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1 Introduction.

Let us consider the infinite extension

L = Q(21/2, 21/3, 21/4, . . .).

Obviously, there exist algebraic numbers α in L of positive but arbitrary small
(absolute, logarithmic) Weil height. Indeed, for a positive integer n we have:

h(21/n) =
1

n
h(2) =

log 2

n
. (1.1)

The following special (but still open) case of a conjecture of Rémond suggests
that (1.1) are the only exceptions. To state this conjecture, we need a couple of

standard definitions. Let Γ ⊂ Q∗ be a subgroup. We define its division group Γdiv

as
Γdiv = {α ∈ Q∗ such that ∃n ∈ Z≥1, α

n ∈ Γ} .

We say that Γ is of finite rank if there exists a finitely generated subgroup Γ0 of
Γ such that Γ/Γ0 is torsion, that is if Γ ⊆ Γdiv

0 .

Conjecture 1.1 ([10], conjecture 3.4 and [1], conjecture 1.2). Let Γ ⊂ Q∗ be a
subgroup of finite rank. Then there exists a constant cΓ > 0 such that for any
α ∈ Q(Γ)∗\Γdiv we have h(α) ≥ cΓ.

A partial result in the direction of Conjecture 1.1 was proved in [1], where we

give a positive answer for the rank 1 subgroup1 〈ζ3t , 2
1/3t〉t≥1 of 〈2〉div.

Conjecture 1.1 with Γ = 〈21/2, 21/3, 21/4, . . .〉 predicts that for each α ∈ L∗

we have either α = ±2k/n for some integers k and n ≥ 1, or h(α) ≥ c for some
absolute constant c > 0. Now we restrict ourselelves to algebraic integers α in L

1Here and in what follows, we denote by ζn a primitive nth root of unity.
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and we consider instead of the height the so-called house of α, i.e. the maximum

modulus α of its algebraic conjugates. Since

h(α) ≤ log α , (1.2)

we again expect either α = ±2k/n for some integers k ≥ 0 and n ≥ 1, or α ≥ C
for some C > 1.

Note that lower bounds for the house can be easier to prove than lower bounds
for the height, as the following fundamental example shows. Let γ ∈ Q∗ be
an algebraic integer of degree d, not a root of unity. Lehmer conjecture (1933)
predicts the lower bound h(γ) ≥ c/d for some absolute c > 0. Schinzel-Zassenhaus

conjecture (1965) predicts the lower bound γ ≥ C1/d for some absolute C > 1.
Thus Schinzel-Zassenhaus is a consequence of Lehmer, and for a long time it
was (wrongly) believed that both were of the same difficulty. In spite of that,
Dimitrov [7] recently proved in a very beautiful way Schinzel-Zassenhaus (with
C = 21/4) while Lehmer is still open. This may suggest that, also in our setting,
lower bounds of the house for integers in L can be more easily proved than lower
bounds for the height. And indeed, for the special situation we are interested in,
we get:

Theorem 1.2. Let α ∈ Z[21/2, 21/3, 21/4, . . .] be non-zero. Then either α = ±2k/n

for some integers k ≥ 0 and n ≥ 1, or

α ≥
√

2 .

Note that Z[21/2, 21/3, 21/4, . . .] is not the full ring of integers in L, and we are
unable to extend the result of Theorem 1.2 to it, see Remark 2.1.

We now state a general conjecture on lower bounds for the house in radical
extensions.

Conjecture 1.3. Let γ1, . . . , γr be non-zero algebraic numbers and let α be a

non-zero algebraic integer in the infinite extension Q(ζn, γ
1/n
1 , . . . , γ

1/n
r )n≥1. Then

either αn = γk11 · · · γkrr for some integers n, k1, . . . , kr with n ≥ 1, or

α ≥ c

with c = c(γ1, . . . , γr) > 1.

By inequality (1.2), this conjecture follows from Conjecture 1.1. We shall
give a partially positive answer to it. As in Theorem 1.2, we cannot reach the
full ring of integer of Q(ζn, γ

1/n
1 , . . . , γ

1/n
r )n≥1, but we need to restrict ourselves

to the subring Z[ζn, γ
1/n
1 , . . . , γ

1/n
r ]n≥1, assuming γ1, . . . , γr algebraic integers.

