (Figure 3). In all seasons the 
patterns of ecoregion MBEs change relatively little as a function of the data source used in the inversion. Summer 
and fall have the largest overall MBEs. The largest MBEs are in the Appalachian forests (ecoregion #5), central 
crops and forest (ecoregion #6), the corn belt (ecoregion #7), and the northern grain belt (ecoregion #8). Appala-
chian forests (e5) stand out as having a positive fall MBE (overestimate of NEE in the inversions), unlike all other 
ecoregions during this season.

Figure 3. Mean Bias Error (MBE, ppm) for nine different ecoregions in Central and Eastern Temperate North America. The largest magnitude of MBE for each 
ecoregion and each season is written onto the cell. A warm color denotes a positive bias, and a cold color denotes a negative bias. The ecoregions are defined in 
Figure 1.
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The performance of the inversion systems varies considerably when evaluated by ecoregion. Large MBEs of both 
signs are found in the Baker and UT models, which may imply less spatial correlation in the inversions used by 
these systems. The OU model MBEs most often diverge in sign from the other models during the dormant season, 
and the Ames and CMS-Flux models often have the largest negative MBEs in the dormant seasons, especially for 
the IS and LNLG inversions. The TM5-4DVAR model shows the smallest MBE across all ecoregions. The UT 
and Baker-mean models contain many of the peak positive biases across these ecoregions.

3.3. Regional RMSE and MBE Across Inversion Systems and Data Sources

A synthesis of RMSE and MBE results across all seasons, regions, inversions, and data sources (Figure 4) shows 
some patterns that are to be expected given the seasonal amplitude of NEE. Across all members of OCO-2 v9 
MIP, spring and winter CO2 NEE flux estimates have smaller RMSE levels than fall and summer estimates. These 
findings are roughly consistent with larger NEE, hence larger potential for model-data differences, in the more 
biologically active seasons.

The same synthesis (Figure 4) reveals some differentiation across inversion systems. Most of the models in the 
OCO-2 v9 MIP are not strongly sensitive to changes in the observational source. The Baker-mean model, in 
contrast, is relatively sensitive to the source data used in the inversion, especially to the OG experiment. The OU 
and CSU models are sensitive to the OG data during the wintertime as well. The UT model is sensitive to the differ-
ent observing datasets during the fall months. This suggests that these inversion systems are the most data driven.

The MBE analysis as a function of the observational data set shows similar patterns to the RMSE analysis. MBE 
levels are smaller in winter and spring months than the fall and summer months, and the MBE level is smallest in 
the spring. During the fall months, the MBE levels for the CO2 NEE flux estimates from the UT and Baker model 
still display large divergences across different observing datasets. The LNLGOGIS experiment includes both in 
situ and OCO-2 data but we do not find superior performance in the current global inversion system despite the 
increased data density.

4. Discussion
Our results show that the overall OCO-2 v9 MIP models underestimate the seasonal amplitude of NEE across 
central and eastern US ecosystems, regardless of data source. These results are consistent with the results of other 
studies using ACT-America observations (Cui et al., 2021; Feng et al., 2021; Zhang et al., 2022) but independent 

Figure 4. The root-mean-square error (RMSE) (left) and mean bias error (right) analysis of the posterior biogenic CO2 computed from all inverse estimates of net 
ecosystem exchange of CO2 compared to the observed atmospheric boundary layer CO2 mole fractions from each of four seasonal ACT-America campaigns.
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methods. Feng et al. (2021) finds similar results for the summer of 2016 (underestimate of net photosynthesis) but 
using an independent atmospheric transport system, the Weather Research and Forecast model (WRF), and only 
evaluating NEE from the CarbonTracker inversion system. Cui et al. (2021) used independent FLEXPART-WRF 
simulations associated with a Bayesian analysis to evaluate CarbonTracker inversions in the OCO2 v9 MIP at 
the sub-regions of Central and Eastern temperate North America. The seasonal mean bias analyses are in good 
agreement with both Cui et al. (2021) and this study for summer, fall, and spring, while an opposite sign of the 
mean bias estimates for winter likely due to the underestimates of ABL in WRF simulations of Cui et al. (2021). 
Zhang et al. (2022) co-sampled the ACT-America data in the posterior CO2 fields of the OCO-2 v9 MIP. They 
found seasonal model-data mismatch patterns in boundary layer CO2 from the OCO-2 v9 MIP which are largely 
consistent with an underestimate in seasonal NEE magnitudes. This suggests that our findings are not specific 
to the FLEXPART-ERA-interim atmospheric transport simulation used in this study. This does not rule out the 
possibility that all atmospheric transport systems available to us at this time might be biased.