To simplify, we also assume γj ∈ Z. It seems to be reasonable that this last
restriction could be removed at the cost of some technical difficulties. On
the other hand, we can consider roots of infinitely many integers.
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Theorem 1.4. Let α ∈ Z[ζn, a
1/n]a,n≥1 be non-zero. Then either there exists

an integer n ≥ 1 such that αn ∈ Z, or

α ≥

√
1 +
√

5

2
.

The plan of the paper is as follows. In section 2 we prove Theorem 1.2.
The proof of Lemma 2.2, an elementary L1-mean estimate which is one of
the ingredient of our method, is postponed at the the end of this section. In
section 3 we prove our main technical result, Proposition 3.2, and we deduce
Theorem 1.4 from it. We conclude this article with a more speculative sec-
tion 4 where we state some questions and remarks on lower bounds for the
house.

Acknowledgement. We are indebted to Gaël Rémond, who suggests us
a simple proof of Lemma 2.2 with a better (and optimal) constant, and to
Lukas Pottmeyer for Remark 4.2.

2 Proof of Theorem 1.2.

Take a non-zero α ∈ Z[21/2, 21/3, 21/4, . . .] outside the multiplicative group
generated by ±1 and by the nth roots of 2. Thus α ∈ Z[21/N ] for some
positive integer N and we can write α = a0 +a121/N + · · ·+aN−12(N−1)/N for
some integers a0, . . . , aN−1. We consider the trace Tr: Q(21/N) → Q. Our
result rests on this elementary remark2:

1

N
Tr(2j/N) =

{
1 if j = 0;

0 if 1 ≤ j < N.

We distinguish two cases.

First case. There exists an index j such that |aj| ≥ 2. Since all the
conjugates of 2−j/N have absolute value 2−j/N ≤ 1 we have:

2 ≤ |aj| =
1

N
|Tr(2−j/Nα)| ≤ α .

2This orthogonality relation is also one of the ingredient of an other result on height,
see [5], proof of Theorem 1.

3



Thus we get in this case the better lower bound α ≥ 2.

Second case. For each j we have |aj| ≤ 1. Then, by assumption, there
exist two distinct indexes j0, j1 such that aj0 = ±1 and aj1 = ±1. Choosing
the sign in a right way we get

1

N
|Tr((2−j0/N ± 2−j1/N)α)| = 2.

We now prove an upper bound for the quantity on the left hand side. Let
k = N/ gcd(j1 − j0, N). We notice that k ≥ 2 since j0 6= j1. Thus

1

N
|Tr((2−j0/N ± 2−j1/N)α)| ≤ α

1

k

k−1∑
l=0

|2−j0/N ± 2−j1/N exp(2πli/k)|.

We quote the following elementary estimate (see Lemma 2.2 below), which
holds since 2−j0/N , 2−j1/N ≤ 1 and k ≥ 2:

1

k

k−1∑
l=0

|2−j0/N ± 2−j1/N exp(2πli/k)| ≤
√

2. (2.1)

We get
α ≥ 2/

√
2 =
√

2

as required.

Remark 2.1. The above argument cannot be extended to the full ring of in-
tegers, since the trace of an arbitrary integer in Q(21/N) could be 1. Consider
the following example taken from [6, Theorem 5.1]. Let p ≥ 3 be a Wieferich
prime to base 2, that is a prime satisfying the congruence 2p−1 ≡ 1 mod p2,
as for instance p = 1093. Then γ = (21/p− 2)p−1/p 6∈ Z[21/p] is an integer of
trace 2p−1. Taking a suitable linear combination over Z of γ and 1, we get
an integer α ∈ Q(21/p) of trace 1.

We now state and prove a lemma which generalizes the inequality (2.1)
we have used in the proof of Theorem 1.2.

Lemma 2.2. Let x, y be complex numbers and let k ≥ 2 be an integer. Then

1

k

k−1∑
l=0

|x+ y exp(2πli/k)| ≤
√
|x|2 + |y|2 .
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Proof. By Cauchy-Schwarz,

1

k

k−1∑
l=0

|x+ y exp(2πli/k)| ≤ 1

k

(
k−1∑
l=0

|x+ y exp(2πli/k)|2
)1/2

×
√
k .