Zhang et al. (2022) also found that the magnitudes of posterior, seasonally-and sectorally-averaged ABL-Free 
troposhere (FT) vertical CO2 differences over the ACT-America flight domain were underestimated in the OCO-2 
v9 MIP inversion systems, a result that could be consistent with either underestimated seasonal amplitudes of 
NEE, overestimated vertical mixing, or some combination of those factors. Zhang et al. (2022) evaluated mean 
wind speed and ABL depths in the inversion systems and did not find persistent biases. Cloud convective trans-
port, however, could not be evaluated directly with ACT-America measurements.

Since the seasonal biases in NEE are of opposite sign, biases in annual NEE are not clear. The cause of these 
biases is also not clear given the analyses to date. The fact, however, that this seasonal bias appears to exist in 
nearly every inversion system, independent of data source, suggests an issue with the inversion systems used in 
the OCO-2 v9 MIP.

One possible explanation for this seasonal bias is that the prior NEE estimates used in the inversions have biased 
the posterior NEE estimates. Previous studies (e.g., Philip et al., 2019) have demonstrated the large impact of 
prior information on the current global inversion systems. Feng et al. (2021) showed that one model commonly 
used as a flux prior appears to underestimate the magnitude of summer NEE. We suggest further evaluation of 
the prior biospheric fluxes applied in the OCO-2 MIP.

The relationship between the bias errors determined by ACT-America data and the regional, seasonal NEE esti-
mates from the models are not statistically significant in the summer. The different systems employ different 
inversion algorithms. Summer results might be more sensitive to inversion algorithms since fluxes are large 
and the corrections to the priors might be large in the summer. In addition, convective cloud transport is at a 
maximum in the summer and differences in atmospheric transport among inversion systems may increase in this 
season. Neither of these potential causes of divergence across inversion models would be clearly correlated with 
the regional, seasonal NEE estimates. The cause of this divergence in summer is not clear but is worthy of future 
study.

Atmospheric transport errors could also lead to persistent errors in either posterior fluxes or our inferences about 
these fluxes. We found that the TM5-based inversions had smaller seasonal NEE biases than the GEOS-Chem-
based inversions. TM5 transport should be closely related to the ERA meteorology used to derive our influence 
functions. Schuh et al. (2019), suggested that TM5 mixes more vigorously in the vertical than does GEOS-Chem. 
This would lead to TM5-based inversions requiring stronger seasonal NEE of CO2 to match ABL CO2 observations 
since seasonal fluxes would be diluted within a larger atmospheric mixing volume. This appears consistent with 
our findings. These results do not say, however, which representation of atmospheric mixing is more realistic.

It is difficult from this suite of results to conclude which fluxes are most accurate because of the compensating 
influences of flux and mixing on atmospheric CO2, but these analyses do put boundaries on the problem. Likely 
biases appear to tend toward either an overestimate of mixing in TM5 and/or an underestimate of the seasonal 
amplitude of NEE, particularly in GEOS-Chem-based inversions, with biases in both systems leading to the 
underestimate of the ABL-FT CO2 differences documented by Zhang et al. (2022). Overestimates in the seasonal 
amplitude of NEE in the inversion systems appear unlikely to be consistent with this suite of results.

Schuh et al. (2019) showed that globally, the differences in atmospheric mixing between these two systems led to 
large differences in inverse estimates of annual NEE of CO2, emphasizing the need to identify and minimize the 
biases we have documented.
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5. Conclusions
The persistence of the seasonal underestimate of the magnitude of seasonal NEE in the central and eastern 
United States across all inversion systems and data sources suggests a potentially important bias within our most 
advanced atmospheric inversion systems. This pattern of results deserves further investigation given the growing 
importance of atmospheric inversions in global climate policy and the potential impact on annual NEE esti-
mates. The lack of sensitivity of this result to the source of atmospheric CO2 observations shows either encour-
aging consistency across observations or limited impact of the observations on the inversion products. The 
difference in seasonal biases in NEE of CO2 as a function of the atmospheric transport model underscores the 
continued importance of evaluating the accuracy of the transport models used in these inversions. Experimenta-
tion with the atmospheric inversion systems is needed to explore the causes of these biases. The ACT-America 
flight observations, merging regionally-, seasonally-representative mole fraction data and direct observations of 
important atmospheric transport metrics, serve as a test bed for continued development of atmospheric inversion 
systems.
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