We have

|x+ y exp(2πli/k)|2 = |x|2 + |y|2 + 2<(xy exp(2πli/k)

and
∑k−1

l=0 <(xy exp(2πli/k) = 0 since k ≥ 2. Hence

k−1∑
l=0

|x+ y exp(2πli/k)|2 = k(|x|2 + |y|2).

The conclusion follows.

Remark 2.3. The lemma is optimal: take x/y = i and k = 2.

3 Proof of Theorem 1.4.

Let K ⊂ C be a subfield of Q, and let O be a subring of K such that the
following holds.

There exists C > 1 such that for each non-zero γ ∈ O

either γ is a root of unity, or γ ≥ C. (3.1)

Let γ1, γ2, . . . ∈ O be non-zero. We assume that for each j the archimedean
absolute value of γj is ≥ 1. We further assume that for each finite subset
Γ ⊂ {γ1, γ2, . . .} and for each integer N ≥ 1 the extension K(γ1/N |γ ∈ Γ)/K
is of degree N |Γ|.

Remark 3.1. By Kummer’s Theory this last assertion holds if

i) K contains the roots of unity;

ii) None of the γj is a (non trivial) power in K;

iii) For each integers N ≥ 1, γ1, γ2, . . . are multiplicatively independent mod-
ulo3 (K∗)N .

The following is our main result.

3That is: γa1
1 , . . . , γar

r ∈ (K∗)N whenever γa1
1 · · · γar

r ∈ (K∗)N for some integers ai.
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Proposition 3.2. Let α be a non-zero algebraic number in

O[γ
1/n
1 , γ

1/n
2 , . . .]n≥1.

Then either αn = γk11 · · · γkrr for some integers n, r, k1, . . . , kr with n, r ≥ 1
and kj ≥ 0, or

α ≥ min(C,
√

2) .

More precisely, if α < C then the maximum absolute value of the conjugates

of α over K is ≥
√

2.

Proof. The proof follows the same lines as the proof of Theorem 1.2. Take a
non-zero

α ∈ O[γ
1/n
1 , γ

1/n
2 , . . .]n≥1..

Thus α ∈ O[γ
1/N
1 , . . . , γ

1/N
r ] for some positive integers r, N . Let L =

K(γ
1/N
1 , . . . , γ

1/N
r ) and Tr = TrLK be the trace relative to K. We suppose that

for each integers n, k1, . . . , kr with n ≥ 1, α does not satisfy αn = γk11 · · · γk1r .
We write

α =
∑
j

ajγ
j1/N
1 · · · γjr/Nr with aj ∈ O,

where the sum is over the multi-indexes j = (j1, . . . , jr) with 0 ≤ ji < N . We
distinguish two cases.

First case. There exists an index j such that aj is neither zero nor a root
of unity. We have

1

N r
Tr(γ−j1/N · · · γ−jr/Nα) = aj.

By assumption (3.1), aj ≥ C. Thus

C ≤ aj =
1

N r
Tr(γ−j1/N · · · γ−jr/Nα) ≤ α

since all the conjugates of γ−j/N have absolute value ≤ 1. We get in this case
the lower bound α ≥ C.

Second case. For each j the coefficient aj is either zero or a root of unity.
By assumption, there exist two distinct multi-indexes j, j′ such that aj and

aj′ are both roots of unity. Otherwise, α = ajγ
j1/N
1 · · · γjr/Nr for some j and

in this case either α = 0 or αNk = γj1k1 · · · γjrkr if aj is a kth root of unity.

Let x = (ajγ
j1/N
1 · · · γjr/Nr )−1 and y = (aj′γ

j′1/N
1 · · · γj

′
r/N
r )−1. Then

1

N r
Tr((x+ y)α) = 2. (3.2)
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By assumption L/K is of degree N r. Thus the K-embeddings L ↪→ C are

given by σω(γ
1/N
i ) = ωiγ

1/N
i with ωi ∈ µN , the group of Nth roots of unity.

Thus

1

N r
|Tr((x+ y)α)| = 1

N r

∣∣∣ ∑
ω∈µr

N

(σω(x) + σω(y))σω(α)
∣∣∣

≤ α
K

1

N r

∑
ω∈µr

N

|x+ ω
j1−j′1
1 · · ·ωjr−j′rr y|

= α
K

1

k

∑
ω∈µk

|x+ ωy|

with

k = lcm

(
N

gcd(j′1 − j1, N)
, . . . ,

N

gcd(j′r − jr, N)

)
and where

α
K

= max{|σα|, σ ∈ Gal(Q/K)} ≤ α

is the maximum of the absolute value of the conjugates of α over K.
Note that k ≥ 2 since for at least one of the indexes i we have j′i 6≡

ji mod N . Note also that |x|, |y| ≤ 1 (since |γj| ≥ 1). Thus we can apply
Lemma 2.2:

1

N r
|Tr((x+ y)α)| ≤

√
2× α

K
. (3.3)

By (3.2) and (3.3) we get the desired conclusion α
K
≥
√

2.

Proof of Theorem 1.4 We apply Proposition 3.2, choosing K = Qab the
maximal cyclotomic extension and O = OK = Z[ζn]n∈N. Then (3.1) holds
with

C =

√
1 +
√

5

2
<
√

2

by a result of Schinzel (apply [11], Corollary 1′, p. 386, to the linear poly-
nomial P (z) = z − α; see the next section for details). Notice also that the
squares of the integers are in K. We choose γi =

√
pi where (pi)i∈N is the se-

quence of the rational primes. We still have to show that for each finite subset
Γ ⊂ {γ1, γ2, . . .} and for each integer N ≥ 1 the extension K(γ1/N |γ ∈ Γ)/K
is of degree N |Γ|.

We make use of Remark 3.1. Assertion i) is satisfied by the choice of K.
Assertion ii) is satisfied since K∗ does not contain nontrivial kth roots of
rationals for k ≥ 3, since they generate over Q a non-Galois extension. More
precisely, let us assume that ii) does not hold. Then there exists a prime
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p and an integer n ≥ 2 such that p1/2n ∈ K = Qab, which is absurd since
Q(p1/2n)/Q is not Galois.

It is thus enough to prove assertion iii), i.e. that γ1, γ2, . . . are multiplica-
tively independent modulo (K∗)N . Let α :=

∏
p p

ap/2 where the product is

over a finite set of primes and where ap are integers. Suppose α ∈ (K∗)N for
some N ≥ 2. Then α2 ∈ (K∗)2N ∩Q∗. Since K∗ does not contains nontrivial
kth roots of rationals for k ≥ 3, α2 ∈ (Q∗)N which in turns imply N | ap for
all p, and thus pap/2 ∈ (K∗)N .

�

4 Concluding remarks

Dimitrov’s proof of Schinzel-Zassenhaus conjecture and our results in this
paper suggest that lower bounds for the house are sensibly simpler to prove
than lower bound for the height. This opens a large spectre of conjectures,
problems and results by considering the house of an algebraic number instead
of the more familiar Weil’s height.

Let A be a set of algebraic numbers. Following [5], we say that A has the
Bogomolov Property (B) if there exists a real number c = c(A) > 0 such that
the set of non-zero α ∈ A of height < c consists of roots of unity. Several
examples of fields with property (B) are known. For instance the field Qtr of
all totally real algebraic numbers ([11]), the fields with bounded local degrees
at some finite place ([5]), the maximal abelian extension Qab of Q ([3]). We
refer the interested reader to the introduction of [2] for details and for other
examples.

Property (B) for fields is not stable by finite extensions. For instance4 the
field Qtr(i), which is the compositum of all CM-field, does not have property
(B), see again [2], section 5. However, the ring of integers of Qtr(i) has
property (B) by a result of Schinzel (apply [11], Corollary 1′, p. 386, to the
linear polynomial P (z) = z−α), and the same is true for any finite extension

of Qtr by [9], Theorem 1. Since h(α) ≤ log α , a fortiori this ring satisfies
the House Property below:

Definition 4.1. Let A be a set of algebraic integers. We say that A has the
House Property if there exists a real number C = C(A) > 1 such that the set
of non-zero α ∈ A of house < C consists of roots of unity.

4note that the extension Qtr(i)/Qtr is essentially the only known example of this phe-
nomenon, see [9].
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By abuse of notation we say that a field of algebraic numbers has the
House Property if its ring of integers has it. In this context, some questions
arise naturally.

By the remark above, fields with (B) satisfy the House Property, and
moreover this property is satisfied by Qtr(i), which does not satisfy (B). Are
there other significant examples of fields which satisfy the House Property
but do not have (B), or at least for which we cannot prove that they satisfy
(B)?

Related to this question, we might ask if the House Property is stable
by finite extensions. A positive answer could be suggested by the example
Qtr(i)/Qtr above, where the House Property is satisfied even if Qtr(i) does
not satisfy (B). In spite of that we have:

Remark 4.2 (Pottmeyer). Let α be any Salem number5 and K = Q(α).
Let β be any non-real conjugate of α. Then β1/n ∈ Ktr(i) for each positive
integer n. In particular, Ktr(i) does not satisfy the House Property.

Proof. Let n be a positive integer. Then all Galois conjugates of β1/n over
K have absolute value 1. By [9, Lemma 1], β1/n ∈ Ktr(i).

By the already quoted result of Schinzel, Ktr satisfies (B) and hence the
House property. Thus Ktr(i)/Ktr is a degree two extension which does not
satisfy the House property even if the ground field does.
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5 After

Given α ∈ Q∗ and let K be a number field which contains α. We set T̂r(α) =
1

[K:Q]
TrK/Q(α). It is clear that the definition does not depend on K.

Theorem 5.1. Let 1 = γ1, . . . , γn ∈ Q∗. We assume:

1. T̂r(γiγ
−1
j ) = δij;

2. 1 = |γ1|v ≤ |γ2|v ≤ · · · ≤ |γn|v for any archimedean place v of
Q(γ1, . . . , γn).

Then for any nonzero α ∈ Zγ1 + · · ·+ Zγn with α 6= γi we have α ≥
√

2.
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Proof. We write α = a1γ1 + · · ·+ anγn for some integers a1, . . . , an. We dis-
tinguish two cases.

First case. There exists an index j such that |aj| ≥ 2. By assumption (??),

T̂r(γ−1
j α) = aj. By assumption (??) |γj| ≥ 1. Thus

2 ≤ |aj| = |T̂r(γ−1
j α)| ≤ α

and we get in this case the better lower bound α ≥ 2.

Second case. For each j we have |aj| ≤ 1. Then, by assumption, there
exist two indexes j0 < j1 such that aj0 = ±1 and aj1 = ±1. Choosing the
signs in a right way we get, by assumption (??),

|Tr((γ−1
j0
± γ−1

j1
)α)| = 2. (5.1)

We want an upper bound for the quantity on the left hand side. We have

|Tr((γ−1
j0
± γ−1

j1
)α)| ≤ α

1

d

∑
σ

|σγ−1
j0
± σγ−1

j1
|. (5.2)

where the sum is over the d embeddings σ : Q(γ1, . . . , γn) ↪→ C.
By Cauchy-Schwarz,

1

d

∑
σ

|σγ−1
j0
± σγ−1

j1
| ≤

(
1

d

∑
σ

|σγ−1
j0
± σγ−1

j1
|2
)1/2

. (5.3)

By assumption ??, |σγj0|−1 ≤ 1 and |σγj0/σγj1| ≤ 1. Thus

|σγ−1
j0
± σγ−1

j1
|2 = |σγj0|−1|1± σγj0/σγj1|2 ≤ |1± σγj0/σγj1|2

= 1± 2<(σγj0/σγj1) + |σγj0/σγj1|2 ≤ 2± 2<(σγj0/σγj1). (5.4)

By assumption ??,

1

d

∑
σ

2<(σγj0/σγj1) =
2

d
<
(∑

σ

σγj0/σγj1

)
= 2<

(
T̂r(γj0/γj1)

)
= 0. (5.5)

Combining (??), (??), (??) and (??) we get the upper bound

|Tr((γ−1
j0
± γ−1

j1
)α)| ≤ α ×

√
2.

Comparing this upper bound with (??) we get the desired lower bound for

α .
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